On a mechanism of stabilizing turbulent free shear layers in cavity flows

Turbulent free shear flows are subject to the well-known Kelvin–Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability, and it is well-known that any free shear flow which approximates a thin vorticity layer will be unstable to a wide range of amplitudes and f...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 36; no. 10; pp. 1621 - 1637
Main Authors Stanek, Michael J., Visbal, Miguel R., Rizzetta, Donald P., Rubin, Stanley G, Khosla, Prem K.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2007
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Turbulent free shear flows are subject to the well-known Kelvin–Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability, and it is well-known that any free shear flow which approximates a thin vorticity layer will be unstable to a wide range of amplitudes and frequencies of disturbance. In fact, much of what constitutes flow control in turbulent free shear layers consists of feeding a prescribed destabilizing disturbance to these layers. The question in the control of free shear flows is not whether the shear layer will be stable, but whether you can influence how the layer becomes unstable. In most cases, since these flows are so receptive to forcing input, and naturally tend toward instability, large changes in flow conditions can be achieved with very small amplitude periodic inputs. Recently, it has been discovered that turbulent free shear flows can also be stabilized using periodic forcing. This is, at first glance, counter-intuitive, considering our long history of considering these flows to be very unstable to forcing input. It is a phenomenon not described in modern fluid dynamic text books. The forcing required to achieve this effect (which we will call turbulent shear layer stabilization) is of a much higher amplitude and frequency than the more traditional type of shear layer flow control effect seen in the literature (which we will call turbulent shear layer destabilization). A numerical study is undertaken to investigate the effect of frequency of pulsed mass injection on the nature of stabilization, destabilization and acoustic suppression in high speed cavity flows. An implicit, 2nd-order in space and time flow solver, coupled with a recently developed hybrid RANS-LES (Reynolds Averaged Navier Stokes-Large Eddy Simulation) turbulence model by Nichols and Nelson [Nichols RH, Nelson CC. Weapons bay acoustic predictions using a multi-scale turbulence model. In: Proceedings of the ITEA 2001 aircraft-stores compatibility symposium, March 2001], is utilized in a Chimera-based parallel format. This tool is used to numerically simulate both an unsuppressed cavity in resonance, as well as the effect of mass-addition pulsed jet flow control on cavity flow physics and ultimately, cavity acoustic levels. Frequency (and in a limited number of cases, amplitude) of pulse is varied, from 0 Hz (steady) up to 5000 Hz. The change in the character of the flow control effect as pulsing frequency is changed is described, and linked to changes in acoustic levels. Limited comparison to 1/10th scale experiments is presented. The observed local stabilization of the cavity turbulent shear layer, when subjected to high frequency pulsed blowing, is shown in simulation to be the result of a violent instability and breakdown of a pair of opposite sign vortical structures created with each high frequency “pulse”. This unique shear layer stabilization behavior is only observed in simulation above a certain critical pulsing frequency. Below this critical frequency, pulsing is shown in simulation to provide little benefit with respect to suppression of high cavity acoustic levels.
AbstractList Turbulent free shear flows are subject to the well-known Kelvin-Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability, and it is well-known that any free shear flow which approximates a thin vorticity layer will be unstable to a wide range of amplitudes and frequencies of disturbance. In fact, much of what constitutes flow control in turbulent free shear layers consists of feeding a prescribed destabilizing disturbance to these layers. The question in the control of free shear flows is not whether the shear layer will be stable, but whether you can influence how the layer becomes unstable. In most cases, since these flows are so receptive to forcing input, and naturally tend toward instability, large changes in flow conditions can be achieved with very small amplitude periodic inputs. Recently, it has been discovered that turbulent free shear flows can also be stabilized using periodic forcing. This is, at first glance, counter-intuitive, considering our long history of considering these flows to be very unstable to forcing input. It is a phenomenon not described in modern fluid dynamic text books. The forcing required to achieve this effect (which we will call turbulent shear layer stabilization) is of a much higher amplitude and frequency than the more traditional type of shear layer flow control effect seen in the literature (which we will call turbulent shear layer destabilization). A numerical study is undertaken to investigate the effect of frequency of pulsed mass injection on the nature of stabilization, destabilization and acoustic suppression in high speed cavity flows. An implicit, 2nd-order in space and time flow solver, coupled with a recently developed hybrid RANS-LES (Reynolds Averaged Navier Stokes-Large Eddy Simulation) turbulence model by Nichols and Nelson [Nichols RH, Nelson CC. Weapons bay acoustic predictions using a multi-scale turbulence model. In: Proceedings of the ITEA 2001 aircraft-stores compatibility symposium, March 2001], is utilized in a Chimera-based parallel format. This tool is used to numerically simulate both an unsuppressed cavity in resonance, as well as the effect of mass-addition pulsed jet flow control on cavity flow physics and ultimately, cavity acoustic levels. Frequency (and in a limited number of cases, amplitude) of pulse is varied, from 0Hz (steady) up to 5000Hz. The change in the character of the flow control effect as pulsing frequency is changed is described, and linked to changes in acoustic levels. Limited comparison to 1/10th scale experiments is presented. The observed local stabilization of the cavity turbulent shear layer, when subjected to high frequency pulsed blowing, is shown in simulation to be the result of a violent instability and breakdown of a pair of opposite sign vortical structures created with each high frequency 'pulse'. This unique shear layer stabilization behavior is only observed in simulation above a certain critical pulsing frequency. Below this critical frequency, pulsing is shown in simulation to provide little benefit with respect to suppression of high cavity acoustic levels.
Turbulent free shear flows are subject to the well-known Kelvin–Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability, and it is well-known that any free shear flow which approximates a thin vorticity layer will be unstable to a wide range of amplitudes and frequencies of disturbance. In fact, much of what constitutes flow control in turbulent free shear layers consists of feeding a prescribed destabilizing disturbance to these layers. The question in the control of free shear flows is not whether the shear layer will be stable, but whether you can influence how the layer becomes unstable. In most cases, since these flows are so receptive to forcing input, and naturally tend toward instability, large changes in flow conditions can be achieved with very small amplitude periodic inputs. Recently, it has been discovered that turbulent free shear flows can also be stabilized using periodic forcing. This is, at first glance, counter-intuitive, considering our long history of considering these flows to be very unstable to forcing input. It is a phenomenon not described in modern fluid dynamic text books. The forcing required to achieve this effect (which we will call turbulent shear layer stabilization) is of a much higher amplitude and frequency than the more traditional type of shear layer flow control effect seen in the literature (which we will call turbulent shear layer destabilization). A numerical study is undertaken to investigate the effect of frequency of pulsed mass injection on the nature of stabilization, destabilization and acoustic suppression in high speed cavity flows. An implicit, 2nd-order in space and time flow solver, coupled with a recently developed hybrid RANS-LES (Reynolds Averaged Navier Stokes-Large Eddy Simulation) turbulence model by Nichols and Nelson [Nichols RH, Nelson CC. Weapons bay acoustic predictions using a multi-scale turbulence model. In: Proceedings of the ITEA 2001 aircraft-stores compatibility symposium, March 2001], is utilized in a Chimera-based parallel format. This tool is used to numerically simulate both an unsuppressed cavity in resonance, as well as the effect of mass-addition pulsed jet flow control on cavity flow physics and ultimately, cavity acoustic levels. Frequency (and in a limited number of cases, amplitude) of pulse is varied, from 0 Hz (steady) up to 5000 Hz. The change in the character of the flow control effect as pulsing frequency is changed is described, and linked to changes in acoustic levels. Limited comparison to 1/10th scale experiments is presented. The observed local stabilization of the cavity turbulent shear layer, when subjected to high frequency pulsed blowing, is shown in simulation to be the result of a violent instability and breakdown of a pair of opposite sign vortical structures created with each high frequency “pulse”. This unique shear layer stabilization behavior is only observed in simulation above a certain critical pulsing frequency. Below this critical frequency, pulsing is shown in simulation to provide little benefit with respect to suppression of high cavity acoustic levels.
Author Visbal, Miguel R.
Rubin, Stanley G
Khosla, Prem K.
Stanek, Michael J.
Rizzetta, Donald P.
Author_xml – sequence: 1
  givenname: Michael J.
  surname: Stanek
  fullname: Stanek, Michael J.
  email: Michael.Stanek@wpafb.af.mil
  organization: Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
– sequence: 2
  givenname: Miguel R.
  surname: Visbal
  fullname: Visbal, Miguel R.
  organization: Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
– sequence: 3
  givenname: Donald P.
  surname: Rizzetta
  fullname: Rizzetta, Donald P.
  organization: Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
– sequence: 4
  givenname: Stanley G
  surname: Rubin
  fullname: Rubin, Stanley G
  organization: University of Cincinnati, Cincinnati, OH, United States
– sequence: 5
  givenname: Prem K.
  surname: Khosla
  fullname: Khosla, Prem K.
  organization: University of Cincinnati, Cincinnati, OH, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19149431$$DView record in Pascal Francis
BookMark eNqFkD1rHDEQQEVwIGcnvyFqkm430mpPWhUpjMmHweDGqcWcNIp1aKWLpHW4_HqvOeMijath4L0ZeOfkLOWEhHzkrOeMyy_73ub54OMSXD8wpnomesb5G7Lhk9IdU6M6IxvGxm2ntGDvyHmte7buYhg35Po2UaAz2ntIoc40e1ob7EIM_0L6TdtSdkvE1KgviLTeIxQa4Yil0pCohYfQjtTH_Le-J289xIofnucF-fX9293Vz-7m9sf11eVNZ4WSrZs0Sj65AYTVWmk5cgbaOTkBVw6U0NPgUbrBepAKYbJymhgXbOd2WyesEBfk8-nuoeQ_C9Zm5lAtxggJ81KNYHqrpZQr-OkZhGoh-gLJhmoOJcxQjoZrPupR8JX7euJsybUW9MaGBi3k1AqEaDgzT6HN3ryENk-hDRNmDb366j__5cWr5uXJxLXXQ8Biqg2YLLpQ0Dbjcnj1xiMRhaAD
CODEN CPFLBI
CitedBy_id crossref_primary_10_1142_S2010194512008884
crossref_primary_10_1080_14685240903338080
crossref_primary_10_1016_j_compfluid_2015_02_015
crossref_primary_10_1017_S0022112010001023
crossref_primary_10_2514_1_J058709
crossref_primary_10_2514_1_J052804
crossref_primary_10_1016_j_ast_2018_03_033
crossref_primary_10_1115_1_4006468
crossref_primary_10_1016_j_ast_2010_04_006
crossref_primary_10_1017_jfm_2012_329
crossref_primary_10_1016_j_paerosci_2010_11_002
crossref_primary_10_3390_fluids8080227
crossref_primary_10_1115_1_4030002
crossref_primary_10_1260_1756_8250_5_3_4_153
Cites_doi 10.2514/2.1266
10.2514/6.1998-2643
10.2514/3.12109
10.2514/3.50745
10.2514/6.2000-1905
10.2514/6.2003-7
10.2514/6.2003-3552
10.2514/2.811
10.1016/0017-9310(72)90076-2
10.2514/6.1987-1126
10.21236/ADA364301
10.2514/6.2002-2853
10.2514/3.12145
10.2514/6.2002-2404
10.2514/6.2005-2800
10.2514/6.2002-3186
10.1115/FEDSM2005-77422
10.2514/6.2003-3567
10.2514/3.60901
10.2514/6.1985-1523
10.2514/6.2002-1130
10.1016/0021-9991(81)90156-X
10.2514/3.46746
10.2514/6.2001-2858
10.1016/S1270-9638(99)80023-6
ContentType Journal Article
Copyright 2007
2007 INIST-CNRS
Copyright_xml – notice: 2007
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compfluid.2007.03.011
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0747
EndPage 1637
ExternalDocumentID 19149431
10_1016_j_compfluid_2007_03_011
S0045793007000412
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c376t-89e618d2a3c99796410a9dd68a17da73982fe6d2cfa67ea8c6880130bdb5d3c33
IEDL.DBID .~1
ISSN 0045-7930
IngestDate Fri Jul 11 01:12:15 EDT 2025
Mon Jul 21 09:16:58 EDT 2025
Tue Jul 01 02:21:14 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Fri Feb 23 02:29:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Turbulent flow
Computational fluid dynamics
Stabilization
Digital simulation
Boundary conditions
Blowing
Periodic perturbation
Cavities
Flow control
Modelling
Shear layer
Mesh generation
Turbulence structure
Weapon bay
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-89e618d2a3c99796410a9dd68a17da73982fe6d2cfa67ea8c6880130bdb5d3c33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 30959666
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_30959666
pascalfrancis_primary_19149431
crossref_citationtrail_10_1016_j_compfluid_2007_03_011
crossref_primary_10_1016_j_compfluid_2007_03_011
elsevier_sciencedirect_doi_10_1016_j_compfluid_2007_03_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-12-01
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers & fluids
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Nichols RH, Nelson CC. Weapons bay acoustic predictions using a multi-scale turbulence model. In: Proceedings of the ITEA 2001 aircraft-stores compatibility symposium, March 2001.
Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. AIAA Paper 81-1259.
Rizzetta (bib30) 1994; 32
Hanjalic, Launder, Schiestel (bib31) 1980; vol. 2
Benek JA, Dougherty FC, Steger JL, Buning PG. Chimera: a grid-embedding technique. AEDC-TR-85-64, December 1985.
Benek JA, Donegan TL, Suhs NE. Extended Chimera grid-embedding scheme with applications to viscous flows. AIAA Paper 87-1126, June 1987.
Rizzetta, Visbal, Gaitonde (bib27) 2001; 39
Cattafesta LN, Williams D, Rowley C, Alvi F. Review of active control of flow-induced cavity resonance. ALAA Paper 2003-3567.
Das K, Hamed A, Basu D. Numerical investigations of transonic cavity flow control using steady and pulsed fluidic injection. ASME Paper FEDSM2005-77422.
Pulliam, Steger (bib14) 1980; 18
Rizzetta, Visbal, Stanek (bib24) 1999; 37
Stanek MJ. Control of high speed turbulent free shear flows – stabilization and destabilization. Keynote Lecture No. ICCES0520051003975, International conference on computational and experimental engineering and sciences (ICCES). Indian Institute of Technology Madras, Chennai, India, December, 2005.
Stanek MJ, Raman G, Ross JA, Odedra J, Peto J, Alvi F, Kibens V. High frequency acoustic suppression – the role of mass flow, the notion of superposition, and the role of inviscid instability – a new model (Part II). AIAA Paper 2002-2404.
Rizzetta DP, Visbal MR, Blaisdell GA. Application of a high-order compact difference scheme to large-eddy and direct numerical simulation. AIAA Paper 99-3714.
Beam, Warming (bib16) 1978; 16
Rizzetta DP, Visbal MR. Large-eddy simulation of supersonic compression ramp flows. AIAA Paper 2001-2858.
Tramel R, Rock S, Ellis J, Sharpes D. Comparison of large cavity aeroacoustic computations with flight test results. AIAA Paper 2005-2800.
Stanek MJ. A numerical study of the effect of frequency of pulsed flow control applied to a rectangular cavity in supersonic crossflow. Ph.D. Thesis, University of Cincinnati, July, 2005.
Gordnier, Visbal (bib19) 1998; 2
Sherman (bib40) 1990
Stanek MJ, Raman G, Kibens V, Ross JA, Odedra J, Peto JW. Control of cavity resonance through very high frequency forcing. AIAA Paper 2000-1905.
Gaitonde D, Visbal MR. High-order schemes for Navier–Stokes equations: algorithm and implementation into FDL3DI. AFRL-VA-WP-TR-1998-3060.
Arunajatesan S, Shipman JD, Sinha N. Hybrid RANS-LES simulation of cavity flowfields with control. AIAA Paper 2002-1130.
Suhs NE, Rogers SE, Dietz WE. PEGASUS 5: an automated pre-processor for overset-grid CFD. AIAA Paper 2002-3186.
McGrath S, Shaw L. Active control of shallow cavity acoustic resonance. AIAA Paper 96-1949.
Gordnier (bib20) 1995; 32
Stanek MJ, Ross JA, Wrisdale I. High frequency acoustic suppression – experimental and computational overview. Paper No. 29, NATO RTO symposium on aging mechanisms and control, Manchester, UK, October 2001.
Jones, Launder (bib29) 1972; 15
Visbal (bib22) 1994; 32
Kim SW, Chen CP. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum. AIAA Paper 88-0221.
Message Passing Interface Forum. MPI: a message-passing interface standard. Computer Science Department Technical Report, CS-94-230. University of Tennessee, Knoxville, TN, April 1994.
Visbal MR, Gaitonde DV, Gogineni SP. Direct numerical simulation of a forced transitional plane wall jet. AIAA Paper 1998-2643.
Duncan B, Liou W. A multiple-scale turbulence model for incompressible flow. AIAA Paper 93-0086.
Panton (bib1) 1984
Stanek MJ, Ross JA, Odedra J, Peto J. High frequency acoustic suppression – the mystery of the rod-in-crossflow revealed. AIAA Paper 2003-0007.
Rizzetta DP, Visbal MR. Large-eddy simulation of supersonic cavity flowfields including flow control. AIAA Paper 2002-2853.
Pulliam, Chaussee (bib18) 1981; 39
Visbal MR. Computational study of vortex breakdown on a pitching delta wing. AIAA Paper 93-2974.
Nichols RH, Nelson CC. Application of hybrid RANS-LES turbulence models. AIAA Paper 2003-0083.
Grove J. Private communication, April 2006.
Hanjalic (10.1016/j.compfluid.2007.03.011_bib31) 1980; vol. 2
Rizzetta (10.1016/j.compfluid.2007.03.011_bib30) 1994; 32
10.1016/j.compfluid.2007.03.011_bib11
10.1016/j.compfluid.2007.03.011_bib33
10.1016/j.compfluid.2007.03.011_bib10
10.1016/j.compfluid.2007.03.011_bib32
10.1016/j.compfluid.2007.03.011_bib13
10.1016/j.compfluid.2007.03.011_bib35
10.1016/j.compfluid.2007.03.011_bib12
10.1016/j.compfluid.2007.03.011_bib34
10.1016/j.compfluid.2007.03.011_bib15
Beam (10.1016/j.compfluid.2007.03.011_bib16) 1978; 16
10.1016/j.compfluid.2007.03.011_bib37
Pulliam (10.1016/j.compfluid.2007.03.011_bib18) 1981; 39
10.1016/j.compfluid.2007.03.011_bib36
10.1016/j.compfluid.2007.03.011_bib17
10.1016/j.compfluid.2007.03.011_bib39
10.1016/j.compfluid.2007.03.011_bib38
10.1016/j.compfluid.2007.03.011_bib9
Visbal (10.1016/j.compfluid.2007.03.011_bib22) 1994; 32
10.1016/j.compfluid.2007.03.011_bib7
10.1016/j.compfluid.2007.03.011_bib8
Gordnier (10.1016/j.compfluid.2007.03.011_bib20) 1995; 32
10.1016/j.compfluid.2007.03.011_bib2
Sherman (10.1016/j.compfluid.2007.03.011_bib40) 1990
Panton (10.1016/j.compfluid.2007.03.011_bib1) 1984
10.1016/j.compfluid.2007.03.011_bib5
Pulliam (10.1016/j.compfluid.2007.03.011_bib14) 1980; 18
10.1016/j.compfluid.2007.03.011_bib6
10.1016/j.compfluid.2007.03.011_bib3
Rizzetta (10.1016/j.compfluid.2007.03.011_bib27) 2001; 39
10.1016/j.compfluid.2007.03.011_bib4
10.1016/j.compfluid.2007.03.011_bib21
10.1016/j.compfluid.2007.03.011_bib23
10.1016/j.compfluid.2007.03.011_bib26
10.1016/j.compfluid.2007.03.011_bib25
10.1016/j.compfluid.2007.03.011_bib28
Gordnier (10.1016/j.compfluid.2007.03.011_bib19) 1998; 2
Jones (10.1016/j.compfluid.2007.03.011_bib29) 1972; 15
Rizzetta (10.1016/j.compfluid.2007.03.011_bib24) 1999; 37
References_xml – year: 1984
  ident: bib1
  article-title: Incompressible flow
– reference: Visbal MR, Gaitonde DV, Gogineni SP. Direct numerical simulation of a forced transitional plane wall jet. AIAA Paper 1998-2643.
– reference: Nichols RH, Nelson CC. Weapons bay acoustic predictions using a multi-scale turbulence model. In: Proceedings of the ITEA 2001 aircraft-stores compatibility symposium, March 2001.
– volume: 39
  start-page: 347
  year: 1981
  end-page: 363
  ident: bib18
  article-title: A diagonal form of an implicit approximate-factorization algorithm
  publication-title: J Comput Phys
– reference: Rizzetta DP, Visbal MR, Blaisdell GA. Application of a high-order compact difference scheme to large-eddy and direct numerical simulation. AIAA Paper 99-3714.
– volume: 39
  start-page: 2283
  year: 2001
  end-page: 2292
  ident: bib27
  article-title: Large-eddy simulation of supersonic compression-ramp flow by a high-order method
  publication-title: AIAA J
– volume: 32
  start-page: 1568
  year: 1994
  end-page: 1575
  ident: bib22
  article-title: Onset of vortex breakdown above a pitching delta wing
  publication-title: AIAA J
– reference: Rizzetta DP, Visbal MR. Large-eddy simulation of supersonic cavity flowfields including flow control. AIAA Paper 2002-2853.
– reference: Kim SW, Chen CP. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum. AIAA Paper 88-0221.
– volume: 18
  start-page: 159
  year: 1980
  end-page: 167
  ident: bib14
  article-title: Implicit finite difference simulation of three-dimensional compressible flows
  publication-title: AIAA J
– reference: Benek JA, Dougherty FC, Steger JL, Buning PG. Chimera: a grid-embedding technique. AEDC-TR-85-64, December 1985.
– volume: 2
  start-page: 347
  year: 1998
  end-page: 357
  ident: bib19
  article-title: Numerical simulation of Delta-Wing roll
  publication-title: Aerospace Science and Technology
– reference: Grove J. Private communication, April 2006.
– reference: Duncan B, Liou W. A multiple-scale turbulence model for incompressible flow. AIAA Paper 93-0086.
– reference: Stanek MJ. Control of high speed turbulent free shear flows – stabilization and destabilization. Keynote Lecture No. ICCES0520051003975, International conference on computational and experimental engineering and sciences (ICCES). Indian Institute of Technology Madras, Chennai, India, December, 2005.
– reference: Gaitonde D, Visbal MR. High-order schemes for Navier–Stokes equations: algorithm and implementation into FDL3DI. AFRL-VA-WP-TR-1998-3060.
– volume: 32
  start-page: 1113
  year: 1994
  end-page: 1119
  ident: bib30
  article-title: Numerical simulation of turbulent cylinder juncture flowfields
  publication-title: AIAA J
– year: 1990
  ident: bib40
  article-title: Viscous flow
– reference: Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. AIAA Paper 81-1259.
– reference: Benek JA, Donegan TL, Suhs NE. Extended Chimera grid-embedding scheme with applications to viscous flows. AIAA Paper 87-1126, June 1987.
– reference: Das K, Hamed A, Basu D. Numerical investigations of transonic cavity flow control using steady and pulsed fluidic injection. ASME Paper FEDSM2005-77422.
– reference: Arunajatesan S, Shipman JD, Sinha N. Hybrid RANS-LES simulation of cavity flowfields with control. AIAA Paper 2002-1130.
– volume: vol. 2
  start-page: 36
  year: 1980
  end-page: 49
  ident: bib31
  article-title: Multiple-time-scale concepts in turbulent shear flows
  publication-title: Turbulent shear flows
– reference: Stanek MJ, Raman G, Ross JA, Odedra J, Peto J, Alvi F, Kibens V. High frequency acoustic suppression – the role of mass flow, the notion of superposition, and the role of inviscid instability – a new model (Part II). AIAA Paper 2002-2404.
– reference: Nichols RH, Nelson CC. Application of hybrid RANS-LES turbulence models. AIAA Paper 2003-0083.
– reference: Visbal MR. Computational study of vortex breakdown on a pitching delta wing. AIAA Paper 93-2974.
– reference: McGrath S, Shaw L. Active control of shallow cavity acoustic resonance. AIAA Paper 96-1949.
– reference: Rizzetta DP, Visbal MR. Large-eddy simulation of supersonic compression ramp flows. AIAA Paper 2001-2858.
– reference: Stanek MJ, Ross JA, Wrisdale I. High frequency acoustic suppression – experimental and computational overview. Paper No. 29, NATO RTO symposium on aging mechanisms and control, Manchester, UK, October 2001.
– reference: Stanek MJ, Raman G, Kibens V, Ross JA, Odedra J, Peto JW. Control of cavity resonance through very high frequency forcing. AIAA Paper 2000-1905.
– reference: Tramel R, Rock S, Ellis J, Sharpes D. Comparison of large cavity aeroacoustic computations with flight test results. AIAA Paper 2005-2800.
– reference: Stanek MJ. A numerical study of the effect of frequency of pulsed flow control applied to a rectangular cavity in supersonic crossflow. Ph.D. Thesis, University of Cincinnati, July, 2005.
– volume: 37
  start-page: 919
  year: 1999
  end-page: 927
  ident: bib24
  article-title: Numerical investigation of synthetic jet flowfields
  publication-title: AIAA J
– reference: Stanek MJ, Ross JA, Odedra J, Peto J. High frequency acoustic suppression – the mystery of the rod-in-crossflow revealed. AIAA Paper 2003-0007.
– volume: 15
  start-page: 301
  year: 1972
  end-page: 314
  ident: bib29
  article-title: The prediction of laminarization with a two-equation model of turbulence
  publication-title: Int J Heat Mass Transfer
– reference: Message Passing Interface Forum. MPI: a message-passing interface standard. Computer Science Department Technical Report, CS-94-230. University of Tennessee, Knoxville, TN, April 1994.
– volume: 32
  start-page: 486
  year: 1995
  end-page: 492
  ident: bib20
  article-title: Computation of Delta-Wing roll maneuvers
  publication-title: J Aircraft
– volume: 16
  start-page: 393
  year: 1978
  end-page: 402
  ident: bib16
  article-title: An implicit factored scheme for the compressible Navier–Stokes equations
  publication-title: AIAA J
– reference: Suhs NE, Rogers SE, Dietz WE. PEGASUS 5: an automated pre-processor for overset-grid CFD. AIAA Paper 2002-3186.
– reference: Cattafesta LN, Williams D, Rowley C, Alvi F. Review of active control of flow-induced cavity resonance. ALAA Paper 2003-3567.
– volume: 39
  start-page: 2283
  issue: 12
  year: 2001
  ident: 10.1016/j.compfluid.2007.03.011_bib27
  article-title: Large-eddy simulation of supersonic compression-ramp flow by a high-order method
  publication-title: AIAA J
  doi: 10.2514/2.1266
– ident: 10.1016/j.compfluid.2007.03.011_bib21
– ident: 10.1016/j.compfluid.2007.03.011_bib23
  doi: 10.2514/6.1998-2643
– volume: 32
  start-page: 1113
  issue: 6
  year: 1994
  ident: 10.1016/j.compfluid.2007.03.011_bib30
  article-title: Numerical simulation of turbulent cylinder juncture flowfields
  publication-title: AIAA J
  doi: 10.2514/3.12109
– ident: 10.1016/j.compfluid.2007.03.011_bib4
– volume: 18
  start-page: 159
  issue: 2
  year: 1980
  ident: 10.1016/j.compfluid.2007.03.011_bib14
  article-title: Implicit finite difference simulation of three-dimensional compressible flows
  publication-title: AIAA J
  doi: 10.2514/3.50745
– ident: 10.1016/j.compfluid.2007.03.011_bib2
– ident: 10.1016/j.compfluid.2007.03.011_bib6
  doi: 10.2514/6.2000-1905
– ident: 10.1016/j.compfluid.2007.03.011_bib8
  doi: 10.2514/6.2003-7
– ident: 10.1016/j.compfluid.2007.03.011_bib17
– ident: 10.1016/j.compfluid.2007.03.011_bib15
– ident: 10.1016/j.compfluid.2007.03.011_bib28
  doi: 10.2514/6.2003-3552
– volume: 37
  start-page: 919
  issue: 8
  year: 1999
  ident: 10.1016/j.compfluid.2007.03.011_bib24
  article-title: Numerical investigation of synthetic jet flowfields
  publication-title: AIAA J
  doi: 10.2514/2.811
– volume: 15
  start-page: 301
  issue: 2
  year: 1972
  ident: 10.1016/j.compfluid.2007.03.011_bib29
  article-title: The prediction of laminarization with a two-equation model of turbulence
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/0017-9310(72)90076-2
– ident: 10.1016/j.compfluid.2007.03.011_bib35
  doi: 10.2514/6.1987-1126
– ident: 10.1016/j.compfluid.2007.03.011_bib13
  doi: 10.21236/ADA364301
– ident: 10.1016/j.compfluid.2007.03.011_bib32
– ident: 10.1016/j.compfluid.2007.03.011_bib38
– ident: 10.1016/j.compfluid.2007.03.011_bib9
  doi: 10.2514/6.2002-2853
– volume: 32
  start-page: 1568
  issue: 8
  year: 1994
  ident: 10.1016/j.compfluid.2007.03.011_bib22
  article-title: Onset of vortex breakdown above a pitching delta wing
  publication-title: AIAA J
  doi: 10.2514/3.12145
– ident: 10.1016/j.compfluid.2007.03.011_bib7
  doi: 10.2514/6.2002-2404
– ident: 10.1016/j.compfluid.2007.03.011_bib11
  doi: 10.2514/6.2005-2800
– ident: 10.1016/j.compfluid.2007.03.011_bib36
  doi: 10.2514/6.2002-3186
– ident: 10.1016/j.compfluid.2007.03.011_bib12
  doi: 10.1115/FEDSM2005-77422
– ident: 10.1016/j.compfluid.2007.03.011_bib3
  doi: 10.2514/6.2003-3567
– volume: 16
  start-page: 393
  issue: 4
  year: 1978
  ident: 10.1016/j.compfluid.2007.03.011_bib16
  article-title: An implicit factored scheme for the compressible Navier–Stokes equations
  publication-title: AIAA J
  doi: 10.2514/3.60901
– ident: 10.1016/j.compfluid.2007.03.011_bib34
  doi: 10.2514/6.1985-1523
– ident: 10.1016/j.compfluid.2007.03.011_bib33
– ident: 10.1016/j.compfluid.2007.03.011_bib10
  doi: 10.2514/6.2002-1130
– ident: 10.1016/j.compfluid.2007.03.011_bib37
– volume: 39
  start-page: 347
  issue: 2
  year: 1981
  ident: 10.1016/j.compfluid.2007.03.011_bib18
  article-title: A diagonal form of an implicit approximate-factorization algorithm
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(81)90156-X
– year: 1984
  ident: 10.1016/j.compfluid.2007.03.011_bib1
– ident: 10.1016/j.compfluid.2007.03.011_bib39
– ident: 10.1016/j.compfluid.2007.03.011_bib5
– year: 1990
  ident: 10.1016/j.compfluid.2007.03.011_bib40
– volume: 32
  start-page: 486
  issue: 3
  year: 1995
  ident: 10.1016/j.compfluid.2007.03.011_bib20
  article-title: Computation of Delta-Wing roll maneuvers
  publication-title: J Aircraft
  doi: 10.2514/3.46746
– ident: 10.1016/j.compfluid.2007.03.011_bib25
– ident: 10.1016/j.compfluid.2007.03.011_bib26
  doi: 10.2514/6.2001-2858
– volume: 2
  start-page: 347
  issue: 6
  year: 1998
  ident: 10.1016/j.compfluid.2007.03.011_bib19
  article-title: Numerical simulation of Delta-Wing roll
  publication-title: Aerospace Science and Technology
  doi: 10.1016/S1270-9638(99)80023-6
– volume: vol. 2
  start-page: 36
  year: 1980
  ident: 10.1016/j.compfluid.2007.03.011_bib31
  article-title: Multiple-time-scale concepts in turbulent shear flows
SSID ssj0004324
Score 1.9276221
Snippet Turbulent free shear flows are subject to the well-known Kelvin–Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability,...
Turbulent free shear flows are subject to the well-known Kelvin-Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1621
SubjectTerms Computational methods in fluid dynamics
Exact sciences and technology
Flow control
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Title On a mechanism of stabilizing turbulent free shear layers in cavity flows
URI https://dx.doi.org/10.1016/j.compfluid.2007.03.011
https://www.proquest.com/docview/30959666
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA6iF5dF1N1lZ9Uxh722dk-604k3EWVUdC8reAvVeUAvY89gz7Dgwd9uVT_UQcSD125CQlWlvkpS9RVjvyGRTqcqxbOJlFFqweOecxB5neYpJLEVMRUnX13L8U16cZvdrrCTvhaG0io739_69MZbd18OO2kezsqSanzTDK2LCGsa1iiqYE9zsvKDx5c0D2Kca1-ZiZpRxEs5XpS2HSaL0nVchuIgTpL3EOrrDGqUW2gbXrzx3Q0gnW2yjS6S5MftYrfYiq-22ZdX_ILf2PmfigO_81TdW9Z3fBo4BoOUDvuA_zmiTbEg1OHh3nteU3NrPgEKwnlZcQvUV4KHyfR__Z3dnJ3-PRlHXe-EyKLLmEdKe5koNwJhtaZy0yQG7ZxUkKAqcqHVKHjpRjaAzD0oK3EjI54VrsicsEL8YKvVtPI_GR_ZAhyx9mQaoQwUiAB5VuRBFaqQ0g6Y7OVlbEcsTv0tJqbPIPtnngVNbS9zEwuDgh6w-HngrOXW-HjIUa8Qs2QmBhHg48HDJRW-TKrxnIiR1IDt9zo1uMvo6QQqP13URtB1KZ70fn1m_h223twMN8kwu2x1fr_wexjSzIthY7NDtnZ8fjm-fgIlSPe6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgCEEE-xPFofuKZN1oljc0MV1Rbacmml3qyJH1LQNrtqdlWpB347M3m0rBDqgWsiy9aMZ76xPfMNwCfMlDe5zulsolSSOwxkcx6TYPIyxyx1MuXi5JNTNTvPv10UF1twMNbCcFrl4Pt7n9556-HL_iDN_WVdc41vXtDuYsKajjXqATzMyXy5jcHer7s8D6ac65-ZmZtRphtJXpy3Hefr2g9khnIvzbJ_QdTTJbYkuNh3vPjLeXeIdPgcng2hpPjSr_YFbIXmJTz5g2DwFRz9aASKy8DlvXV7KRZRUDTI-bA39F8Q3FRrhh0Rr0IQLXe3FnPkKFzUjXDIjSVEnC-u29dwfvj17GCWDM0TEkc-Y5VoE1Sm_RSlM4brTbMUjfdKY0a6KKXR0xiUn7qIqgyonSJLJkCrfFV46aR8A9vNoglvQUxdhZ5pewpDWIYaZcSyqMqoK10p5SagRnlZNzCLc4OLuR1TyH7aW0Fz38vSptKSoCeQ3g5c9uQa9w_5PCrEbuwTSxBw_-CdDRXeTWrooEih1AR2R51aMjN-O8EmLNatlXxfSke9d_8z_y48mp2dHNvjo9Pv7-Fxd03cZcZ8gO3V1Tp8pPhmVe10-_c3yIX5SA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+mechanism+of+stabilizing+turbulent+free+shear+layers+in+cavity+flows&rft.jtitle=Computers+%26+fluids&rft.au=Stanek%2C+Michael+J&rft.au=Visbal%2C+Miguel+R&rft.au=Rizzetta%2C+Donald+P&rft.au=Rubin%2C+Stanley+G&rft.date=2007-12-01&rft.issn=0045-7930&rft.volume=36&rft.issue=10&rft.spage=1621&rft.epage=1637&rft_id=info:doi/10.1016%2Fj.compfluid.2007.03.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon