Energy transfer and energy saving potentials of air-to-air membrane energy exchanger for ventilation in cold climates
Frosting occurring inside heat exchangers degrades the exchangers’ performance and reduces energy recovery in cold climates. The moisture transport in membrane energy exchangers (MEE) provides a great potential to increase frost tolerance and decrease energy consumption by the air handling units (AH...
Saved in:
Published in | Energy and buildings Vol. 135; pp. 95 - 108 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.01.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frosting occurring inside heat exchangers degrades the exchangers’ performance and reduces energy recovery in cold climates. The moisture transport in membrane energy exchangers (MEE) provides a great potential to increase frost tolerance and decrease energy consumption by the air handling units (AHU). In addition, the moisture recovery in MEEs tends to improve the thermal comfort by adding moisture to the indoor dry air. However, applications of MEEs for cold climates are less known compared to their use in hot and humid climates as independent cooling and dehumidification. The open literatures dealing with heat and mass transfer of the MEEs for cold climates are scarce and acute. This research aims to investigate heat and moisture transfer, and energy saving potentials of MEEs compared to the sensible-only heat exchanger (HE). The applicability of transforming heat and moisture transfer analysis carried out for hot and humid conditions to cold climates is examined. The study attempts to “translate” conventional sensible-only HE correlations to the MEEs. Knowledge and data of heat exchangers are transformed to MEEs through analysing the boundary conditions of heat and mass transfer in both MEE and HE. This transformation can reduce needs of relying on computational fluid dynamics (CFD) to analyse heat and mass transfer in MEEs. As one of most important advantages of adopting MEE in cold climates, frosting reduction by the MEE is determined and compared for a specific MEE and HE in the heating season of Oslo (Norway). The energy consumption by the AHU equipped with the MEE is compared to the AHU with HE under different airflow rates. The MEE is able to significantly reduce the energy consumption by preheating and post-conditioning (reheating and humidifying) when there is frosting risk in MEE or HE for Oslo climate. |
---|---|
AbstractList | Frosting occurring inside heat exchangers degrades the exchangers' performance and reduces energy recovery in cold climates. The moisture transport in membrane energy exchangers (MEE) provides a great potential to increase frost tolerance and decrease energy consumption by the air handling units (AHU). In addition, the moisture recovery in MEEs tends to improve the thermal comfort by adding moisture to the indoor dry air. However, applications of MEEs for cold climates are less known compared to their use in hot and humid climates as independent cooling and dehumidification. The open literatures dealing with heat and mass transfer of the MEEs for cold climates are scarce and acute. This research aims to investigate heat and moisture transfer, and energy saving potentials of MEEs compared to the sensible-only heat exchanger (HE). The applicability of transforming heat and moisture transfer analysis carried out for hot and humid conditions to cold climates is examined. The study attempts to "translate" conventional sensible-only HE correlations to the MEEs. Knowledge and data of heat exchangers are transformed to MEEs through analysing the boundary conditions of heat and mass transfer in both MEE and HE. This transformation can reduce needs of relying on computational fluid dynamics (CFD) to analyse heat and mass transfer in MEEs. As one of most important advantages of adopting MEE in cold climates, frosting reduction by the MEE is determined and compared for a specific MEE and HE in the heating season of Oslo (Norway). The energy consumption by the AHU equipped with the MEE is compared to the AHU with HE under different airflow rates. The MEE is able to significantly reduce the energy consumption by preheating and post-conditioning (reheating and humidifying) when there is frosting risk in MEE or HE for Oslo climate. |
Author | Justo Alonso, Maria Liu, Peng Mathisen, Hans Martin Simonson, Carey |
Author_xml | – sequence: 1 givenname: Peng surname: Liu fullname: Liu, Peng email: liu.peng@ntnu.no organization: Department of Energy and Process Engineering, NTNU, Trondheim, Norway – sequence: 2 givenname: Maria surname: Justo Alonso fullname: Justo Alonso, Maria organization: SINTEF Building and Infrastructure, Trondheim, Norway – sequence: 3 givenname: Hans Martin surname: Mathisen fullname: Mathisen, Hans Martin organization: Department of Energy and Process Engineering, NTNU, Trondheim, Norway – sequence: 4 givenname: Carey surname: Simonson fullname: Simonson, Carey organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada |
BookMark | eNqFkE1LAzEQhoNUsFZ_ghDwvGuS_cjuSaTUDyh40XPIJrM1yzapSVrsvzdl69nTMMP7vjPzXKOZdRYQuqMkp4TWD0MOttubUecstTmlOSn5BZrThrOspryZoTkpeJNx3jRX6DqEgRBSV5zO0X5lwW-OOHppQw8eS6sxTLMgD8Zu8M5FsNHIMWDXY2l8Fl2WCt7Ctks2-NPDj_qSdpNCeufx4WQaZTTOYmOxcqPGajRbGSHcoMs-5cHtuS7Q5_PqY_mard9f3pZP60wVvI5ZW7Ud9K2qFJcdoY2WWhPJJW1rSVhX9rxkhDDOoYISdMkV04yXknFSq0aTYoHup9ydd997CFEMbu9tWiloWzBSU9pUSVVNKuVdCB56sfPpTn8UlIgTYTGIM2FxIiwoFYlw8j1OPkgvHAx4EZQBq0AbDyoK7cw_Cb9OB4sD |
CitedBy_id | crossref_primary_10_1016_j_enbuild_2020_109755 crossref_primary_10_1016_j_enbuild_2020_110600 crossref_primary_10_1016_j_energy_2020_117057 crossref_primary_10_1016_j_ijrefrig_2018_11_035 crossref_primary_10_1016_j_enbuild_2024_114428 crossref_primary_10_1016_j_renene_2018_09_012 crossref_primary_10_1016_j_energy_2023_128894 crossref_primary_10_1016_j_applthermaleng_2018_11_085 crossref_primary_10_1007_s12053_020_09917_w crossref_primary_10_1016_j_scs_2020_102172 crossref_primary_10_1115_1_4047255 crossref_primary_10_1007_s10973_019_09158_9 crossref_primary_10_1016_j_applthermaleng_2019_03_010 crossref_primary_10_1016_j_buildenv_2022_109542 crossref_primary_10_1016_j_proeng_2017_10_283 crossref_primary_10_1016_j_buildenv_2022_109940 crossref_primary_10_1016_j_buildenv_2023_111067 crossref_primary_10_1016_j_buildenv_2022_108971 crossref_primary_10_1016_j_enconman_2021_115144 crossref_primary_10_1016_j_egypro_2017_12_678 crossref_primary_10_1016_j_mex_2021_101253 crossref_primary_10_1016_j_apenergy_2023_120823 crossref_primary_10_1016_j_est_2020_101387 crossref_primary_10_1080_23744731_2020_1761712 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125608 crossref_primary_10_1016_j_enbuild_2018_04_013 crossref_primary_10_1016_j_applthermaleng_2021_117971 crossref_primary_10_1016_j_enconman_2023_117298 crossref_primary_10_1016_j_enbuild_2022_112236 crossref_primary_10_1016_j_buildenv_2023_110814 crossref_primary_10_1016_j_matdes_2023_111805 crossref_primary_10_1016_j_enbuild_2019_109645 crossref_primary_10_1016_j_rser_2021_111941 crossref_primary_10_1016_j_applthermaleng_2023_121639 crossref_primary_10_1016_j_buildenv_2022_109430 crossref_primary_10_1016_j_rser_2022_112417 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_144 crossref_primary_10_1016_j_enconman_2018_05_105 crossref_primary_10_1016_j_memsci_2021_119179 crossref_primary_10_1016_j_enbuild_2022_112097 crossref_primary_10_3390_su13020685 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2010.07.009 10.1115/1.1469524 10.1016/j.memsci.2006.08.002 10.1016/S0360-5442(00)00064-5 10.1016/j.enbuild.2006.12.008 10.1016/j.ijheatmasstransfer.2008.03.008 10.1177/1744259113506072 10.1016/S0140-7007(01)00035-4 10.1016/j.applthermaleng.2016.10.010 10.1115/1.2005274 10.1039/tf9393500628 10.1016/j.buildenv.2014.11.014 10.1016/S0376-7388(00)00680-3 10.1016/S0360-5442(99)00087-0 10.1126/science.6857273 10.1016/j.memsci.2011.06.028 10.1016/j.ijheatmasstransfer.2015.01.046 10.1016/j.applthermaleng.2015.03.067 10.1016/j.ijheatmasstransfer.2012.05.083 10.1016/j.rser.2013.10.038 10.1016/j.ijheatmasstransfer.2008.09.002 10.1016/j.rser.2007.05.001 10.1080/10407780600879048 10.1016/S0017-9310(05)80195-4 10.1016/S0960-1481(99)00012-9 10.1016/j.enbuild.2010.05.020 10.1080/01457632.2012.659616 10.1016/j.applthermaleng.2011.08.006 10.1016/S0376-7388(97)00026-4 10.1016/j.enconman.2011.11.033 10.1016/j.memsci.2012.12.018 10.1016/j.ijheatmasstransfer.2007.11.006 10.1016/j.rser.2014.01.092 10.1016/j.buildenv.2008.10.010 10.1016/S0378-7788(98)00016-4 10.1021/ie010553y 10.1016/S0376-7388(99)00150-7 10.1016/j.applthermaleng.2010.01.010 10.1016/j.ijheatmasstransfer.2005.08.029 10.1115/1.2824339 10.1016/j.applthermaleng.2012.10.003 10.1016/j.ijheatmasstransfer.2006.06.025 10.1080/10407780701853314 10.1016/j.ijheatmasstransfer.2015.06.043 10.1016/j.applthermaleng.2012.06.052 10.1080/10789669.2003.10391082 10.1115/1.4029349 10.1016/j.enbuild.2016.03.010 10.1016/j.memsci.2008.08.041 10.1016/j.ijheatmasstransfer.2015.06.056 10.1080/10407780701303658 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright Elsevier BV Jan 15, 2017 |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright Elsevier BV Jan 15, 2017 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.enbuild.2016.11.047 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6178 |
EndPage | 108 |
ExternalDocumentID | 10_1016_j_enbuild_2016_11_047 S0378778816316012 |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AAXKI AAYXX ABFNM ABTAH ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET SEW WUQ ZMT ZY4 7ST 8FD C1K F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c376t-959bef9c5c7ab018dadd0a7a196a02b4f74200277e5e4ed47c2d274a2706c8d03 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Thu Oct 10 22:31:36 EDT 2024 Thu Sep 26 15:41:01 EDT 2024 Fri Feb 23 02:27:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ventilation HVAC Frost Heat and mass transfer Membrane energy exchanger Heat exchanger |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-959bef9c5c7ab018dadd0a7a196a02b4f74200277e5e4ed47c2d274a2706c8d03 |
PQID | 1932061185 |
PQPubID | 2045483 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1932061185 crossref_primary_10_1016_j_enbuild_2016_11_047 elsevier_sciencedirect_doi_10_1016_j_enbuild_2016_11_047 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-15 |
PublicationDateYYYYMMDD | 2017-01-15 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Energy and buildings |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Brockmeier, Guentermann, Fiebig (bib0260) 1993; 36 E.A. Mason, A.P. Malinauskas, Gas transport in porous media: the dusty-gas model, 17, 1983. Liu, Niu (bib0370) 2015; 84 Omer (bib0035) 2008; 12 Rafati Nasr, Fauchoux, Besant, Simonson (bib0090) 2014; 30 Webb (bib0285) 1994 Kays, Crawford, Weigand (bib0235) 2005 Niu (bib0395) 2001; 189 Nasif, Al-Waked, Behnia, Morrison (bib0385) 2012; 33 ASTM (bib0305) 2012 Spengler, Sexton (bib0005) 1983; 80 Zhang, Jiang (bib0130) 1999; 163 Shao, Riffat, Gan (bib0055) 1998; 28 F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, vol. 6th. 2007. Ruth, Fisher, Gawley (bib0405) 1975; 81 Shah, Sekulic (bib0240) 2003 Woods, Kozubal (bib0275) 2013; 50 Zhang, Niu (bib0160) 2002; 124 Barrer, Rideal (bib0315) 1939; 35 Fisk, Chant, Archer, Hekmat, Offermann, Pedersen (bib0065) 1984; 91 Barringer, McGugan (bib0180) 1989; 2 Zhang, Xiao (bib0195) 2008; 51 Zhang (bib0135) 2012; 55 Min, Su (bib0220) 2011; 31 Kalamees, Korpi, Vinha, Kurnitski (bib0420) 2009; 44 E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, vol. Second. 1997. Khayet, Matsuura (bib0345) 2001; 40 Justo Alonso, Liu, Mathisen, Ge, Simonson (bib0030) 2015; 84 Min, Su (bib0145) 2010; 30 Kragh, Rose, Nielsen, Svendsen (bib0110) 2007; 39 Liu, Nasr, Ge, Alonso, Mathisen, Fathieh, Simonson (bib0115) 2015; 110 Freund, a. Klein, Reindl (bib0095) 2003; 9 Phillips, Chant, Bradley, Fisher (bib0105) 1989; 95 Achieving the Desired Indoor Climate: Energy Efficiency Aspects of System Design. 2003. Zhang (bib0140) 2012; 63 (Accessed 02 December 2015). Kadylak, Cave, Mérida (bib0365) 2009; 52 Zhang (bib0360) 2006; 49 Nasif, AL-Waked, Morrison, Behnia (bib0225) 2010; 42 Zhang (bib0330) 2008; 51 R. Ahmed, Frost-protection measures in energy recuperation with multiple counterflow heat exchangers, no. October, pp. 37–40, 2013. Liu, Justo Alonso, Mathisen, Simonson (bib0280) 2016; 119 Zhang (bib0215) 2008; 53 Pfeiffer, S. H., Untersuchungen zum Einfrieren von regenerativ wärmeübertragern. ki klima – kälte, 1987. Arvela (bib0020) 1995; 59 Astm E96 Method E PDF. [Online]. Available Fehrm, Reiners, Ungemach (bib0040) 2002; 25 Vali, Ge, Besant, Simonson (bib0390) 2015; 89 Shang, Chen, Besant (bib0080) 2005; 127 Aarnes (bib0250) 2012 L.Z. Zhang, J.L. Niu, Energy requirements for conditioning fresh air and the long- term savings with a membrane-based energy recovery ventilator in Hong Kong, 26, pp. 119–135, 2001. J.C. Maxwell, Illustrations of the Dynamic Theory of Gases. Justo Alonso, Mathisen, Aarnes, Peng (bib0255) 2015 J. Kragh, S. Svendsen, Mechanical ventilation with heat recovery in cold climates, pp. 1–8, 2005. Simonson, Besant (bib0075) 1998; 120 Kays, London (bib0185) 1984 Fordham (bib0015) Jan. 2000; 2 Boardman, Glass (bib0400) 2013; 38 Zhang (bib0205) 2007; 52 Zhang (bib0230) 2008 Holmberg (bib0060) 1989; 95 Min, Wang (bib0155) 2013; 430 Min, Hu (bib0150) 2011; 379 Liu, Alonso, Rafati Nasr, Mathisen, Simonson (bib0170) 2014 El-Bourawi, Ding, Ma, Khayet (bib0350) 2006; 285 Phillips, Bradley, Chant, Fisher (bib0085) 1989 Zhang, Liang, Pei (bib0310) 2008; 325 Zhang (bib0200) 2007; 51 Yaïci, Ghorab, Entchev (bib0375) 2013; 51 P. Liu, H.M. Mathisen, M.J. Alonso, Critical Sensible and Latent Effectiveness for Membrane Type Energy Recovery Ventilator (ERV) in Cold Climates, in IAQ 2013 Environmental Health in Low Energy Buildings Conference, 2013. Zhang (bib0245) 2007; 50 Liu, Mathisen, Justo Alonso, Simonson (bib0190) 2017; 111 Zhang, Jiang, Zhang, Deng, Jin (bib0120) 2000; 25 Mahmood, Simonson, Besant (bib0265) 2015; 137 Zhang (bib0355) 2010; 53 J.L. Niu, L.Z. Zhang, Membrane-based Enthalpy Exchanger: material considerations and clarification of moisture resistance, vol. 189, pp. 179–191, 2001. Zhang (bib0125) 2013 Woods (bib0290) 2014; 33 R. Garber-slaght, V. Stevens, D. Madden, Energy Recovery Ventilators in Cold Climates, p. 21, 2014. AL-Waked, Nasif, Morrison, Behnia (bib0380) 2015; 84 Anisimov, Jedlikowski, Pandelidis (bib0070) 2015; 90 Iversen, Bhatia, Dam-Johansen, Jonsson (bib0340) 1997; 130 Mulder (bib0295) 1998; 72 Rafati Nasr, Kassai, Ge, Simonson (bib0410) 2015; 35 ASHRAE, ASHRAE handbook-HVAC Systems and equipment. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, 2000. EERE, (Ed.). Building Energy data book. The buildings technologies program, energy efficiency and renewable Energy, pp. 2009, 2008. ASTM (10.1016/j.enbuild.2016.11.047_bib0305) 2012 10.1016/j.enbuild.2016.11.047_bib0325 Kays (10.1016/j.enbuild.2016.11.047_bib0235) 2005 10.1016/j.enbuild.2016.11.047_bib0045 10.1016/j.enbuild.2016.11.047_bib0320 Arvela (10.1016/j.enbuild.2016.11.047_bib0020) 1995; 59 10.1016/j.enbuild.2016.11.047_bib0165 Holmberg (10.1016/j.enbuild.2016.11.047_bib0060) 1989; 95 10.1016/j.enbuild.2016.11.047_bib0050 Woods (10.1016/j.enbuild.2016.11.047_bib0290) 2014; 33 Zhang (10.1016/j.enbuild.2016.11.047_bib0310) 2008; 325 Omer (10.1016/j.enbuild.2016.11.047_bib0035) 2008; 12 Liu (10.1016/j.enbuild.2016.11.047_bib0370) 2015; 84 Niu (10.1016/j.enbuild.2016.11.047_bib0395) 2001; 189 Nasif (10.1016/j.enbuild.2016.11.047_bib0225) 2010; 42 AL-Waked (10.1016/j.enbuild.2016.11.047_bib0380) 2015; 84 Barrer (10.1016/j.enbuild.2016.11.047_bib0315) 1939; 35 Zhang (10.1016/j.enbuild.2016.11.047_bib0140) 2012; 63 Webb (10.1016/j.enbuild.2016.11.047_bib0285) 1994 Simonson (10.1016/j.enbuild.2016.11.047_bib0075) 1998; 120 Phillips (10.1016/j.enbuild.2016.11.047_bib0085) 1989 Kragh (10.1016/j.enbuild.2016.11.047_bib0110) 2007; 39 Rafati Nasr (10.1016/j.enbuild.2016.11.047_bib0090) 2014; 30 Zhang (10.1016/j.enbuild.2016.11.047_bib0160) 2002; 124 Zhang (10.1016/j.enbuild.2016.11.047_bib0200) 2007; 51 Zhang (10.1016/j.enbuild.2016.11.047_bib0245) 2007; 50 Shang (10.1016/j.enbuild.2016.11.047_bib0080) 2005; 127 Khayet (10.1016/j.enbuild.2016.11.047_bib0345) 2001; 40 Liu (10.1016/j.enbuild.2016.11.047_bib0190) 2017; 111 Freund (10.1016/j.enbuild.2016.11.047_bib0095) 2003; 9 Anisimov (10.1016/j.enbuild.2016.11.047_bib0070) 2015; 90 Fordham (10.1016/j.enbuild.2016.11.047_bib0015) 2000; 2 Zhang (10.1016/j.enbuild.2016.11.047_bib0135) 2012; 55 Fisk (10.1016/j.enbuild.2016.11.047_bib0065) 1984; 91 Zhang (10.1016/j.enbuild.2016.11.047_bib0130) 1999; 163 Zhang (10.1016/j.enbuild.2016.11.047_bib0125) 2013 Min (10.1016/j.enbuild.2016.11.047_bib0145) 2010; 30 Min (10.1016/j.enbuild.2016.11.047_bib0150) 2011; 379 Justo Alonso (10.1016/j.enbuild.2016.11.047_bib0030) 2015; 84 Kadylak (10.1016/j.enbuild.2016.11.047_bib0365) 2009; 52 Zhang (10.1016/j.enbuild.2016.11.047_bib0355) 2010; 53 Justo Alonso (10.1016/j.enbuild.2016.11.047_bib0255) 2015 Yaïci (10.1016/j.enbuild.2016.11.047_bib0375) 2013; 51 Shao (10.1016/j.enbuild.2016.11.047_bib0055) 1998; 28 Zhang (10.1016/j.enbuild.2016.11.047_bib0120) 2000; 25 10.1016/j.enbuild.2016.11.047_bib0425 Zhang (10.1016/j.enbuild.2016.11.047_bib0195) 2008; 51 10.1016/j.enbuild.2016.11.047_bib0025 10.1016/j.enbuild.2016.11.047_bib0300 Phillips (10.1016/j.enbuild.2016.11.047_bib0105) 1989; 95 Mulder (10.1016/j.enbuild.2016.11.047_bib0295) 1998; 72 10.1016/j.enbuild.2016.11.047_bib0100 Ruth (10.1016/j.enbuild.2016.11.047_bib0405) 1975; 81 10.1016/j.enbuild.2016.11.047_bib0270 Boardman (10.1016/j.enbuild.2016.11.047_bib0400) 2013; 38 Aarnes (10.1016/j.enbuild.2016.11.047_bib0250) 2012 Liu (10.1016/j.enbuild.2016.11.047_bib0170) 2014 Mahmood (10.1016/j.enbuild.2016.11.047_bib0265) 2015; 137 Zhang (10.1016/j.enbuild.2016.11.047_bib0215) 2008; 53 Brockmeier (10.1016/j.enbuild.2016.11.047_bib0260) 1993; 36 Vali (10.1016/j.enbuild.2016.11.047_bib0390) 2015; 89 Iversen (10.1016/j.enbuild.2016.11.047_bib0340) 1997; 130 Liu (10.1016/j.enbuild.2016.11.047_bib0115) 2015; 110 Kays (10.1016/j.enbuild.2016.11.047_bib0185) 1984 Rafati Nasr (10.1016/j.enbuild.2016.11.047_bib0410) 2015; 35 El-Bourawi (10.1016/j.enbuild.2016.11.047_bib0350) 2006; 285 10.1016/j.enbuild.2016.11.047_bib0415 Barringer (10.1016/j.enbuild.2016.11.047_bib0180) 1989; 2 10.1016/j.enbuild.2016.11.047_bib0335 10.1016/j.enbuild.2016.11.047_bib0210 Woods (10.1016/j.enbuild.2016.11.047_bib0275) 2013; 50 10.1016/j.enbuild.2016.11.047_bib0010 10.1016/j.enbuild.2016.11.047_bib0175 Min (10.1016/j.enbuild.2016.11.047_bib0220) 2011; 31 Min (10.1016/j.enbuild.2016.11.047_bib0155) 2013; 430 Zhang (10.1016/j.enbuild.2016.11.047_bib0230) 2008 Nasif (10.1016/j.enbuild.2016.11.047_bib0385) 2012; 33 Shah (10.1016/j.enbuild.2016.11.047_bib0240) 2003 Fehrm (10.1016/j.enbuild.2016.11.047_bib0040) 2002; 25 Spengler (10.1016/j.enbuild.2016.11.047_bib0005) 1983; 80 Zhang (10.1016/j.enbuild.2016.11.047_bib0205) 2007; 52 Liu (10.1016/j.enbuild.2016.11.047_bib0280) 2016; 119 Zhang (10.1016/j.enbuild.2016.11.047_bib0360) 2006; 49 Zhang (10.1016/j.enbuild.2016.11.047_bib0330) 2008; 51 Kalamees (10.1016/j.enbuild.2016.11.047_bib0420) 2009; 44 |
References_xml | – volume: 51 start-page: 5288 year: 2008 end-page: 5295 ident: bib0330 article-title: A fractal model for gas permeation through porous membranes publication-title: Int. J. Heat Mass Transfer contributor: fullname: Zhang – volume: 80 start-page: 9 year: 1983 end-page: 17 ident: bib0005 article-title: Indoor air pollution: a public health perspective publication-title: Science contributor: fullname: Sexton – volume: 89 start-page: 1258 year: 2015 end-page: 1276 ident: bib0390 article-title: Numerical modeling of fluid flow and coupled heat and mass transfer in a counter-cross-flow parallel-plate liquid-to-air membrane energy exchanger publication-title: Int. J. Heat Mass Transfer contributor: fullname: Simonson – volume: 25 start-page: 439 year: 2002 end-page: 449 ident: bib0040 article-title: Exhaust air heat recovery in buildings publication-title: Int. J. Refrig. contributor: fullname: Ungemach – volume: 42 start-page: 1833 year: 2010 end-page: 1840 ident: bib0225 article-title: Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis publication-title: Energy Build. contributor: fullname: Behnia – volume: 72 start-page: 564 year: 1998 ident: bib0295 article-title: Basic principles of membrane technology publication-title: Zeitschrift für Physikalische Chemie contributor: fullname: Mulder – volume: 40 start-page: 5710 year: 2001 end-page: 5718 ident: bib0345 article-title: Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation publication-title: Ind. Eng. Chem. Res. contributor: fullname: Matsuura – volume: 53 start-page: 1195 year: 2008 end-page: 1210 ident: bib0215 article-title: Heat and mass transfer in a total heat exchanger: cross-corrugated triangular ducts with composite supported liquid membrane publication-title: Numer. Heat Transfer Part A: Appl. contributor: fullname: Zhang – year: 2014 ident: bib0170 article-title: Frosting limits for counter-flow membrane energy exchanger (MEE) in cold climates publication-title: 13th International Conference on Indoor Air Quality and Climate contributor: fullname: Simonson – year: 2005 ident: bib0235 article-title: Convective Heat & Mass Transfer w/Engineering Subscription Card contributor: fullname: Weigand – volume: 9 start-page: 493 year: 2003 end-page: 508 ident: bib0095 article-title: A semi-empirical method to estimate enthalpy exchanger performance and a comparison of alternative frost control strategies publication-title: HVAC&R Res. contributor: fullname: Reindl – volume: 28 start-page: 179 year: 1998 end-page: 184 ident: bib0055 article-title: Heat recovery with low pressure loss for natural veltilation publication-title: Energy Build. contributor: fullname: Gan – year: 2008 ident: bib0230 article-title: Total Heat Recovery: Heat and Moisture Recovery from Ventilation Air contributor: fullname: Zhang – year: 2003 ident: bib0240 article-title: Fundamentals of Heat Exchanger Design contributor: fullname: Sekulic – volume: 130 start-page: 205 year: 1997 end-page: 217 ident: bib0340 article-title: Characterization of microporous membranes for use in membrane contactors publication-title: J. Memb. Sci. contributor: fullname: Jonsson – volume: 379 start-page: 496 year: 2011 end-page: 503 ident: bib0150 article-title: Moisture permeation through porous membranes publication-title: J. Memb. Sci. contributor: fullname: Hu – volume: 53 start-page: 5478 year: 2010 end-page: 5486 ident: bib0355 article-title: Heat and mass transfer in a quasi-counter flow membrane-based total heat exchanger publication-title: Int. J. Heat Mass Transfer contributor: fullname: Zhang – volume: 84 start-page: 542 year: 2015 end-page: 549 ident: bib0370 article-title: Effects of geometrical parameters on the thermohydraulic characteristics of periodic cross-corrugated channels publication-title: Int. J. Heat Mass Transfer contributor: fullname: Niu – volume: 35 start-page: 628 year: 1939 ident: bib0315 article-title: Permeation, diffusion and solution of gases in organic polymers publication-title: Trans. Faraday Soc. contributor: fullname: Rideal – volume: 36 start-page: 2575 year: 1993 end-page: 2587 ident: bib0260 article-title: Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surfaces publication-title: Int. J. Heat Mass Transfer contributor: fullname: Fiebig – volume: 163 start-page: 29 year: 1999 end-page: 38 ident: bib0130 article-title: Heat and mass transfer in a membrane-based energy recovery ventilator publication-title: J. Memb. Sci. contributor: fullname: Jiang – start-page: 484 year: 1989 end-page: 490 ident: bib0085 article-title: Comparison of freezing control strategies for residential air-to-air heat recovery ventilators publication-title: ASHRAE Trans. contributor: fullname: Fisher – volume: 95 start-page: 64 year: 1989 end-page: 69 ident: bib0060 article-title: Prediction of condensation and frosting limits in rotary wheels for heat recovery in buildings publication-title: ASHRAE Trans. contributor: fullname: Holmberg – volume: 50 start-page: 151 year: 2007 end-page: 162 ident: bib0245 article-title: Heat and mass transfer in a cross-flow membrane-based enthalpy exchanger under naturally formed boundary conditions publication-title: Int. J. Heat Mass Transfer contributor: fullname: Zhang – volume: 95 start-page: 475 year: 1989 end-page: 483 ident: bib0105 article-title: A model to compare freezing control strategies for residential air-to-air Heat Recovery Ventilators publication-title: ASHRAE Trans. contributor: fullname: Fisher – volume: 33 start-page: 1010 year: 2012 end-page: 1023 ident: bib0385 article-title: Modeling of air to air enthalpy heat exchanger publication-title: Heat Transfer Eng. contributor: fullname: Morrison – volume: 44 start-page: 1643 year: 2009 end-page: 1650 ident: bib0420 article-title: The effects of ventilation systems and building fabric on the stability of indoor temperature and humidity in Finnish detached houses publication-title: Build. Environ. contributor: fullname: Kurnitski – volume: 30 start-page: 538 year: 2014 end-page: 554 ident: bib0090 article-title: A review of frosting in air-to-air energy exchangers publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Simonson – volume: 84 start-page: 228 year: 2015 end-page: 237 ident: bib0030 article-title: Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries publication-title: Build. Environ. contributor: fullname: Simonson – volume: 39 start-page: 1151 year: 2007 end-page: 1158 ident: bib0110 article-title: New counter flow heat exchanger designed for ventilation systems in cold climates publication-title: Energy Build. contributor: fullname: Svendsen – volume: 124 start-page: 922 year: 2002 ident: bib0160 article-title: Effectiveness correlations for heat and moisture transfer processes in an enthalpy exchanger with membrane cores publication-title: J. Heat Transfer contributor: fullname: Niu – volume: 120 start-page: 699 year: 1998 end-page: 708 ident: bib0075 article-title: Heat and moisture transfer in energy wheels during sorption, condensation, and frosting conditions publication-title: J. Heat Transfer contributor: fullname: Besant – volume: 30 start-page: 991 year: 2010 end-page: 997 ident: bib0145 article-title: Performance analysis of a membrane-based energy recovery ventilator: effects of membrane spacing and thickness on the ventilator performance publication-title: Appl. Therm. Eng. contributor: fullname: Su – year: 1984 ident: bib0185 article-title: Compact Heat Exchangers contributor: fullname: London – volume: 33 start-page: 290 year: 2014 end-page: 304 ident: bib0290 article-title: Membrane processes for heating, ventilation, and air conditioning publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Woods – year: 2012 ident: bib0305 article-title: E96: standard test methods for water vapor transmission of materials publication-title: Am. Soc. Test. Mater. contributor: fullname: ASTM – volume: 2 start-page: 17 year: Jan. 2000 end-page: 37 ident: bib0015 article-title: Natural ventilation publication-title: Renew. Energy contributor: fullname: Fordham – volume: 430 start-page: 150 year: 2013 end-page: 157 ident: bib0155 article-title: Coupled heat and mass transfer during moisture exchange across a membrane publication-title: J. Memb. Sci. contributor: fullname: Wang – volume: 127 year: 2005 ident: bib0080 article-title: Frost growth in regenerative wheels publication-title: J. Heat Transfer contributor: fullname: Besant – volume: 12 start-page: 2265 year: 2008 end-page: 2300 ident: bib0035 article-title: Energy, environment and sustainable development publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Omer – volume: 84 start-page: 301 year: 2015 end-page: 309 ident: bib0380 article-title: CFD simulation of air to air enthalpy heat exchanger: variable membrane moisture resistance publication-title: Appl. Therm. Eng. contributor: fullname: Behnia – volume: 119 start-page: 129 year: 2016 end-page: 142 ident: bib0280 article-title: Performance of a quasi-counter-flow air-to-air membrane energy exchanger in cold climates publication-title: Energy Build. contributor: fullname: Simonson – volume: 189 start-page: 179 year: 2001 end-page: 191 ident: bib0395 article-title: Membrane-based Enthalpy Exchanger: material considerations and clarification of moisture resistance publication-title: J. Memb. Sci. contributor: fullname: Niu – volume: 51 start-page: 697 year: 2007 end-page: 714 ident: bib0200 article-title: Numerical study of heat and mass transfer in an enthalpy exchanger with a hydrophobic-hydrophilic composite membrane core publication-title: Numer. Heat Transfer Part A: Appl. contributor: fullname: Zhang – volume: 52 start-page: 549 year: 2007 end-page: 564 ident: bib0205 article-title: Thermally developing forced convection and heat transfer in rectangular plate-fin passages under uniform plate temperature publication-title: Numer. Heat Transfer Part A: Appl. contributor: fullname: Zhang – volume: 49 start-page: 1176 year: 2006 end-page: 1184 ident: bib0360 article-title: Investigation of moisture transfer effectiveness through a hydrophilic polymer membrane with a field and laboratory emission cell publication-title: Int. J. Heat Mass Transfer contributor: fullname: Zhang – volume: 25 start-page: 515 year: 2000 end-page: 527 ident: bib0120 article-title: Analysis of thermal performance and energy savings of membrane based heat recovery ventilator publication-title: Energy contributor: fullname: Jin – volume: 50 start-page: 868 year: 2013 end-page: 876 ident: bib0275 article-title: Heat transfer and pressure drop in spacer-filled channels for membrane energy recovery ventilators publication-title: Appl. Therm. Eng. contributor: fullname: Kozubal – volume: 51 start-page: 770 year: 2013 end-page: 780 ident: bib0375 article-title: Numerical analysis of heat and energy recovery ventilators performance based on CFD for detailed design publication-title: Appl. Therm. Eng. contributor: fullname: Entchev – volume: 110 start-page: 404 year: 2015 end-page: 414 ident: bib0115 article-title: A theoretical model to predict frosting limits in cross-Flow air-to-air flat plate heat/energy exchangers publication-title: Energy Build. contributor: fullname: Simonson – volume: 137 start-page: 42601 year: 2015 ident: bib0265 article-title: Experimental pressure drop and heat transfer in a rectangular channel with a sinusoidal porous screen publication-title: J. Heat Transfer contributor: fullname: Besant – volume: 285 start-page: 4 year: 2006 end-page: 29 ident: bib0350 article-title: A framework for better understanding membrane distillation separation process publication-title: J. Memb. Sci. contributor: fullname: Khayet – volume: 91 start-page: 145 year: 1984 end-page: 158 ident: bib0065 article-title: Onset of freezing in residential air-to-air heat exchangers publication-title: ASHRAE Trans. contributor: fullname: Pedersen – volume: 51 start-page: 2179 year: 2008 end-page: 2189 ident: bib0195 article-title: Simultaneous heat and moisture transfer through a composite supported liquid membrane publication-title: Int. J. Heat Mass Transfer contributor: fullname: Xiao – volume: 35 year: 2015 ident: bib0410 article-title: Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation publication-title: Accept. J. Appl. Energy contributor: fullname: Simonson – volume: 31 start-page: 4036 year: 2011 end-page: 4043 ident: bib0220 article-title: Performance analysis of a membrane-based energy recovery ventilator: effects of outdoor air state publication-title: Appl. Therm. Eng. contributor: fullname: Su – volume: 59 start-page: 33 year: 1995 end-page: 42 ident: bib0020 article-title: Seasonal variation in radon concentration of 3000 dwellings with model comparisons publication-title: Radiat. Prot. Dosim. contributor: fullname: Arvela – volume: 55 start-page: 5861 year: 2012 end-page: 5869 ident: bib0135 article-title: Coupled heat and mass transfer in an application-scale cross-flow hollow fiber membrane module for air humidification publication-title: Int. J. Heat Mass Transfer contributor: fullname: Zhang – volume: 111 year: 2017 ident: bib0190 article-title: A frosting limit model of air-to-air quasi-counter-flow membrane energy exchanger for use in cold climates publication-title: Appl. Therm. Eng. contributor: fullname: Simonson – volume: 81 start-page: 410 year: 1975 end-page: 417 ident: bib0405 article-title: Investigation of frosting in rotary air-to-air heat exchangers publication-title: ASHRAE Trans. contributor: fullname: Gawley – year: 2013 ident: bib0125 article-title: Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts contributor: fullname: Zhang – volume: 52 start-page: 1504 year: 2009 end-page: 1509 ident: bib0365 article-title: Effectiveness correlations for heat and mass transfer in membrane humidifiers publication-title: Int. J. Heat Mass Transfer contributor: fullname: Mérida – year: 2012 ident: bib0250 article-title: Membrane Based Heat Exchanger, Master’s thesis contributor: fullname: Aarnes – volume: 90 start-page: 201 year: 2015 end-page: 217 ident: bib0070 article-title: Frost formation in the cross-flow plate heat exchanger for energy recovery publication-title: Int. J. Heat Mass Transfer contributor: fullname: Pandelidis – year: 1994 ident: bib0285 article-title: Principles of Enhanced Heat Transfer contributor: fullname: Webb – volume: 63 start-page: 173 year: 2012 end-page: 195 ident: bib0140 article-title: Progress on heat and moisture recovery with membranes: from fundamentals to engineering applications publication-title: Energy Convers. Manag. contributor: fullname: Zhang – year: 2015 ident: bib0255 article-title: Performance of a lab-scale membrane-based energy exchanger publication-title: Appl. Therm. Eng. contributor: fullname: Peng – volume: 38 start-page: 389 year: 2013 end-page: 418 ident: bib0400 article-title: Moisture transfer through the membrane of a cross-flow energy recovery ventilator: measurement and simple data-driven modeling publication-title: J. Build. Phys. contributor: fullname: Glass – volume: 325 start-page: 672 year: 2008 end-page: 682 ident: bib0310 article-title: Heat and moisture transfer in application scale parallel-plates enthalpy exchangers with novel membrane materials publication-title: J. Memb. Sci. contributor: fullname: Pei – volume: 2 start-page: 461 year: 1989 end-page: 474 ident: bib0180 article-title: Effect of residential air-to-air heat and moisture exchangers on indoor humidity publication-title: ASHRAE Trans. contributor: fullname: McGugan – volume: 59 start-page: 33 issue: 1 year: 1995 ident: 10.1016/j.enbuild.2016.11.047_bib0020 article-title: Seasonal variation in radon concentration of 3000 dwellings with model comparisons publication-title: Radiat. Prot. Dosim. contributor: fullname: Arvela – volume: 53 start-page: 5478 issue: November (23–24) year: 2010 ident: 10.1016/j.enbuild.2016.11.047_bib0355 article-title: Heat and mass transfer in a quasi-counter flow membrane-based total heat exchanger publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.07.009 contributor: fullname: Zhang – volume: 124 start-page: 922 issue: 5 year: 2002 ident: 10.1016/j.enbuild.2016.11.047_bib0160 article-title: Effectiveness correlations for heat and moisture transfer processes in an enthalpy exchanger with membrane cores publication-title: J. Heat Transfer doi: 10.1115/1.1469524 contributor: fullname: Zhang – volume: 285 start-page: 4 issue: November (1–2) year: 2006 ident: 10.1016/j.enbuild.2016.11.047_bib0350 article-title: A framework for better understanding membrane distillation separation process publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2006.08.002 contributor: fullname: El-Bourawi – volume: 95 start-page: 64 issue: 32 year: 1989 ident: 10.1016/j.enbuild.2016.11.047_bib0060 article-title: Prediction of condensation and frosting limits in rotary wheels for heat recovery in buildings publication-title: ASHRAE Trans. contributor: fullname: Holmberg – year: 2012 ident: 10.1016/j.enbuild.2016.11.047_bib0305 article-title: E96: standard test methods for water vapor transmission of materials publication-title: Am. Soc. Test. Mater. contributor: fullname: ASTM – ident: 10.1016/j.enbuild.2016.11.047_bib0025 – ident: 10.1016/j.enbuild.2016.11.047_bib0050 – year: 2014 ident: 10.1016/j.enbuild.2016.11.047_bib0170 article-title: Frosting limits for counter-flow membrane energy exchanger (MEE) in cold climates contributor: fullname: Liu – ident: 10.1016/j.enbuild.2016.11.047_bib0300 – ident: 10.1016/j.enbuild.2016.11.047_bib0165 doi: 10.1016/S0360-5442(00)00064-5 – volume: 2 start-page: 461 year: 1989 ident: 10.1016/j.enbuild.2016.11.047_bib0180 article-title: Effect of residential air-to-air heat and moisture exchangers on indoor humidity publication-title: ASHRAE Trans. contributor: fullname: Barringer – volume: 39 start-page: 1151 issue: 11 year: 2007 ident: 10.1016/j.enbuild.2016.11.047_bib0110 article-title: New counter flow heat exchanger designed for ventilation systems in cold climates publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.12.008 contributor: fullname: Kragh – volume: 51 start-page: 5288 issue: 2008 year: 2008 ident: 10.1016/j.enbuild.2016.11.047_bib0330 article-title: A fractal model for gas permeation through porous membranes publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.03.008 contributor: fullname: Zhang – volume: 38 start-page: 389 year: 2013 ident: 10.1016/j.enbuild.2016.11.047_bib0400 article-title: Moisture transfer through the membrane of a cross-flow energy recovery ventilator: measurement and simple data-driven modeling publication-title: J. Build. Phys. doi: 10.1177/1744259113506072 contributor: fullname: Boardman – volume: 25 start-page: 439 issue: 4 year: 2002 ident: 10.1016/j.enbuild.2016.11.047_bib0040 article-title: Exhaust air heat recovery in buildings publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(01)00035-4 contributor: fullname: Fehrm – volume: 111 year: 2017 ident: 10.1016/j.enbuild.2016.11.047_bib0190 article-title: A frosting limit model of air-to-air quasi-counter-flow membrane energy exchanger for use in cold climates publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.10.010 contributor: fullname: Liu – volume: 127 issue: 9 year: 2005 ident: 10.1016/j.enbuild.2016.11.047_bib0080 article-title: Frost growth in regenerative wheels publication-title: J. Heat Transfer doi: 10.1115/1.2005274 contributor: fullname: Shang – volume: 35 start-page: 628 issue: January year: 1939 ident: 10.1016/j.enbuild.2016.11.047_bib0315 article-title: Permeation, diffusion and solution of gases in organic polymers publication-title: Trans. Faraday Soc. doi: 10.1039/tf9393500628 contributor: fullname: Barrer – volume: 84 start-page: 228 year: 2015 ident: 10.1016/j.enbuild.2016.11.047_bib0030 article-title: Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.11.014 contributor: fullname: Justo Alonso – ident: 10.1016/j.enbuild.2016.11.047_bib0210 doi: 10.1016/S0376-7388(00)00680-3 – volume: 25 start-page: 515 issue: June (6) year: 2000 ident: 10.1016/j.enbuild.2016.11.047_bib0120 article-title: Analysis of thermal performance and energy savings of membrane based heat recovery ventilator publication-title: Energy doi: 10.1016/S0360-5442(99)00087-0 contributor: fullname: Zhang – volume: 80 start-page: 9 issue: 4605 year: 1983 ident: 10.1016/j.enbuild.2016.11.047_bib0005 article-title: Indoor air pollution: a public health perspective publication-title: Science doi: 10.1126/science.6857273 contributor: fullname: Spengler – volume: 379 start-page: 496 issue: September (1–2) year: 2011 ident: 10.1016/j.enbuild.2016.11.047_bib0150 article-title: Moisture permeation through porous membranes publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2011.06.028 contributor: fullname: Min – volume: 84 start-page: 542 year: 2015 ident: 10.1016/j.enbuild.2016.11.047_bib0370 article-title: Effects of geometrical parameters on the thermohydraulic characteristics of periodic cross-corrugated channels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.01.046 contributor: fullname: Liu – volume: 84 start-page: 301 year: 2015 ident: 10.1016/j.enbuild.2016.11.047_bib0380 article-title: CFD simulation of air to air enthalpy heat exchanger: variable membrane moisture resistance publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.03.067 contributor: fullname: AL-Waked – volume: 55 start-page: 5861 issue: October (21–22) year: 2012 ident: 10.1016/j.enbuild.2016.11.047_bib0135 article-title: Coupled heat and mass transfer in an application-scale cross-flow hollow fiber membrane module for air humidification publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.05.083 contributor: fullname: Zhang – volume: 30 start-page: 538 year: 2014 ident: 10.1016/j.enbuild.2016.11.047_bib0090 article-title: A review of frosting in air-to-air energy exchangers publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.10.038 contributor: fullname: Rafati Nasr – volume: 52 start-page: 1504 issue: February (5–6) year: 2009 ident: 10.1016/j.enbuild.2016.11.047_bib0365 article-title: Effectiveness correlations for heat and mass transfer in membrane humidifiers publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.09.002 contributor: fullname: Kadylak – year: 2015 ident: 10.1016/j.enbuild.2016.11.047_bib0255 article-title: Performance of a lab-scale membrane-based energy exchanger publication-title: Appl. Therm. Eng. contributor: fullname: Justo Alonso – volume: 81 start-page: 410 year: 1975 ident: 10.1016/j.enbuild.2016.11.047_bib0405 article-title: Investigation of frosting in rotary air-to-air heat exchangers publication-title: ASHRAE Trans. contributor: fullname: Ruth – volume: 12 start-page: 2265 issue: 9 year: 2008 ident: 10.1016/j.enbuild.2016.11.047_bib0035 article-title: Energy, environment and sustainable development publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2007.05.001 contributor: fullname: Omer – volume: 35 year: 2015 ident: 10.1016/j.enbuild.2016.11.047_bib0410 article-title: Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation publication-title: Accept. J. Appl. Energy contributor: fullname: Rafati Nasr – ident: 10.1016/j.enbuild.2016.11.047_bib0175 – volume: 51 start-page: 697 issue: March (7) year: 2007 ident: 10.1016/j.enbuild.2016.11.047_bib0200 article-title: Numerical study of heat and mass transfer in an enthalpy exchanger with a hydrophobic-hydrophilic composite membrane core publication-title: Numer. Heat Transfer Part A: Appl. doi: 10.1080/10407780600879048 contributor: fullname: Zhang – volume: 36 start-page: 2575 issue: 10 year: 1993 ident: 10.1016/j.enbuild.2016.11.047_bib0260 article-title: Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surfaces publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(05)80195-4 contributor: fullname: Brockmeier – volume: 2 start-page: 17 year: 2000 ident: 10.1016/j.enbuild.2016.11.047_bib0015 article-title: Natural ventilation publication-title: Renew. Energy doi: 10.1016/S0960-1481(99)00012-9 contributor: fullname: Fordham – ident: 10.1016/j.enbuild.2016.11.047_bib0045 – ident: 10.1016/j.enbuild.2016.11.047_bib0320 – volume: 42 start-page: 1833 issue: October (10) year: 2010 ident: 10.1016/j.enbuild.2016.11.047_bib0225 article-title: Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.05.020 contributor: fullname: Nasif – volume: 33 start-page: 1010 issue: September (12) year: 2012 ident: 10.1016/j.enbuild.2016.11.047_bib0385 article-title: Modeling of air to air enthalpy heat exchanger publication-title: Heat Transfer Eng. doi: 10.1080/01457632.2012.659616 contributor: fullname: Nasif – volume: 31 start-page: 4036 issue: December (17–18) year: 2011 ident: 10.1016/j.enbuild.2016.11.047_bib0220 article-title: Performance analysis of a membrane-based energy recovery ventilator: effects of outdoor air state publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.08.006 contributor: fullname: Min – year: 2013 ident: 10.1016/j.enbuild.2016.11.047_bib0125 contributor: fullname: Zhang – ident: 10.1016/j.enbuild.2016.11.047_bib0270 – volume: 130 start-page: 205 issue: July (1) year: 1997 ident: 10.1016/j.enbuild.2016.11.047_bib0340 article-title: Characterization of microporous membranes for use in membrane contactors publication-title: J. Memb. Sci. doi: 10.1016/S0376-7388(97)00026-4 contributor: fullname: Iversen – volume: 91 start-page: 145 issue: 1 year: 1984 ident: 10.1016/j.enbuild.2016.11.047_bib0065 article-title: Onset of freezing in residential air-to-air heat exchangers publication-title: ASHRAE Trans. contributor: fullname: Fisk – volume: 63 start-page: 173 year: 2012 ident: 10.1016/j.enbuild.2016.11.047_bib0140 article-title: Progress on heat and moisture recovery with membranes: from fundamentals to engineering applications publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2011.11.033 contributor: fullname: Zhang – volume: 430 start-page: 150 year: 2013 ident: 10.1016/j.enbuild.2016.11.047_bib0155 article-title: Coupled heat and mass transfer during moisture exchange across a membrane publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2012.12.018 contributor: fullname: Min – ident: 10.1016/j.enbuild.2016.11.047_bib0010 – volume: 51 start-page: 2179 issue: May (9) year: 2008 ident: 10.1016/j.enbuild.2016.11.047_bib0195 article-title: Simultaneous heat and moisture transfer through a composite supported liquid membrane publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.11.006 contributor: fullname: Zhang – volume: 33 start-page: 290 year: 2014 ident: 10.1016/j.enbuild.2016.11.047_bib0290 article-title: Membrane processes for heating, ventilation, and air conditioning publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.01.092 contributor: fullname: Woods – volume: 44 start-page: 1643 issue: August (8) year: 2009 ident: 10.1016/j.enbuild.2016.11.047_bib0420 article-title: The effects of ventilation systems and building fabric on the stability of indoor temperature and humidity in Finnish detached houses publication-title: Build. Environ. doi: 10.1016/j.buildenv.2008.10.010 contributor: fullname: Kalamees – volume: 28 start-page: 179 issue: 2 year: 1998 ident: 10.1016/j.enbuild.2016.11.047_bib0055 article-title: Heat recovery with low pressure loss for natural veltilation publication-title: Energy Build. doi: 10.1016/S0378-7788(98)00016-4 contributor: fullname: Shao – year: 2003 ident: 10.1016/j.enbuild.2016.11.047_bib0240 contributor: fullname: Shah – ident: 10.1016/j.enbuild.2016.11.047_bib0415 – year: 2012 ident: 10.1016/j.enbuild.2016.11.047_bib0250 contributor: fullname: Aarnes – volume: 40 start-page: 5710 issue: November (24) year: 2001 ident: 10.1016/j.enbuild.2016.11.047_bib0345 article-title: Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie010553y contributor: fullname: Khayet – ident: 10.1016/j.enbuild.2016.11.047_bib0325 – ident: 10.1016/j.enbuild.2016.11.047_bib0100 – ident: 10.1016/j.enbuild.2016.11.047_bib0425 – volume: 163 start-page: 29 issue: 1 year: 1999 ident: 10.1016/j.enbuild.2016.11.047_bib0130 article-title: Heat and mass transfer in a membrane-based energy recovery ventilator publication-title: J. Memb. Sci. doi: 10.1016/S0376-7388(99)00150-7 contributor: fullname: Zhang – volume: 30 start-page: 991 issue: June (8–9) year: 2010 ident: 10.1016/j.enbuild.2016.11.047_bib0145 article-title: Performance analysis of a membrane-based energy recovery ventilator: effects of membrane spacing and thickness on the ventilator performance publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.01.010 contributor: fullname: Min – volume: 49 start-page: 1176 issue: March (5–6) year: 2006 ident: 10.1016/j.enbuild.2016.11.047_bib0360 article-title: Investigation of moisture transfer effectiveness through a hydrophilic polymer membrane with a field and laboratory emission cell publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.08.029 contributor: fullname: Zhang – volume: 110 start-page: 404 issue: November year: 2015 ident: 10.1016/j.enbuild.2016.11.047_bib0115 article-title: A theoretical model to predict frosting limits in cross-Flow air-to-air flat plate heat/energy exchangers publication-title: Energy Build. contributor: fullname: Liu – ident: 10.1016/j.enbuild.2016.11.047_bib0335 – volume: 120 start-page: 699 issue: August (3) year: 1998 ident: 10.1016/j.enbuild.2016.11.047_bib0075 article-title: Heat and moisture transfer in energy wheels during sorption, condensation, and frosting conditions publication-title: J. Heat Transfer doi: 10.1115/1.2824339 contributor: fullname: Simonson – year: 2005 ident: 10.1016/j.enbuild.2016.11.047_bib0235 contributor: fullname: Kays – volume: 51 start-page: 770 issue: March (1–2) year: 2013 ident: 10.1016/j.enbuild.2016.11.047_bib0375 article-title: Numerical analysis of heat and energy recovery ventilators performance based on CFD for detailed design publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.10.003 contributor: fullname: Yaïci – volume: 95 start-page: 475 year: 1989 ident: 10.1016/j.enbuild.2016.11.047_bib0105 article-title: A model to compare freezing control strategies for residential air-to-air Heat Recovery Ventilators publication-title: ASHRAE Trans. contributor: fullname: Phillips – volume: 50 start-page: 151 issue: January (1–2) year: 2007 ident: 10.1016/j.enbuild.2016.11.047_bib0245 article-title: Heat and mass transfer in a cross-flow membrane-based enthalpy exchanger under naturally formed boundary conditions publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.06.025 contributor: fullname: Zhang – start-page: 484 year: 1989 ident: 10.1016/j.enbuild.2016.11.047_bib0085 article-title: Comparison of freezing control strategies for residential air-to-air heat recovery ventilators publication-title: ASHRAE Trans. contributor: fullname: Phillips – volume: 53 start-page: 1195 issue: January (11) year: 2008 ident: 10.1016/j.enbuild.2016.11.047_bib0215 article-title: Heat and mass transfer in a total heat exchanger: cross-corrugated triangular ducts with composite supported liquid membrane publication-title: Numer. Heat Transfer Part A: Appl. doi: 10.1080/10407780701853314 contributor: fullname: Zhang – year: 1994 ident: 10.1016/j.enbuild.2016.11.047_bib0285 contributor: fullname: Webb – volume: 89 start-page: 1258 year: 2015 ident: 10.1016/j.enbuild.2016.11.047_bib0390 article-title: Numerical modeling of fluid flow and coupled heat and mass transfer in a counter-cross-flow parallel-plate liquid-to-air membrane energy exchanger publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.06.043 contributor: fullname: Vali – volume: 50 start-page: 868 issue: January (1) year: 2013 ident: 10.1016/j.enbuild.2016.11.047_bib0275 article-title: Heat transfer and pressure drop in spacer-filled channels for membrane energy recovery ventilators publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.06.052 contributor: fullname: Woods – volume: 189 start-page: 179 issue: August (2) year: 2001 ident: 10.1016/j.enbuild.2016.11.047_bib0395 article-title: Membrane-based Enthalpy Exchanger: material considerations and clarification of moisture resistance publication-title: J. Memb. Sci. doi: 10.1016/S0376-7388(00)00680-3 contributor: fullname: Niu – volume: 9 start-page: 493 issue: October (4) year: 2003 ident: 10.1016/j.enbuild.2016.11.047_bib0095 article-title: A semi-empirical method to estimate enthalpy exchanger performance and a comparison of alternative frost control strategies publication-title: HVAC&R Res. doi: 10.1080/10789669.2003.10391082 contributor: fullname: Freund – volume: 137 start-page: 42601 issue: 4 year: 2015 ident: 10.1016/j.enbuild.2016.11.047_bib0265 article-title: Experimental pressure drop and heat transfer in a rectangular channel with a sinusoidal porous screen publication-title: J. Heat Transfer doi: 10.1115/1.4029349 contributor: fullname: Mahmood – volume: 119 start-page: 129 year: 2016 ident: 10.1016/j.enbuild.2016.11.047_bib0280 article-title: Performance of a quasi-counter-flow air-to-air membrane energy exchanger in cold climates publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.03.010 contributor: fullname: Liu – year: 2008 ident: 10.1016/j.enbuild.2016.11.047_bib0230 contributor: fullname: Zhang – volume: 325 start-page: 672 issue: December (2) year: 2008 ident: 10.1016/j.enbuild.2016.11.047_bib0310 article-title: Heat and moisture transfer in application scale parallel-plates enthalpy exchangers with novel membrane materials publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2008.08.041 contributor: fullname: Zhang – year: 1984 ident: 10.1016/j.enbuild.2016.11.047_bib0185 contributor: fullname: Kays – volume: 72 start-page: 564 issue: 3 year: 1998 ident: 10.1016/j.enbuild.2016.11.047_bib0295 article-title: Basic principles of membrane technology publication-title: Zeitschrift für Physikalische Chemie contributor: fullname: Mulder – volume: 90 start-page: 201 year: 2015 ident: 10.1016/j.enbuild.2016.11.047_bib0070 article-title: Frost formation in the cross-flow plate heat exchanger for energy recovery publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.06.056 contributor: fullname: Anisimov – volume: 52 start-page: 549 issue: August (6) year: 2007 ident: 10.1016/j.enbuild.2016.11.047_bib0205 article-title: Thermally developing forced convection and heat transfer in rectangular plate-fin passages under uniform plate temperature publication-title: Numer. Heat Transfer Part A: Appl. doi: 10.1080/10407780701303658 contributor: fullname: Zhang |
SSID | ssj0006571 |
Score | 2.427161 |
Snippet | Frosting occurring inside heat exchangers degrades the exchangers’ performance and reduces energy recovery in cold climates. The moisture transport in membrane... Frosting occurring inside heat exchangers degrades the exchangers' performance and reduces energy recovery in cold climates. The moisture transport in membrane... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 95 |
SubjectTerms | Aerodynamics Air conditioners Air flow Boundary conditions Climate Cold weather Computational fluid dynamics Computer applications Cooling Dehumidification Energy conservation Energy consumption Energy recovery Energy transfer Fluid dynamics Frost Heat and mass transfer Heat exchanger Heat exchangers Heat transfer Heating Humid climates HVAC Hydrodynamics Mass transfer Membrane energy exchanger Moisture Thermal comfort Ventilation |
Title | Energy transfer and energy saving potentials of air-to-air membrane energy exchanger for ventilation in cold climates |
URI | https://dx.doi.org/10.1016/j.enbuild.2016.11.047 https://www.proquest.com/docview/1932061185 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz2IT3xUycFr2n0k-zhKsdQn4gO8hWwyhRW7Le0WPPnbndkHVREELxsI2WWZTL583-7MhLEz6SfOOKNEahQISX8PDV3AQhJLSEPfUaLw7V00fJZXL-plhfXbXBgKq2ywv8b0Cq2bnl5jzd40z3uPXojORtXQo9BHWUE4TMW20Ke7H8swj0hVoosGCxq9zOLpvXapvED-RgVD_ahLxTzplJXf96cfSF1tP4MtttnwRn5ev9o2W4Fih218qSa4yxYXVR4fLysuCjNuCseh7psb-nDAp5OSooPQ5fhkxE0-E-VEYMPHMEbZXEA7Ht6bjGCOpJZXMZF10BzPC46-47h9y8fEU_fY8-DiqT8UzakKwiKYlCJVaQaj1Cobm8yrpsp5Jja4FI0XZHKEYpnEagwKJDgZ28ChdDVB7EU2cV64z1aLSQEHjEc2CzMfggC8TEZOZsgFIDBWBdKmSZIesm5rSz2ti2foNqrsVTfG12R8FCIajX_Iktbi-psXaAT4v27ttDOkm2U418ROkbAgJzn6_5OP2XpAe7nnC1912Go5W8AJMpEyO61c7ZStnfcfbu6pvbwe3n0Cl0LhwA |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iB_UgPvFtDl7T7iPZx1FKpT7aixW8hWwyhRW7LXUFT_52Z_ZBVQTByy6E7LJMJl--LzszYexS-okzziiRGgVC0t9DQxewkMQS0tB3lCg8HEWDR3n7pJ5WWK_NhaGwygb7a0yv0Lpp6TbW7M7zvPvghehsVA09Cn2UFYjDa5LqZ6FTdz6WcR6RqlQX9RbUfZnG033uUH2B_IUqhvpRh6p50jErvy9QP6C6Wn-ut9lWQxz5Vf1tO2wFil22-aWc4B5761eJfLysyCgsuCkch7rt1dDOAZ_PSgoPQp_jswk3-UKUM4E3PoUp6uYC2v7w3qQEc2S1vAqKrKPmeF5wdB7H7Us-JaK6zx6v--PeQDTHKgiLaFKKVKUZTFKrbGwyrxor55nY4Fw0XpDJCaplUqsxKJDgZGwDh9rVBLEX2cR54QFbLWYFHDIe2SzMfAgC8DIZOZkhGYDAWBVImyZJesQ6rS31vK6eoduwsmfdGF-T8VGJaDT-EUtai-tvbqAR4f969LQdId3Mw1dN9BQZC5KS4_-_-YKtD8bDe31_M7o7YRsBLeyeL3x1ylbLxRucIS0ps_PK7T4B-PjhzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+transfer+and+energy+saving+potentials+of+air-to-air+membrane+energy+exchanger+for+ventilation+in+cold+climates&rft.jtitle=Energy+and+buildings&rft.au=Liu%2C+Peng&rft.au=Justo+Alonso%2C+Maria&rft.au=Mathisen%2C+Hans+Martin&rft.au=Simonson%2C+Carey&rft.date=2017-01-15&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=135&rft.spage=95&rft.epage=108&rft_id=info:doi/10.1016%2Fj.enbuild.2016.11.047&rft.externalDocID=S0378778816316012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |