Cu-Based Z-Schemes Family Photocatalysts for Solar H2 Production
Solar photocatalytic H2 production has drawn an increasing amount of attention from the scientific community, industry, and society due to its use of green solar energy and a photocatalyst (semiconductor material) to produce green H2. Cu-based semiconductors are interesting as photocatalysts for H2...
Saved in:
Published in | Hydrogen Vol. 4; no. 3; pp. 620 - 643 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hamburg
MDPI AG
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-4141 2673-4141 |
DOI | 10.3390/hydrogen4030040 |
Cover
Loading…
Abstract | Solar photocatalytic H2 production has drawn an increasing amount of attention from the scientific community, industry, and society due to its use of green solar energy and a photocatalyst (semiconductor material) to produce green H2. Cu-based semiconductors are interesting as photocatalysts for H2 production because Cu is earth-abundant, cheap, and the synthesis of its copper-containing semiconductors is straightforward. Moreover, Cu-based semiconductors absorb visible light and present an adequate redox potential to perform water splitting reaction. Nevertheless, pristine Cu-based semiconductors exhibit low photoactivity due to the rapid recombination of photo-induced electron-hole (e−-h+) pairs and are subject to photo corrosion. To remedy these pitfalls, the Cu semiconductor-based Z-scheme family (Z-schemes and S-schemes) presents great interest due to the charge carrier mechanism involved. Due to the interest of Z-scheme photocatalysts in this issue, the basic concepts of the Z-scheme focusing on Cu-based semiconductors are addressed to obtain novel systems with high H2 photo-catalytic activity. Focusing on H2 production using Cu-based Z-schemes photocatalyst, the most representative examples are included in the main text. To conclude, an outlook on the future challenges of this topic is addressed. |
---|---|
AbstractList | Solar photocatalytic H2 production has drawn an increasing amount of attention from the scientific community, industry, and society due to its use of green solar energy and a photocatalyst (semiconductor material) to produce green H2. Cu-based semiconductors are interesting as photocatalysts for H2 production because Cu is earth-abundant, cheap, and the synthesis of its copper-containing semiconductors is straightforward. Moreover, Cu-based semiconductors absorb visible light and present an adequate redox potential to perform water splitting reaction. Nevertheless, pristine Cu-based semiconductors exhibit low photoactivity due to the rapid recombination of photo-induced electron-hole (e−-h+) pairs and are subject to photo corrosion. To remedy these pitfalls, the Cu semiconductor-based Z-scheme family (Z-schemes and S-schemes) presents great interest due to the charge carrier mechanism involved. Due to the interest of Z-scheme photocatalysts in this issue, the basic concepts of the Z-scheme focusing on Cu-based semiconductors are addressed to obtain novel systems with high H2 photo-catalytic activity. Focusing on H2 production using Cu-based Z-schemes photocatalyst, the most representative examples are included in the main text. To conclude, an outlook on the future challenges of this topic is addressed. |
Author | Botella, Romain Fernández-Catalá, Javier Greco, Rossella |
Author_xml | – sequence: 1 givenname: Rossella orcidid: 0000-0001-6408-1645 surname: Greco fullname: Greco, Rossella – sequence: 2 givenname: Romain surname: Botella fullname: Botella, Romain – sequence: 3 givenname: Javier orcidid: 0000-0002-8570-2655 surname: Fernández-Catalá fullname: Fernández-Catalá, Javier |
BookMark | eNp1kM1PAjEQxRuDiYicvW7ieaXdLv24qUSEhEQS9OKlmXZbWLJssS0H_ntBNDEknmYyeb-XN-8adVrfWoRuCb6nVOLBal8Fv7RtiSnGJb5A3YJxmpekJJ0_-xXqx7jGGBdclkNGuuhhtMufINoq-8gXZmU3NmZj2NTNPpuvfPIGEjT7mGLmfMgWvoGQTYpsHny1M6n27Q26dNBE2_-ZPfQ-fn4bTfLZ68t09DjLDeUs5cJZ65hmHITQBS8od9hhLLgbOm40FdpxZ5ghWEtCNAWQWlsmhGBmSJ2mPTQ9-VYe1mob6g2EvfJQq--DD0sFIdWmsarShdNCW8KkLGkFGixo7MBoqV3lyoPX3clrG_znzsak1n4X2kN8VQgmKWUSk4NqeFKZ4GMM1ilTJzj-nALUjSJYHbtXZ90fuMEZ95v2P-ILE_GLZg |
CitedBy_id | crossref_primary_10_1016_j_jcou_2024_102818 crossref_primary_10_1016_j_cattod_2025_115273 |
Cites_doi | 10.1039/B800489G 10.1016/S1872-2067(21)63818-4 10.1016/j.cattod.2020.05.032 10.1016/j.jpcs.2019.05.046 10.1038/238037a0 10.1038/s41586-021-03907-3 10.1016/j.jiec.2021.11.008 10.1016/j.rser.2017.08.020 10.1016/j.ijhydene.2021.09.087 10.1021/acs.jpcc.9b09666 10.1021/acsanm.2c01616 10.1021/acs.chemrev.5b00482 10.1002/solr.202100118 10.1021/acsaem.1c01755 10.1021/acs.accounts.9b00380 10.1016/j.rser.2019.109620 10.1016/j.ijhydene.2021.11.047 10.1002/cctc.201801198 10.1039/b907933e 10.3390/catal13020355 10.1016/j.scib.2022.11.018 10.1016/j.mssp.2022.107105 10.1016/j.ijhydene.2020.07.225 10.1016/j.jechem.2017.10.025 10.1021/cr050200z 10.1016/j.mattod.2018.04.008 10.1016/j.mtener.2017.07.008 10.3390/catal13040728 10.1038/nmat1734 10.1016/j.trechm.2022.08.008 10.1016/j.apsusc.2023.156721 10.1021/acs.jpclett.5b00137 10.1002/anie.201700150 10.1016/j.jece.2022.109119 10.1039/c3cp53131g 10.1016/j.apcatb.2020.119157 10.1038/s41467-022-34117-8 10.1016/j.egyr.2020.07.020 10.1016/j.apsusc.2022.153309 10.1016/j.matchemphys.2020.123172 10.1016/j.jclepro.2022.131948 10.1016/j.enpol.2020.111295 10.1016/j.ijhydene.2022.10.131 10.3390/catal12111303 10.1021/acsaem.0c00661 10.1016/j.jmst.2021.11.073 10.1039/C9DT01581G 10.1016/j.jece.2020.104340 10.1021/acs.chemrev.9b00201 10.1016/j.fuel.2022.126267 10.1039/D2RA01918C 10.1016/j.jcis.2022.02.025 10.1002/solr.202100241 10.1016/j.apcatb.2017.05.058 10.1016/j.ijhydene.2021.12.133 10.1039/C7NR07952D 10.1021/acssuschemeng.7b04403 10.1039/C8DT04154G 10.1016/j.ijhydene.2020.03.139 10.1021/acsami.2c07145 10.1016/j.jssc.2016.02.046 10.1016/j.jcat.2022.12.011 10.1016/j.mtsust.2022.100276 10.1016/j.renene.2022.05.171 10.1021/acscatal.8b03498 10.1002/anie.201210277 10.1016/j.matchemphys.2021.124542 10.1016/j.jece.2022.108077 10.1016/j.jece.2021.105138 10.1016/j.ccr.2018.12.013 10.1002/anie.201914925 10.1021/cr5001892 10.1016/j.watres.2015.04.038 10.1039/D1TA09347A 10.1007/s12274-022-5110-z 10.1016/j.ijhydene.2020.12.225 10.1016/j.apcatb.2018.09.010 10.1002/anie.202108686 10.1016/j.jallcom.2021.162331 10.3390/molecules21070900 10.3390/ma12010040 10.1016/j.matpr.2021.10.250 10.1016/j.apcatb.2014.06.052 10.3390/catal12101137 10.1016/j.renene.2020.09.052 10.1016/j.apsusc.2020.146908 10.1021/acsami.7b06030 10.1016/j.ijhydene.2022.07.155 10.1016/j.seppur.2023.123229 10.1002/asia.202200645 10.1016/j.solmat.2019.110211 10.1016/j.cattod.2023.01.013 10.1016/j.rser.2010.11.037 10.1016/j.ijhydene.2022.11.289 10.1016/j.jphotochemrev.2011.07.001 10.1016/j.chempr.2020.06.010 10.1016/j.fuel.2019.116311 10.1016/j.jallcom.2021.159144 10.1021/acsanm.2c00154 10.1021/cm5044792 10.1016/j.mtener.2019.01.009 10.1021/acs.jpcc.2c00932 10.1016/j.physrep.2022.07.003 10.1021/acssuschemeng.1c01234 10.3390/catal12101198 10.1002/adfm.201303214 10.1016/j.ijhydene.2009.05.093 10.1021/acs.langmuir.2c02334 10.1002/jccs.202000465 10.1016/j.ijhydene.2022.10.253 10.3390/catal7110317 10.1016/j.renene.2020.04.107 10.1016/j.mtener.2021.100829 10.1016/j.jphotochemrev.2018.10.001 10.1016/j.apsusc.2022.153660 10.1016/j.ijhydene.2018.10.200 10.1021/acs.chemrev.7b00286 10.1007/s10562-023-04348-5 10.1007/s10311-022-01432-x 10.1016/j.apcata.2018.01.009 10.1016/j.matlet.2016.05.026 10.1016/j.ijhydene.2020.11.214 10.1039/D1RA07112B 10.1016/j.ijhydene.2014.01.209 10.1002/anie.200602473 10.1016/j.jcou.2022.102056 10.1007/s10311-020-01077-8 10.1021/acs.energyfuels.3c00011 10.3390/solar3010008 10.1016/j.materresbull.2020.111171 10.1021/acscatal.7b03884 10.1016/j.ijhydene.2020.05.021 10.1021/acscatal.9b01786 10.1016/j.ijhydene.2010.01.030 10.1016/j.solmat.2020.110772 10.1021/acsami.1c04874 10.1039/C9QI01120J 10.1016/j.cej.2021.132381 10.1002/adma.201400288 10.1021/acs.inorgchem.1c03223 10.1016/0047-2670(79)80037-4 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.3390/hydrogen4030040 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Collection (ProQuest) Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2673-4141 |
EndPage | 643 |
ExternalDocumentID | oai_doaj_org_article_db2fb8be169943dabaeab0facb9bfdf4 10_3390_hydrogen4030040 |
GroupedDBID | AAYXX ABDBF ABJCF AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KB. MODMG OK1 PDBOC PHGZM PHGZT PIMPY 8FE 8FG ABUWG AZQEC D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c376t-8feef6b67a88b27237f0f0087f5f7cb38bf7fc6c10b911b3aa9bbe68886c53fb3 |
IEDL.DBID | BENPR |
ISSN | 2673-4141 |
IngestDate | Wed Aug 27 01:15:34 EDT 2025 Fri Jul 25 12:01:07 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 02:47:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-8feef6b67a88b27237f0f0087f5f7cb38bf7fc6c10b911b3aa9bbe68886c53fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6408-1645 0000-0002-8570-2655 |
OpenAccessLink | https://www.proquest.com/docview/2869336901?pq-origsite=%requestingapplication% |
PQID | 2869336901 |
PQPubID | 5465943 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db2fb8be169943dabaeab0facb9bfdf4 proquest_journals_2869336901 crossref_citationtrail_10_3390_hydrogen4030040 crossref_primary_10_3390_hydrogen4030040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hamburg |
PublicationPlace_xml | – name: Hamburg |
PublicationTitle | Hydrogen |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chen (ref_31) 2023; 21 Shamraiz (ref_102) 2016; 238 Yang (ref_138) 2023; 311 Tada (ref_61) 2006; 5 Mohammed (ref_67) 2021; 9 Aguirre (ref_33) 2017; 217 Christoforidis (ref_57) 2019; 11 ref_19 Wang (ref_141) 2020; 7 Yan (ref_136) 2021; 13 Xie (ref_23) 2017; 26 Zhang (ref_53) 2020; 59 Chu (ref_85) 2021; 46 Wang (ref_128) 2022; 894 Xu (ref_43) 2018; 21 ref_25 Dong (ref_17) 2015; 79 Nishiyama (ref_50) 2021; 598 Kannan (ref_90) 2023; 48 Kato (ref_116) 2015; 6 ref_21 Zhang (ref_35) 2020; 527 Alizadeh (ref_37) 2020; 156 Mu (ref_80) 2022; 360 Wang (ref_140) 2023; 11 Yang (ref_127) 2020; 45 Dogutan (ref_42) 2019; 52 Li (ref_84) 2016; 178 Wang (ref_41) 2018; 118 Su (ref_137) 2021; 60 Yoo (ref_75) 2020; 204 Mahzoon (ref_78) 2021; 219 Jourshabani (ref_60) 2020; 276 Gu (ref_79) 2021; 266 Li (ref_110) 2017; 9 ref_26 Jing (ref_49) 2010; 35 Su (ref_91) 2019; 12 Jin (ref_133) 2022; 43 Luo (ref_29) 2023; 16 Sun (ref_118) 2020; 251 Yang (ref_130) 2021; 5 Bao (ref_95) 2021; 136 Lemoine (ref_97) 2022; 61 Peiris (ref_18) 2021; 68 Ong (ref_73) 2018; 81 Subha (ref_89) 2018; 553 Yuan (ref_107) 2017; 56 Xi (ref_38) 2014; 39 Bharagav (ref_94) 2022; 47 Yoshino (ref_115) 2020; 3 Cao (ref_142) 2021; 46 Huangfu (ref_108) 2022; 17 Zhang (ref_111) 2021; 9 Li (ref_96) 2023; 417 Fajrina (ref_10) 2019; 44 Ge (ref_129) 2022; 597 Rauf (ref_125) 2018; 10 Abdin (ref_5) 2020; 120 Fujishima (ref_16) 1972; 238 Deng (ref_106) 2019; 134 Marschall (ref_51) 2014; 24 Ioannidi (ref_124) 2020; 8 Jin (ref_135) 2022; 38 Yuan (ref_63) 2021; 21 Bao (ref_66) 2021; 5 Shi (ref_101) 2019; 48 Ahmad (ref_88) 2023; 48 Wang (ref_15) 2020; 120 Wang (ref_32) 2022; 61 Gawande (ref_24) 2016; 116 Toe (ref_34) 2019; 40 Zhu (ref_72) 2022; 67 Radhy (ref_83) 2022; 60 Mao (ref_92) 2022; 47 Bard (ref_59) 1979; 10 Zhong (ref_112) 2022; 5 Jain (ref_4) 2009; 34 Ahmad (ref_2) 2020; 6 Quan (ref_143) 2021; 4 Kumar (ref_65) 2023; 333 Dai (ref_86) 2022; 12 Sarilmaz (ref_98) 2021; 164 Jin (ref_134) 2022; 10 Shen (ref_82) 2020; 259 Fu (ref_71) 2015; 1 Li (ref_132) 2022; 13 Sazali (ref_8) 2020; 45 Sun (ref_144) 2018; 8 Maeda (ref_40) 2006; 45 Yu (ref_64) 2013; 15 Dai (ref_77) 2022; 592 Wang (ref_100) 2022; 121 Huang (ref_47) 2019; 385 Mandari (ref_103) 2022; 615 Schneider (ref_14) 2014; 114 Xu (ref_44) 2020; 6 Yang (ref_109) 2023; 48 Xu (ref_76) 2022; 5 Lai (ref_36) 2022; 14 Peng (ref_121) 2021; 11 Lv (ref_70) 2021; 868 Cao (ref_28) 2015; 162 Maeda (ref_13) 2011; 12 Munir (ref_45) 2021; 33 Sumesh (ref_20) 2019; 48 Lubitz (ref_6) 2007; 107 Fresno (ref_68) 2009; 2 Chen (ref_3) 2020; 139 Wang (ref_131) 2022; 126 Suzuki (ref_93) 2018; 8 Kumar (ref_48) 2022; 106 Li (ref_139) 2023; 37 Ranjith (ref_99) 2020; 124 Zhou (ref_62) 2014; 26 Wei (ref_69) 2019; 9 Verma (ref_27) 2021; 364 Zhao (ref_54) 2022; 10 ref_30 Gaspari (ref_120) 2015; 27 ref_39 Panwar (ref_1) 2011; 15 Shen (ref_123) 2018; 6 Zindrou (ref_22) 2023; 3 Muscetta (ref_55) 2020; 45 Paramanik (ref_122) 2022; 47 Liang (ref_104) 2023; 153 ref_105 Yang (ref_113) 2022; 429 ref_46 Hua (ref_126) 2019; 240 Kudo (ref_12) 2009; 38 Wang (ref_58) 2022; 4 Atacan (ref_87) 2022; 195 Park (ref_74) 2021; 46 Saravanan (ref_52) 2021; 19 Chen (ref_114) 2023; 621 Shen (ref_81) 2017; 5 Dhileepan (ref_117) 2023; 2 Manna (ref_119) 2013; 52 Liao (ref_56) 2022; 983 ref_9 Li (ref_11) 2017; Volume 60 ref_7 |
References_xml | – volume: 38 start-page: 253 year: 2009 ident: ref_12 article-title: Heterogeneous photocatalyst materials for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 43 start-page: 303 year: 2022 ident: ref_133 article-title: Efficient Photocatalytic Hydrogen Evolution over Graphdiyne Boosted with a Cobalt Sulfide Formed S-Scheme Heterojunction publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63818-4 – volume: 364 start-page: 182 year: 2021 ident: ref_27 article-title: Photocatalytically-driven H2 production over Cu/TiO2 catalysts decorated with multi-walled carbon nanotubes publication-title: Catal. Today doi: 10.1016/j.cattod.2020.05.032 – volume: 134 start-page: 141 year: 2019 ident: ref_106 article-title: Interfacial Properties of Cu7S4/MnS Heterostructure from First-Principles Calculations publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2019.05.046 – volume: 238 start-page: 37 year: 1972 ident: ref_16 article-title: Electrochemical Photolysis of Water at a Semiconductor Electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 598 start-page: 304 year: 2021 ident: ref_50 article-title: Photocatalytic Solar Hydrogen Production from Water on a 100-m2 Scale publication-title: Nature doi: 10.1038/s41586-021-03907-3 – volume: 106 start-page: 340 year: 2022 ident: ref_48 article-title: Current Status on Designing of Dual Z-Scheme Photocatalysts for Energy and Environmental Applications publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2021.11.008 – volume: 81 start-page: 536 year: 2018 ident: ref_73 article-title: A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.08.020 – volume: 46 start-page: 38319 year: 2021 ident: ref_74 article-title: S-Scheme Assisted Cu2O/ZnO Flower-Shaped Heterojunction Catalyst for Breakthrough Hydrogen Evolution by Water Splitting publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.087 – volume: 124 start-page: 3610 year: 2020 ident: ref_99 article-title: Promotional Effect of Cu2S–ZnS Nanograins as a Shell Layer on ZnO Nanorod Arrays for Boosting Visible Light Photocatalytic H2 Evolution publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b09666 – volume: 5 start-page: 8475 year: 2022 ident: ref_76 article-title: Z-Scheme Cu2O Nanoparticle/Graphite Carbon Nitride Nanosheet Heterojunctions for Photocatalytic Hydrogen Evolution publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c01616 – volume: 116 start-page: 3722 year: 2016 ident: ref_24 article-title: Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00482 – volume: 5 start-page: 2100118 year: 2021 ident: ref_66 article-title: S-Scheme Photocatalytic Systems publication-title: Sol. RRL doi: 10.1002/solr.202100118 – volume: 4 start-page: 8550 year: 2021 ident: ref_143 article-title: Tactfully Assembled CuMOF/CdS S-Scheme Heterojunction for High-Performance Photocatalytic H2 Evolution under Visible Light publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c01755 – volume: 52 start-page: 3143 year: 2019 ident: ref_42 article-title: Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00380 – volume: 120 start-page: 109620 year: 2020 ident: ref_5 article-title: Hydrogen as an Energy Vector publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109620 – volume: 47 start-page: 3893 year: 2022 ident: ref_122 article-title: Energy Band Modulation in CuxP(X = 3,1/2)/PbTiO3 via Heterogeneous Erection Induced Benign Junction Interface for Enhanced Photocatalytic H2 Evolution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.047 – volume: 11 start-page: 368 year: 2019 ident: ref_57 article-title: Photocatalysis for Hydrogen Production and CO2 Reduction: The Case of Copper-Catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201801198 – volume: 2 start-page: 1231 year: 2009 ident: ref_68 article-title: Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities publication-title: Energy Environ. Sci. doi: 10.1039/b907933e – ident: ref_39 doi: 10.3390/catal13020355 – volume: 67 start-page: 2420 year: 2022 ident: ref_72 article-title: Patterning Alternate TiO2 and Cu2O Strips on a Conductive Substrate as Film Photocatalyst for Z-Scheme Photocatalytic Water Splitting publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.11.018 – volume: 153 start-page: 107105 year: 2023 ident: ref_104 article-title: Enhanced Photocatalytic Hydrogen Evolution of CdS@CuS Core-Shell Nanorods under Visible Light publication-title: Mater. Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2022.107105 – volume: 45 start-page: 28531 year: 2020 ident: ref_55 article-title: Hydrogen Production through Photoreforming Processes over Cu2O/TiO2 Composite Materials: A Mini-Review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.07.225 – volume: 26 start-page: 1039 year: 2017 ident: ref_23 article-title: Recent Advances in Cu-Based Nanocomposite Photocatalysts for CO2 Conversion to Solar Fuels publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.10.025 – volume: 107 start-page: 3900 year: 2007 ident: ref_6 article-title: Hydrogen: An Overview publication-title: Chem. Rev. doi: 10.1021/cr050200z – volume: 21 start-page: 1042 year: 2018 ident: ref_43 article-title: Direct Z-Scheme Photocatalysts: Principles, Synthesis, and Applications publication-title: Mater. Today doi: 10.1016/j.mattod.2018.04.008 – volume: 5 start-page: 312 year: 2017 ident: ref_81 article-title: All-Solid-State Z-Scheme System of RGO-Cu2O/Fe2O3 for Simultaneous Hydrogen Production and Tetracycline Degradation publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2017.07.008 – ident: ref_19 doi: 10.3390/catal13040728 – volume: 5 start-page: 782 year: 2006 ident: ref_61 article-title: All-Solid-State Z-Scheme in CdS-Au-TiO2 Three-Component Nanojunction System publication-title: Nat. Mater. doi: 10.1038/nmat1734 – volume: 4 start-page: 973 year: 2022 ident: ref_58 article-title: Challenges of Z-scheme photocatalytic mechanisms publication-title: Trends Chem. doi: 10.1016/j.trechm.2022.08.008 – volume: 621 start-page: 156721 year: 2023 ident: ref_114 article-title: Constructing an S-Scheme Heterojunction of 2D/2D Cd0.5Zn0.5S/CuInS2 Nanosheet with Vacancies for Photocatalytic Hydrogen Generation under Visible Light publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2023.156721 – volume: 6 start-page: 1042 year: 2015 ident: ref_116 article-title: Utilization of Metal Sulfide Material of (CuGa)1-XZn2XS2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00137 – volume: 56 start-page: 4206 year: 2017 ident: ref_107 article-title: Noble-Metal-Free Janus-like Structures by Cation Exchange for Z-Scheme Photocatalytic Water Splitting under Broadband Light Irradiation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201700150 – volume: 11 start-page: 109119 year: 2023 ident: ref_140 article-title: Strong Redox-Capable Graphdiyne-Based Double S-Scheme Heterojunction 10%GC/Mo for Enhanced Photocatalytic Hydrogen Evolution publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.109119 – volume: 15 start-page: 16883 year: 2013 ident: ref_64 article-title: Enhanced Photocatalytic Performance of Direct Z-Scheme g-C3N4-TiO2 Photocatalysts for the Decomposition of Formaldehyde in Air publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53131g – volume: 276 start-page: 119157 year: 2020 ident: ref_60 article-title: From Traditional Strategies to Z-Scheme Configuration in Graphitic Carbon Nitride Photocatalysts: Recent Progress and Future Challenges publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119157 – volume: 13 start-page: 6346 year: 2022 ident: ref_132 article-title: Optoelectronic Properties and Ultrafast Carrier Dynamics of Copper Iodide Thin Films publication-title: Nat. Commun. doi: 10.1038/s41467-022-34117-8 – volume: 6 start-page: 1973 year: 2020 ident: ref_2 article-title: A Critical Review of Comparative Global Historical Energy Consumption and Future Demand: The Story Told so Far publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.07.020 – volume: 592 start-page: 153309 year: 2022 ident: ref_77 article-title: Photocatalytic Oxidation of Tetracycline, Reduction of Hexavalent Chromium and Hydrogen Evolution by Cu2O/g-C3N4 S-Scheme Photocatalyst: Performance and Mechanism Insight publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153309 – volume: 251 start-page: 123172 year: 2020 ident: ref_118 article-title: Enhanced Photocarrier Separation in Novel Z-Scheme Cu2ZnSnS4/Cu2O Heterojunction for Excellent Photocatalyst Hydrogen Generation publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.123172 – volume: 360 start-page: 131948 year: 2022 ident: ref_80 article-title: Integration of Plasmonic Effect and S-Scheme Heterojunction into Gold Decorated Carbon Nitride/Cuprous Oxide Catalyst for Photocatalysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131948 – volume: 139 start-page: 111295 year: 2020 ident: ref_3 article-title: Renewable Energy Consumption and Economic Growth Nexus: Evidence from a Threshold Model publication-title: Energy Policy doi: 10.1016/j.enpol.2020.111295 – volume: 48 start-page: 7273 year: 2023 ident: ref_90 article-title: Two Dimensional MAX Supported Copper Oxide/Nickel Oxide/MAX as an Efficient and Novel Photocatalyst for Hydrogen Evolution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.10.131 – ident: ref_21 doi: 10.3390/catal12111303 – volume: 1 start-page: 124 year: 2015 ident: ref_71 article-title: Dual Z-Scheme Charge Transfer in TiO2–Ag–Cu2O Composite for Enhanced Photocatalytic Hydrogen Generation publication-title: J. Mater. – volume: 3 start-page: 5684 year: 2020 ident: ref_115 article-title: Z-Schematic Solar Water Splitting Using Fine Particles of H2-Evolving (CuGa)0.5ZnS2 Photocatalyst Prepared by a Flux Method with Chloride Salts publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00661 – volume: 121 start-page: 28 year: 2022 ident: ref_100 article-title: EDA-Assisted Synthesis of Multifunctional Snowflake-Cu2S/CdZnS S-Scheme Heterojunction for Improved the Photocatalytic Hydrogen Evolution publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.11.073 – volume: 48 start-page: 12772 year: 2019 ident: ref_20 article-title: Two-Dimensional Semiconductor Transition Metal Based Chalcogenide Based Heterostructures for Water Splitting Applications publication-title: Dalt. Trans. doi: 10.1039/C9DT01581G – volume: 8 start-page: 104340 year: 2020 ident: ref_124 article-title: Copper Phosphide Promoted BiVO4 photocatalysts for the Degradation of Sulfamethoxazole in Aqueous Media publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104340 – volume: 120 start-page: 919 year: 2020 ident: ref_15 article-title: Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00201 – volume: 333 start-page: 126267 year: 2023 ident: ref_65 article-title: A Review on S-Scheme and Dual S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution, Water Detoxification and CO2 Reduction publication-title: Fuel doi: 10.1016/j.fuel.2022.126267 – volume: 12 start-page: 13381 year: 2022 ident: ref_86 article-title: Enhanced Photocatalytic Hydrogen Evolution and Ammonia Sensitivity of Double-Heterojunction g-C3N4/TiO2/CuO publication-title: RSC Adv. doi: 10.1039/D2RA01918C – volume: 615 start-page: 740 year: 2022 ident: ref_103 article-title: CuS/Ag2O Nanoparticles on Ultrathin g-C3N4 Nanosheets to Achieve High Performance Solar Hydrogen Evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.02.025 – volume: 5 start-page: 2100241 year: 2021 ident: ref_130 article-title: Dual-Z-Scheme Heterojunction for Facilitating Spacial Charge Transport Toward Ultra-Efficient Photocatalytic H2 Production publication-title: Sol. RRL doi: 10.1002/solr.202100241 – volume: 217 start-page: 485 year: 2017 ident: ref_33 article-title: Cu2O/TiO2 Heterostructures for CO2 Reduction through a Direct Z-Scheme: Protecting Cu2O from Photocorrosion publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.05.058 – volume: 47 start-page: 8214 year: 2022 ident: ref_92 article-title: S-Scheme Heterojunction of CuBi2O4 Supported Na Doped P25 for Enhanced Photocatalytic H2 Evolution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.12.133 – volume: 10 start-page: 3026 year: 2018 ident: ref_125 article-title: Mediator- and Co-Catalyst-Free Direct Z-Scheme Composites of Bi2WO6-Cu3P for Solar-Water Splitting publication-title: Nanoscale doi: 10.1039/C7NR07952D – volume: Volume 60 start-page: 1 year: 2017 ident: ref_11 article-title: Chapter One—Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts publication-title: Advances in Catalysis – volume: 6 start-page: 4026 year: 2018 ident: ref_123 article-title: Bifunctional Cu3P Decorated G-C3N4 Nanosheets as a Highly Active and Robust Visible-Light Photocatalyst for H2 Production publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b04403 – volume: 48 start-page: 3327 year: 2019 ident: ref_101 article-title: In Situ Topotactic Formation of 2D/2D Direct Z-Scheme Cu2S/Zn0.67 Cd0.33S in-Plane Intergrowth Nanosheet Heterojunctions for Enhanced Photocatalytic Hydrogen Production publication-title: Dalt. Trans. doi: 10.1039/C8DT04154G – volume: 45 start-page: 14334 year: 2020 ident: ref_127 article-title: Boosted Photogenerated Carriers Separation in Z-Scheme Cu3P/ZnIn2S4 Heterojunction Photocatalyst for Highly Efficient H2 Evolution under Visible Light publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.139 – volume: 14 start-page: 40771 year: 2022 ident: ref_36 article-title: Au@Cu2O Core-Shell and Au@Cu2Se Yolk-Shell Nanocrystals as Promising Photocatalysts in Photoelectrochemical Water Splitting and Photocatalytic Hydrogen Production publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c07145 – volume: 238 start-page: 25 year: 2016 ident: ref_102 article-title: Fabrication and Applications of Copper Sulfide (CuS) Nanostructures publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2016.02.046 – volume: 417 start-page: 274 year: 2023 ident: ref_96 article-title: Rationally Engineered Avtive Sites for Efficient and Durable Hydrogen Production over γ-Graphyne Assembly CuMoO4 S-Scheme Heterojunction publication-title: J. Catal. doi: 10.1016/j.jcat.2022.12.011 – volume: 21 start-page: 100276 year: 2023 ident: ref_31 article-title: Recent Progress in Copper-Based Inorganic Nanostructure Photocatalysts: Properties, Synthesis and Photocatalysis Applications publication-title: Mater. Today Sustain. doi: 10.1016/j.mtsust.2022.100276 – volume: 195 start-page: 107 year: 2022 ident: ref_87 article-title: Rational Construction of P-n-p CuO/CdS/CoWO4 S-Scheme Heterojunction with Influential Separation and Directional Transfer of Interfacial Photocarriers for Boosted Photocatalytic H2 Evolution publication-title: Renew. Energy doi: 10.1016/j.renene.2022.05.171 – volume: 8 start-page: 10809 year: 2018 ident: ref_93 article-title: Polyoxometalate Photocatalysis for Liquid-Phase Selective Organic Functional Group Transformations publication-title: ACS Catal. doi: 10.1021/acscatal.8b03498 – volume: 52 start-page: 6762 year: 2013 ident: ref_119 article-title: Semiconducting and Plasmonic Copper Phosphide Platelets publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201210277 – volume: 266 start-page: 124542 year: 2021 ident: ref_79 article-title: Facile Fabrication of Sulfur-Doped Cu2O and g-C3N4 with Z-Scheme Structure for Enhanced Photocatalytic Water Splitting Performance publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.124542 – volume: 33 start-page: 1 year: 2021 ident: ref_45 article-title: Photocatalytic Z-Scheme Overall Water Splitting: Recent Advances in Theory and Experiments publication-title: Adv. Mater. – volume: 10 start-page: 108077 year: 2022 ident: ref_54 article-title: Classification and Catalytic Mechanisms of Heterojunction Photocatalysts and the Application of Titanium Dioxide (TiO2)-Based Heterojunctions in Environmental Remediation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108077 – volume: 9 start-page: 105138 year: 2021 ident: ref_67 article-title: Review of Various Strategies to Boost the Photocatalytic Activity of the Cuprous Oxide-Based Photocatalyst publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105138 – volume: 385 start-page: 44 year: 2019 ident: ref_47 article-title: Artificial Z-Scheme Photocatalytic System: What Have Been Done and Where to Go? publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.12.013 – volume: 59 start-page: 22894 year: 2020 ident: ref_53 article-title: Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914925 – volume: 114 start-page: 9919 year: 2014 ident: ref_14 article-title: Understanding TiO2 Photocatalysis Mechanisms and Materials publication-title: Chem. Rev. doi: 10.1021/cr5001892 – volume: 79 start-page: 128 year: 2015 ident: ref_17 article-title: An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures publication-title: Water Res. doi: 10.1016/j.watres.2015.04.038 – volume: 10 start-page: 1976 year: 2022 ident: ref_134 article-title: Construction of a Tandem S-Scheme GDY/CuI/CdS-R Heterostructure Based on Morphology-Regulated Graphdiyne (g-C: NH2n−2) for Enhanced Photocatalytic Hydrogen Evolution publication-title: J. Mater. Chem. A doi: 10.1039/D1TA09347A – volume: 16 start-page: 371 year: 2023 ident: ref_29 article-title: Graphitic carbon nitride/ferroferric oxide/reduced graphene oxide nanocomposite as highly active visible light photocatalyst publication-title: Nano Res. doi: 10.1007/s12274-022-5110-z – volume: 46 start-page: 9064 year: 2021 ident: ref_85 article-title: Constructing Direct Z-Scheme CuO/PI Heterojunction for Photocatalytic Hydrogen Evolution from Water under Solar Driven publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.225 – volume: 240 start-page: 253 year: 2019 ident: ref_126 article-title: Highly Efficient P-Type Cu3P/n-Type g-C3N4 Photocatalyst through Z-Scheme Charge Transfer Route publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.09.010 – volume: 61 start-page: e202108686 year: 2022 ident: ref_97 article-title: Crystal Structure Classification of Copper-Based Sulfides as a Tool for the Design of Inorganic Functional Materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202108686 – volume: 894 start-page: 162331 year: 2022 ident: ref_128 article-title: Special Z-Scheme Cu3P/TiO2 Hetero-Junction for Efficient Photocatalytic Hydrogen Evolution from Water publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.162331 – ident: ref_9 doi: 10.3390/molecules21070900 – ident: ref_26 doi: 10.3390/ma12010040 – volume: 60 start-page: 917 year: 2022 ident: ref_83 article-title: Synthesis and Characterization of Copper Oxide Nanoparticles and Their Application for Solar Cell publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.10.250 – volume: 162 start-page: 187 year: 2015 ident: ref_28 article-title: Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity publication-title: Appl. Catal. B. doi: 10.1016/j.apcatb.2014.06.052 – ident: ref_46 doi: 10.3390/catal12101137 – volume: 164 start-page: 254 year: 2021 ident: ref_98 article-title: Shape-Controlled Synthesis of Copper Based Multinary Sulfide Catalysts for Enhanced Photocatalytic Hydrogen Evolution publication-title: Renew. Energy doi: 10.1016/j.renene.2020.09.052 – volume: 527 start-page: 146908 year: 2020 ident: ref_35 article-title: Simultaneous Nitrogen Doping and Cu2O Oxidization by One-Step Plasma Treatment toward Nitrogen-Doped Cu2O@CuO Heterostructure: An Efficient Photocatalyst for H2O2 Evolution under Visible Light publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146908 – volume: 9 start-page: 24577 year: 2017 ident: ref_110 article-title: Enhanced Photocarrier Separation in Hierarchical Graphitic-C3N4-Supported CuInS2 for Noble-Metal-Free Z-Scheme Photocatalytic Water Splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06030 – volume: 47 start-page: 40391 year: 2022 ident: ref_94 article-title: CuWO4 as a Novel Z-Scheme Partner to Construct TiO2 Based Stable and Efficient Heterojunction for Photocatalytic Hydrogen Generation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.07.155 – volume: 311 start-page: 123229 year: 2023 ident: ref_138 article-title: In Situ XPS Proved Graphdiyne (CnH2n−2)-Based CoFe LDH/CuI/GD Double S-Scheme Heterojunction Photocatalyst for Hydrogen Evolution publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.123229 – volume: 17 start-page: 202200645 year: 2022 ident: ref_108 article-title: Elucidating the Origin of Enhanced Photocatalytic Hydrogen Production on Tuned Cu7S4/CdS Heterostructures publication-title: Chem. An Asian J. doi: 10.1002/asia.202200645 – volume: 204 start-page: 110211 year: 2020 ident: ref_75 article-title: Z-Scheme Assisted ZnO/Cu2O-CuO Photocatalysts to Increase Photoactive Electrons in Hydrogen Evolution by Water Splitting publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.110211 – volume: 2 start-page: 114006 year: 2023 ident: ref_117 article-title: Interface Engineering of 0D–1D Cu2NiSnS4/TiO2(B) p–n Heterojunction Nanowires for Efficient Photocatalytic Hydrogen Evolution publication-title: Catal. Today doi: 10.1016/j.cattod.2023.01.013 – volume: 15 start-page: 1513 year: 2011 ident: ref_1 article-title: Role of Renewable Energy Sources in Environmental Protection: A Review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.037 – volume: 48 start-page: 12683 year: 2023 ident: ref_88 article-title: Rational Design of ZnO–CuO–Au S-Scheme Heterojunctions for Photocatalytic Hydrogen Production under Visible Light publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.11.289 – volume: 12 start-page: 237 year: 2011 ident: ref_13 article-title: Photocatalytic Water Splitting Using Semiconductor Particles: History and Recent Developments publication-title: J. Photochem. Photobiol. C Photochem. Rev. doi: 10.1016/j.jphotochemrev.2011.07.001 – volume: 6 start-page: 1543 year: 2020 ident: ref_44 article-title: S-Scheme Heterojunction Photocatalyst publication-title: Chem doi: 10.1016/j.chempr.2020.06.010 – volume: 259 start-page: 116311 year: 2020 ident: ref_82 article-title: Artificial All-Solid-State System by RGO Bridged Cu2O and Bi2WO6 for Z-Scheme H2 Production and Tetracycline Degradation publication-title: Fuel doi: 10.1016/j.fuel.2019.116311 – volume: 868 start-page: 159144 year: 2021 ident: ref_70 article-title: Oxygen Vacancy Stimulated Direct Z-Scheme of Mesoporous Cu2O/TiO2 for Enhanced Photocatalytic Hydrogen Production from Water and Seawater publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.159144 – volume: 5 start-page: 7704 year: 2022 ident: ref_112 article-title: Defect-Mediated Electron Transfer in Pt-CuInS2/CdS Heterostructured Nanocrystals for Enhanced Photocatalytic H2Evolution publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c00154 – volume: 27 start-page: 1120 year: 2015 ident: ref_120 article-title: Cu3-XP Nanocrystals as a Material Platform for near-Infrared Plasmonics and Cation Exchange Reactions publication-title: Chem. Mater. doi: 10.1021/cm5044792 – volume: 12 start-page: 208 year: 2019 ident: ref_91 article-title: A Wireless and Redox Mediator-Free Z-Scheme Twin Reactor for the Separate Evolution of Hydrogen and Oxygen publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2019.01.009 – volume: 126 start-page: 6947 year: 2022 ident: ref_131 article-title: Construction of CoP/Cu3P/Ni2P Double S-Scheme Heterojunctions for Improved Photocatalytic Hydrogen Evolution publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.2c00932 – volume: 983 start-page: 1 year: 2022 ident: ref_56 article-title: Z-Scheme Systems: From Fundamental Principles to Characterization, Synthesis, and Photocatalytic Fuel-Conversion Applications publication-title: Phys. Rep. doi: 10.1016/j.physrep.2022.07.003 – volume: 9 start-page: 7286 year: 2021 ident: ref_111 article-title: Investigation on the Photocatalytic Hydrogen Evolution Properties of Z-Scheme Au NPs/CuInS2/NCN-CN XComposite Photocatalysts publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c01234 – ident: ref_25 doi: 10.3390/catal12101198 – volume: 24 start-page: 2421 year: 2014 ident: ref_51 article-title: Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303214 – volume: 34 start-page: 7368 year: 2009 ident: ref_4 article-title: Hydrogen the Fuel for 21st Century publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.05.093 – volume: 38 start-page: 15632 year: 2022 ident: ref_135 article-title: Graphdiyne (CnH2n−2)-Based GDY/CuI/MIL-53(Al) S-Scheme Heterojunction for Efficient Hydrogen Evolution publication-title: Langmuir doi: 10.1021/acs.langmuir.2c02334 – volume: 68 start-page: 738 year: 2021 ident: ref_18 article-title: Recent Development and Future Prospects of TiO2 Photocatalysis publication-title: J. Chin. Chem. Soc. doi: 10.1002/jccs.202000465 – volume: 48 start-page: 3791 year: 2023 ident: ref_109 article-title: CuInS2-Based Photocatalysts for Photocatalytic Hydrogen Evolution via Water Splitting publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.10.253 – ident: ref_30 doi: 10.3390/catal7110317 – volume: 156 start-page: 602 year: 2020 ident: ref_37 article-title: Cu2O/InGaN Heterojunction Thin Films with Enhanced Photoelectrochemical Activity for Solar Water Splitting publication-title: Renew. Energy doi: 10.1016/j.renene.2020.04.107 – volume: 21 start-page: 100829 year: 2021 ident: ref_63 article-title: A Review of Metal Oxide-Based Z-Scheme Heterojunction Photocatalysts: Actualities and Developments publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2021.100829 – volume: 40 start-page: 191 year: 2019 ident: ref_34 article-title: Recent Advances in Suppressing the Photocorrosion of Cuprous Oxide for Photocatalytic and Photoelectrochemical Energy Conversion publication-title: J. Photochem. Photobiol. C Photochem. Rev. doi: 10.1016/j.jphotochemrev.2018.10.001 – volume: 597 start-page: 153660 year: 2022 ident: ref_129 article-title: Insight into the Function of Noble-Metal Free Cu3P Decorated Zn0.5Cd0.5S for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation– Mechanism for Continuous Increasing Activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153660 – volume: 44 start-page: 540 year: 2019 ident: ref_10 article-title: A Critical Review in Strategies to Improve Photocatalytic Water Splitting towards Hydrogen Production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.200 – volume: 118 start-page: 5201 year: 2018 ident: ref_41 article-title: Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00286 – ident: ref_105 doi: 10.1007/s10562-023-04348-5 – ident: ref_7 doi: 10.1007/s10311-022-01432-x – volume: 553 start-page: 43 year: 2018 ident: ref_89 article-title: Direct Z-Scheme Heterojunction Nanocomposite for the Enhanced Solar H2 Production publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2018.01.009 – volume: 178 start-page: 308 year: 2016 ident: ref_84 article-title: Synthesis of CuO Micro-Sphere Combined with g-C3N4 Using Cu2O as Precursor for Enhanced Photocatalytic Hydrogen Evolution publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.05.026 – volume: 46 start-page: 7230 year: 2021 ident: ref_142 article-title: Regular Octahedron Cu-MOFs Modifies Mn0.05Cd0.95S Nanoparticles to Form a S-Scheme Heterojunction for Photocatalytic Hydrogen Evolution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.11.214 – volume: 11 start-page: 34095 year: 2021 ident: ref_121 article-title: Photoluminescence Properties of Cuprous Phosphide Prepared through Phosphating Copper with a Native Oxide Layer publication-title: RSC Adv. doi: 10.1039/D1RA07112B – volume: 39 start-page: 6345 year: 2014 ident: ref_38 article-title: Synergistic Effect of Cu2O/TiO2 Heterostructure Nanoparticle and Its High H2 Evolution Activity publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.209 – volume: 45 start-page: 7806 year: 2006 ident: ref_40 article-title: Noble Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200602473 – volume: 61 start-page: 102056 year: 2022 ident: ref_32 article-title: Photocatalytic CO2 reduction over Copper-Based Materials: A Review publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2022.102056 – volume: 19 start-page: 441 year: 2021 ident: ref_52 article-title: Photocatalysis for Removal of Environmental Pollutants and Fuel Production: A Review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01077-8 – volume: 37 start-page: 5399 year: 2023 ident: ref_139 article-title: In Situ X-Ray Photoelectron Spectroscopy (XPS) Demonstrated Graphdiyne (g-CnH2n−2) Based GDY-CuI/NiV-LDH Double S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c00011 – volume: 3 start-page: 87 year: 2023 ident: ref_22 article-title: Cu-Based Materials as Photocatalysts for Solar Light Artificial Photosynthesis: Aspects of Engineering Performance, Stability, Selectivity publication-title: Solar doi: 10.3390/solar3010008 – volume: 136 start-page: 111171 year: 2021 ident: ref_95 article-title: CuWO4-x Nanoparticles Incorporated Brookite TiO2 Porous Nanospheres: Preparation and Dramatic Photocatalytic Activity for Light Driven H2 Generation publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2020.111171 – volume: 8 start-page: 1690 year: 2018 ident: ref_144 article-title: Efficient Redox-Mediator-Free Z-Scheme Water Splitting Employing Oxysulfide Photocatalysts under Visible Light publication-title: ACS Catal. doi: 10.1021/acscatal.7b03884 – volume: 45 start-page: 18753 year: 2020 ident: ref_8 article-title: Emerging Technologies by Hydrogen: A Review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.021 – volume: 9 start-page: 8346 year: 2019 ident: ref_69 article-title: Defect Modulation of Z-Scheme TiO2/Cu2O Photocatalysts for Durable Water Splitting publication-title: ACS Catal. doi: 10.1021/acscatal.9b01786 – volume: 35 start-page: 7087 year: 2010 ident: ref_49 article-title: Efficient Solar Hydrogen Production by Photocatalytic Water Splitting: From Fundamental Study to Pilot Demonstration publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.01.030 – volume: 219 start-page: 110772 year: 2021 ident: ref_78 article-title: Sonoprecipitation Design of Novel Efficient All-Solid Z-Scheme Cu(OH)2/Cu2O/C3N4 Nanophotocatalyst Applied in Water Splitting for H2 Production: Synergetic Effect of Cu-Based Cocatalyst (Cu(OH)2) and Electron Mediator (Cu) publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110772 – volume: 13 start-page: 24896 year: 2021 ident: ref_136 article-title: Graphdiyne Based Ternary GD-CuI-NiTiO3 S-Scheme Heterjunction Photocatalyst for Hydrogen Evolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c04874 – volume: 7 start-page: 300 year: 2020 ident: ref_141 article-title: Recent Advances in MOF-Based Photocatalysis: Environmental Remediation under Visible Light publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI01120J – volume: 429 start-page: 132381 year: 2022 ident: ref_113 article-title: Rationally Designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-Scheme Integrated Heterojunction for Enhanced Photocatalytic Hydrogen Evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132381 – volume: 26 start-page: 4920 year: 2014 ident: ref_62 article-title: All-Solid-State Z-Scheme Photocatalytic Systems publication-title: Adv. Mater. doi: 10.1002/adma.201400288 – volume: 60 start-page: 19402 year: 2021 ident: ref_137 article-title: Hierarchical Co3(PO4)2/CuI/g-CnH2n−2 S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c03223 – volume: 10 start-page: 59 year: 1979 ident: ref_59 article-title: Photoelectrochemistry and Heterogeneous Photo-Catalysis at Semiconductors publication-title: J. Photochem. doi: 10.1016/0047-2670(79)80037-4 |
SSID | ssj0002794561 |
Score | 2.245049 |
SecondaryResourceType | review_article |
Snippet | Solar photocatalytic H2 production has drawn an increasing amount of attention from the scientific community, industry, and society due to its use of green... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 620 |
SubjectTerms | Catalysis Catalytic activity Clean energy Community Copper Current carriers Efficiency Energy Fossil fuels H2 production Holes (electron deficiencies) Hydrogen production Light Metals Photocatalysis Photocatalysts Semiconductor materials Semiconductors Solar energy Water splitting Z-scheme family |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwFAyyJz2In7h-kYMHL3W7SZsmN11RFg8iqLB4KXlJHovorrj14L_3pe3KqogXryWhZabJm9eGGcaOUshSzCwkGkw01SYNZ7TpJ1ajQ-tJg4T6gOy1Gt5nV6N8tBD1Fc-ENfbADXA9DwJBQ-grYzLpLdhgIUXrwAB6rJ1AqeYtNFOP9e80E5VB4-Ujqa_vjd_965Q4ydLoMZV-KUO1W_-PzbiuMJdrbLWVhvyseaR1thQmG2xlwTBwk52evyUDqjuePyS3BPdzmPEmuoLfjKfVtP4Y8z6rZpy0KL-NbSsfCn7T2LoSBVvs_vLi7nyYtBkIiaOlXyUaQ0AFqrBagyiELDDF6COHORYOpAYs0CnXT4G2LZDWGoCgqK9VLpcIcpt1JtNJ2GG8rwR66wtBszNRWKNFhs6TpDG5yKXtspM5JKVrDcJjTsVTSY1CxLD8hmGXHX9OeGm8MX4fOogYfw6Lptb1BaK6bKku_6K6y_bnDJXtSpuVQisjZYzV2v2Pe-yx5Rgo35wi22ed6vUtHJDsqOCwfsM-AESb2tU priority: 102 providerName: Directory of Open Access Journals |
Title | Cu-Based Z-Schemes Family Photocatalysts for Solar H2 Production |
URI | https://www.proquest.com/docview/2869336901 https://doaj.org/article/db2fb8be169943dabaeab0facb9bfdf4 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVoe4EDonyIhXblAwcupontOPYJ2KrLikO1olSquEQef9BD2ZRNeui_Z5x4lwIq19i-zIxn5k2s9wh5U4AsorTANJhEqo09nNGmZFZHF63HHiQMD2RP1eJcfr6oLvLArcvPKjc5cUjUvnVpRn7EtULsneST3l__ZEk1Kv1dzRIaO2QPU7BG8LU3OzldftlOWTiGWzWQpnJVCyZLWY78PgKx_tHlrV-36CdZJN6p4o_SNDD4_5Ogh6ozf0Ie53aRfhz9u08ehNVT8ugOieAz8uH4hs2wFnn6jZ2hC36Ejo5yFnR52fbtMKC57fqOYn9KzxKUpQtOlyPVK7rlOTmfn3w9XrCsi8AcpoOe6RhCVKBqqzXwmos6FjFxy8Uq1g6EhlhHp1xZAKYyENYagKAQ6ypXiQjiBdldtavwktBS8eitrzmelry2RnMZncc2x1S8EnZC3m1M0rhMGp60K64aBA_Jhs1fNpyQt9sD1yNfxv1bZ8nG222J6Hr40K6_N_neNB54BA2hVMZI4S3YYKGI1oGB6KOckIONh5p8-7rmd6y8-v_ya_IwycePb8YOyG6_vgmH2GT0MCU7ev5pmuNpOkD1X43d1A8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqfYUsAHkLiEJrbj2Ieq0MKypaWq1FaquKQeP-iBbsomVbV_it_IOI_lJbj1mtg5jL_xzDjj7yPkRQoiDcJAokBHUm3M4bTSWWJUsME4zEF82yC7LyfH4uNJfrJEvg93YWJb5bAnthu1q2w8I19nSmLtHeWTNi--JVE1Kv5dHSQ0Oljs-vkVlmz1xs47XN-XjI3fH21Pkl5VILHoTE2igvdBgiyMUsAKxouQhsjMFvJQWOAKQhGstFkKuBEAN0YDeImVorQ5D8DxuzfITcG5jh6lxh8WZzoMwZ23FK1MFjwRmcg6NiEcm66fzd2sQlSINLJcpb8FwlYv4K9w0Ma48V2y0ien9G2HpntkyU_vkzu_UBY-IG-2L5MtjHyOfk4OccHPfU078Qx6cFY1VXscNK-bmmI2TA9j4UwnjB50xLIIgofk-Frs9YgsT6upf0xoJllwxhUMZwtWGK2YCNZhUqVzlnMzIq8Hk5S2pyiPShlfSyxVog3LP2w4Iq8WEy46do5_D92KNl4Mi7Ta7YNq9qXsvbR0wAIo8JnUWnBnwHgDaTAWNAQXxIisDStU9r5elz-Rufr_18_JrcnRp71yb2d_9wm5HYXru261NbLczC79U0xvGnjWYoqS0-sG8Q_z1g9B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzFQgEfQOISNrEdxz4gYNuuthStVpRKFZfU4wc9wKZsUqH9a_w6xkl2eQluvSZ2DuNvPDPO-PsIeZqCSIMwkCjQkVQbczitdJYYFWwwDnMQ3zbIzuT0WLw9yU-2yPf1XZjYVrneE9uN2lU2npGPmJJYe0f5pFHo2yLme5NX51-TqCAV_7Su5TQ6iBz61Tcs3-qXB3u41s8Ym-x_2J0mvcJAYtGxmkQF74MEWRilgBWMFyENkaUt5KGwwBWEIlhpsxRwUwBujAbwEqtGaXMegON3r5DtAquidEC2x_uz-fvNCQ9DqOctYSuTBU9EJrKOW4hznY7OVm5ZIUZEGjmv0t_CYqse8FdwaCPe5Ca50aeq9E2HrVtkyy9uk-u_EBjeIa93L5IxxkFHPyZHuPxffE07KQ06P6uaqj0cWtVNTTE3pkexjKZTRucdzSxC4i45vhSL3SODRbXw9wnNJAvOuILhbMEKoxUTwTpMsXTOcm6G5MXaJKXtCcujbsbnEguXaMPyDxsOyfPNhPOOq-PfQ8fRxpthkWS7fVAtP5W9z5YOWAAFPpNaC-4MGG8gDcaChuCCGJKd9QqVvefX5U-cPvj_6yfkKgK4fHcwO3xIrkUV-651bYcMmuWFf4S5TgOPe1BRcnrZOP4B1FEU0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-Based+Z-Schemes+Family+Photocatalysts+for+Solar+H2+Production&rft.jtitle=Hydrogen&rft.au=Greco%2C+Rossella&rft.au=Botella%2C+Romain&rft.au=Fern%C3%A1ndez-Catal%C3%A1%2C+Javier&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2673-4141&rft.eissn=2673-4141&rft.volume=4&rft.issue=3&rft.spage=620&rft_id=info:doi/10.3390%2Fhydrogen4030040&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-4141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-4141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-4141&client=summon |