Cu-Based Z-Schemes Family Photocatalysts for Solar H2 Production

Solar photocatalytic H2 production has drawn an increasing amount of attention from the scientific community, industry, and society due to its use of green solar energy and a photocatalyst (semiconductor material) to produce green H2. Cu-based semiconductors are interesting as photocatalysts for H2...

Full description

Saved in:
Bibliographic Details
Published inHydrogen Vol. 4; no. 3; pp. 620 - 643
Main Authors Greco, Rossella, Botella, Romain, Fernández-Catalá, Javier
Format Journal Article
LanguageEnglish
Published Hamburg MDPI AG 01.09.2023
Subjects
Online AccessGet full text
ISSN2673-4141
2673-4141
DOI10.3390/hydrogen4030040

Cover

Loading…
Abstract Solar photocatalytic H2 production has drawn an increasing amount of attention from the scientific community, industry, and society due to its use of green solar energy and a photocatalyst (semiconductor material) to produce green H2. Cu-based semiconductors are interesting as photocatalysts for H2 production because Cu is earth-abundant, cheap, and the synthesis of its copper-containing semiconductors is straightforward. Moreover, Cu-based semiconductors absorb visible light and present an adequate redox potential to perform water splitting reaction. Nevertheless, pristine Cu-based semiconductors exhibit low photoactivity due to the rapid recombination of photo-induced electron-hole (e−-h+) pairs and are subject to photo corrosion. To remedy these pitfalls, the Cu semiconductor-based Z-scheme family (Z-schemes and S-schemes) presents great interest due to the charge carrier mechanism involved. Due to the interest of Z-scheme photocatalysts in this issue, the basic concepts of the Z-scheme focusing on Cu-based semiconductors are addressed to obtain novel systems with high H2 photo-catalytic activity. Focusing on H2 production using Cu-based Z-schemes photocatalyst, the most representative examples are included in the main text. To conclude, an outlook on the future challenges of this topic is addressed.
AbstractList Solar photocatalytic H2 production has drawn an increasing amount of attention from the scientific community, industry, and society due to its use of green solar energy and a photocatalyst (semiconductor material) to produce green H2. Cu-based semiconductors are interesting as photocatalysts for H2 production because Cu is earth-abundant, cheap, and the synthesis of its copper-containing semiconductors is straightforward. Moreover, Cu-based semiconductors absorb visible light and present an adequate redox potential to perform water splitting reaction. Nevertheless, pristine Cu-based semiconductors exhibit low photoactivity due to the rapid recombination of photo-induced electron-hole (e−-h+) pairs and are subject to photo corrosion. To remedy these pitfalls, the Cu semiconductor-based Z-scheme family (Z-schemes and S-schemes) presents great interest due to the charge carrier mechanism involved. Due to the interest of Z-scheme photocatalysts in this issue, the basic concepts of the Z-scheme focusing on Cu-based semiconductors are addressed to obtain novel systems with high H2 photo-catalytic activity. Focusing on H2 production using Cu-based Z-schemes photocatalyst, the most representative examples are included in the main text. To conclude, an outlook on the future challenges of this topic is addressed.
Author Botella, Romain
Fernández-Catalá, Javier
Greco, Rossella
Author_xml – sequence: 1
  givenname: Rossella
  orcidid: 0000-0001-6408-1645
  surname: Greco
  fullname: Greco, Rossella
– sequence: 2
  givenname: Romain
  surname: Botella
  fullname: Botella, Romain
– sequence: 3
  givenname: Javier
  orcidid: 0000-0002-8570-2655
  surname: Fernández-Catalá
  fullname: Fernández-Catalá, Javier
BookMark eNp1kM1PAjEQxRuDiYicvW7ieaXdLv24qUSEhEQS9OKlmXZbWLJssS0H_ntBNDEknmYyeb-XN-8adVrfWoRuCb6nVOLBal8Fv7RtiSnGJb5A3YJxmpekJJ0_-xXqx7jGGBdclkNGuuhhtMufINoq-8gXZmU3NmZj2NTNPpuvfPIGEjT7mGLmfMgWvoGQTYpsHny1M6n27Q26dNBE2_-ZPfQ-fn4bTfLZ68t09DjLDeUs5cJZ65hmHITQBS8od9hhLLgbOm40FdpxZ5ghWEtCNAWQWlsmhGBmSJ2mPTQ9-VYe1mob6g2EvfJQq--DD0sFIdWmsarShdNCW8KkLGkFGixo7MBoqV3lyoPX3clrG_znzsak1n4X2kN8VQgmKWUSk4NqeFKZ4GMM1ilTJzj-nALUjSJYHbtXZ90fuMEZ95v2P-ILE_GLZg
CitedBy_id crossref_primary_10_1016_j_jcou_2024_102818
crossref_primary_10_1016_j_cattod_2025_115273
Cites_doi 10.1039/B800489G
10.1016/S1872-2067(21)63818-4
10.1016/j.cattod.2020.05.032
10.1016/j.jpcs.2019.05.046
10.1038/238037a0
10.1038/s41586-021-03907-3
10.1016/j.jiec.2021.11.008
10.1016/j.rser.2017.08.020
10.1016/j.ijhydene.2021.09.087
10.1021/acs.jpcc.9b09666
10.1021/acsanm.2c01616
10.1021/acs.chemrev.5b00482
10.1002/solr.202100118
10.1021/acsaem.1c01755
10.1021/acs.accounts.9b00380
10.1016/j.rser.2019.109620
10.1016/j.ijhydene.2021.11.047
10.1002/cctc.201801198
10.1039/b907933e
10.3390/catal13020355
10.1016/j.scib.2022.11.018
10.1016/j.mssp.2022.107105
10.1016/j.ijhydene.2020.07.225
10.1016/j.jechem.2017.10.025
10.1021/cr050200z
10.1016/j.mattod.2018.04.008
10.1016/j.mtener.2017.07.008
10.3390/catal13040728
10.1038/nmat1734
10.1016/j.trechm.2022.08.008
10.1016/j.apsusc.2023.156721
10.1021/acs.jpclett.5b00137
10.1002/anie.201700150
10.1016/j.jece.2022.109119
10.1039/c3cp53131g
10.1016/j.apcatb.2020.119157
10.1038/s41467-022-34117-8
10.1016/j.egyr.2020.07.020
10.1016/j.apsusc.2022.153309
10.1016/j.matchemphys.2020.123172
10.1016/j.jclepro.2022.131948
10.1016/j.enpol.2020.111295
10.1016/j.ijhydene.2022.10.131
10.3390/catal12111303
10.1021/acsaem.0c00661
10.1016/j.jmst.2021.11.073
10.1039/C9DT01581G
10.1016/j.jece.2020.104340
10.1021/acs.chemrev.9b00201
10.1016/j.fuel.2022.126267
10.1039/D2RA01918C
10.1016/j.jcis.2022.02.025
10.1002/solr.202100241
10.1016/j.apcatb.2017.05.058
10.1016/j.ijhydene.2021.12.133
10.1039/C7NR07952D
10.1021/acssuschemeng.7b04403
10.1039/C8DT04154G
10.1016/j.ijhydene.2020.03.139
10.1021/acsami.2c07145
10.1016/j.jssc.2016.02.046
10.1016/j.jcat.2022.12.011
10.1016/j.mtsust.2022.100276
10.1016/j.renene.2022.05.171
10.1021/acscatal.8b03498
10.1002/anie.201210277
10.1016/j.matchemphys.2021.124542
10.1016/j.jece.2022.108077
10.1016/j.jece.2021.105138
10.1016/j.ccr.2018.12.013
10.1002/anie.201914925
10.1021/cr5001892
10.1016/j.watres.2015.04.038
10.1039/D1TA09347A
10.1007/s12274-022-5110-z
10.1016/j.ijhydene.2020.12.225
10.1016/j.apcatb.2018.09.010
10.1002/anie.202108686
10.1016/j.jallcom.2021.162331
10.3390/molecules21070900
10.3390/ma12010040
10.1016/j.matpr.2021.10.250
10.1016/j.apcatb.2014.06.052
10.3390/catal12101137
10.1016/j.renene.2020.09.052
10.1016/j.apsusc.2020.146908
10.1021/acsami.7b06030
10.1016/j.ijhydene.2022.07.155
10.1016/j.seppur.2023.123229
10.1002/asia.202200645
10.1016/j.solmat.2019.110211
10.1016/j.cattod.2023.01.013
10.1016/j.rser.2010.11.037
10.1016/j.ijhydene.2022.11.289
10.1016/j.jphotochemrev.2011.07.001
10.1016/j.chempr.2020.06.010
10.1016/j.fuel.2019.116311
10.1016/j.jallcom.2021.159144
10.1021/acsanm.2c00154
10.1021/cm5044792
10.1016/j.mtener.2019.01.009
10.1021/acs.jpcc.2c00932
10.1016/j.physrep.2022.07.003
10.1021/acssuschemeng.1c01234
10.3390/catal12101198
10.1002/adfm.201303214
10.1016/j.ijhydene.2009.05.093
10.1021/acs.langmuir.2c02334
10.1002/jccs.202000465
10.1016/j.ijhydene.2022.10.253
10.3390/catal7110317
10.1016/j.renene.2020.04.107
10.1016/j.mtener.2021.100829
10.1016/j.jphotochemrev.2018.10.001
10.1016/j.apsusc.2022.153660
10.1016/j.ijhydene.2018.10.200
10.1021/acs.chemrev.7b00286
10.1007/s10562-023-04348-5
10.1007/s10311-022-01432-x
10.1016/j.apcata.2018.01.009
10.1016/j.matlet.2016.05.026
10.1016/j.ijhydene.2020.11.214
10.1039/D1RA07112B
10.1016/j.ijhydene.2014.01.209
10.1002/anie.200602473
10.1016/j.jcou.2022.102056
10.1007/s10311-020-01077-8
10.1021/acs.energyfuels.3c00011
10.3390/solar3010008
10.1016/j.materresbull.2020.111171
10.1021/acscatal.7b03884
10.1016/j.ijhydene.2020.05.021
10.1021/acscatal.9b01786
10.1016/j.ijhydene.2010.01.030
10.1016/j.solmat.2020.110772
10.1021/acsami.1c04874
10.1039/C9QI01120J
10.1016/j.cej.2021.132381
10.1002/adma.201400288
10.1021/acs.inorgchem.1c03223
10.1016/0047-2670(79)80037-4
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.3390/hydrogen4030040
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Collection (ProQuest)
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2673-4141
EndPage 643
ExternalDocumentID oai_doaj_org_article_db2fb8be169943dabaeab0facb9bfdf4
10_3390_hydrogen4030040
GroupedDBID AAYXX
ABDBF
ABJCF
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KB.
MODMG
OK1
PDBOC
PHGZM
PHGZT
PIMPY
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c376t-8feef6b67a88b27237f0f0087f5f7cb38bf7fc6c10b911b3aa9bbe68886c53fb3
IEDL.DBID BENPR
ISSN 2673-4141
IngestDate Wed Aug 27 01:15:34 EDT 2025
Fri Jul 25 12:01:07 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 02:47:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-8feef6b67a88b27237f0f0087f5f7cb38bf7fc6c10b911b3aa9bbe68886c53fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6408-1645
0000-0002-8570-2655
OpenAccessLink https://www.proquest.com/docview/2869336901?pq-origsite=%requestingapplication%
PQID 2869336901
PQPubID 5465943
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_db2fb8be169943dabaeab0facb9bfdf4
proquest_journals_2869336901
crossref_citationtrail_10_3390_hydrogen4030040
crossref_primary_10_3390_hydrogen4030040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Hamburg
PublicationPlace_xml – name: Hamburg
PublicationTitle Hydrogen
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chen (ref_31) 2023; 21
Shamraiz (ref_102) 2016; 238
Yang (ref_138) 2023; 311
Tada (ref_61) 2006; 5
Mohammed (ref_67) 2021; 9
Aguirre (ref_33) 2017; 217
Christoforidis (ref_57) 2019; 11
ref_19
Wang (ref_141) 2020; 7
Yan (ref_136) 2021; 13
Xie (ref_23) 2017; 26
Zhang (ref_53) 2020; 59
Chu (ref_85) 2021; 46
Wang (ref_128) 2022; 894
Xu (ref_43) 2018; 21
ref_25
Dong (ref_17) 2015; 79
Nishiyama (ref_50) 2021; 598
Kannan (ref_90) 2023; 48
Kato (ref_116) 2015; 6
ref_21
Zhang (ref_35) 2020; 527
Alizadeh (ref_37) 2020; 156
Mu (ref_80) 2022; 360
Wang (ref_140) 2023; 11
Yang (ref_127) 2020; 45
Dogutan (ref_42) 2019; 52
Li (ref_84) 2016; 178
Wang (ref_41) 2018; 118
Su (ref_137) 2021; 60
Yoo (ref_75) 2020; 204
Mahzoon (ref_78) 2021; 219
Jourshabani (ref_60) 2020; 276
Gu (ref_79) 2021; 266
Li (ref_110) 2017; 9
ref_26
Jing (ref_49) 2010; 35
Su (ref_91) 2019; 12
Jin (ref_133) 2022; 43
Luo (ref_29) 2023; 16
Sun (ref_118) 2020; 251
Yang (ref_130) 2021; 5
Bao (ref_95) 2021; 136
Lemoine (ref_97) 2022; 61
Peiris (ref_18) 2021; 68
Ong (ref_73) 2018; 81
Subha (ref_89) 2018; 553
Yuan (ref_107) 2017; 56
Xi (ref_38) 2014; 39
Bharagav (ref_94) 2022; 47
Yoshino (ref_115) 2020; 3
Cao (ref_142) 2021; 46
Huangfu (ref_108) 2022; 17
Zhang (ref_111) 2021; 9
Li (ref_96) 2023; 417
Fajrina (ref_10) 2019; 44
Ge (ref_129) 2022; 597
Rauf (ref_125) 2018; 10
Abdin (ref_5) 2020; 120
Fujishima (ref_16) 1972; 238
Deng (ref_106) 2019; 134
Marschall (ref_51) 2014; 24
Ioannidi (ref_124) 2020; 8
Jin (ref_135) 2022; 38
Yuan (ref_63) 2021; 21
Bao (ref_66) 2021; 5
Shi (ref_101) 2019; 48
Ahmad (ref_88) 2023; 48
Wang (ref_15) 2020; 120
Wang (ref_32) 2022; 61
Gawande (ref_24) 2016; 116
Toe (ref_34) 2019; 40
Zhu (ref_72) 2022; 67
Radhy (ref_83) 2022; 60
Mao (ref_92) 2022; 47
Bard (ref_59) 1979; 10
Zhong (ref_112) 2022; 5
Jain (ref_4) 2009; 34
Ahmad (ref_2) 2020; 6
Quan (ref_143) 2021; 4
Kumar (ref_65) 2023; 333
Dai (ref_86) 2022; 12
Sarilmaz (ref_98) 2021; 164
Jin (ref_134) 2022; 10
Shen (ref_82) 2020; 259
Fu (ref_71) 2015; 1
Li (ref_132) 2022; 13
Sazali (ref_8) 2020; 45
Sun (ref_144) 2018; 8
Maeda (ref_40) 2006; 45
Yu (ref_64) 2013; 15
Dai (ref_77) 2022; 592
Wang (ref_100) 2022; 121
Huang (ref_47) 2019; 385
Mandari (ref_103) 2022; 615
Schneider (ref_14) 2014; 114
Xu (ref_44) 2020; 6
Yang (ref_109) 2023; 48
Xu (ref_76) 2022; 5
Lai (ref_36) 2022; 14
Peng (ref_121) 2021; 11
Lv (ref_70) 2021; 868
Cao (ref_28) 2015; 162
Maeda (ref_13) 2011; 12
Munir (ref_45) 2021; 33
Sumesh (ref_20) 2019; 48
Lubitz (ref_6) 2007; 107
Fresno (ref_68) 2009; 2
Chen (ref_3) 2020; 139
Wang (ref_131) 2022; 126
Suzuki (ref_93) 2018; 8
Kumar (ref_48) 2022; 106
Li (ref_139) 2023; 37
Ranjith (ref_99) 2020; 124
Zhou (ref_62) 2014; 26
Wei (ref_69) 2019; 9
Verma (ref_27) 2021; 364
Zhao (ref_54) 2022; 10
ref_30
Gaspari (ref_120) 2015; 27
ref_39
Panwar (ref_1) 2011; 15
Shen (ref_123) 2018; 6
Zindrou (ref_22) 2023; 3
Muscetta (ref_55) 2020; 45
Paramanik (ref_122) 2022; 47
Liang (ref_104) 2023; 153
ref_105
Yang (ref_113) 2022; 429
ref_46
Hua (ref_126) 2019; 240
Kudo (ref_12) 2009; 38
Wang (ref_58) 2022; 4
Atacan (ref_87) 2022; 195
Park (ref_74) 2021; 46
Saravanan (ref_52) 2021; 19
Chen (ref_114) 2023; 621
Shen (ref_81) 2017; 5
Dhileepan (ref_117) 2023; 2
Manna (ref_119) 2013; 52
Liao (ref_56) 2022; 983
ref_9
Li (ref_11) 2017; Volume 60
ref_7
References_xml – volume: 38
  start-page: 253
  year: 2009
  ident: ref_12
  article-title: Heterogeneous photocatalyst materials for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
– volume: 43
  start-page: 303
  year: 2022
  ident: ref_133
  article-title: Efficient Photocatalytic Hydrogen Evolution over Graphdiyne Boosted with a Cobalt Sulfide Formed S-Scheme Heterojunction
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63818-4
– volume: 364
  start-page: 182
  year: 2021
  ident: ref_27
  article-title: Photocatalytically-driven H2 production over Cu/TiO2 catalysts decorated with multi-walled carbon nanotubes
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2020.05.032
– volume: 134
  start-page: 141
  year: 2019
  ident: ref_106
  article-title: Interfacial Properties of Cu7S4/MnS Heterostructure from First-Principles Calculations
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2019.05.046
– volume: 238
  start-page: 37
  year: 1972
  ident: ref_16
  article-title: Electrochemical Photolysis of Water at a Semiconductor Electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 598
  start-page: 304
  year: 2021
  ident: ref_50
  article-title: Photocatalytic Solar Hydrogen Production from Water on a 100-m2 Scale
  publication-title: Nature
  doi: 10.1038/s41586-021-03907-3
– volume: 106
  start-page: 340
  year: 2022
  ident: ref_48
  article-title: Current Status on Designing of Dual Z-Scheme Photocatalysts for Energy and Environmental Applications
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2021.11.008
– volume: 81
  start-page: 536
  year: 2018
  ident: ref_73
  article-title: A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.020
– volume: 46
  start-page: 38319
  year: 2021
  ident: ref_74
  article-title: S-Scheme Assisted Cu2O/ZnO Flower-Shaped Heterojunction Catalyst for Breakthrough Hydrogen Evolution by Water Splitting
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.087
– volume: 124
  start-page: 3610
  year: 2020
  ident: ref_99
  article-title: Promotional Effect of Cu2S–ZnS Nanograins as a Shell Layer on ZnO Nanorod Arrays for Boosting Visible Light Photocatalytic H2 Evolution
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b09666
– volume: 5
  start-page: 8475
  year: 2022
  ident: ref_76
  article-title: Z-Scheme Cu2O Nanoparticle/Graphite Carbon Nitride Nanosheet Heterojunctions for Photocatalytic Hydrogen Evolution
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c01616
– volume: 116
  start-page: 3722
  year: 2016
  ident: ref_24
  article-title: Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00482
– volume: 5
  start-page: 2100118
  year: 2021
  ident: ref_66
  article-title: S-Scheme Photocatalytic Systems
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100118
– volume: 4
  start-page: 8550
  year: 2021
  ident: ref_143
  article-title: Tactfully Assembled CuMOF/CdS S-Scheme Heterojunction for High-Performance Photocatalytic H2 Evolution under Visible Light
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c01755
– volume: 52
  start-page: 3143
  year: 2019
  ident: ref_42
  article-title: Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00380
– volume: 120
  start-page: 109620
  year: 2020
  ident: ref_5
  article-title: Hydrogen as an Energy Vector
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109620
– volume: 47
  start-page: 3893
  year: 2022
  ident: ref_122
  article-title: Energy Band Modulation in CuxP(X = 3,1/2)/PbTiO3 via Heterogeneous Erection Induced Benign Junction Interface for Enhanced Photocatalytic H2 Evolution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.11.047
– volume: 11
  start-page: 368
  year: 2019
  ident: ref_57
  article-title: Photocatalysis for Hydrogen Production and CO2 Reduction: The Case of Copper-Catalysts
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801198
– volume: 2
  start-page: 1231
  year: 2009
  ident: ref_68
  article-title: Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b907933e
– ident: ref_39
  doi: 10.3390/catal13020355
– volume: 67
  start-page: 2420
  year: 2022
  ident: ref_72
  article-title: Patterning Alternate TiO2 and Cu2O Strips on a Conductive Substrate as Film Photocatalyst for Z-Scheme Photocatalytic Water Splitting
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2022.11.018
– volume: 153
  start-page: 107105
  year: 2023
  ident: ref_104
  article-title: Enhanced Photocatalytic Hydrogen Evolution of CdS@CuS Core-Shell Nanorods under Visible Light
  publication-title: Mater. Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2022.107105
– volume: 45
  start-page: 28531
  year: 2020
  ident: ref_55
  article-title: Hydrogen Production through Photoreforming Processes over Cu2O/TiO2 Composite Materials: A Mini-Review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.07.225
– volume: 26
  start-page: 1039
  year: 2017
  ident: ref_23
  article-title: Recent Advances in Cu-Based Nanocomposite Photocatalysts for CO2 Conversion to Solar Fuels
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.10.025
– volume: 107
  start-page: 3900
  year: 2007
  ident: ref_6
  article-title: Hydrogen: An Overview
  publication-title: Chem. Rev.
  doi: 10.1021/cr050200z
– volume: 21
  start-page: 1042
  year: 2018
  ident: ref_43
  article-title: Direct Z-Scheme Photocatalysts: Principles, Synthesis, and Applications
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.04.008
– volume: 5
  start-page: 312
  year: 2017
  ident: ref_81
  article-title: All-Solid-State Z-Scheme System of RGO-Cu2O/Fe2O3 for Simultaneous Hydrogen Production and Tetracycline Degradation
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2017.07.008
– ident: ref_19
  doi: 10.3390/catal13040728
– volume: 5
  start-page: 782
  year: 2006
  ident: ref_61
  article-title: All-Solid-State Z-Scheme in CdS-Au-TiO2 Three-Component Nanojunction System
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1734
– volume: 4
  start-page: 973
  year: 2022
  ident: ref_58
  article-title: Challenges of Z-scheme photocatalytic mechanisms
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2022.08.008
– volume: 621
  start-page: 156721
  year: 2023
  ident: ref_114
  article-title: Constructing an S-Scheme Heterojunction of 2D/2D Cd0.5Zn0.5S/CuInS2 Nanosheet with Vacancies for Photocatalytic Hydrogen Generation under Visible Light
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.156721
– volume: 6
  start-page: 1042
  year: 2015
  ident: ref_116
  article-title: Utilization of Metal Sulfide Material of (CuGa)1-XZn2XS2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00137
– volume: 56
  start-page: 4206
  year: 2017
  ident: ref_107
  article-title: Noble-Metal-Free Janus-like Structures by Cation Exchange for Z-Scheme Photocatalytic Water Splitting under Broadband Light Irradiation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201700150
– volume: 11
  start-page: 109119
  year: 2023
  ident: ref_140
  article-title: Strong Redox-Capable Graphdiyne-Based Double S-Scheme Heterojunction 10%GC/Mo for Enhanced Photocatalytic Hydrogen Evolution
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.109119
– volume: 15
  start-page: 16883
  year: 2013
  ident: ref_64
  article-title: Enhanced Photocatalytic Performance of Direct Z-Scheme g-C3N4-TiO2 Photocatalysts for the Decomposition of Formaldehyde in Air
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53131g
– volume: 276
  start-page: 119157
  year: 2020
  ident: ref_60
  article-title: From Traditional Strategies to Z-Scheme Configuration in Graphitic Carbon Nitride Photocatalysts: Recent Progress and Future Challenges
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119157
– volume: 13
  start-page: 6346
  year: 2022
  ident: ref_132
  article-title: Optoelectronic Properties and Ultrafast Carrier Dynamics of Copper Iodide Thin Films
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34117-8
– volume: 6
  start-page: 1973
  year: 2020
  ident: ref_2
  article-title: A Critical Review of Comparative Global Historical Energy Consumption and Future Demand: The Story Told so Far
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.07.020
– volume: 592
  start-page: 153309
  year: 2022
  ident: ref_77
  article-title: Photocatalytic Oxidation of Tetracycline, Reduction of Hexavalent Chromium and Hydrogen Evolution by Cu2O/g-C3N4 S-Scheme Photocatalyst: Performance and Mechanism Insight
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153309
– volume: 251
  start-page: 123172
  year: 2020
  ident: ref_118
  article-title: Enhanced Photocarrier Separation in Novel Z-Scheme Cu2ZnSnS4/Cu2O Heterojunction for Excellent Photocatalyst Hydrogen Generation
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.123172
– volume: 360
  start-page: 131948
  year: 2022
  ident: ref_80
  article-title: Integration of Plasmonic Effect and S-Scheme Heterojunction into Gold Decorated Carbon Nitride/Cuprous Oxide Catalyst for Photocatalysis
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131948
– volume: 139
  start-page: 111295
  year: 2020
  ident: ref_3
  article-title: Renewable Energy Consumption and Economic Growth Nexus: Evidence from a Threshold Model
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2020.111295
– volume: 48
  start-page: 7273
  year: 2023
  ident: ref_90
  article-title: Two Dimensional MAX Supported Copper Oxide/Nickel Oxide/MAX as an Efficient and Novel Photocatalyst for Hydrogen Evolution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.10.131
– ident: ref_21
  doi: 10.3390/catal12111303
– volume: 1
  start-page: 124
  year: 2015
  ident: ref_71
  article-title: Dual Z-Scheme Charge Transfer in TiO2–Ag–Cu2O Composite for Enhanced Photocatalytic Hydrogen Generation
  publication-title: J. Mater.
– volume: 3
  start-page: 5684
  year: 2020
  ident: ref_115
  article-title: Z-Schematic Solar Water Splitting Using Fine Particles of H2-Evolving (CuGa)0.5ZnS2 Photocatalyst Prepared by a Flux Method with Chloride Salts
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00661
– volume: 121
  start-page: 28
  year: 2022
  ident: ref_100
  article-title: EDA-Assisted Synthesis of Multifunctional Snowflake-Cu2S/CdZnS S-Scheme Heterojunction for Improved the Photocatalytic Hydrogen Evolution
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.11.073
– volume: 48
  start-page: 12772
  year: 2019
  ident: ref_20
  article-title: Two-Dimensional Semiconductor Transition Metal Based Chalcogenide Based Heterostructures for Water Splitting Applications
  publication-title: Dalt. Trans.
  doi: 10.1039/C9DT01581G
– volume: 8
  start-page: 104340
  year: 2020
  ident: ref_124
  article-title: Copper Phosphide Promoted BiVO4 photocatalysts for the Degradation of Sulfamethoxazole in Aqueous Media
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.104340
– volume: 120
  start-page: 919
  year: 2020
  ident: ref_15
  article-title: Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00201
– volume: 333
  start-page: 126267
  year: 2023
  ident: ref_65
  article-title: A Review on S-Scheme and Dual S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution, Water Detoxification and CO2 Reduction
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.126267
– volume: 12
  start-page: 13381
  year: 2022
  ident: ref_86
  article-title: Enhanced Photocatalytic Hydrogen Evolution and Ammonia Sensitivity of Double-Heterojunction g-C3N4/TiO2/CuO
  publication-title: RSC Adv.
  doi: 10.1039/D2RA01918C
– volume: 615
  start-page: 740
  year: 2022
  ident: ref_103
  article-title: CuS/Ag2O Nanoparticles on Ultrathin g-C3N4 Nanosheets to Achieve High Performance Solar Hydrogen Evolution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.02.025
– volume: 5
  start-page: 2100241
  year: 2021
  ident: ref_130
  article-title: Dual-Z-Scheme Heterojunction for Facilitating Spacial Charge Transport Toward Ultra-Efficient Photocatalytic H2 Production
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100241
– volume: 217
  start-page: 485
  year: 2017
  ident: ref_33
  article-title: Cu2O/TiO2 Heterostructures for CO2 Reduction through a Direct Z-Scheme: Protecting Cu2O from Photocorrosion
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.05.058
– volume: 47
  start-page: 8214
  year: 2022
  ident: ref_92
  article-title: S-Scheme Heterojunction of CuBi2O4 Supported Na Doped P25 for Enhanced Photocatalytic H2 Evolution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.12.133
– volume: 10
  start-page: 3026
  year: 2018
  ident: ref_125
  article-title: Mediator- and Co-Catalyst-Free Direct Z-Scheme Composites of Bi2WO6-Cu3P for Solar-Water Splitting
  publication-title: Nanoscale
  doi: 10.1039/C7NR07952D
– volume: Volume 60
  start-page: 1
  year: 2017
  ident: ref_11
  article-title: Chapter One—Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts
  publication-title: Advances in Catalysis
– volume: 6
  start-page: 4026
  year: 2018
  ident: ref_123
  article-title: Bifunctional Cu3P Decorated G-C3N4 Nanosheets as a Highly Active and Robust Visible-Light Photocatalyst for H2 Production
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04403
– volume: 48
  start-page: 3327
  year: 2019
  ident: ref_101
  article-title: In Situ Topotactic Formation of 2D/2D Direct Z-Scheme Cu2S/Zn0.67 Cd0.33S in-Plane Intergrowth Nanosheet Heterojunctions for Enhanced Photocatalytic Hydrogen Production
  publication-title: Dalt. Trans.
  doi: 10.1039/C8DT04154G
– volume: 45
  start-page: 14334
  year: 2020
  ident: ref_127
  article-title: Boosted Photogenerated Carriers Separation in Z-Scheme Cu3P/ZnIn2S4 Heterojunction Photocatalyst for Highly Efficient H2 Evolution under Visible Light
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.139
– volume: 14
  start-page: 40771
  year: 2022
  ident: ref_36
  article-title: Au@Cu2O Core-Shell and Au@Cu2Se Yolk-Shell Nanocrystals as Promising Photocatalysts in Photoelectrochemical Water Splitting and Photocatalytic Hydrogen Production
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c07145
– volume: 238
  start-page: 25
  year: 2016
  ident: ref_102
  article-title: Fabrication and Applications of Copper Sulfide (CuS) Nanostructures
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2016.02.046
– volume: 417
  start-page: 274
  year: 2023
  ident: ref_96
  article-title: Rationally Engineered Avtive Sites for Efficient and Durable Hydrogen Production over γ-Graphyne Assembly CuMoO4 S-Scheme Heterojunction
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2022.12.011
– volume: 21
  start-page: 100276
  year: 2023
  ident: ref_31
  article-title: Recent Progress in Copper-Based Inorganic Nanostructure Photocatalysts: Properties, Synthesis and Photocatalysis Applications
  publication-title: Mater. Today Sustain.
  doi: 10.1016/j.mtsust.2022.100276
– volume: 195
  start-page: 107
  year: 2022
  ident: ref_87
  article-title: Rational Construction of P-n-p CuO/CdS/CoWO4 S-Scheme Heterojunction with Influential Separation and Directional Transfer of Interfacial Photocarriers for Boosted Photocatalytic H2 Evolution
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.05.171
– volume: 8
  start-page: 10809
  year: 2018
  ident: ref_93
  article-title: Polyoxometalate Photocatalysis for Liquid-Phase Selective Organic Functional Group Transformations
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03498
– volume: 52
  start-page: 6762
  year: 2013
  ident: ref_119
  article-title: Semiconducting and Plasmonic Copper Phosphide Platelets
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201210277
– volume: 266
  start-page: 124542
  year: 2021
  ident: ref_79
  article-title: Facile Fabrication of Sulfur-Doped Cu2O and g-C3N4 with Z-Scheme Structure for Enhanced Photocatalytic Water Splitting Performance
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.124542
– volume: 33
  start-page: 1
  year: 2021
  ident: ref_45
  article-title: Photocatalytic Z-Scheme Overall Water Splitting: Recent Advances in Theory and Experiments
  publication-title: Adv. Mater.
– volume: 10
  start-page: 108077
  year: 2022
  ident: ref_54
  article-title: Classification and Catalytic Mechanisms of Heterojunction Photocatalysts and the Application of Titanium Dioxide (TiO2)-Based Heterojunctions in Environmental Remediation
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108077
– volume: 9
  start-page: 105138
  year: 2021
  ident: ref_67
  article-title: Review of Various Strategies to Boost the Photocatalytic Activity of the Cuprous Oxide-Based Photocatalyst
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105138
– volume: 385
  start-page: 44
  year: 2019
  ident: ref_47
  article-title: Artificial Z-Scheme Photocatalytic System: What Have Been Done and Where to Go?
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.12.013
– volume: 59
  start-page: 22894
  year: 2020
  ident: ref_53
  article-title: Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now?
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914925
– volume: 114
  start-page: 9919
  year: 2014
  ident: ref_14
  article-title: Understanding TiO2 Photocatalysis Mechanisms and Materials
  publication-title: Chem. Rev.
  doi: 10.1021/cr5001892
– volume: 79
  start-page: 128
  year: 2015
  ident: ref_17
  article-title: An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.04.038
– volume: 10
  start-page: 1976
  year: 2022
  ident: ref_134
  article-title: Construction of a Tandem S-Scheme GDY/CuI/CdS-R Heterostructure Based on Morphology-Regulated Graphdiyne (g-C: NH2n−2) for Enhanced Photocatalytic Hydrogen Evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA09347A
– volume: 16
  start-page: 371
  year: 2023
  ident: ref_29
  article-title: Graphitic carbon nitride/ferroferric oxide/reduced graphene oxide nanocomposite as highly active visible light photocatalyst
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-5110-z
– volume: 46
  start-page: 9064
  year: 2021
  ident: ref_85
  article-title: Constructing Direct Z-Scheme CuO/PI Heterojunction for Photocatalytic Hydrogen Evolution from Water under Solar Driven
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.225
– volume: 240
  start-page: 253
  year: 2019
  ident: ref_126
  article-title: Highly Efficient P-Type Cu3P/n-Type g-C3N4 Photocatalyst through Z-Scheme Charge Transfer Route
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.09.010
– volume: 61
  start-page: e202108686
  year: 2022
  ident: ref_97
  article-title: Crystal Structure Classification of Copper-Based Sulfides as a Tool for the Design of Inorganic Functional Materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202108686
– volume: 894
  start-page: 162331
  year: 2022
  ident: ref_128
  article-title: Special Z-Scheme Cu3P/TiO2 Hetero-Junction for Efficient Photocatalytic Hydrogen Evolution from Water
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.162331
– ident: ref_9
  doi: 10.3390/molecules21070900
– ident: ref_26
  doi: 10.3390/ma12010040
– volume: 60
  start-page: 917
  year: 2022
  ident: ref_83
  article-title: Synthesis and Characterization of Copper Oxide Nanoparticles and Their Application for Solar Cell
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.10.250
– volume: 162
  start-page: 187
  year: 2015
  ident: ref_28
  article-title: Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity
  publication-title: Appl. Catal. B.
  doi: 10.1016/j.apcatb.2014.06.052
– ident: ref_46
  doi: 10.3390/catal12101137
– volume: 164
  start-page: 254
  year: 2021
  ident: ref_98
  article-title: Shape-Controlled Synthesis of Copper Based Multinary Sulfide Catalysts for Enhanced Photocatalytic Hydrogen Evolution
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.09.052
– volume: 527
  start-page: 146908
  year: 2020
  ident: ref_35
  article-title: Simultaneous Nitrogen Doping and Cu2O Oxidization by One-Step Plasma Treatment toward Nitrogen-Doped Cu2O@CuO Heterostructure: An Efficient Photocatalyst for H2O2 Evolution under Visible Light
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146908
– volume: 9
  start-page: 24577
  year: 2017
  ident: ref_110
  article-title: Enhanced Photocarrier Separation in Hierarchical Graphitic-C3N4-Supported CuInS2 for Noble-Metal-Free Z-Scheme Photocatalytic Water Splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06030
– volume: 47
  start-page: 40391
  year: 2022
  ident: ref_94
  article-title: CuWO4 as a Novel Z-Scheme Partner to Construct TiO2 Based Stable and Efficient Heterojunction for Photocatalytic Hydrogen Generation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.07.155
– volume: 311
  start-page: 123229
  year: 2023
  ident: ref_138
  article-title: In Situ XPS Proved Graphdiyne (CnH2n−2)-Based CoFe LDH/CuI/GD Double S-Scheme Heterojunction Photocatalyst for Hydrogen Evolution
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.123229
– volume: 17
  start-page: 202200645
  year: 2022
  ident: ref_108
  article-title: Elucidating the Origin of Enhanced Photocatalytic Hydrogen Production on Tuned Cu7S4/CdS Heterostructures
  publication-title: Chem. An Asian J.
  doi: 10.1002/asia.202200645
– volume: 204
  start-page: 110211
  year: 2020
  ident: ref_75
  article-title: Z-Scheme Assisted ZnO/Cu2O-CuO Photocatalysts to Increase Photoactive Electrons in Hydrogen Evolution by Water Splitting
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.110211
– volume: 2
  start-page: 114006
  year: 2023
  ident: ref_117
  article-title: Interface Engineering of 0D–1D Cu2NiSnS4/TiO2(B) p–n Heterojunction Nanowires for Efficient Photocatalytic Hydrogen Evolution
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2023.01.013
– volume: 15
  start-page: 1513
  year: 2011
  ident: ref_1
  article-title: Role of Renewable Energy Sources in Environmental Protection: A Review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.037
– volume: 48
  start-page: 12683
  year: 2023
  ident: ref_88
  article-title: Rational Design of ZnO–CuO–Au S-Scheme Heterojunctions for Photocatalytic Hydrogen Production under Visible Light
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.11.289
– volume: 12
  start-page: 237
  year: 2011
  ident: ref_13
  article-title: Photocatalytic Water Splitting Using Semiconductor Particles: History and Recent Developments
  publication-title: J. Photochem. Photobiol. C Photochem. Rev.
  doi: 10.1016/j.jphotochemrev.2011.07.001
– volume: 6
  start-page: 1543
  year: 2020
  ident: ref_44
  article-title: S-Scheme Heterojunction Photocatalyst
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.06.010
– volume: 259
  start-page: 116311
  year: 2020
  ident: ref_82
  article-title: Artificial All-Solid-State System by RGO Bridged Cu2O and Bi2WO6 for Z-Scheme H2 Production and Tetracycline Degradation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116311
– volume: 868
  start-page: 159144
  year: 2021
  ident: ref_70
  article-title: Oxygen Vacancy Stimulated Direct Z-Scheme of Mesoporous Cu2O/TiO2 for Enhanced Photocatalytic Hydrogen Production from Water and Seawater
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159144
– volume: 5
  start-page: 7704
  year: 2022
  ident: ref_112
  article-title: Defect-Mediated Electron Transfer in Pt-CuInS2/CdS Heterostructured Nanocrystals for Enhanced Photocatalytic H2Evolution
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c00154
– volume: 27
  start-page: 1120
  year: 2015
  ident: ref_120
  article-title: Cu3-XP Nanocrystals as a Material Platform for near-Infrared Plasmonics and Cation Exchange Reactions
  publication-title: Chem. Mater.
  doi: 10.1021/cm5044792
– volume: 12
  start-page: 208
  year: 2019
  ident: ref_91
  article-title: A Wireless and Redox Mediator-Free Z-Scheme Twin Reactor for the Separate Evolution of Hydrogen and Oxygen
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2019.01.009
– volume: 126
  start-page: 6947
  year: 2022
  ident: ref_131
  article-title: Construction of CoP/Cu3P/Ni2P Double S-Scheme Heterojunctions for Improved Photocatalytic Hydrogen Evolution
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.2c00932
– volume: 983
  start-page: 1
  year: 2022
  ident: ref_56
  article-title: Z-Scheme Systems: From Fundamental Principles to Characterization, Synthesis, and Photocatalytic Fuel-Conversion Applications
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2022.07.003
– volume: 9
  start-page: 7286
  year: 2021
  ident: ref_111
  article-title: Investigation on the Photocatalytic Hydrogen Evolution Properties of Z-Scheme Au NPs/CuInS2/NCN-CN XComposite Photocatalysts
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c01234
– ident: ref_25
  doi: 10.3390/catal12101198
– volume: 24
  start-page: 2421
  year: 2014
  ident: ref_51
  article-title: Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303214
– volume: 34
  start-page: 7368
  year: 2009
  ident: ref_4
  article-title: Hydrogen the Fuel for 21st Century
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.05.093
– volume: 38
  start-page: 15632
  year: 2022
  ident: ref_135
  article-title: Graphdiyne (CnH2n−2)-Based GDY/CuI/MIL-53(Al) S-Scheme Heterojunction for Efficient Hydrogen Evolution
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.2c02334
– volume: 68
  start-page: 738
  year: 2021
  ident: ref_18
  article-title: Recent Development and Future Prospects of TiO2 Photocatalysis
  publication-title: J. Chin. Chem. Soc.
  doi: 10.1002/jccs.202000465
– volume: 48
  start-page: 3791
  year: 2023
  ident: ref_109
  article-title: CuInS2-Based Photocatalysts for Photocatalytic Hydrogen Evolution via Water Splitting
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.10.253
– ident: ref_30
  doi: 10.3390/catal7110317
– volume: 156
  start-page: 602
  year: 2020
  ident: ref_37
  article-title: Cu2O/InGaN Heterojunction Thin Films with Enhanced Photoelectrochemical Activity for Solar Water Splitting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.04.107
– volume: 21
  start-page: 100829
  year: 2021
  ident: ref_63
  article-title: A Review of Metal Oxide-Based Z-Scheme Heterojunction Photocatalysts: Actualities and Developments
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2021.100829
– volume: 40
  start-page: 191
  year: 2019
  ident: ref_34
  article-title: Recent Advances in Suppressing the Photocorrosion of Cuprous Oxide for Photocatalytic and Photoelectrochemical Energy Conversion
  publication-title: J. Photochem. Photobiol. C Photochem. Rev.
  doi: 10.1016/j.jphotochemrev.2018.10.001
– volume: 597
  start-page: 153660
  year: 2022
  ident: ref_129
  article-title: Insight into the Function of Noble-Metal Free Cu3P Decorated Zn0.5Cd0.5S for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation– Mechanism for Continuous Increasing Activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153660
– volume: 44
  start-page: 540
  year: 2019
  ident: ref_10
  article-title: A Critical Review in Strategies to Improve Photocatalytic Water Splitting towards Hydrogen Production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.200
– volume: 118
  start-page: 5201
  year: 2018
  ident: ref_41
  article-title: Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00286
– ident: ref_105
  doi: 10.1007/s10562-023-04348-5
– ident: ref_7
  doi: 10.1007/s10311-022-01432-x
– volume: 553
  start-page: 43
  year: 2018
  ident: ref_89
  article-title: Direct Z-Scheme Heterojunction Nanocomposite for the Enhanced Solar H2 Production
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2018.01.009
– volume: 178
  start-page: 308
  year: 2016
  ident: ref_84
  article-title: Synthesis of CuO Micro-Sphere Combined with g-C3N4 Using Cu2O as Precursor for Enhanced Photocatalytic Hydrogen Evolution
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.05.026
– volume: 46
  start-page: 7230
  year: 2021
  ident: ref_142
  article-title: Regular Octahedron Cu-MOFs Modifies Mn0.05Cd0.95S Nanoparticles to Form a S-Scheme Heterojunction for Photocatalytic Hydrogen Evolution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.11.214
– volume: 11
  start-page: 34095
  year: 2021
  ident: ref_121
  article-title: Photoluminescence Properties of Cuprous Phosphide Prepared through Phosphating Copper with a Native Oxide Layer
  publication-title: RSC Adv.
  doi: 10.1039/D1RA07112B
– volume: 39
  start-page: 6345
  year: 2014
  ident: ref_38
  article-title: Synergistic Effect of Cu2O/TiO2 Heterostructure Nanoparticle and Its High H2 Evolution Activity
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.209
– volume: 45
  start-page: 7806
  year: 2006
  ident: ref_40
  article-title: Noble Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200602473
– volume: 61
  start-page: 102056
  year: 2022
  ident: ref_32
  article-title: Photocatalytic CO2 reduction over Copper-Based Materials: A Review
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2022.102056
– volume: 19
  start-page: 441
  year: 2021
  ident: ref_52
  article-title: Photocatalysis for Removal of Environmental Pollutants and Fuel Production: A Review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01077-8
– volume: 37
  start-page: 5399
  year: 2023
  ident: ref_139
  article-title: In Situ X-Ray Photoelectron Spectroscopy (XPS) Demonstrated Graphdiyne (g-CnH2n−2) Based GDY-CuI/NiV-LDH Double S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c00011
– volume: 3
  start-page: 87
  year: 2023
  ident: ref_22
  article-title: Cu-Based Materials as Photocatalysts for Solar Light Artificial Photosynthesis: Aspects of Engineering Performance, Stability, Selectivity
  publication-title: Solar
  doi: 10.3390/solar3010008
– volume: 136
  start-page: 111171
  year: 2021
  ident: ref_95
  article-title: CuWO4-x Nanoparticles Incorporated Brookite TiO2 Porous Nanospheres: Preparation and Dramatic Photocatalytic Activity for Light Driven H2 Generation
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2020.111171
– volume: 8
  start-page: 1690
  year: 2018
  ident: ref_144
  article-title: Efficient Redox-Mediator-Free Z-Scheme Water Splitting Employing Oxysulfide Photocatalysts under Visible Light
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03884
– volume: 45
  start-page: 18753
  year: 2020
  ident: ref_8
  article-title: Emerging Technologies by Hydrogen: A Review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.05.021
– volume: 9
  start-page: 8346
  year: 2019
  ident: ref_69
  article-title: Defect Modulation of Z-Scheme TiO2/Cu2O Photocatalysts for Durable Water Splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01786
– volume: 35
  start-page: 7087
  year: 2010
  ident: ref_49
  article-title: Efficient Solar Hydrogen Production by Photocatalytic Water Splitting: From Fundamental Study to Pilot Demonstration
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.01.030
– volume: 219
  start-page: 110772
  year: 2021
  ident: ref_78
  article-title: Sonoprecipitation Design of Novel Efficient All-Solid Z-Scheme Cu(OH)2/Cu2O/C3N4 Nanophotocatalyst Applied in Water Splitting for H2 Production: Synergetic Effect of Cu-Based Cocatalyst (Cu(OH)2) and Electron Mediator (Cu)
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2020.110772
– volume: 13
  start-page: 24896
  year: 2021
  ident: ref_136
  article-title: Graphdiyne Based Ternary GD-CuI-NiTiO3 S-Scheme Heterjunction Photocatalyst for Hydrogen Evolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c04874
– volume: 7
  start-page: 300
  year: 2020
  ident: ref_141
  article-title: Recent Advances in MOF-Based Photocatalysis: Environmental Remediation under Visible Light
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI01120J
– volume: 429
  start-page: 132381
  year: 2022
  ident: ref_113
  article-title: Rationally Designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-Scheme Integrated Heterojunction for Enhanced Photocatalytic Hydrogen Evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132381
– volume: 26
  start-page: 4920
  year: 2014
  ident: ref_62
  article-title: All-Solid-State Z-Scheme Photocatalytic Systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400288
– volume: 60
  start-page: 19402
  year: 2021
  ident: ref_137
  article-title: Hierarchical Co3(PO4)2/CuI/g-CnH2n−2 S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c03223
– volume: 10
  start-page: 59
  year: 1979
  ident: ref_59
  article-title: Photoelectrochemistry and Heterogeneous Photo-Catalysis at Semiconductors
  publication-title: J. Photochem.
  doi: 10.1016/0047-2670(79)80037-4
SSID ssj0002794561
Score 2.245049
SecondaryResourceType review_article
Snippet Solar photocatalytic H2 production has drawn an increasing amount of attention from the scientific community, industry, and society due to its use of green...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 620
SubjectTerms Catalysis
Catalytic activity
Clean energy
Community
Copper
Current carriers
Efficiency
Energy
Fossil fuels
H2 production
Holes (electron deficiencies)
Hydrogen production
Light
Metals
Photocatalysis
Photocatalysts
Semiconductor materials
Semiconductors
Solar energy
Water splitting
Z-scheme family
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwFAyyJz2In7h-kYMHL3W7SZsmN11RFg8iqLB4KXlJHovorrj14L_3pe3KqogXryWhZabJm9eGGcaOUshSzCwkGkw01SYNZ7TpJ1ajQ-tJg4T6gOy1Gt5nV6N8tBD1Fc-ENfbADXA9DwJBQ-grYzLpLdhgIUXrwAB6rJ1AqeYtNFOP9e80E5VB4-Ujqa_vjd_965Q4ydLoMZV-KUO1W_-PzbiuMJdrbLWVhvyseaR1thQmG2xlwTBwk52evyUDqjuePyS3BPdzmPEmuoLfjKfVtP4Y8z6rZpy0KL-NbSsfCn7T2LoSBVvs_vLi7nyYtBkIiaOlXyUaQ0AFqrBagyiELDDF6COHORYOpAYs0CnXT4G2LZDWGoCgqK9VLpcIcpt1JtNJ2GG8rwR66wtBszNRWKNFhs6TpDG5yKXtspM5JKVrDcJjTsVTSY1CxLD8hmGXHX9OeGm8MX4fOogYfw6Lptb1BaK6bKku_6K6y_bnDJXtSpuVQisjZYzV2v2Pe-yx5Rgo35wi22ed6vUtHJDsqOCwfsM-AESb2tU
  priority: 102
  providerName: Directory of Open Access Journals
Title Cu-Based Z-Schemes Family Photocatalysts for Solar H2 Production
URI https://www.proquest.com/docview/2869336901
https://doaj.org/article/db2fb8be169943dabaeab0facb9bfdf4
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVoe4EDonyIhXblAwcupontOPYJ2KrLikO1olSquEQef9BD2ZRNeui_Z5x4lwIq19i-zIxn5k2s9wh5U4AsorTANJhEqo09nNGmZFZHF63HHiQMD2RP1eJcfr6oLvLArcvPKjc5cUjUvnVpRn7EtULsneST3l__ZEk1Kv1dzRIaO2QPU7BG8LU3OzldftlOWTiGWzWQpnJVCyZLWY78PgKx_tHlrV-36CdZJN6p4o_SNDD4_5Ogh6ozf0Ie53aRfhz9u08ehNVT8ugOieAz8uH4hs2wFnn6jZ2hC36Ejo5yFnR52fbtMKC57fqOYn9KzxKUpQtOlyPVK7rlOTmfn3w9XrCsi8AcpoOe6RhCVKBqqzXwmos6FjFxy8Uq1g6EhlhHp1xZAKYyENYagKAQ6ypXiQjiBdldtavwktBS8eitrzmelry2RnMZncc2x1S8EnZC3m1M0rhMGp60K64aBA_Jhs1fNpyQt9sD1yNfxv1bZ8nG222J6Hr40K6_N_neNB54BA2hVMZI4S3YYKGI1oGB6KOckIONh5p8-7rmd6y8-v_ya_IwycePb8YOyG6_vgmH2GT0MCU7ev5pmuNpOkD1X43d1A8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqfYUsAHkLiEJrbj2Ieq0MKypaWq1FaquKQeP-iBbsomVbV_it_IOI_lJbj1mtg5jL_xzDjj7yPkRQoiDcJAokBHUm3M4bTSWWJUsME4zEF82yC7LyfH4uNJfrJEvg93YWJb5bAnthu1q2w8I19nSmLtHeWTNi--JVE1Kv5dHSQ0Oljs-vkVlmz1xs47XN-XjI3fH21Pkl5VILHoTE2igvdBgiyMUsAKxouQhsjMFvJQWOAKQhGstFkKuBEAN0YDeImVorQ5D8DxuzfITcG5jh6lxh8WZzoMwZ23FK1MFjwRmcg6NiEcm66fzd2sQlSINLJcpb8FwlYv4K9w0Ma48V2y0ien9G2HpntkyU_vkzu_UBY-IG-2L5MtjHyOfk4OccHPfU078Qx6cFY1VXscNK-bmmI2TA9j4UwnjB50xLIIgofk-Frs9YgsT6upf0xoJllwxhUMZwtWGK2YCNZhUqVzlnMzIq8Hk5S2pyiPShlfSyxVog3LP2w4Iq8WEy46do5_D92KNl4Mi7Ta7YNq9qXsvbR0wAIo8JnUWnBnwHgDaTAWNAQXxIisDStU9r5elz-Rufr_18_JrcnRp71yb2d_9wm5HYXru261NbLczC79U0xvGnjWYoqS0-sG8Q_z1g9B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzFQgEfQOISNrEdxz4gYNuuthStVpRKFZfU4wc9wKZsUqH9a_w6xkl2eQluvSZ2DuNvPDPO-PsIeZqCSIMwkCjQkVQbczitdJYYFWwwDnMQ3zbIzuT0WLw9yU-2yPf1XZjYVrneE9uN2lU2npGPmJJYe0f5pFHo2yLme5NX51-TqCAV_7Su5TQ6iBz61Tcs3-qXB3u41s8Ym-x_2J0mvcJAYtGxmkQF74MEWRilgBWMFyENkaUt5KGwwBWEIlhpsxRwUwBujAbwEqtGaXMegON3r5DtAquidEC2x_uz-fvNCQ9DqOctYSuTBU9EJrKOW4hznY7OVm5ZIUZEGjmv0t_CYqse8FdwaCPe5Ca50aeq9E2HrVtkyy9uk-u_EBjeIa93L5IxxkFHPyZHuPxffE07KQ06P6uaqj0cWtVNTTE3pkexjKZTRucdzSxC4i45vhSL3SODRbXw9wnNJAvOuILhbMEKoxUTwTpMsXTOcm6G5MXaJKXtCcujbsbnEguXaMPyDxsOyfPNhPOOq-PfQ8fRxpthkWS7fVAtP5W9z5YOWAAFPpNaC-4MGG8gDcaChuCCGJKd9QqVvefX5U-cPvj_6yfkKgK4fHcwO3xIrkUV-651bYcMmuWFf4S5TgOPe1BRcnrZOP4B1FEU0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-Based+Z-Schemes+Family+Photocatalysts+for+Solar+H2+Production&rft.jtitle=Hydrogen&rft.au=Greco%2C+Rossella&rft.au=Botella%2C+Romain&rft.au=Fern%C3%A1ndez-Catal%C3%A1%2C+Javier&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2673-4141&rft.eissn=2673-4141&rft.volume=4&rft.issue=3&rft.spage=620&rft_id=info:doi/10.3390%2Fhydrogen4030040&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-4141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-4141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-4141&client=summon