Energy transfer and energy saving potentials of air-to-air membrane energy exchanger for ventilation in cold climates

Frosting occurring inside heat exchangers degrades the exchangers’ performance and reduces energy recovery in cold climates. The moisture transport in membrane energy exchangers (MEE) provides a great potential to increase frost tolerance and decrease energy consumption by the air handling units (AH...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 135; pp. 95 - 108
Main Authors Liu, Peng, Justo Alonso, Maria, Mathisen, Hans Martin, Simonson, Carey
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.01.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frosting occurring inside heat exchangers degrades the exchangers’ performance and reduces energy recovery in cold climates. The moisture transport in membrane energy exchangers (MEE) provides a great potential to increase frost tolerance and decrease energy consumption by the air handling units (AHU). In addition, the moisture recovery in MEEs tends to improve the thermal comfort by adding moisture to the indoor dry air. However, applications of MEEs for cold climates are less known compared to their use in hot and humid climates as independent cooling and dehumidification. The open literatures dealing with heat and mass transfer of the MEEs for cold climates are scarce and acute. This research aims to investigate heat and moisture transfer, and energy saving potentials of MEEs compared to the sensible-only heat exchanger (HE). The applicability of transforming heat and moisture transfer analysis carried out for hot and humid conditions to cold climates is examined. The study attempts to “translate” conventional sensible-only HE correlations to the MEEs. Knowledge and data of heat exchangers are transformed to MEEs through analysing the boundary conditions of heat and mass transfer in both MEE and HE. This transformation can reduce needs of relying on computational fluid dynamics (CFD) to analyse heat and mass transfer in MEEs. As one of most important advantages of adopting MEE in cold climates, frosting reduction by the MEE is determined and compared for a specific MEE and HE in the heating season of Oslo (Norway). The energy consumption by the AHU equipped with the MEE is compared to the AHU with HE under different airflow rates. The MEE is able to significantly reduce the energy consumption by preheating and post-conditioning (reheating and humidifying) when there is frosting risk in MEE or HE for Oslo climate.
AbstractList Frosting occurring inside heat exchangers degrades the exchangers' performance and reduces energy recovery in cold climates. The moisture transport in membrane energy exchangers (MEE) provides a great potential to increase frost tolerance and decrease energy consumption by the air handling units (AHU). In addition, the moisture recovery in MEEs tends to improve the thermal comfort by adding moisture to the indoor dry air. However, applications of MEEs for cold climates are less known compared to their use in hot and humid climates as independent cooling and dehumidification. The open literatures dealing with heat and mass transfer of the MEEs for cold climates are scarce and acute. This research aims to investigate heat and moisture transfer, and energy saving potentials of MEEs compared to the sensible-only heat exchanger (HE). The applicability of transforming heat and moisture transfer analysis carried out for hot and humid conditions to cold climates is examined. The study attempts to "translate" conventional sensible-only HE correlations to the MEEs. Knowledge and data of heat exchangers are transformed to MEEs through analysing the boundary conditions of heat and mass transfer in both MEE and HE. This transformation can reduce needs of relying on computational fluid dynamics (CFD) to analyse heat and mass transfer in MEEs. As one of most important advantages of adopting MEE in cold climates, frosting reduction by the MEE is determined and compared for a specific MEE and HE in the heating season of Oslo (Norway). The energy consumption by the AHU equipped with the MEE is compared to the AHU with HE under different airflow rates. The MEE is able to significantly reduce the energy consumption by preheating and post-conditioning (reheating and humidifying) when there is frosting risk in MEE or HE for Oslo climate.
Author Justo Alonso, Maria
Liu, Peng
Mathisen, Hans Martin
Simonson, Carey
Author_xml – sequence: 1
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
  email: liu.peng@ntnu.no
  organization: Department of Energy and Process Engineering, NTNU, Trondheim, Norway
– sequence: 2
  givenname: Maria
  surname: Justo Alonso
  fullname: Justo Alonso, Maria
  organization: SINTEF Building and Infrastructure, Trondheim, Norway
– sequence: 3
  givenname: Hans Martin
  surname: Mathisen
  fullname: Mathisen, Hans Martin
  organization: Department of Energy and Process Engineering, NTNU, Trondheim, Norway
– sequence: 4
  givenname: Carey
  surname: Simonson
  fullname: Simonson, Carey
  organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
BookMark eNqFkE1LAzEQhoNUsFZ_ghDwvGuS_cjuSaTUDyh40XPIJrM1yzapSVrsvzdl69nTMMP7vjPzXKOZdRYQuqMkp4TWD0MOttubUecstTmlOSn5BZrThrOspryZoTkpeJNx3jRX6DqEgRBSV5zO0X5lwW-OOHppQw8eS6sxTLMgD8Zu8M5FsNHIMWDXY2l8Fl2WCt7Ctks2-NPDj_qSdpNCeufx4WQaZTTOYmOxcqPGajRbGSHcoMs-5cHtuS7Q5_PqY_mard9f3pZP60wVvI5ZW7Ud9K2qFJcdoY2WWhPJJW1rSVhX9rxkhDDOoYISdMkV04yXknFSq0aTYoHup9ydd997CFEMbu9tWiloWzBSU9pUSVVNKuVdCB56sfPpTn8UlIgTYTGIM2FxIiwoFYlw8j1OPkgvHAx4EZQBq0AbDyoK7cw_Cb9OB4sD
CitedBy_id crossref_primary_10_1016_j_enbuild_2020_109755
crossref_primary_10_1016_j_enbuild_2020_110600
crossref_primary_10_1016_j_energy_2020_117057
crossref_primary_10_1016_j_ijrefrig_2018_11_035
crossref_primary_10_1016_j_enbuild_2024_114428
crossref_primary_10_1016_j_renene_2018_09_012
crossref_primary_10_1016_j_energy_2023_128894
crossref_primary_10_1016_j_applthermaleng_2018_11_085
crossref_primary_10_1007_s12053_020_09917_w
crossref_primary_10_1016_j_scs_2020_102172
crossref_primary_10_1115_1_4047255
crossref_primary_10_1007_s10973_019_09158_9
crossref_primary_10_1016_j_applthermaleng_2019_03_010
crossref_primary_10_1016_j_buildenv_2022_109542
crossref_primary_10_1016_j_proeng_2017_10_283
crossref_primary_10_1016_j_buildenv_2022_109940
crossref_primary_10_1016_j_buildenv_2023_111067
crossref_primary_10_1016_j_buildenv_2022_108971
crossref_primary_10_1016_j_enconman_2021_115144
crossref_primary_10_1016_j_egypro_2017_12_678
crossref_primary_10_1016_j_mex_2021_101253
crossref_primary_10_1016_j_apenergy_2023_120823
crossref_primary_10_1016_j_est_2020_101387
crossref_primary_10_1080_23744731_2020_1761712
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125608
crossref_primary_10_1016_j_enbuild_2018_04_013
crossref_primary_10_1016_j_applthermaleng_2021_117971
crossref_primary_10_1016_j_enconman_2023_117298
crossref_primary_10_1016_j_enbuild_2022_112236
crossref_primary_10_1016_j_buildenv_2023_110814
crossref_primary_10_1016_j_matdes_2023_111805
crossref_primary_10_1016_j_enbuild_2019_109645
crossref_primary_10_1016_j_rser_2021_111941
crossref_primary_10_1016_j_applthermaleng_2023_121639
crossref_primary_10_1016_j_buildenv_2022_109430
crossref_primary_10_1016_j_rser_2022_112417
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_144
crossref_primary_10_1016_j_enconman_2018_05_105
crossref_primary_10_1016_j_memsci_2021_119179
crossref_primary_10_1016_j_enbuild_2022_112097
crossref_primary_10_3390_su13020685
Cites_doi 10.1016/j.ijheatmasstransfer.2010.07.009
10.1115/1.1469524
10.1016/j.memsci.2006.08.002
10.1016/S0360-5442(00)00064-5
10.1016/j.enbuild.2006.12.008
10.1016/j.ijheatmasstransfer.2008.03.008
10.1177/1744259113506072
10.1016/S0140-7007(01)00035-4
10.1016/j.applthermaleng.2016.10.010
10.1115/1.2005274
10.1039/tf9393500628
10.1016/j.buildenv.2014.11.014
10.1016/S0376-7388(00)00680-3
10.1016/S0360-5442(99)00087-0
10.1126/science.6857273
10.1016/j.memsci.2011.06.028
10.1016/j.ijheatmasstransfer.2015.01.046
10.1016/j.applthermaleng.2015.03.067
10.1016/j.ijheatmasstransfer.2012.05.083
10.1016/j.rser.2013.10.038
10.1016/j.ijheatmasstransfer.2008.09.002
10.1016/j.rser.2007.05.001
10.1080/10407780600879048
10.1016/S0017-9310(05)80195-4
10.1016/S0960-1481(99)00012-9
10.1016/j.enbuild.2010.05.020
10.1080/01457632.2012.659616
10.1016/j.applthermaleng.2011.08.006
10.1016/S0376-7388(97)00026-4
10.1016/j.enconman.2011.11.033
10.1016/j.memsci.2012.12.018
10.1016/j.ijheatmasstransfer.2007.11.006
10.1016/j.rser.2014.01.092
10.1016/j.buildenv.2008.10.010
10.1016/S0378-7788(98)00016-4
10.1021/ie010553y
10.1016/S0376-7388(99)00150-7
10.1016/j.applthermaleng.2010.01.010
10.1016/j.ijheatmasstransfer.2005.08.029
10.1115/1.2824339
10.1016/j.applthermaleng.2012.10.003
10.1016/j.ijheatmasstransfer.2006.06.025
10.1080/10407780701853314
10.1016/j.ijheatmasstransfer.2015.06.043
10.1016/j.applthermaleng.2012.06.052
10.1080/10789669.2003.10391082
10.1115/1.4029349
10.1016/j.enbuild.2016.03.010
10.1016/j.memsci.2008.08.041
10.1016/j.ijheatmasstransfer.2015.06.056
10.1080/10407780701303658
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright Elsevier BV Jan 15, 2017
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 15, 2017
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2016.11.047
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
EndPage 108
ExternalDocumentID 10_1016_j_enbuild_2016_11_047
S0378778816316012
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AAXKI
AAYXX
ABFNM
ABTAH
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
7ST
8FD
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c376t-959bef9c5c7ab018dadd0a7a196a02b4f74200277e5e4ed47c2d274a2706c8d03
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Thu Oct 10 22:31:36 EDT 2024
Thu Sep 26 15:41:01 EDT 2024
Fri Feb 23 02:27:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ventilation
HVAC
Frost
Heat and mass transfer
Membrane energy exchanger
Heat exchanger
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-959bef9c5c7ab018dadd0a7a196a02b4f74200277e5e4ed47c2d274a2706c8d03
PQID 1932061185
PQPubID 2045483
PageCount 14
ParticipantIDs proquest_journals_1932061185
crossref_primary_10_1016_j_enbuild_2016_11_047
elsevier_sciencedirect_doi_10_1016_j_enbuild_2016_11_047
PublicationCentury 2000
PublicationDate 2017-01-15
PublicationDateYYYYMMDD 2017-01-15
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Brockmeier, Guentermann, Fiebig (bib0260) 1993; 36
E.A. Mason, A.P. Malinauskas, Gas transport in porous media: the dusty-gas model, 17, 1983.
Liu, Niu (bib0370) 2015; 84
Omer (bib0035) 2008; 12
Rafati Nasr, Fauchoux, Besant, Simonson (bib0090) 2014; 30
Webb (bib0285) 1994
Kays, Crawford, Weigand (bib0235) 2005
Niu (bib0395) 2001; 189
Nasif, Al-Waked, Behnia, Morrison (bib0385) 2012; 33
ASTM (bib0305) 2012
Spengler, Sexton (bib0005) 1983; 80
Zhang, Jiang (bib0130) 1999; 163
Shao, Riffat, Gan (bib0055) 1998; 28
F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, vol. 6th. 2007.
Ruth, Fisher, Gawley (bib0405) 1975; 81
Shah, Sekulic (bib0240) 2003
Woods, Kozubal (bib0275) 2013; 50
Zhang, Niu (bib0160) 2002; 124
Barrer, Rideal (bib0315) 1939; 35
Fisk, Chant, Archer, Hekmat, Offermann, Pedersen (bib0065) 1984; 91
Barringer, McGugan (bib0180) 1989; 2
Zhang, Xiao (bib0195) 2008; 51
Zhang (bib0135) 2012; 55
Min, Su (bib0220) 2011; 31
Kalamees, Korpi, Vinha, Kurnitski (bib0420) 2009; 44
E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, vol. Second. 1997.
Khayet, Matsuura (bib0345) 2001; 40
Justo Alonso, Liu, Mathisen, Ge, Simonson (bib0030) 2015; 84
Min, Su (bib0145) 2010; 30
Kragh, Rose, Nielsen, Svendsen (bib0110) 2007; 39
Liu, Nasr, Ge, Alonso, Mathisen, Fathieh, Simonson (bib0115) 2015; 110
Freund, a. Klein, Reindl (bib0095) 2003; 9
Phillips, Chant, Bradley, Fisher (bib0105) 1989; 95
Achieving the Desired Indoor Climate: Energy Efficiency Aspects of System Design. 2003.
Zhang (bib0140) 2012; 63
(Accessed 02 December 2015).
Kadylak, Cave, Mérida (bib0365) 2009; 52
Zhang (bib0360) 2006; 49
Nasif, AL-Waked, Morrison, Behnia (bib0225) 2010; 42
Zhang (bib0330) 2008; 51
R. Ahmed, Frost-protection measures in energy recuperation with multiple counterflow heat exchangers, no. October, pp. 37–40, 2013.
Liu, Justo Alonso, Mathisen, Simonson (bib0280) 2016; 119
Zhang (bib0215) 2008; 53
Pfeiffer, S. H., Untersuchungen zum Einfrieren von regenerativ wärmeübertragern. ki klima – kälte, 1987.
Arvela (bib0020) 1995; 59
Astm E96 Method E PDF. [Online]. Available
Fehrm, Reiners, Ungemach (bib0040) 2002; 25
Vali, Ge, Besant, Simonson (bib0390) 2015; 89
Shang, Chen, Besant (bib0080) 2005; 127
Aarnes (bib0250) 2012
L.Z. Zhang, J.L. Niu, Energy requirements for conditioning fresh air and the long- term savings with a membrane-based energy recovery ventilator in Hong Kong, 26, pp. 119–135, 2001.
J.C. Maxwell, Illustrations of the Dynamic Theory of Gases.
Justo Alonso, Mathisen, Aarnes, Peng (bib0255) 2015
J. Kragh, S. Svendsen, Mechanical ventilation with heat recovery in cold climates, pp. 1–8, 2005.
Simonson, Besant (bib0075) 1998; 120
Kays, London (bib0185) 1984
Fordham (bib0015) Jan. 2000; 2
Boardman, Glass (bib0400) 2013; 38
Zhang (bib0205) 2007; 52
Zhang (bib0230) 2008
Holmberg (bib0060) 1989; 95
Min, Wang (bib0155) 2013; 430
Min, Hu (bib0150) 2011; 379
Liu, Alonso, Rafati Nasr, Mathisen, Simonson (bib0170) 2014
El-Bourawi, Ding, Ma, Khayet (bib0350) 2006; 285
Phillips, Bradley, Chant, Fisher (bib0085) 1989
Zhang, Liang, Pei (bib0310) 2008; 325
Zhang (bib0200) 2007; 51
Yaïci, Ghorab, Entchev (bib0375) 2013; 51
P. Liu, H.M. Mathisen, M.J. Alonso, Critical Sensible and Latent Effectiveness for Membrane Type Energy Recovery Ventilator (ERV) in Cold Climates, in IAQ 2013 Environmental Health in Low Energy Buildings Conference, 2013.
Zhang (bib0245) 2007; 50
Liu, Mathisen, Justo Alonso, Simonson (bib0190) 2017; 111
Zhang, Jiang, Zhang, Deng, Jin (bib0120) 2000; 25
Mahmood, Simonson, Besant (bib0265) 2015; 137
Zhang (bib0355) 2010; 53
J.L. Niu, L.Z. Zhang, Membrane-based Enthalpy Exchanger: material considerations and clarification of moisture resistance, vol. 189, pp. 179–191, 2001.
Zhang (bib0125) 2013
Woods (bib0290) 2014; 33
R. Garber-slaght, V. Stevens, D. Madden, Energy Recovery Ventilators in Cold Climates, p. 21, 2014.
AL-Waked, Nasif, Morrison, Behnia (bib0380) 2015; 84
Anisimov, Jedlikowski, Pandelidis (bib0070) 2015; 90
Iversen, Bhatia, Dam-Johansen, Jonsson (bib0340) 1997; 130
Mulder (bib0295) 1998; 72
Rafati Nasr, Kassai, Ge, Simonson (bib0410) 2015; 35
ASHRAE, ASHRAE handbook-HVAC Systems and equipment. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, 2000.
EERE, (Ed.). Building Energy data book. The buildings technologies program, energy efficiency and renewable Energy, pp. 2009, 2008.
ASTM (10.1016/j.enbuild.2016.11.047_bib0305) 2012
10.1016/j.enbuild.2016.11.047_bib0325
Kays (10.1016/j.enbuild.2016.11.047_bib0235) 2005
10.1016/j.enbuild.2016.11.047_bib0045
10.1016/j.enbuild.2016.11.047_bib0320
Arvela (10.1016/j.enbuild.2016.11.047_bib0020) 1995; 59
10.1016/j.enbuild.2016.11.047_bib0165
Holmberg (10.1016/j.enbuild.2016.11.047_bib0060) 1989; 95
10.1016/j.enbuild.2016.11.047_bib0050
Woods (10.1016/j.enbuild.2016.11.047_bib0290) 2014; 33
Zhang (10.1016/j.enbuild.2016.11.047_bib0310) 2008; 325
Omer (10.1016/j.enbuild.2016.11.047_bib0035) 2008; 12
Liu (10.1016/j.enbuild.2016.11.047_bib0370) 2015; 84
Niu (10.1016/j.enbuild.2016.11.047_bib0395) 2001; 189
Nasif (10.1016/j.enbuild.2016.11.047_bib0225) 2010; 42
AL-Waked (10.1016/j.enbuild.2016.11.047_bib0380) 2015; 84
Barrer (10.1016/j.enbuild.2016.11.047_bib0315) 1939; 35
Zhang (10.1016/j.enbuild.2016.11.047_bib0140) 2012; 63
Webb (10.1016/j.enbuild.2016.11.047_bib0285) 1994
Simonson (10.1016/j.enbuild.2016.11.047_bib0075) 1998; 120
Phillips (10.1016/j.enbuild.2016.11.047_bib0085) 1989
Kragh (10.1016/j.enbuild.2016.11.047_bib0110) 2007; 39
Rafati Nasr (10.1016/j.enbuild.2016.11.047_bib0090) 2014; 30
Zhang (10.1016/j.enbuild.2016.11.047_bib0160) 2002; 124
Zhang (10.1016/j.enbuild.2016.11.047_bib0200) 2007; 51
Zhang (10.1016/j.enbuild.2016.11.047_bib0245) 2007; 50
Shang (10.1016/j.enbuild.2016.11.047_bib0080) 2005; 127
Khayet (10.1016/j.enbuild.2016.11.047_bib0345) 2001; 40
Liu (10.1016/j.enbuild.2016.11.047_bib0190) 2017; 111
Freund (10.1016/j.enbuild.2016.11.047_bib0095) 2003; 9
Anisimov (10.1016/j.enbuild.2016.11.047_bib0070) 2015; 90
Fordham (10.1016/j.enbuild.2016.11.047_bib0015) 2000; 2
Zhang (10.1016/j.enbuild.2016.11.047_bib0135) 2012; 55
Fisk (10.1016/j.enbuild.2016.11.047_bib0065) 1984; 91
Zhang (10.1016/j.enbuild.2016.11.047_bib0130) 1999; 163
Zhang (10.1016/j.enbuild.2016.11.047_bib0125) 2013
Min (10.1016/j.enbuild.2016.11.047_bib0145) 2010; 30
Min (10.1016/j.enbuild.2016.11.047_bib0150) 2011; 379
Justo Alonso (10.1016/j.enbuild.2016.11.047_bib0030) 2015; 84
Kadylak (10.1016/j.enbuild.2016.11.047_bib0365) 2009; 52
Zhang (10.1016/j.enbuild.2016.11.047_bib0355) 2010; 53
Justo Alonso (10.1016/j.enbuild.2016.11.047_bib0255) 2015
Yaïci (10.1016/j.enbuild.2016.11.047_bib0375) 2013; 51
Shao (10.1016/j.enbuild.2016.11.047_bib0055) 1998; 28
Zhang (10.1016/j.enbuild.2016.11.047_bib0120) 2000; 25
10.1016/j.enbuild.2016.11.047_bib0425
Zhang (10.1016/j.enbuild.2016.11.047_bib0195) 2008; 51
10.1016/j.enbuild.2016.11.047_bib0025
10.1016/j.enbuild.2016.11.047_bib0300
Phillips (10.1016/j.enbuild.2016.11.047_bib0105) 1989; 95
Mulder (10.1016/j.enbuild.2016.11.047_bib0295) 1998; 72
10.1016/j.enbuild.2016.11.047_bib0100
Ruth (10.1016/j.enbuild.2016.11.047_bib0405) 1975; 81
10.1016/j.enbuild.2016.11.047_bib0270
Boardman (10.1016/j.enbuild.2016.11.047_bib0400) 2013; 38
Aarnes (10.1016/j.enbuild.2016.11.047_bib0250) 2012
Liu (10.1016/j.enbuild.2016.11.047_bib0170) 2014
Mahmood (10.1016/j.enbuild.2016.11.047_bib0265) 2015; 137
Zhang (10.1016/j.enbuild.2016.11.047_bib0215) 2008; 53
Brockmeier (10.1016/j.enbuild.2016.11.047_bib0260) 1993; 36
Vali (10.1016/j.enbuild.2016.11.047_bib0390) 2015; 89
Iversen (10.1016/j.enbuild.2016.11.047_bib0340) 1997; 130
Liu (10.1016/j.enbuild.2016.11.047_bib0115) 2015; 110
Kays (10.1016/j.enbuild.2016.11.047_bib0185) 1984
Rafati Nasr (10.1016/j.enbuild.2016.11.047_bib0410) 2015; 35
El-Bourawi (10.1016/j.enbuild.2016.11.047_bib0350) 2006; 285
10.1016/j.enbuild.2016.11.047_bib0415
Barringer (10.1016/j.enbuild.2016.11.047_bib0180) 1989; 2
10.1016/j.enbuild.2016.11.047_bib0335
10.1016/j.enbuild.2016.11.047_bib0210
Woods (10.1016/j.enbuild.2016.11.047_bib0275) 2013; 50
10.1016/j.enbuild.2016.11.047_bib0010
10.1016/j.enbuild.2016.11.047_bib0175
Min (10.1016/j.enbuild.2016.11.047_bib0220) 2011; 31
Min (10.1016/j.enbuild.2016.11.047_bib0155) 2013; 430
Zhang (10.1016/j.enbuild.2016.11.047_bib0230) 2008
Nasif (10.1016/j.enbuild.2016.11.047_bib0385) 2012; 33
Shah (10.1016/j.enbuild.2016.11.047_bib0240) 2003
Fehrm (10.1016/j.enbuild.2016.11.047_bib0040) 2002; 25
Spengler (10.1016/j.enbuild.2016.11.047_bib0005) 1983; 80
Zhang (10.1016/j.enbuild.2016.11.047_bib0205) 2007; 52
Liu (10.1016/j.enbuild.2016.11.047_bib0280) 2016; 119
Zhang (10.1016/j.enbuild.2016.11.047_bib0360) 2006; 49
Zhang (10.1016/j.enbuild.2016.11.047_bib0330) 2008; 51
Kalamees (10.1016/j.enbuild.2016.11.047_bib0420) 2009; 44
References_xml – volume: 51
  start-page: 5288
  year: 2008
  end-page: 5295
  ident: bib0330
  article-title: A fractal model for gas permeation through porous membranes
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Zhang
– volume: 80
  start-page: 9
  year: 1983
  end-page: 17
  ident: bib0005
  article-title: Indoor air pollution: a public health perspective
  publication-title: Science
  contributor:
    fullname: Sexton
– volume: 89
  start-page: 1258
  year: 2015
  end-page: 1276
  ident: bib0390
  article-title: Numerical modeling of fluid flow and coupled heat and mass transfer in a counter-cross-flow parallel-plate liquid-to-air membrane energy exchanger
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Simonson
– volume: 25
  start-page: 439
  year: 2002
  end-page: 449
  ident: bib0040
  article-title: Exhaust air heat recovery in buildings
  publication-title: Int. J. Refrig.
  contributor:
    fullname: Ungemach
– volume: 42
  start-page: 1833
  year: 2010
  end-page: 1840
  ident: bib0225
  article-title: Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis
  publication-title: Energy Build.
  contributor:
    fullname: Behnia
– volume: 72
  start-page: 564
  year: 1998
  ident: bib0295
  article-title: Basic principles of membrane technology
  publication-title: Zeitschrift für Physikalische Chemie
  contributor:
    fullname: Mulder
– volume: 40
  start-page: 5710
  year: 2001
  end-page: 5718
  ident: bib0345
  article-title: Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Matsuura
– volume: 53
  start-page: 1195
  year: 2008
  end-page: 1210
  ident: bib0215
  article-title: Heat and mass transfer in a total heat exchanger: cross-corrugated triangular ducts with composite supported liquid membrane
  publication-title: Numer. Heat Transfer Part A: Appl.
  contributor:
    fullname: Zhang
– year: 2014
  ident: bib0170
  article-title: Frosting limits for counter-flow membrane energy exchanger (MEE) in cold climates
  publication-title: 13th International Conference on Indoor Air Quality and Climate
  contributor:
    fullname: Simonson
– year: 2005
  ident: bib0235
  article-title: Convective Heat & Mass Transfer w/Engineering Subscription Card
  contributor:
    fullname: Weigand
– volume: 9
  start-page: 493
  year: 2003
  end-page: 508
  ident: bib0095
  article-title: A semi-empirical method to estimate enthalpy exchanger performance and a comparison of alternative frost control strategies
  publication-title: HVAC&R Res.
  contributor:
    fullname: Reindl
– volume: 28
  start-page: 179
  year: 1998
  end-page: 184
  ident: bib0055
  article-title: Heat recovery with low pressure loss for natural veltilation
  publication-title: Energy Build.
  contributor:
    fullname: Gan
– year: 2008
  ident: bib0230
  article-title: Total Heat Recovery: Heat and Moisture Recovery from Ventilation Air
  contributor:
    fullname: Zhang
– year: 2003
  ident: bib0240
  article-title: Fundamentals of Heat Exchanger Design
  contributor:
    fullname: Sekulic
– volume: 130
  start-page: 205
  year: 1997
  end-page: 217
  ident: bib0340
  article-title: Characterization of microporous membranes for use in membrane contactors
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Jonsson
– volume: 379
  start-page: 496
  year: 2011
  end-page: 503
  ident: bib0150
  article-title: Moisture permeation through porous membranes
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Hu
– volume: 53
  start-page: 5478
  year: 2010
  end-page: 5486
  ident: bib0355
  article-title: Heat and mass transfer in a quasi-counter flow membrane-based total heat exchanger
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Zhang
– volume: 84
  start-page: 542
  year: 2015
  end-page: 549
  ident: bib0370
  article-title: Effects of geometrical parameters on the thermohydraulic characteristics of periodic cross-corrugated channels
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Niu
– volume: 35
  start-page: 628
  year: 1939
  ident: bib0315
  article-title: Permeation, diffusion and solution of gases in organic polymers
  publication-title: Trans. Faraday Soc.
  contributor:
    fullname: Rideal
– volume: 36
  start-page: 2575
  year: 1993
  end-page: 2587
  ident: bib0260
  article-title: Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surfaces
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Fiebig
– volume: 163
  start-page: 29
  year: 1999
  end-page: 38
  ident: bib0130
  article-title: Heat and mass transfer in a membrane-based energy recovery ventilator
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Jiang
– start-page: 484
  year: 1989
  end-page: 490
  ident: bib0085
  article-title: Comparison of freezing control strategies for residential air-to-air heat recovery ventilators
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Fisher
– volume: 95
  start-page: 64
  year: 1989
  end-page: 69
  ident: bib0060
  article-title: Prediction of condensation and frosting limits in rotary wheels for heat recovery in buildings
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Holmberg
– volume: 50
  start-page: 151
  year: 2007
  end-page: 162
  ident: bib0245
  article-title: Heat and mass transfer in a cross-flow membrane-based enthalpy exchanger under naturally formed boundary conditions
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Zhang
– volume: 95
  start-page: 475
  year: 1989
  end-page: 483
  ident: bib0105
  article-title: A model to compare freezing control strategies for residential air-to-air Heat Recovery Ventilators
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Fisher
– volume: 33
  start-page: 1010
  year: 2012
  end-page: 1023
  ident: bib0385
  article-title: Modeling of air to air enthalpy heat exchanger
  publication-title: Heat Transfer Eng.
  contributor:
    fullname: Morrison
– volume: 44
  start-page: 1643
  year: 2009
  end-page: 1650
  ident: bib0420
  article-title: The effects of ventilation systems and building fabric on the stability of indoor temperature and humidity in Finnish detached houses
  publication-title: Build. Environ.
  contributor:
    fullname: Kurnitski
– volume: 30
  start-page: 538
  year: 2014
  end-page: 554
  ident: bib0090
  article-title: A review of frosting in air-to-air energy exchangers
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Simonson
– volume: 84
  start-page: 228
  year: 2015
  end-page: 237
  ident: bib0030
  article-title: Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries
  publication-title: Build. Environ.
  contributor:
    fullname: Simonson
– volume: 39
  start-page: 1151
  year: 2007
  end-page: 1158
  ident: bib0110
  article-title: New counter flow heat exchanger designed for ventilation systems in cold climates
  publication-title: Energy Build.
  contributor:
    fullname: Svendsen
– volume: 124
  start-page: 922
  year: 2002
  ident: bib0160
  article-title: Effectiveness correlations for heat and moisture transfer processes in an enthalpy exchanger with membrane cores
  publication-title: J. Heat Transfer
  contributor:
    fullname: Niu
– volume: 120
  start-page: 699
  year: 1998
  end-page: 708
  ident: bib0075
  article-title: Heat and moisture transfer in energy wheels during sorption, condensation, and frosting conditions
  publication-title: J. Heat Transfer
  contributor:
    fullname: Besant
– volume: 30
  start-page: 991
  year: 2010
  end-page: 997
  ident: bib0145
  article-title: Performance analysis of a membrane-based energy recovery ventilator: effects of membrane spacing and thickness on the ventilator performance
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Su
– year: 1984
  ident: bib0185
  article-title: Compact Heat Exchangers
  contributor:
    fullname: London
– volume: 33
  start-page: 290
  year: 2014
  end-page: 304
  ident: bib0290
  article-title: Membrane processes for heating, ventilation, and air conditioning
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Woods
– year: 2012
  ident: bib0305
  article-title: E96: standard test methods for water vapor transmission of materials
  publication-title: Am. Soc. Test. Mater.
  contributor:
    fullname: ASTM
– volume: 2
  start-page: 17
  year: Jan. 2000
  end-page: 37
  ident: bib0015
  article-title: Natural ventilation
  publication-title: Renew. Energy
  contributor:
    fullname: Fordham
– volume: 430
  start-page: 150
  year: 2013
  end-page: 157
  ident: bib0155
  article-title: Coupled heat and mass transfer during moisture exchange across a membrane
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Wang
– volume: 127
  year: 2005
  ident: bib0080
  article-title: Frost growth in regenerative wheels
  publication-title: J. Heat Transfer
  contributor:
    fullname: Besant
– volume: 12
  start-page: 2265
  year: 2008
  end-page: 2300
  ident: bib0035
  article-title: Energy, environment and sustainable development
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Omer
– volume: 84
  start-page: 301
  year: 2015
  end-page: 309
  ident: bib0380
  article-title: CFD simulation of air to air enthalpy heat exchanger: variable membrane moisture resistance
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Behnia
– volume: 119
  start-page: 129
  year: 2016
  end-page: 142
  ident: bib0280
  article-title: Performance of a quasi-counter-flow air-to-air membrane energy exchanger in cold climates
  publication-title: Energy Build.
  contributor:
    fullname: Simonson
– volume: 189
  start-page: 179
  year: 2001
  end-page: 191
  ident: bib0395
  article-title: Membrane-based Enthalpy Exchanger: material considerations and clarification of moisture resistance
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Niu
– volume: 51
  start-page: 697
  year: 2007
  end-page: 714
  ident: bib0200
  article-title: Numerical study of heat and mass transfer in an enthalpy exchanger with a hydrophobic-hydrophilic composite membrane core
  publication-title: Numer. Heat Transfer Part A: Appl.
  contributor:
    fullname: Zhang
– volume: 52
  start-page: 549
  year: 2007
  end-page: 564
  ident: bib0205
  article-title: Thermally developing forced convection and heat transfer in rectangular plate-fin passages under uniform plate temperature
  publication-title: Numer. Heat Transfer Part A: Appl.
  contributor:
    fullname: Zhang
– volume: 49
  start-page: 1176
  year: 2006
  end-page: 1184
  ident: bib0360
  article-title: Investigation of moisture transfer effectiveness through a hydrophilic polymer membrane with a field and laboratory emission cell
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Zhang
– volume: 25
  start-page: 515
  year: 2000
  end-page: 527
  ident: bib0120
  article-title: Analysis of thermal performance and energy savings of membrane based heat recovery ventilator
  publication-title: Energy
  contributor:
    fullname: Jin
– volume: 50
  start-page: 868
  year: 2013
  end-page: 876
  ident: bib0275
  article-title: Heat transfer and pressure drop in spacer-filled channels for membrane energy recovery ventilators
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Kozubal
– volume: 51
  start-page: 770
  year: 2013
  end-page: 780
  ident: bib0375
  article-title: Numerical analysis of heat and energy recovery ventilators performance based on CFD for detailed design
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Entchev
– volume: 110
  start-page: 404
  year: 2015
  end-page: 414
  ident: bib0115
  article-title: A theoretical model to predict frosting limits in cross-Flow air-to-air flat plate heat/energy exchangers
  publication-title: Energy Build.
  contributor:
    fullname: Simonson
– volume: 137
  start-page: 42601
  year: 2015
  ident: bib0265
  article-title: Experimental pressure drop and heat transfer in a rectangular channel with a sinusoidal porous screen
  publication-title: J. Heat Transfer
  contributor:
    fullname: Besant
– volume: 285
  start-page: 4
  year: 2006
  end-page: 29
  ident: bib0350
  article-title: A framework for better understanding membrane distillation separation process
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Khayet
– volume: 91
  start-page: 145
  year: 1984
  end-page: 158
  ident: bib0065
  article-title: Onset of freezing in residential air-to-air heat exchangers
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Pedersen
– volume: 51
  start-page: 2179
  year: 2008
  end-page: 2189
  ident: bib0195
  article-title: Simultaneous heat and moisture transfer through a composite supported liquid membrane
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Xiao
– volume: 35
  year: 2015
  ident: bib0410
  article-title: Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation
  publication-title: Accept. J. Appl. Energy
  contributor:
    fullname: Simonson
– volume: 31
  start-page: 4036
  year: 2011
  end-page: 4043
  ident: bib0220
  article-title: Performance analysis of a membrane-based energy recovery ventilator: effects of outdoor air state
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Su
– volume: 59
  start-page: 33
  year: 1995
  end-page: 42
  ident: bib0020
  article-title: Seasonal variation in radon concentration of 3000 dwellings with model comparisons
  publication-title: Radiat. Prot. Dosim.
  contributor:
    fullname: Arvela
– volume: 55
  start-page: 5861
  year: 2012
  end-page: 5869
  ident: bib0135
  article-title: Coupled heat and mass transfer in an application-scale cross-flow hollow fiber membrane module for air humidification
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Zhang
– volume: 111
  year: 2017
  ident: bib0190
  article-title: A frosting limit model of air-to-air quasi-counter-flow membrane energy exchanger for use in cold climates
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Simonson
– volume: 81
  start-page: 410
  year: 1975
  end-page: 417
  ident: bib0405
  article-title: Investigation of frosting in rotary air-to-air heat exchangers
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Gawley
– year: 2013
  ident: bib0125
  article-title: Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts
  contributor:
    fullname: Zhang
– volume: 52
  start-page: 1504
  year: 2009
  end-page: 1509
  ident: bib0365
  article-title: Effectiveness correlations for heat and mass transfer in membrane humidifiers
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Mérida
– year: 2012
  ident: bib0250
  article-title: Membrane Based Heat Exchanger, Master’s thesis
  contributor:
    fullname: Aarnes
– volume: 90
  start-page: 201
  year: 2015
  end-page: 217
  ident: bib0070
  article-title: Frost formation in the cross-flow plate heat exchanger for energy recovery
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Pandelidis
– year: 1994
  ident: bib0285
  article-title: Principles of Enhanced Heat Transfer
  contributor:
    fullname: Webb
– volume: 63
  start-page: 173
  year: 2012
  end-page: 195
  ident: bib0140
  article-title: Progress on heat and moisture recovery with membranes: from fundamentals to engineering applications
  publication-title: Energy Convers. Manag.
  contributor:
    fullname: Zhang
– year: 2015
  ident: bib0255
  article-title: Performance of a lab-scale membrane-based energy exchanger
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Peng
– volume: 38
  start-page: 389
  year: 2013
  end-page: 418
  ident: bib0400
  article-title: Moisture transfer through the membrane of a cross-flow energy recovery ventilator: measurement and simple data-driven modeling
  publication-title: J. Build. Phys.
  contributor:
    fullname: Glass
– volume: 325
  start-page: 672
  year: 2008
  end-page: 682
  ident: bib0310
  article-title: Heat and moisture transfer in application scale parallel-plates enthalpy exchangers with novel membrane materials
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Pei
– volume: 2
  start-page: 461
  year: 1989
  end-page: 474
  ident: bib0180
  article-title: Effect of residential air-to-air heat and moisture exchangers on indoor humidity
  publication-title: ASHRAE Trans.
  contributor:
    fullname: McGugan
– volume: 59
  start-page: 33
  issue: 1
  year: 1995
  ident: 10.1016/j.enbuild.2016.11.047_bib0020
  article-title: Seasonal variation in radon concentration of 3000 dwellings with model comparisons
  publication-title: Radiat. Prot. Dosim.
  contributor:
    fullname: Arvela
– volume: 53
  start-page: 5478
  issue: November (23–24)
  year: 2010
  ident: 10.1016/j.enbuild.2016.11.047_bib0355
  article-title: Heat and mass transfer in a quasi-counter flow membrane-based total heat exchanger
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.07.009
  contributor:
    fullname: Zhang
– volume: 124
  start-page: 922
  issue: 5
  year: 2002
  ident: 10.1016/j.enbuild.2016.11.047_bib0160
  article-title: Effectiveness correlations for heat and moisture transfer processes in an enthalpy exchanger with membrane cores
  publication-title: J. Heat Transfer
  doi: 10.1115/1.1469524
  contributor:
    fullname: Zhang
– volume: 285
  start-page: 4
  issue: November (1–2)
  year: 2006
  ident: 10.1016/j.enbuild.2016.11.047_bib0350
  article-title: A framework for better understanding membrane distillation separation process
  publication-title: J. Memb. Sci.
  doi: 10.1016/j.memsci.2006.08.002
  contributor:
    fullname: El-Bourawi
– volume: 95
  start-page: 64
  issue: 32
  year: 1989
  ident: 10.1016/j.enbuild.2016.11.047_bib0060
  article-title: Prediction of condensation and frosting limits in rotary wheels for heat recovery in buildings
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Holmberg
– year: 2012
  ident: 10.1016/j.enbuild.2016.11.047_bib0305
  article-title: E96: standard test methods for water vapor transmission of materials
  publication-title: Am. Soc. Test. Mater.
  contributor:
    fullname: ASTM
– ident: 10.1016/j.enbuild.2016.11.047_bib0025
– ident: 10.1016/j.enbuild.2016.11.047_bib0050
– year: 2014
  ident: 10.1016/j.enbuild.2016.11.047_bib0170
  article-title: Frosting limits for counter-flow membrane energy exchanger (MEE) in cold climates
  contributor:
    fullname: Liu
– ident: 10.1016/j.enbuild.2016.11.047_bib0300
– ident: 10.1016/j.enbuild.2016.11.047_bib0165
  doi: 10.1016/S0360-5442(00)00064-5
– volume: 2
  start-page: 461
  year: 1989
  ident: 10.1016/j.enbuild.2016.11.047_bib0180
  article-title: Effect of residential air-to-air heat and moisture exchangers on indoor humidity
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Barringer
– volume: 39
  start-page: 1151
  issue: 11
  year: 2007
  ident: 10.1016/j.enbuild.2016.11.047_bib0110
  article-title: New counter flow heat exchanger designed for ventilation systems in cold climates
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.12.008
  contributor:
    fullname: Kragh
– volume: 51
  start-page: 5288
  issue: 2008
  year: 2008
  ident: 10.1016/j.enbuild.2016.11.047_bib0330
  article-title: A fractal model for gas permeation through porous membranes
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.03.008
  contributor:
    fullname: Zhang
– volume: 38
  start-page: 389
  year: 2013
  ident: 10.1016/j.enbuild.2016.11.047_bib0400
  article-title: Moisture transfer through the membrane of a cross-flow energy recovery ventilator: measurement and simple data-driven modeling
  publication-title: J. Build. Phys.
  doi: 10.1177/1744259113506072
  contributor:
    fullname: Boardman
– volume: 25
  start-page: 439
  issue: 4
  year: 2002
  ident: 10.1016/j.enbuild.2016.11.047_bib0040
  article-title: Exhaust air heat recovery in buildings
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(01)00035-4
  contributor:
    fullname: Fehrm
– volume: 111
  year: 2017
  ident: 10.1016/j.enbuild.2016.11.047_bib0190
  article-title: A frosting limit model of air-to-air quasi-counter-flow membrane energy exchanger for use in cold climates
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.10.010
  contributor:
    fullname: Liu
– volume: 127
  issue: 9
  year: 2005
  ident: 10.1016/j.enbuild.2016.11.047_bib0080
  article-title: Frost growth in regenerative wheels
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2005274
  contributor:
    fullname: Shang
– volume: 35
  start-page: 628
  issue: January
  year: 1939
  ident: 10.1016/j.enbuild.2016.11.047_bib0315
  article-title: Permeation, diffusion and solution of gases in organic polymers
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9393500628
  contributor:
    fullname: Barrer
– volume: 84
  start-page: 228
  year: 2015
  ident: 10.1016/j.enbuild.2016.11.047_bib0030
  article-title: Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.11.014
  contributor:
    fullname: Justo Alonso
– ident: 10.1016/j.enbuild.2016.11.047_bib0210
  doi: 10.1016/S0376-7388(00)00680-3
– volume: 25
  start-page: 515
  issue: June (6)
  year: 2000
  ident: 10.1016/j.enbuild.2016.11.047_bib0120
  article-title: Analysis of thermal performance and energy savings of membrane based heat recovery ventilator
  publication-title: Energy
  doi: 10.1016/S0360-5442(99)00087-0
  contributor:
    fullname: Zhang
– volume: 80
  start-page: 9
  issue: 4605
  year: 1983
  ident: 10.1016/j.enbuild.2016.11.047_bib0005
  article-title: Indoor air pollution: a public health perspective
  publication-title: Science
  doi: 10.1126/science.6857273
  contributor:
    fullname: Spengler
– volume: 379
  start-page: 496
  issue: September (1–2)
  year: 2011
  ident: 10.1016/j.enbuild.2016.11.047_bib0150
  article-title: Moisture permeation through porous membranes
  publication-title: J. Memb. Sci.
  doi: 10.1016/j.memsci.2011.06.028
  contributor:
    fullname: Min
– volume: 84
  start-page: 542
  year: 2015
  ident: 10.1016/j.enbuild.2016.11.047_bib0370
  article-title: Effects of geometrical parameters on the thermohydraulic characteristics of periodic cross-corrugated channels
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.01.046
  contributor:
    fullname: Liu
– volume: 84
  start-page: 301
  year: 2015
  ident: 10.1016/j.enbuild.2016.11.047_bib0380
  article-title: CFD simulation of air to air enthalpy heat exchanger: variable membrane moisture resistance
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.03.067
  contributor:
    fullname: AL-Waked
– volume: 55
  start-page: 5861
  issue: October (21–22)
  year: 2012
  ident: 10.1016/j.enbuild.2016.11.047_bib0135
  article-title: Coupled heat and mass transfer in an application-scale cross-flow hollow fiber membrane module for air humidification
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.05.083
  contributor:
    fullname: Zhang
– volume: 30
  start-page: 538
  year: 2014
  ident: 10.1016/j.enbuild.2016.11.047_bib0090
  article-title: A review of frosting in air-to-air energy exchangers
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.10.038
  contributor:
    fullname: Rafati Nasr
– volume: 52
  start-page: 1504
  issue: February (5–6)
  year: 2009
  ident: 10.1016/j.enbuild.2016.11.047_bib0365
  article-title: Effectiveness correlations for heat and mass transfer in membrane humidifiers
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.09.002
  contributor:
    fullname: Kadylak
– year: 2015
  ident: 10.1016/j.enbuild.2016.11.047_bib0255
  article-title: Performance of a lab-scale membrane-based energy exchanger
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Justo Alonso
– volume: 81
  start-page: 410
  year: 1975
  ident: 10.1016/j.enbuild.2016.11.047_bib0405
  article-title: Investigation of frosting in rotary air-to-air heat exchangers
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Ruth
– volume: 12
  start-page: 2265
  issue: 9
  year: 2008
  ident: 10.1016/j.enbuild.2016.11.047_bib0035
  article-title: Energy, environment and sustainable development
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2007.05.001
  contributor:
    fullname: Omer
– volume: 35
  year: 2015
  ident: 10.1016/j.enbuild.2016.11.047_bib0410
  article-title: Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation
  publication-title: Accept. J. Appl. Energy
  contributor:
    fullname: Rafati Nasr
– ident: 10.1016/j.enbuild.2016.11.047_bib0175
– volume: 51
  start-page: 697
  issue: March (7)
  year: 2007
  ident: 10.1016/j.enbuild.2016.11.047_bib0200
  article-title: Numerical study of heat and mass transfer in an enthalpy exchanger with a hydrophobic-hydrophilic composite membrane core
  publication-title: Numer. Heat Transfer Part A: Appl.
  doi: 10.1080/10407780600879048
  contributor:
    fullname: Zhang
– volume: 36
  start-page: 2575
  issue: 10
  year: 1993
  ident: 10.1016/j.enbuild.2016.11.047_bib0260
  article-title: Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surfaces
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(05)80195-4
  contributor:
    fullname: Brockmeier
– volume: 2
  start-page: 17
  year: 2000
  ident: 10.1016/j.enbuild.2016.11.047_bib0015
  article-title: Natural ventilation
  publication-title: Renew. Energy
  doi: 10.1016/S0960-1481(99)00012-9
  contributor:
    fullname: Fordham
– ident: 10.1016/j.enbuild.2016.11.047_bib0045
– ident: 10.1016/j.enbuild.2016.11.047_bib0320
– volume: 42
  start-page: 1833
  issue: October (10)
  year: 2010
  ident: 10.1016/j.enbuild.2016.11.047_bib0225
  article-title: Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.05.020
  contributor:
    fullname: Nasif
– volume: 33
  start-page: 1010
  issue: September (12)
  year: 2012
  ident: 10.1016/j.enbuild.2016.11.047_bib0385
  article-title: Modeling of air to air enthalpy heat exchanger
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457632.2012.659616
  contributor:
    fullname: Nasif
– volume: 31
  start-page: 4036
  issue: December (17–18)
  year: 2011
  ident: 10.1016/j.enbuild.2016.11.047_bib0220
  article-title: Performance analysis of a membrane-based energy recovery ventilator: effects of outdoor air state
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.08.006
  contributor:
    fullname: Min
– year: 2013
  ident: 10.1016/j.enbuild.2016.11.047_bib0125
  contributor:
    fullname: Zhang
– ident: 10.1016/j.enbuild.2016.11.047_bib0270
– volume: 130
  start-page: 205
  issue: July (1)
  year: 1997
  ident: 10.1016/j.enbuild.2016.11.047_bib0340
  article-title: Characterization of microporous membranes for use in membrane contactors
  publication-title: J. Memb. Sci.
  doi: 10.1016/S0376-7388(97)00026-4
  contributor:
    fullname: Iversen
– volume: 91
  start-page: 145
  issue: 1
  year: 1984
  ident: 10.1016/j.enbuild.2016.11.047_bib0065
  article-title: Onset of freezing in residential air-to-air heat exchangers
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Fisk
– volume: 63
  start-page: 173
  year: 2012
  ident: 10.1016/j.enbuild.2016.11.047_bib0140
  article-title: Progress on heat and moisture recovery with membranes: from fundamentals to engineering applications
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2011.11.033
  contributor:
    fullname: Zhang
– volume: 430
  start-page: 150
  year: 2013
  ident: 10.1016/j.enbuild.2016.11.047_bib0155
  article-title: Coupled heat and mass transfer during moisture exchange across a membrane
  publication-title: J. Memb. Sci.
  doi: 10.1016/j.memsci.2012.12.018
  contributor:
    fullname: Min
– ident: 10.1016/j.enbuild.2016.11.047_bib0010
– volume: 51
  start-page: 2179
  issue: May (9)
  year: 2008
  ident: 10.1016/j.enbuild.2016.11.047_bib0195
  article-title: Simultaneous heat and moisture transfer through a composite supported liquid membrane
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.11.006
  contributor:
    fullname: Zhang
– volume: 33
  start-page: 290
  year: 2014
  ident: 10.1016/j.enbuild.2016.11.047_bib0290
  article-title: Membrane processes for heating, ventilation, and air conditioning
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.01.092
  contributor:
    fullname: Woods
– volume: 44
  start-page: 1643
  issue: August (8)
  year: 2009
  ident: 10.1016/j.enbuild.2016.11.047_bib0420
  article-title: The effects of ventilation systems and building fabric on the stability of indoor temperature and humidity in Finnish detached houses
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2008.10.010
  contributor:
    fullname: Kalamees
– volume: 28
  start-page: 179
  issue: 2
  year: 1998
  ident: 10.1016/j.enbuild.2016.11.047_bib0055
  article-title: Heat recovery with low pressure loss for natural veltilation
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(98)00016-4
  contributor:
    fullname: Shao
– year: 2003
  ident: 10.1016/j.enbuild.2016.11.047_bib0240
  contributor:
    fullname: Shah
– ident: 10.1016/j.enbuild.2016.11.047_bib0415
– year: 2012
  ident: 10.1016/j.enbuild.2016.11.047_bib0250
  contributor:
    fullname: Aarnes
– volume: 40
  start-page: 5710
  issue: November (24)
  year: 2001
  ident: 10.1016/j.enbuild.2016.11.047_bib0345
  article-title: Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie010553y
  contributor:
    fullname: Khayet
– ident: 10.1016/j.enbuild.2016.11.047_bib0325
– ident: 10.1016/j.enbuild.2016.11.047_bib0100
– ident: 10.1016/j.enbuild.2016.11.047_bib0425
– volume: 163
  start-page: 29
  issue: 1
  year: 1999
  ident: 10.1016/j.enbuild.2016.11.047_bib0130
  article-title: Heat and mass transfer in a membrane-based energy recovery ventilator
  publication-title: J. Memb. Sci.
  doi: 10.1016/S0376-7388(99)00150-7
  contributor:
    fullname: Zhang
– volume: 30
  start-page: 991
  issue: June (8–9)
  year: 2010
  ident: 10.1016/j.enbuild.2016.11.047_bib0145
  article-title: Performance analysis of a membrane-based energy recovery ventilator: effects of membrane spacing and thickness on the ventilator performance
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.01.010
  contributor:
    fullname: Min
– volume: 49
  start-page: 1176
  issue: March (5–6)
  year: 2006
  ident: 10.1016/j.enbuild.2016.11.047_bib0360
  article-title: Investigation of moisture transfer effectiveness through a hydrophilic polymer membrane with a field and laboratory emission cell
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.08.029
  contributor:
    fullname: Zhang
– volume: 110
  start-page: 404
  issue: November
  year: 2015
  ident: 10.1016/j.enbuild.2016.11.047_bib0115
  article-title: A theoretical model to predict frosting limits in cross-Flow air-to-air flat plate heat/energy exchangers
  publication-title: Energy Build.
  contributor:
    fullname: Liu
– ident: 10.1016/j.enbuild.2016.11.047_bib0335
– volume: 120
  start-page: 699
  issue: August (3)
  year: 1998
  ident: 10.1016/j.enbuild.2016.11.047_bib0075
  article-title: Heat and moisture transfer in energy wheels during sorption, condensation, and frosting conditions
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2824339
  contributor:
    fullname: Simonson
– year: 2005
  ident: 10.1016/j.enbuild.2016.11.047_bib0235
  contributor:
    fullname: Kays
– volume: 51
  start-page: 770
  issue: March (1–2)
  year: 2013
  ident: 10.1016/j.enbuild.2016.11.047_bib0375
  article-title: Numerical analysis of heat and energy recovery ventilators performance based on CFD for detailed design
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.10.003
  contributor:
    fullname: Yaïci
– volume: 95
  start-page: 475
  year: 1989
  ident: 10.1016/j.enbuild.2016.11.047_bib0105
  article-title: A model to compare freezing control strategies for residential air-to-air Heat Recovery Ventilators
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Phillips
– volume: 50
  start-page: 151
  issue: January (1–2)
  year: 2007
  ident: 10.1016/j.enbuild.2016.11.047_bib0245
  article-title: Heat and mass transfer in a cross-flow membrane-based enthalpy exchanger under naturally formed boundary conditions
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.06.025
  contributor:
    fullname: Zhang
– start-page: 484
  year: 1989
  ident: 10.1016/j.enbuild.2016.11.047_bib0085
  article-title: Comparison of freezing control strategies for residential air-to-air heat recovery ventilators
  publication-title: ASHRAE Trans.
  contributor:
    fullname: Phillips
– volume: 53
  start-page: 1195
  issue: January (11)
  year: 2008
  ident: 10.1016/j.enbuild.2016.11.047_bib0215
  article-title: Heat and mass transfer in a total heat exchanger: cross-corrugated triangular ducts with composite supported liquid membrane
  publication-title: Numer. Heat Transfer Part A: Appl.
  doi: 10.1080/10407780701853314
  contributor:
    fullname: Zhang
– year: 1994
  ident: 10.1016/j.enbuild.2016.11.047_bib0285
  contributor:
    fullname: Webb
– volume: 89
  start-page: 1258
  year: 2015
  ident: 10.1016/j.enbuild.2016.11.047_bib0390
  article-title: Numerical modeling of fluid flow and coupled heat and mass transfer in a counter-cross-flow parallel-plate liquid-to-air membrane energy exchanger
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.06.043
  contributor:
    fullname: Vali
– volume: 50
  start-page: 868
  issue: January (1)
  year: 2013
  ident: 10.1016/j.enbuild.2016.11.047_bib0275
  article-title: Heat transfer and pressure drop in spacer-filled channels for membrane energy recovery ventilators
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.06.052
  contributor:
    fullname: Woods
– volume: 189
  start-page: 179
  issue: August (2)
  year: 2001
  ident: 10.1016/j.enbuild.2016.11.047_bib0395
  article-title: Membrane-based Enthalpy Exchanger: material considerations and clarification of moisture resistance
  publication-title: J. Memb. Sci.
  doi: 10.1016/S0376-7388(00)00680-3
  contributor:
    fullname: Niu
– volume: 9
  start-page: 493
  issue: October (4)
  year: 2003
  ident: 10.1016/j.enbuild.2016.11.047_bib0095
  article-title: A semi-empirical method to estimate enthalpy exchanger performance and a comparison of alternative frost control strategies
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2003.10391082
  contributor:
    fullname: Freund
– volume: 137
  start-page: 42601
  issue: 4
  year: 2015
  ident: 10.1016/j.enbuild.2016.11.047_bib0265
  article-title: Experimental pressure drop and heat transfer in a rectangular channel with a sinusoidal porous screen
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4029349
  contributor:
    fullname: Mahmood
– volume: 119
  start-page: 129
  year: 2016
  ident: 10.1016/j.enbuild.2016.11.047_bib0280
  article-title: Performance of a quasi-counter-flow air-to-air membrane energy exchanger in cold climates
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.03.010
  contributor:
    fullname: Liu
– year: 2008
  ident: 10.1016/j.enbuild.2016.11.047_bib0230
  contributor:
    fullname: Zhang
– volume: 325
  start-page: 672
  issue: December (2)
  year: 2008
  ident: 10.1016/j.enbuild.2016.11.047_bib0310
  article-title: Heat and moisture transfer in application scale parallel-plates enthalpy exchangers with novel membrane materials
  publication-title: J. Memb. Sci.
  doi: 10.1016/j.memsci.2008.08.041
  contributor:
    fullname: Zhang
– year: 1984
  ident: 10.1016/j.enbuild.2016.11.047_bib0185
  contributor:
    fullname: Kays
– volume: 72
  start-page: 564
  issue: 3
  year: 1998
  ident: 10.1016/j.enbuild.2016.11.047_bib0295
  article-title: Basic principles of membrane technology
  publication-title: Zeitschrift für Physikalische Chemie
  contributor:
    fullname: Mulder
– volume: 90
  start-page: 201
  year: 2015
  ident: 10.1016/j.enbuild.2016.11.047_bib0070
  article-title: Frost formation in the cross-flow plate heat exchanger for energy recovery
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.06.056
  contributor:
    fullname: Anisimov
– volume: 52
  start-page: 549
  issue: August (6)
  year: 2007
  ident: 10.1016/j.enbuild.2016.11.047_bib0205
  article-title: Thermally developing forced convection and heat transfer in rectangular plate-fin passages under uniform plate temperature
  publication-title: Numer. Heat Transfer Part A: Appl.
  doi: 10.1080/10407780701303658
  contributor:
    fullname: Zhang
SSID ssj0006571
Score 2.427161
Snippet Frosting occurring inside heat exchangers degrades the exchangers’ performance and reduces energy recovery in cold climates. The moisture transport in membrane...
Frosting occurring inside heat exchangers degrades the exchangers' performance and reduces energy recovery in cold climates. The moisture transport in membrane...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 95
SubjectTerms Aerodynamics
Air conditioners
Air flow
Boundary conditions
Climate
Cold weather
Computational fluid dynamics
Computer applications
Cooling
Dehumidification
Energy conservation
Energy consumption
Energy recovery
Energy transfer
Fluid dynamics
Frost
Heat and mass transfer
Heat exchanger
Heat exchangers
Heat transfer
Heating
Humid climates
HVAC
Hydrodynamics
Mass transfer
Membrane energy exchanger
Moisture
Thermal comfort
Ventilation
Title Energy transfer and energy saving potentials of air-to-air membrane energy exchanger for ventilation in cold climates
URI https://dx.doi.org/10.1016/j.enbuild.2016.11.047
https://www.proquest.com/docview/1932061185
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz2IT3xUycFr2n0k-zhKsdQn4gO8hWwyhRW7Le0WPPnbndkHVREELxsI2WWZTL583-7MhLEz6SfOOKNEahQISX8PDV3AQhJLSEPfUaLw7V00fJZXL-plhfXbXBgKq2ywv8b0Cq2bnl5jzd40z3uPXojORtXQo9BHWUE4TMW20Ke7H8swj0hVoosGCxq9zOLpvXapvED-RgVD_ahLxTzplJXf96cfSF1tP4MtttnwRn5ev9o2W4Fih218qSa4yxYXVR4fLysuCjNuCseh7psb-nDAp5OSooPQ5fhkxE0-E-VEYMPHMEbZXEA7Ht6bjGCOpJZXMZF10BzPC46-47h9y8fEU_fY8-DiqT8UzakKwiKYlCJVaQaj1Cobm8yrpsp5Jja4FI0XZHKEYpnEagwKJDgZ28ChdDVB7EU2cV64z1aLSQEHjEc2CzMfggC8TEZOZsgFIDBWBdKmSZIesm5rSz2ti2foNqrsVTfG12R8FCIajX_Iktbi-psXaAT4v27ttDOkm2U418ROkbAgJzn6_5OP2XpAe7nnC1912Go5W8AJMpEyO61c7ZStnfcfbu6pvbwe3n0Cl0LhwA
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iB_UgPvFtDl7T7iPZx1FKpT7aixW8hWwyhRW7LXUFT_52Z_ZBVQTByy6E7LJMJl--LzszYexS-okzziiRGgVC0t9DQxewkMQS0tB3lCg8HEWDR3n7pJ5WWK_NhaGwygb7a0yv0Lpp6TbW7M7zvPvghehsVA09Cn2UFYjDa5LqZ6FTdz6WcR6RqlQX9RbUfZnG033uUH2B_IUqhvpRh6p50jErvy9QP6C6Wn-ut9lWQxz5Vf1tO2wFil22-aWc4B5761eJfLysyCgsuCkch7rt1dDOAZ_PSgoPQp_jswk3-UKUM4E3PoUp6uYC2v7w3qQEc2S1vAqKrKPmeF5wdB7H7Us-JaK6zx6v--PeQDTHKgiLaFKKVKUZTFKrbGwyrxor55nY4Fw0XpDJCaplUqsxKJDgZGwDh9rVBLEX2cR54QFbLWYFHDIe2SzMfAgC8DIZOZkhGYDAWBVImyZJesQ6rS31vK6eoduwsmfdGF-T8VGJaDT-EUtai-tvbqAR4f969LQdId3Mw1dN9BQZC5KS4_-_-YKtD8bDe31_M7o7YRsBLeyeL3x1ylbLxRucIS0ps_PK7T4B-PjhzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+transfer+and+energy+saving+potentials+of+air-to-air+membrane+energy+exchanger+for+ventilation+in+cold+climates&rft.jtitle=Energy+and+buildings&rft.au=Liu%2C+Peng&rft.au=Justo+Alonso%2C+Maria&rft.au=Mathisen%2C+Hans+Martin&rft.au=Simonson%2C+Carey&rft.date=2017-01-15&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=135&rft.spage=95&rft.epage=108&rft_id=info:doi/10.1016%2Fj.enbuild.2016.11.047&rft.externalDocID=S0378778816316012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon