Scene Uyghur Text Detection Based on Fine-Grained Feature Representation
Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have gradually shifted from plain document text to more complex natural scenarios. Objects with similar texture and text morphology in the complex backgro...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 12; p. 4372 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
09.06.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have gradually shifted from plain document text to more complex natural scenarios. Objects with similar texture and text morphology in the complex background noise of natural scene images are prone to false recall and difficult to detect multi-scale texts, a multi-directional scene Uyghur text detection model based on fine-grained feature representation and spatial feature fusion is proposed, and feature extraction and feature fusion are improved to enhance the network’s ability to represent multi-scale features. In this method, the multiple groups of 3 × 3 convolutional feature groups that are connected like the hierarchical residual to build a residual network for feature extraction, which captures the feature details and increases the receptive field of the network to adapt to multi-scale text and long glued dimensional font detection and suppress false positives of text-like objects. Secondly, an adaptive multi-level feature map fusion strategy is adopted to overcome the inconsistency of information in multi-scale feature map fusion. The proposed model achieves 93.94% and 84.92% F-measure on the self-built Uyghur dataset and the ICDAR2015 dataset, respectively, which improves the accuracy of Uyghur text detection and suppresses false positives. |
---|---|
AbstractList | Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have gradually shifted from plain document text to more complex natural scenarios. Objects with similar texture and text morphology in the complex background noise of natural scene images are prone to false recall and difficult to detect multi-scale texts, a multi-directional scene Uyghur text detection model based on fine-grained feature representation and spatial feature fusion is proposed, and feature extraction and feature fusion are improved to enhance the network’s ability to represent multi-scale features. In this method, the multiple groups of 3 × 3 convolutional feature groups that are connected like the hierarchical residual to build a residual network for feature extraction, which captures the feature details and increases the receptive field of the network to adapt to multi-scale text and long glued dimensional font detection and suppress false positives of text-like objects. Secondly, an adaptive multi-level feature map fusion strategy is adopted to overcome the inconsistency of information in multi-scale feature map fusion. The proposed model achieves 93.94% and 84.92% F-measure on the self-built Uyghur dataset and the ICDAR2015 dataset, respectively, which improves the accuracy of Uyghur text detection and suppresses false positives. Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have gradually shifted from plain document text to more complex natural scenarios. Objects with similar texture and text morphology in the complex background noise of natural scene images are prone to false recall and difficult to detect multi-scale texts, a multi-directional scene Uyghur text detection model based on fine-grained feature representation and spatial feature fusion is proposed, and feature extraction and feature fusion are improved to enhance the network's ability to represent multi-scale features. In this method, the multiple groups of 3 × 3 convolutional feature groups that are connected like the hierarchical residual to build a residual network for feature extraction, which captures the feature details and increases the receptive field of the network to adapt to multi-scale text and long glued dimensional font detection and suppress false positives of text-like objects. Secondly, an adaptive multi-level feature map fusion strategy is adopted to overcome the inconsistency of information in multi-scale feature map fusion. The proposed model achieves 93.94% and 84.92% F-measure on the self-built Uyghur dataset and the ICDAR2015 dataset, respectively, which improves the accuracy of Uyghur text detection and suppresses false positives.Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have gradually shifted from plain document text to more complex natural scenarios. Objects with similar texture and text morphology in the complex background noise of natural scene images are prone to false recall and difficult to detect multi-scale texts, a multi-directional scene Uyghur text detection model based on fine-grained feature representation and spatial feature fusion is proposed, and feature extraction and feature fusion are improved to enhance the network's ability to represent multi-scale features. In this method, the multiple groups of 3 × 3 convolutional feature groups that are connected like the hierarchical residual to build a residual network for feature extraction, which captures the feature details and increases the receptive field of the network to adapt to multi-scale text and long glued dimensional font detection and suppress false positives of text-like objects. Secondly, an adaptive multi-level feature map fusion strategy is adopted to overcome the inconsistency of information in multi-scale feature map fusion. The proposed model achieves 93.94% and 84.92% F-measure on the self-built Uyghur dataset and the ICDAR2015 dataset, respectively, which improves the accuracy of Uyghur text detection and suppresses false positives. |
Author | Aysa, Alimjan Wang, Yiwen Xu, Xuebin Ubul, Kurban Mamat, Hornisa |
AuthorAffiliation | 2 Xinjiang Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830046, China 1 School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; wywpure@stu.xju.edu.cn (Y.W.); hornisamamat@xju.edu.cn (H.M.); xuxuebin@xju.edu.cn (X.X.) |
AuthorAffiliation_xml | – name: 1 School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; wywpure@stu.xju.edu.cn (Y.W.); hornisamamat@xju.edu.cn (H.M.); xuxuebin@xju.edu.cn (X.X.) – name: 2 Xinjiang Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830046, China |
Author_xml | – sequence: 1 givenname: Yiwen surname: Wang fullname: Wang, Yiwen – sequence: 2 givenname: Hornisa surname: Mamat fullname: Mamat, Hornisa – sequence: 3 givenname: Xuebin surname: Xu fullname: Xu, Xuebin – sequence: 4 givenname: Alimjan orcidid: 0000-0002-5464-0594 surname: Aysa fullname: Aysa, Alimjan – sequence: 5 givenname: Kurban surname: Ubul fullname: Ubul, Kurban |
BookMark | eNplkU1v1DAQhi3Uin7AgX8QiQscQu2x13YuSLR020qVKkF7tmbtyTarbLzYCaL_vi5bUD9OM7Kfef163gO2M8SBGPsg-BcpG36UAQQoaeAN2xcKVG0B-M6Tfo8d5LziHKSU9i3bkzOjtJipfXb-09NA1c3d8nZK1TX9GavvNJIfuzhUx5gpVKWZdwPVZwlLCdWccJwSVT9okyjTMOID_I7ttthnev9YD9nN_PT65Ly-vDq7OPl2WXtp9Fg3Ajmh1zpIr4MqLqyyM640eAOhtZ57EXwrVEBrOQI0EEzQDaC02NpWHrKLrW6IuHKb1K0x3bmInft7ENPSYRo735PzC8t90ABaCmU0LlrA0HLVEIbS-6L1dau1mRZrCmUTY8L-mejzm6G7dcv42zXFl-GmCHx6FEjx10R5dOsue-p7HChO2YG2gpd_CyjoxxfoKk5pKKsqlGlsCUaoQh1tKZ9izola57vtfsv7Xe8Edw-Ju_-Jl4nPLyb-2X_N3gNF3arp |
CitedBy_id | crossref_primary_10_3390_s23031070 crossref_primary_10_3390_info13120565 crossref_primary_10_21833_ijaas_2023_06_006 crossref_primary_10_3390_s23083970 |
Cites_doi | 10.3390/s21144870 10.1145/3474085.3475178 10.1007/s10032-019-00320-5 10.1109/ICDAR.2015.7333942 10.1109/CVPR.2019.00956 10.1109/ICSPC51351.2021.9451779 10.1109/TMM.2018.2818020 10.1109/ICCV48922.2021.00134 10.1504/IJSNET.2021.113626 10.1109/CVPR.2017.106 10.3390/s21061945 10.1007/s11042-017-4538-8 10.1117/12.2586912 10.1016/j.patcog.2019.06.020 10.1109/TIP.2019.2900589 10.1109/TPAMI.2016.2577031 10.1007/s11263-020-01369-0 10.1109/TMM.2018.2838320 10.1109/CVPR.2017.283 10.1609/aaai.v32i1.12269 10.1109/CVPR46437.2021.00314 10.1609/aaai.v34i07.6812 10.1109/TPAMI.2019.2938758 10.1007/978-3-030-01216-8_2 10.1007/s10032-020-00358-w 10.1109/ICDAR.2017.155 10.1109/CVPR42600.2020.01177 10.3390/s21082657 10.1109/CVPR.2016.90 10.1109/CVPR46437.2021.00870 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s22124372 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_cb80cd622631476abf2adf049eadbf2c PMC9229707 10_3390_s22124372 |
GrantInformation_xml | – fundername: National Science Foundation of China (NSFC) grantid: 61862061; 62061045; 61563052 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c376t-91a0eac66d3c6d446184850462c72df8c0c1dcf14da880a2292d7d692a38af8f3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:22 EDT 2025 Thu Aug 21 14:01:02 EDT 2025 Thu Jul 10 20:56:15 EDT 2025 Fri Jul 25 20:26:00 EDT 2025 Tue Jul 01 02:41:58 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-91a0eac66d3c6d446184850462c72df8c0c1dcf14da880a2292d7d692a38af8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5464-0594 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22124372 |
PMID | 35746154 |
PQID | 2679833814 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cb80cd622631476abf2adf049eadbf2c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9229707 proquest_miscellaneous_2681037612 proquest_journals_2679833814 crossref_citationtrail_10_3390_s22124372 crossref_primary_10_3390_s22124372 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220609 |
PublicationDateYYYYMMDD | 2022-06-09 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220609 day: 9 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Yan (ref_28) 2018; 20 Sun (ref_5) 2021; 35 Gao (ref_30) 2019; 43 ref_14 ref_33 ref_10 ref_32 ref_31 Fang (ref_29) 2017; 76 ref_19 ref_18 ref_17 ref_16 Liu (ref_1) 2019; 22 Zhao (ref_3) 2020; 23 ref_15 Long (ref_8) 2021; 129 Tang (ref_13) 2019; 96 Ren (ref_11) 2017; 39 ref_25 ref_23 ref_22 ref_21 ref_20 ref_2 ref_27 ref_26 ref_9 Xu (ref_24) 2019; 18 ref_4 ref_7 ref_6 Ma (ref_12) 2018; 20 |
References_xml | – ident: ref_17 doi: 10.3390/s21144870 – ident: ref_25 doi: 10.1145/3474085.3475178 – volume: 22 start-page: 143 year: 2019 ident: ref_1 article-title: Scene Text Detection and Recognition with Advances in Deep Learning: A Survey publication-title: Int. J. Doc. Anal. Recognit. doi: 10.1007/s10032-019-00320-5 – ident: ref_33 doi: 10.1109/ICDAR.2015.7333942 – ident: ref_21 doi: 10.1109/CVPR.2019.00956 – ident: ref_2 doi: 10.1109/ICSPC51351.2021.9451779 – volume: 20 start-page: 3111 year: 2018 ident: ref_12 article-title: Arbitrary-Oriented Scene Text Detection Via Rotation Proposals publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2818020 – ident: ref_26 doi: 10.1109/ICCV48922.2021.00134 – volume: 35 start-page: 69 year: 2021 ident: ref_5 article-title: Detection and Recognition of Text Traffic Signs above the Road publication-title: Int. J. Sens. Netw. doi: 10.1504/IJSNET.2021.113626 – ident: ref_32 doi: 10.1109/CVPR.2017.106 – ident: ref_19 doi: 10.3390/s21061945 – volume: 76 start-page: 15083 year: 2017 ident: ref_29 article-title: Detecting Uyghur Text in Complex Background Images with Convolutional Neural Network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-4538-8 – ident: ref_4 doi: 10.1117/12.2586912 – volume: 96 start-page: 106954 year: 2019 ident: ref_13 article-title: Seglink++: Detecting Dense and Arbitrary-Shaped Scene Text by Instance-Aware Component Grouping publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.06.020 – ident: ref_6 – volume: 18 start-page: 5566 year: 2019 ident: ref_24 article-title: Textfield: Learning a Deep Direction Field for Irregular Scene Text Detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2900589 – ident: ref_31 – volume: 39 start-page: 1137 year: 2017 ident: ref_11 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 129 start-page: 161 year: 2021 ident: ref_8 article-title: Scene Text Detection and Recognition: The Deep Learning Era publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-020-01369-0 – volume: 20 start-page: 3389 year: 2018 ident: ref_28 article-title: A fast Uyghur Text Detector for Complex Background Images publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2838320 – ident: ref_15 doi: 10.1109/CVPR.2017.283 – ident: ref_22 doi: 10.1609/aaai.v32i1.12269 – ident: ref_18 doi: 10.1109/CVPR46437.2021.00314 – ident: ref_27 doi: 10.1609/aaai.v34i07.6812 – volume: 43 start-page: 652 year: 2019 ident: ref_30 article-title: Res2net: A New Multi-Scale Backbone Architecture publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2938758 – ident: ref_14 doi: 10.1007/978-3-030-01216-8_2 – volume: 23 start-page: 267 year: 2020 ident: ref_3 article-title: Detect GAN: GAN-Based Text Detector for Camera-Captured Document Images publication-title: Int. J. Doc. Anal. Recognit. doi: 10.1007/s10032-020-00358-w – ident: ref_9 doi: 10.1109/ICDAR.2017.155 – ident: ref_10 doi: 10.1109/CVPR42600.2020.01177 – ident: ref_20 – ident: ref_23 doi: 10.3390/s21082657 – ident: ref_7 doi: 10.1109/CVPR.2016.90 – ident: ref_16 doi: 10.1109/CVPR46437.2021.00870 |
SSID | ssj0023338 |
Score | 2.3989687 |
Snippet | Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4372 |
SubjectTerms | adaptive spatial feature fusion Algorithms Boxes Datasets fine-grained feature representation multi-oriented text natural scene image Semantics Uyghur text detection |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPEVhoII4cKnWpG3SHhkwJiQ4wCbtVqV5MCTUoa098O-x265aJSQu3NLGkVK7cezY_kLIdUZlhOElT1rKvVBHvpckmno6sUFsDRWxwvOO5xc-noZPs2i2cdUX5oTV8MA14wYqi32lOVgJAQ0Fl5llUluwa4EF0FaofWHPWztTjasVgOdV4wgF4NQPVgw0NEaoOrtPBdLfsSy7eZEbG81oj-w2FqJ7W89sn2yZ_IDsbOAGHpLxG4w17vT7fV4u3QnoV_feFFVSVe4OYV_SLjRGMMB7xCsg4BlNvXJp3Ncq87UpOMqPyHT0MLkbe82VCJ4CTVCAapI-qErOdaC4BlcOHLQ4wgJTJZi2sfIV1crSUEtYmJKxhGmhecJkEEsb2-CY9PJFbk6Ii0WonMMghpB1ys_ChIaGgz2oNfcFd8jNmlWpavDC8dqKzxT8BuRq2nLVIVct6VcNkvEb0RD53RIgrnX1AqSdNtJO_5K2Q_praaXNYlulDCNJIHAaOuSy7YZlgrEPmZtFiTQxVkSCPecQ0ZFyZ0LdnvxjXgFuJ8BH4YvT__iCM7LNsIICD3KSPukVy9Kcg11TZBfVL_wDwcb4QA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsQwcPBx0YP4xPqiigcvxSbtpulJfK2LoAd1wVtJ81BBurqPg3_vTDdbLYi3tJnQMslM5j0AxyVTHXIvRcoxEaWmE0d5blhkcpdIZ1kmNdk77u5Fr5_ePneevcFt5MMqZzyxZtRmoMlGfsrJXYD6FEvPPj4j6hpF3lXfQmMeFhneNBTSJbs3jcKVIPy0mlCCqv3piCOfJj9V6w6qS_W35Mt2dOSv66a7CiteTgzPpxu7BnO2WoflX9UDN6D3iGtt2P96eZ0MwyfksuGVHdehVVV4gbeTCXHQxQXRDTWCwGcS-CZDGz7U8a8-7ajahH73-umyF_nGCJFGfjBGBqViZJhCmEQLgwodqmmyQ2mmOuPGSR1rZrRjqVFInorznJvMiJyrRConXbIFC9WgstsQUiqqELiIU-E6HZdpzlIrUCo0RsSZCOBkhqpC-6rh1LzivUDtgbBaNFgN4KgB_ZiWyvgL6ILw3QBQdev6xWD4UnhiKXQpY20ESoYJSzOhSseVcajL4LHHsQ5gb7ZbhSe5UfFzQAI4bKaRWMgDoio7mBCMpLxIlOoCyFq73Pqh9kz19lqX3c4Rj1mc7fz_8V1Y4pQhQYaafA8WxsOJ3Ue5ZVwe1IfzGy2L7lg priority: 102 providerName: ProQuest |
Title | Scene Uyghur Text Detection Based on Fine-Grained Feature Representation |
URI | https://www.proquest.com/docview/2679833814 https://www.proquest.com/docview/2681037612 https://pubmed.ncbi.nlm.nih.gov/PMC9229707 https://doaj.org/article/cb80cd622631476abf2adf049eadbf2c |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dS9xAcPDjRR-k2opRe8TSh75Es5vc7uahlJ56HgWlWA_uLWz24xQk18Y70H_fmVwuGBBfwiaZJWFm52tnZwbga8F0n8JLkfZMRKntx1GWWRbZzCfKOyaVof2O6xsxGqe_Jv3JGqx6bDYIfHrTtaN-UuPq8fT538sPZPjv5HGiy372xFH-UvxpHTZRIUlqZHCdtsEEnqAbtiwq1AXvqKK6Yn_HzOweknyldYYfYKcxF8OfS_ruwpor92D7VRHBjzD6g3NdOH6Z3i-q8A6FbXjh5vUJqzIcoJKyIQ6GOCG6on4QeE9236Jy4W19DLbJPio_wXh4eXc-ipr-CJFBsTBHOaVjlJtC2MQIi34demuqT9mmRnLrlYkNs8az1GrkUs15xq20IuM6Udorn-zDRjkr3QGElJEqBE7iVL_OxEWasdQJNA6tFbEUAXxboSo3TfFw6mHxmKMTQVjNW6wG8KUF_busmPEW0IDw3QJQkev6waya5g3P5KZQsbECDcSEpVLownNtPbo0uPpxbAI4XlErXy2cnFNYCQnO0gBO2tfIMxQI0aWbLQhGUXokGncByA6VOz_UfVM-3NfVtzPEo4zl4fsfP4ItTokStF-THcPGvFq4z2i-zIserMuJxKsaXvVgc3B58_u2V28F9Opl-x-jkPQP |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcAT0AD1UlIIaurSmKlIvEbGTdZJDhaB0Wcrj0O5K3ILjByChLOxD1f5Uv7Ez2SQlUtUbNye2E2s845nxvAA-5Vx1ybzkK8elH5lu4Kep4b5JXZg4y-NE033HxaXsD6PvV92rJfhdx8KQW2V9JpYHtRlpuiPfF2QuQH2KRwcPjz5VjSLral1CY4EWZ3b-C1W2yZfTY9zfPSF63wZf-35VVcDXSExTpG4V4GkjpQm1NKgNoY6TdClGU8fCuEQHmhvteGQU4rYSIhUmNjIVKkyUS1yI312GF1GInJwi03snjYIX4voW2YuwM9ifCOQLZBdr8byyNEBLnm17Yz5hb711eFXJpexwgUivYckWG_DySbbCN9D_iXMtG85vbmdjNsBTnR3baenKVbAj5IaGYaOHE_wTKjyBzyRgzsaW_Sj9baswp2IThs8Csi1YKUaFfQuMQl-lxEmCEuXpII9SHlmJUqgxMoilB59rUGW6ylJOxTLuM9RWCKpZA1UPPjZDHxapOf416Ijg3QygbNrli9H4JquIM9N5EmgjURINeRRLlTuhjEPdCckM29qDTr1bWUXik-wvQnqw23QjcZLFRRV2NKMxCcVhohTpQdza5daC2j3F3W2Z5jtFOMZBvP3_n3-A1f7g4jw7P708ewdrgqIz6JIo7cDKdDyzOygzTfP3JaIyuH5uyvgDtHQrGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EoID4ilSChgEEpdoEydrxweEWLbLlsKqKl2pt9Txo0VC2XYfQv01vo6ZbBIaCXHrzYnHiTWesWc8L4A3RawHZF4KtY9FmNpBFCpl49Aqn2TexTIzdN_xbSoms_TLyeBkC343sTDkVtnsidVGbeeG7sj7nMwFqE_Fad_XbhGHo_GHi8uQKkiRpbUpp7EhkQN39QvVt-X7_RGu9VvOx3vHnyZhXWEgNMhYK-R0HeHOI4RNjLCoGaG-kw0oXtNIbn1mIhNb4-PUaqRzzbniVlqhuE4y7TOf4HdvwbYkragH28O96eFRq-4lONtNLqMkUVF_yfGUICtZ5wSsCgV0pNuub-a1w258H-7VUir7uCGrB7Dlyodw91ruwkcw-Y5jHZtdnZ2vF-wYEcVGblU5dpVsiGejZdgY44DwM5WhwGcSN9cLx44q79s66Kl8DLMbQdoT6JXz0j0FRoGwQuAgTmnzTFSkKk6dQJnUWhFJEcC7BlW5qXOWU-mMnznqLoTVvMVqAK9b0ItNoo5_AQ0J3y0A5dauXswXZ3nNqrkpsshYgXJpEqdS6MJzbT1qUsh02DYB7DarldcMv8z_kmcAr9puZFWyv-jSzdcEk1FUJsqUAcjOKncm1O0pf5xXSb8V4lFGcuf_P38Jt5Er8q_704NncIdTqAbdGKld6K0Wa_ccBahV8aKmVAanN80cfwBp_TCt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scene+Uyghur+Text+Detection+Based+on+Fine-Grained+Feature+Representation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yiwen&rft.au=Mamat%2C+Hornisa&rft.au=Xu%2C+Xuebin&rft.au=Aysa%2C+Alimjan&rft.date=2022-06-09&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=12&rft.spage=4372&rft_id=info:doi/10.3390%2Fs22124372&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |