Scene Uyghur Text Detection Based on Fine-Grained Feature Representation

Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have gradually shifted from plain document text to more complex natural scenarios. Objects with similar texture and text morphology in the complex backgro...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 12; p. 4372
Main Authors Wang, Yiwen, Mamat, Hornisa, Xu, Xuebin, Aysa, Alimjan, Ubul, Kurban
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 09.06.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have gradually shifted from plain document text to more complex natural scenarios. Objects with similar texture and text morphology in the complex background noise of natural scene images are prone to false recall and difficult to detect multi-scale texts, a multi-directional scene Uyghur text detection model based on fine-grained feature representation and spatial feature fusion is proposed, and feature extraction and feature fusion are improved to enhance the network’s ability to represent multi-scale features. In this method, the multiple groups of 3 × 3 convolutional feature groups that are connected like the hierarchical residual to build a residual network for feature extraction, which captures the feature details and increases the receptive field of the network to adapt to multi-scale text and long glued dimensional font detection and suppress false positives of text-like objects. Secondly, an adaptive multi-level feature map fusion strategy is adopted to overcome the inconsistency of information in multi-scale feature map fusion. The proposed model achieves 93.94% and 84.92% F-measure on the self-built Uyghur dataset and the ICDAR2015 dataset, respectively, which improves the accuracy of Uyghur text detection and suppresses false positives.
AbstractList Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have gradually shifted from plain document text to more complex natural scenarios. Objects with similar texture and text morphology in the complex background noise of natural scene images are prone to false recall and difficult to detect multi-scale texts, a multi-directional scene Uyghur text detection model based on fine-grained feature representation and spatial feature fusion is proposed, and feature extraction and feature fusion are improved to enhance the network’s ability to represent multi-scale features. In this method, the multiple groups of 3 × 3 convolutional feature groups that are connected like the hierarchical residual to build a residual network for feature extraction, which captures the feature details and increases the receptive field of the network to adapt to multi-scale text and long glued dimensional font detection and suppress false positives of text-like objects. Secondly, an adaptive multi-level feature map fusion strategy is adopted to overcome the inconsistency of information in multi-scale feature map fusion. The proposed model achieves 93.94% and 84.92% F-measure on the self-built Uyghur dataset and the ICDAR2015 dataset, respectively, which improves the accuracy of Uyghur text detection and suppresses false positives.
Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have gradually shifted from plain document text to more complex natural scenarios. Objects with similar texture and text morphology in the complex background noise of natural scene images are prone to false recall and difficult to detect multi-scale texts, a multi-directional scene Uyghur text detection model based on fine-grained feature representation and spatial feature fusion is proposed, and feature extraction and feature fusion are improved to enhance the network's ability to represent multi-scale features. In this method, the multiple groups of 3 × 3 convolutional feature groups that are connected like the hierarchical residual to build a residual network for feature extraction, which captures the feature details and increases the receptive field of the network to adapt to multi-scale text and long glued dimensional font detection and suppress false positives of text-like objects. Secondly, an adaptive multi-level feature map fusion strategy is adopted to overcome the inconsistency of information in multi-scale feature map fusion. The proposed model achieves 93.94% and 84.92% F-measure on the self-built Uyghur dataset and the ICDAR2015 dataset, respectively, which improves the accuracy of Uyghur text detection and suppresses false positives.Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have gradually shifted from plain document text to more complex natural scenarios. Objects with similar texture and text morphology in the complex background noise of natural scene images are prone to false recall and difficult to detect multi-scale texts, a multi-directional scene Uyghur text detection model based on fine-grained feature representation and spatial feature fusion is proposed, and feature extraction and feature fusion are improved to enhance the network's ability to represent multi-scale features. In this method, the multiple groups of 3 × 3 convolutional feature groups that are connected like the hierarchical residual to build a residual network for feature extraction, which captures the feature details and increases the receptive field of the network to adapt to multi-scale text and long glued dimensional font detection and suppress false positives of text-like objects. Secondly, an adaptive multi-level feature map fusion strategy is adopted to overcome the inconsistency of information in multi-scale feature map fusion. The proposed model achieves 93.94% and 84.92% F-measure on the self-built Uyghur dataset and the ICDAR2015 dataset, respectively, which improves the accuracy of Uyghur text detection and suppresses false positives.
Author Aysa, Alimjan
Wang, Yiwen
Xu, Xuebin
Ubul, Kurban
Mamat, Hornisa
AuthorAffiliation 2 Xinjiang Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830046, China
1 School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; wywpure@stu.xju.edu.cn (Y.W.); hornisamamat@xju.edu.cn (H.M.); xuxuebin@xju.edu.cn (X.X.)
AuthorAffiliation_xml – name: 1 School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; wywpure@stu.xju.edu.cn (Y.W.); hornisamamat@xju.edu.cn (H.M.); xuxuebin@xju.edu.cn (X.X.)
– name: 2 Xinjiang Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830046, China
Author_xml – sequence: 1
  givenname: Yiwen
  surname: Wang
  fullname: Wang, Yiwen
– sequence: 2
  givenname: Hornisa
  surname: Mamat
  fullname: Mamat, Hornisa
– sequence: 3
  givenname: Xuebin
  surname: Xu
  fullname: Xu, Xuebin
– sequence: 4
  givenname: Alimjan
  orcidid: 0000-0002-5464-0594
  surname: Aysa
  fullname: Aysa, Alimjan
– sequence: 5
  givenname: Kurban
  surname: Ubul
  fullname: Ubul, Kurban
BookMark eNplkU1v1DAQhi3Uin7AgX8QiQscQu2x13YuSLR020qVKkF7tmbtyTarbLzYCaL_vi5bUD9OM7Kfef163gO2M8SBGPsg-BcpG36UAQQoaeAN2xcKVG0B-M6Tfo8d5LziHKSU9i3bkzOjtJipfXb-09NA1c3d8nZK1TX9GavvNJIfuzhUx5gpVKWZdwPVZwlLCdWccJwSVT9okyjTMOID_I7ttthnev9YD9nN_PT65Ly-vDq7OPl2WXtp9Fg3Ajmh1zpIr4MqLqyyM640eAOhtZ57EXwrVEBrOQI0EEzQDaC02NpWHrKLrW6IuHKb1K0x3bmInft7ENPSYRo735PzC8t90ABaCmU0LlrA0HLVEIbS-6L1dau1mRZrCmUTY8L-mejzm6G7dcv42zXFl-GmCHx6FEjx10R5dOsue-p7HChO2YG2gpd_CyjoxxfoKk5pKKsqlGlsCUaoQh1tKZ9izola57vtfsv7Xe8Edw-Ju_-Jl4nPLyb-2X_N3gNF3arp
CitedBy_id crossref_primary_10_3390_s23031070
crossref_primary_10_3390_info13120565
crossref_primary_10_21833_ijaas_2023_06_006
crossref_primary_10_3390_s23083970
Cites_doi 10.3390/s21144870
10.1145/3474085.3475178
10.1007/s10032-019-00320-5
10.1109/ICDAR.2015.7333942
10.1109/CVPR.2019.00956
10.1109/ICSPC51351.2021.9451779
10.1109/TMM.2018.2818020
10.1109/ICCV48922.2021.00134
10.1504/IJSNET.2021.113626
10.1109/CVPR.2017.106
10.3390/s21061945
10.1007/s11042-017-4538-8
10.1117/12.2586912
10.1016/j.patcog.2019.06.020
10.1109/TIP.2019.2900589
10.1109/TPAMI.2016.2577031
10.1007/s11263-020-01369-0
10.1109/TMM.2018.2838320
10.1109/CVPR.2017.283
10.1609/aaai.v32i1.12269
10.1109/CVPR46437.2021.00314
10.1609/aaai.v34i07.6812
10.1109/TPAMI.2019.2938758
10.1007/978-3-030-01216-8_2
10.1007/s10032-020-00358-w
10.1109/ICDAR.2017.155
10.1109/CVPR42600.2020.01177
10.3390/s21082657
10.1109/CVPR.2016.90
10.1109/CVPR46437.2021.00870
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22124372
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_cb80cd622631476abf2adf049eadbf2c
PMC9229707
10_3390_s22124372
GrantInformation_xml – fundername: National Science Foundation of China (NSFC)
  grantid: 61862061; 62061045; 61563052
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c376t-91a0eac66d3c6d446184850462c72df8c0c1dcf14da880a2292d7d692a38af8f3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:28:22 EDT 2025
Thu Aug 21 14:01:02 EDT 2025
Thu Jul 10 20:56:15 EDT 2025
Fri Jul 25 20:26:00 EDT 2025
Tue Jul 01 02:41:58 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-91a0eac66d3c6d446184850462c72df8c0c1dcf14da880a2292d7d692a38af8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5464-0594
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22124372
PMID 35746154
PQID 2679833814
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_cb80cd622631476abf2adf049eadbf2c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9229707
proquest_miscellaneous_2681037612
proquest_journals_2679833814
crossref_citationtrail_10_3390_s22124372
crossref_primary_10_3390_s22124372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220609
PublicationDateYYYYMMDD 2022-06-09
PublicationDate_xml – month: 6
  year: 2022
  text: 20220609
  day: 9
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yan (ref_28) 2018; 20
Sun (ref_5) 2021; 35
Gao (ref_30) 2019; 43
ref_14
ref_33
ref_10
ref_32
ref_31
Fang (ref_29) 2017; 76
ref_19
ref_18
ref_17
ref_16
Liu (ref_1) 2019; 22
Zhao (ref_3) 2020; 23
ref_15
Long (ref_8) 2021; 129
Tang (ref_13) 2019; 96
Ren (ref_11) 2017; 39
ref_25
ref_23
ref_22
ref_21
ref_20
ref_2
ref_27
ref_26
ref_9
Xu (ref_24) 2019; 18
ref_4
ref_7
ref_6
Ma (ref_12) 2018; 20
References_xml – ident: ref_17
  doi: 10.3390/s21144870
– ident: ref_25
  doi: 10.1145/3474085.3475178
– volume: 22
  start-page: 143
  year: 2019
  ident: ref_1
  article-title: Scene Text Detection and Recognition with Advances in Deep Learning: A Survey
  publication-title: Int. J. Doc. Anal. Recognit.
  doi: 10.1007/s10032-019-00320-5
– ident: ref_33
  doi: 10.1109/ICDAR.2015.7333942
– ident: ref_21
  doi: 10.1109/CVPR.2019.00956
– ident: ref_2
  doi: 10.1109/ICSPC51351.2021.9451779
– volume: 20
  start-page: 3111
  year: 2018
  ident: ref_12
  article-title: Arbitrary-Oriented Scene Text Detection Via Rotation Proposals
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2018.2818020
– ident: ref_26
  doi: 10.1109/ICCV48922.2021.00134
– volume: 35
  start-page: 69
  year: 2021
  ident: ref_5
  article-title: Detection and Recognition of Text Traffic Signs above the Road
  publication-title: Int. J. Sens. Netw.
  doi: 10.1504/IJSNET.2021.113626
– ident: ref_32
  doi: 10.1109/CVPR.2017.106
– ident: ref_19
  doi: 10.3390/s21061945
– volume: 76
  start-page: 15083
  year: 2017
  ident: ref_29
  article-title: Detecting Uyghur Text in Complex Background Images with Convolutional Neural Network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-4538-8
– ident: ref_4
  doi: 10.1117/12.2586912
– volume: 96
  start-page: 106954
  year: 2019
  ident: ref_13
  article-title: Seglink++: Detecting Dense and Arbitrary-Shaped Scene Text by Instance-Aware Component Grouping
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.06.020
– ident: ref_6
– volume: 18
  start-page: 5566
  year: 2019
  ident: ref_24
  article-title: Textfield: Learning a Deep Direction Field for Irregular Scene Text Detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2900589
– ident: ref_31
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_11
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 129
  start-page: 161
  year: 2021
  ident: ref_8
  article-title: Scene Text Detection and Recognition: The Deep Learning Era
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01369-0
– volume: 20
  start-page: 3389
  year: 2018
  ident: ref_28
  article-title: A fast Uyghur Text Detector for Complex Background Images
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2018.2838320
– ident: ref_15
  doi: 10.1109/CVPR.2017.283
– ident: ref_22
  doi: 10.1609/aaai.v32i1.12269
– ident: ref_18
  doi: 10.1109/CVPR46437.2021.00314
– ident: ref_27
  doi: 10.1609/aaai.v34i07.6812
– volume: 43
  start-page: 652
  year: 2019
  ident: ref_30
  article-title: Res2net: A New Multi-Scale Backbone Architecture
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2938758
– ident: ref_14
  doi: 10.1007/978-3-030-01216-8_2
– volume: 23
  start-page: 267
  year: 2020
  ident: ref_3
  article-title: Detect GAN: GAN-Based Text Detector for Camera-Captured Document Images
  publication-title: Int. J. Doc. Anal. Recognit.
  doi: 10.1007/s10032-020-00358-w
– ident: ref_9
  doi: 10.1109/ICDAR.2017.155
– ident: ref_10
  doi: 10.1109/CVPR42600.2020.01177
– ident: ref_20
– ident: ref_23
  doi: 10.3390/s21082657
– ident: ref_7
  doi: 10.1109/CVPR.2016.90
– ident: ref_16
  doi: 10.1109/CVPR46437.2021.00870
SSID ssj0023338
Score 2.3989687
Snippet Scene text detection task aims to precisely localize text in natural environments. At present, the application scenarios of text detection topics have...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4372
SubjectTerms adaptive spatial feature fusion
Algorithms
Boxes
Datasets
fine-grained feature representation
multi-oriented text
natural scene image
Semantics
Uyghur text detection
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPEVhoII4cKnWpG3SHhkwJiQ4wCbtVqV5MCTUoa098O-x265aJSQu3NLGkVK7cezY_kLIdUZlhOElT1rKvVBHvpckmno6sUFsDRWxwvOO5xc-noZPs2i2cdUX5oTV8MA14wYqi32lOVgJAQ0Fl5llUluwa4EF0FaofWHPWztTjasVgOdV4wgF4NQPVgw0NEaoOrtPBdLfsSy7eZEbG81oj-w2FqJ7W89sn2yZ_IDsbOAGHpLxG4w17vT7fV4u3QnoV_feFFVSVe4OYV_SLjRGMMB7xCsg4BlNvXJp3Ncq87UpOMqPyHT0MLkbe82VCJ4CTVCAapI-qErOdaC4BlcOHLQ4wgJTJZi2sfIV1crSUEtYmJKxhGmhecJkEEsb2-CY9PJFbk6Ii0WonMMghpB1ys_ChIaGgz2oNfcFd8jNmlWpavDC8dqKzxT8BuRq2nLVIVct6VcNkvEb0RD53RIgrnX1AqSdNtJO_5K2Q_praaXNYlulDCNJIHAaOuSy7YZlgrEPmZtFiTQxVkSCPecQ0ZFyZ0LdnvxjXgFuJ8BH4YvT__iCM7LNsIICD3KSPukVy9Kcg11TZBfVL_wDwcb4QA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsQwcPBx0YP4xPqiigcvxSbtpulJfK2LoAd1wVtJ81BBurqPg3_vTDdbLYi3tJnQMslM5j0AxyVTHXIvRcoxEaWmE0d5blhkcpdIZ1kmNdk77u5Fr5_ePneevcFt5MMqZzyxZtRmoMlGfsrJXYD6FEvPPj4j6hpF3lXfQmMeFhneNBTSJbs3jcKVIPy0mlCCqv3piCOfJj9V6w6qS_W35Mt2dOSv66a7CiteTgzPpxu7BnO2WoflX9UDN6D3iGtt2P96eZ0MwyfksuGVHdehVVV4gbeTCXHQxQXRDTWCwGcS-CZDGz7U8a8-7ajahH73-umyF_nGCJFGfjBGBqViZJhCmEQLgwodqmmyQ2mmOuPGSR1rZrRjqVFInorznJvMiJyrRConXbIFC9WgstsQUiqqELiIU-E6HZdpzlIrUCo0RsSZCOBkhqpC-6rh1LzivUDtgbBaNFgN4KgB_ZiWyvgL6ILw3QBQdev6xWD4UnhiKXQpY20ESoYJSzOhSseVcajL4LHHsQ5gb7ZbhSe5UfFzQAI4bKaRWMgDoio7mBCMpLxIlOoCyFq73Pqh9kz19lqX3c4Rj1mc7fz_8V1Y4pQhQYaafA8WxsOJ3Ue5ZVwe1IfzGy2L7lg
  priority: 102
  providerName: ProQuest
Title Scene Uyghur Text Detection Based on Fine-Grained Feature Representation
URI https://www.proquest.com/docview/2679833814
https://www.proquest.com/docview/2681037612
https://pubmed.ncbi.nlm.nih.gov/PMC9229707
https://doaj.org/article/cb80cd622631476abf2adf049eadbf2c
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dS9xAcPDjRR-k2opRe8TSh75Es5vc7uahlJ56HgWlWA_uLWz24xQk18Y70H_fmVwuGBBfwiaZJWFm52tnZwbga8F0n8JLkfZMRKntx1GWWRbZzCfKOyaVof2O6xsxGqe_Jv3JGqx6bDYIfHrTtaN-UuPq8fT538sPZPjv5HGiy372xFH-UvxpHTZRIUlqZHCdtsEEnqAbtiwq1AXvqKK6Yn_HzOweknyldYYfYKcxF8OfS_ruwpor92D7VRHBjzD6g3NdOH6Z3i-q8A6FbXjh5vUJqzIcoJKyIQ6GOCG6on4QeE9236Jy4W19DLbJPio_wXh4eXc-ipr-CJFBsTBHOaVjlJtC2MQIi34demuqT9mmRnLrlYkNs8az1GrkUs15xq20IuM6Udorn-zDRjkr3QGElJEqBE7iVL_OxEWasdQJNA6tFbEUAXxboSo3TfFw6mHxmKMTQVjNW6wG8KUF_busmPEW0IDw3QJQkev6waya5g3P5KZQsbECDcSEpVLownNtPbo0uPpxbAI4XlErXy2cnFNYCQnO0gBO2tfIMxQI0aWbLQhGUXokGncByA6VOz_UfVM-3NfVtzPEo4zl4fsfP4ItTokStF-THcPGvFq4z2i-zIserMuJxKsaXvVgc3B58_u2V28F9Opl-x-jkPQP
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcAT0AD1UlIIaurSmKlIvEbGTdZJDhaB0Wcrj0O5K3ILjByChLOxD1f5Uv7Ez2SQlUtUbNye2E2s845nxvAA-5Vx1ybzkK8elH5lu4Kep4b5JXZg4y-NE033HxaXsD6PvV92rJfhdx8KQW2V9JpYHtRlpuiPfF2QuQH2KRwcPjz5VjSLral1CY4EWZ3b-C1W2yZfTY9zfPSF63wZf-35VVcDXSExTpG4V4GkjpQm1NKgNoY6TdClGU8fCuEQHmhvteGQU4rYSIhUmNjIVKkyUS1yI312GF1GInJwi03snjYIX4voW2YuwM9ifCOQLZBdr8byyNEBLnm17Yz5hb711eFXJpexwgUivYckWG_DySbbCN9D_iXMtG85vbmdjNsBTnR3baenKVbAj5IaGYaOHE_wTKjyBzyRgzsaW_Sj9baswp2IThs8Csi1YKUaFfQuMQl-lxEmCEuXpII9SHlmJUqgxMoilB59rUGW6ylJOxTLuM9RWCKpZA1UPPjZDHxapOf416Ijg3QygbNrli9H4JquIM9N5EmgjURINeRRLlTuhjEPdCckM29qDTr1bWUXik-wvQnqw23QjcZLFRRV2NKMxCcVhohTpQdza5daC2j3F3W2Z5jtFOMZBvP3_n3-A1f7g4jw7P708ewdrgqIz6JIo7cDKdDyzOygzTfP3JaIyuH5uyvgDtHQrGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EoID4ilSChgEEpdoEydrxweEWLbLlsKqKl2pt9Txo0VC2XYfQv01vo6ZbBIaCXHrzYnHiTWesWc8L4A3RawHZF4KtY9FmNpBFCpl49Aqn2TexTIzdN_xbSoms_TLyeBkC343sTDkVtnsidVGbeeG7sj7nMwFqE_Fad_XbhGHo_GHi8uQKkiRpbUpp7EhkQN39QvVt-X7_RGu9VvOx3vHnyZhXWEgNMhYK-R0HeHOI4RNjLCoGaG-kw0oXtNIbn1mIhNb4-PUaqRzzbniVlqhuE4y7TOf4HdvwbYkragH28O96eFRq-4lONtNLqMkUVF_yfGUICtZ5wSsCgV0pNuub-a1w258H-7VUir7uCGrB7Dlyodw91ruwkcw-Y5jHZtdnZ2vF-wYEcVGblU5dpVsiGejZdgY44DwM5WhwGcSN9cLx44q79s66Kl8DLMbQdoT6JXz0j0FRoGwQuAgTmnzTFSkKk6dQJnUWhFJEcC7BlW5qXOWU-mMnznqLoTVvMVqAK9b0ItNoo5_AQ0J3y0A5dauXswXZ3nNqrkpsshYgXJpEqdS6MJzbT1qUsh02DYB7DarldcMv8z_kmcAr9puZFWyv-jSzdcEk1FUJsqUAcjOKncm1O0pf5xXSb8V4lFGcuf_P38Jt5Er8q_704NncIdTqAbdGKld6K0Wa_ccBahV8aKmVAanN80cfwBp_TCt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scene+Uyghur+Text+Detection+Based+on+Fine-Grained+Feature+Representation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yiwen&rft.au=Mamat%2C+Hornisa&rft.au=Xu%2C+Xuebin&rft.au=Aysa%2C+Alimjan&rft.date=2022-06-09&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=12&rft.spage=4372&rft_id=info:doi/10.3390%2Fs22124372&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon