On a mechanism of stabilizing turbulent free shear layers in cavity flows
Turbulent free shear flows are subject to the well-known Kelvin–Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability, and it is well-known that any free shear flow which approximates a thin vorticity layer will be unstable to a wide range of amplitudes and f...
Saved in:
Published in | Computers & fluids Vol. 36; no. 10; pp. 1621 - 1637 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.12.2007
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Turbulent free shear flows are subject to the well-known Kelvin–Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability, and it is well-known that any free shear flow which approximates a thin vorticity layer will be unstable to a wide range of amplitudes and frequencies of disturbance. In fact, much of what constitutes flow control in turbulent free shear layers consists of feeding a prescribed destabilizing disturbance to these layers. The question in the control of free shear flows is not whether the shear layer will be stable, but whether you can influence
how the layer becomes unstable. In most cases, since these flows are so receptive to forcing input, and naturally tend toward instability, large changes in flow conditions can be achieved with very small amplitude periodic inputs.
Recently, it has been discovered that turbulent free shear flows can also be stabilized using periodic forcing. This is, at first glance, counter-intuitive, considering our long history of considering these flows to be very unstable to forcing input. It is a phenomenon not described in modern fluid dynamic text books. The forcing required to achieve this effect (which we will call turbulent shear layer stabilization) is of a much higher amplitude and frequency than the more traditional type of shear layer flow control effect seen in the literature (which we will call turbulent shear layer destabilization).
A numerical study is undertaken to investigate the effect of frequency of pulsed mass injection on the nature of stabilization, destabilization and acoustic suppression in high speed cavity flows. An implicit, 2nd-order in space and time flow solver, coupled with a recently developed hybrid RANS-LES (Reynolds Averaged Navier Stokes-Large Eddy Simulation) turbulence model by Nichols and Nelson [Nichols RH, Nelson CC. Weapons bay acoustic predictions using a multi-scale turbulence model. In: Proceedings of the ITEA 2001 aircraft-stores compatibility symposium, March 2001], is utilized in a Chimera-based parallel format. This tool is used to numerically simulate both an unsuppressed cavity in resonance, as well as the effect of mass-addition pulsed jet flow control on cavity flow physics and ultimately, cavity acoustic levels.
Frequency (and in a limited number of cases, amplitude) of pulse is varied, from 0
Hz (steady) up to 5000
Hz. The change in the character of the flow control effect as pulsing frequency is changed is described, and linked to changes in acoustic levels. Limited comparison to 1/10th scale experiments is presented.
The observed local stabilization of the cavity turbulent shear layer, when subjected to high frequency pulsed blowing, is shown in simulation to be the result of a violent instability and breakdown of a pair of opposite sign vortical structures created with each high frequency “pulse”. This unique shear layer stabilization behavior is only observed in simulation above a certain critical pulsing frequency. Below this critical frequency, pulsing is shown in simulation to provide little benefit with respect to suppression of high cavity acoustic levels. |
---|---|
AbstractList | Turbulent free shear flows are subject to the well-known Kelvin-Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability, and it is well-known that any free shear flow which approximates a thin vorticity layer will be unstable to a wide range of amplitudes and frequencies of disturbance. In fact, much of what constitutes flow control in turbulent free shear layers consists of feeding a prescribed destabilizing disturbance to these layers. The question in the control of free shear flows is not whether the shear layer will be stable, but whether you can influence how the layer becomes unstable. In most cases, since these flows are so receptive to forcing input, and naturally tend toward instability, large changes in flow conditions can be achieved with very small amplitude periodic inputs. Recently, it has been discovered that turbulent free shear flows can also be stabilized using periodic forcing. This is, at first glance, counter-intuitive, considering our long history of considering these flows to be very unstable to forcing input. It is a phenomenon not described in modern fluid dynamic text books. The forcing required to achieve this effect (which we will call turbulent shear layer stabilization) is of a much higher amplitude and frequency than the more traditional type of shear layer flow control effect seen in the literature (which we will call turbulent shear layer destabilization). A numerical study is undertaken to investigate the effect of frequency of pulsed mass injection on the nature of stabilization, destabilization and acoustic suppression in high speed cavity flows. An implicit, 2nd-order in space and time flow solver, coupled with a recently developed hybrid RANS-LES (Reynolds Averaged Navier Stokes-Large Eddy Simulation) turbulence model by Nichols and Nelson [Nichols RH, Nelson CC. Weapons bay acoustic predictions using a multi-scale turbulence model. In: Proceedings of the ITEA 2001 aircraft-stores compatibility symposium, March 2001], is utilized in a Chimera-based parallel format. This tool is used to numerically simulate both an unsuppressed cavity in resonance, as well as the effect of mass-addition pulsed jet flow control on cavity flow physics and ultimately, cavity acoustic levels. Frequency (and in a limited number of cases, amplitude) of pulse is varied, from 0Hz (steady) up to 5000Hz. The change in the character of the flow control effect as pulsing frequency is changed is described, and linked to changes in acoustic levels. Limited comparison to 1/10th scale experiments is presented. The observed local stabilization of the cavity turbulent shear layer, when subjected to high frequency pulsed blowing, is shown in simulation to be the result of a violent instability and breakdown of a pair of opposite sign vortical structures created with each high frequency 'pulse'. This unique shear layer stabilization behavior is only observed in simulation above a certain critical pulsing frequency. Below this critical frequency, pulsing is shown in simulation to provide little benefit with respect to suppression of high cavity acoustic levels. Turbulent free shear flows are subject to the well-known Kelvin–Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability, and it is well-known that any free shear flow which approximates a thin vorticity layer will be unstable to a wide range of amplitudes and frequencies of disturbance. In fact, much of what constitutes flow control in turbulent free shear layers consists of feeding a prescribed destabilizing disturbance to these layers. The question in the control of free shear flows is not whether the shear layer will be stable, but whether you can influence how the layer becomes unstable. In most cases, since these flows are so receptive to forcing input, and naturally tend toward instability, large changes in flow conditions can be achieved with very small amplitude periodic inputs. Recently, it has been discovered that turbulent free shear flows can also be stabilized using periodic forcing. This is, at first glance, counter-intuitive, considering our long history of considering these flows to be very unstable to forcing input. It is a phenomenon not described in modern fluid dynamic text books. The forcing required to achieve this effect (which we will call turbulent shear layer stabilization) is of a much higher amplitude and frequency than the more traditional type of shear layer flow control effect seen in the literature (which we will call turbulent shear layer destabilization). A numerical study is undertaken to investigate the effect of frequency of pulsed mass injection on the nature of stabilization, destabilization and acoustic suppression in high speed cavity flows. An implicit, 2nd-order in space and time flow solver, coupled with a recently developed hybrid RANS-LES (Reynolds Averaged Navier Stokes-Large Eddy Simulation) turbulence model by Nichols and Nelson [Nichols RH, Nelson CC. Weapons bay acoustic predictions using a multi-scale turbulence model. In: Proceedings of the ITEA 2001 aircraft-stores compatibility symposium, March 2001], is utilized in a Chimera-based parallel format. This tool is used to numerically simulate both an unsuppressed cavity in resonance, as well as the effect of mass-addition pulsed jet flow control on cavity flow physics and ultimately, cavity acoustic levels. Frequency (and in a limited number of cases, amplitude) of pulse is varied, from 0 Hz (steady) up to 5000 Hz. The change in the character of the flow control effect as pulsing frequency is changed is described, and linked to changes in acoustic levels. Limited comparison to 1/10th scale experiments is presented. The observed local stabilization of the cavity turbulent shear layer, when subjected to high frequency pulsed blowing, is shown in simulation to be the result of a violent instability and breakdown of a pair of opposite sign vortical structures created with each high frequency “pulse”. This unique shear layer stabilization behavior is only observed in simulation above a certain critical pulsing frequency. Below this critical frequency, pulsing is shown in simulation to provide little benefit with respect to suppression of high cavity acoustic levels. |
Author | Visbal, Miguel R. Rubin, Stanley G Khosla, Prem K. Stanek, Michael J. Rizzetta, Donald P. |
Author_xml | – sequence: 1 givenname: Michael J. surname: Stanek fullname: Stanek, Michael J. email: Michael.Stanek@wpafb.af.mil organization: Air Force Research Laboratory, Wright-Patterson AFB, OH, United States – sequence: 2 givenname: Miguel R. surname: Visbal fullname: Visbal, Miguel R. organization: Air Force Research Laboratory, Wright-Patterson AFB, OH, United States – sequence: 3 givenname: Donald P. surname: Rizzetta fullname: Rizzetta, Donald P. organization: Air Force Research Laboratory, Wright-Patterson AFB, OH, United States – sequence: 4 givenname: Stanley G surname: Rubin fullname: Rubin, Stanley G organization: University of Cincinnati, Cincinnati, OH, United States – sequence: 5 givenname: Prem K. surname: Khosla fullname: Khosla, Prem K. organization: University of Cincinnati, Cincinnati, OH, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19149431$$DView record in Pascal Francis |
BookMark | eNqFkD1rHDEQQEVwIGcnvyFqkm430mpPWhUpjMmHweDGqcWcNIp1aKWLpHW4_HqvOeMijath4L0ZeOfkLOWEhHzkrOeMyy_73ub54OMSXD8wpnomesb5G7Lhk9IdU6M6IxvGxm2ntGDvyHmte7buYhg35Po2UaAz2ntIoc40e1ob7EIM_0L6TdtSdkvE1KgviLTeIxQa4Yil0pCohYfQjtTH_Le-J289xIofnucF-fX9293Vz-7m9sf11eVNZ4WSrZs0Sj65AYTVWmk5cgbaOTkBVw6U0NPgUbrBepAKYbJymhgXbOd2WyesEBfk8-nuoeQ_C9Zm5lAtxggJ81KNYHqrpZQr-OkZhGoh-gLJhmoOJcxQjoZrPupR8JX7euJsybUW9MaGBi3k1AqEaDgzT6HN3ryENk-hDRNmDb366j__5cWr5uXJxLXXQ8Biqg2YLLpQ0Dbjcnj1xiMRhaAD |
CODEN | CPFLBI |
CitedBy_id | crossref_primary_10_1142_S2010194512008884 crossref_primary_10_1080_14685240903338080 crossref_primary_10_1016_j_compfluid_2015_02_015 crossref_primary_10_1017_S0022112010001023 crossref_primary_10_2514_1_J058709 crossref_primary_10_2514_1_J052804 crossref_primary_10_1016_j_ast_2018_03_033 crossref_primary_10_1115_1_4006468 crossref_primary_10_1016_j_ast_2010_04_006 crossref_primary_10_1017_jfm_2012_329 crossref_primary_10_1016_j_paerosci_2010_11_002 crossref_primary_10_3390_fluids8080227 crossref_primary_10_1115_1_4030002 crossref_primary_10_1260_1756_8250_5_3_4_153 |
Cites_doi | 10.2514/2.1266 10.2514/6.1998-2643 10.2514/3.12109 10.2514/3.50745 10.2514/6.2000-1905 10.2514/6.2003-7 10.2514/6.2003-3552 10.2514/2.811 10.1016/0017-9310(72)90076-2 10.2514/6.1987-1126 10.21236/ADA364301 10.2514/6.2002-2853 10.2514/3.12145 10.2514/6.2002-2404 10.2514/6.2005-2800 10.2514/6.2002-3186 10.1115/FEDSM2005-77422 10.2514/6.2003-3567 10.2514/3.60901 10.2514/6.1985-1523 10.2514/6.2002-1130 10.1016/0021-9991(81)90156-X 10.2514/3.46746 10.2514/6.2001-2858 10.1016/S1270-9638(99)80023-6 |
ContentType | Journal Article |
Copyright | 2007 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.compfluid.2007.03.011 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-0747 |
EndPage | 1637 |
ExternalDocumentID | 19149431 10_1016_j_compfluid_2007_03_011 S0045793007000412 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSW SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c376t-89e618d2a3c99796410a9dd68a17da73982fe6d2cfa67ea8c6880130bdb5d3c33 |
IEDL.DBID | .~1 |
ISSN | 0045-7930 |
IngestDate | Fri Jul 11 01:12:15 EDT 2025 Mon Jul 21 09:16:58 EDT 2025 Tue Jul 01 02:21:14 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Fri Feb 23 02:29:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Turbulent flow Computational fluid dynamics Stabilization Digital simulation Boundary conditions Blowing Periodic perturbation Cavities Flow control Modelling Shear layer Mesh generation Turbulence structure Weapon bay |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-89e618d2a3c99796410a9dd68a17da73982fe6d2cfa67ea8c6880130bdb5d3c33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 30959666 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_30959666 pascalfrancis_primary_19149431 crossref_citationtrail_10_1016_j_compfluid_2007_03_011 crossref_primary_10_1016_j_compfluid_2007_03_011 elsevier_sciencedirect_doi_10_1016_j_compfluid_2007_03_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-12-01 |
PublicationDateYYYYMMDD | 2007-12-01 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computers & fluids |
PublicationYear | 2007 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Nichols RH, Nelson CC. Weapons bay acoustic predictions using a multi-scale turbulence model. In: Proceedings of the ITEA 2001 aircraft-stores compatibility symposium, March 2001. Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. AIAA Paper 81-1259. Rizzetta (bib30) 1994; 32 Hanjalic, Launder, Schiestel (bib31) 1980; vol. 2 Benek JA, Dougherty FC, Steger JL, Buning PG. Chimera: a grid-embedding technique. AEDC-TR-85-64, December 1985. Benek JA, Donegan TL, Suhs NE. Extended Chimera grid-embedding scheme with applications to viscous flows. AIAA Paper 87-1126, June 1987. Rizzetta, Visbal, Gaitonde (bib27) 2001; 39 Cattafesta LN, Williams D, Rowley C, Alvi F. Review of active control of flow-induced cavity resonance. ALAA Paper 2003-3567. Das K, Hamed A, Basu D. Numerical investigations of transonic cavity flow control using steady and pulsed fluidic injection. ASME Paper FEDSM2005-77422. Pulliam, Steger (bib14) 1980; 18 Rizzetta, Visbal, Stanek (bib24) 1999; 37 Stanek MJ. Control of high speed turbulent free shear flows – stabilization and destabilization. Keynote Lecture No. ICCES0520051003975, International conference on computational and experimental engineering and sciences (ICCES). Indian Institute of Technology Madras, Chennai, India, December, 2005. Stanek MJ, Raman G, Ross JA, Odedra J, Peto J, Alvi F, Kibens V. High frequency acoustic suppression – the role of mass flow, the notion of superposition, and the role of inviscid instability – a new model (Part II). AIAA Paper 2002-2404. Rizzetta DP, Visbal MR, Blaisdell GA. Application of a high-order compact difference scheme to large-eddy and direct numerical simulation. AIAA Paper 99-3714. Beam, Warming (bib16) 1978; 16 Rizzetta DP, Visbal MR. Large-eddy simulation of supersonic compression ramp flows. AIAA Paper 2001-2858. Tramel R, Rock S, Ellis J, Sharpes D. Comparison of large cavity aeroacoustic computations with flight test results. AIAA Paper 2005-2800. Stanek MJ. A numerical study of the effect of frequency of pulsed flow control applied to a rectangular cavity in supersonic crossflow. Ph.D. Thesis, University of Cincinnati, July, 2005. Gordnier, Visbal (bib19) 1998; 2 Sherman (bib40) 1990 Stanek MJ, Raman G, Kibens V, Ross JA, Odedra J, Peto JW. Control of cavity resonance through very high frequency forcing. AIAA Paper 2000-1905. Gaitonde D, Visbal MR. High-order schemes for Navier–Stokes equations: algorithm and implementation into FDL3DI. AFRL-VA-WP-TR-1998-3060. Arunajatesan S, Shipman JD, Sinha N. Hybrid RANS-LES simulation of cavity flowfields with control. AIAA Paper 2002-1130. Suhs NE, Rogers SE, Dietz WE. PEGASUS 5: an automated pre-processor for overset-grid CFD. AIAA Paper 2002-3186. McGrath S, Shaw L. Active control of shallow cavity acoustic resonance. AIAA Paper 96-1949. Gordnier (bib20) 1995; 32 Stanek MJ, Ross JA, Wrisdale I. High frequency acoustic suppression – experimental and computational overview. Paper No. 29, NATO RTO symposium on aging mechanisms and control, Manchester, UK, October 2001. Jones, Launder (bib29) 1972; 15 Visbal (bib22) 1994; 32 Kim SW, Chen CP. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum. AIAA Paper 88-0221. Message Passing Interface Forum. MPI: a message-passing interface standard. Computer Science Department Technical Report, CS-94-230. University of Tennessee, Knoxville, TN, April 1994. Visbal MR, Gaitonde DV, Gogineni SP. Direct numerical simulation of a forced transitional plane wall jet. AIAA Paper 1998-2643. Duncan B, Liou W. A multiple-scale turbulence model for incompressible flow. AIAA Paper 93-0086. Panton (bib1) 1984 Stanek MJ, Ross JA, Odedra J, Peto J. High frequency acoustic suppression – the mystery of the rod-in-crossflow revealed. AIAA Paper 2003-0007. Rizzetta DP, Visbal MR. Large-eddy simulation of supersonic cavity flowfields including flow control. AIAA Paper 2002-2853. Pulliam, Chaussee (bib18) 1981; 39 Visbal MR. Computational study of vortex breakdown on a pitching delta wing. AIAA Paper 93-2974. Nichols RH, Nelson CC. Application of hybrid RANS-LES turbulence models. AIAA Paper 2003-0083. Grove J. Private communication, April 2006. Hanjalic (10.1016/j.compfluid.2007.03.011_bib31) 1980; vol. 2 Rizzetta (10.1016/j.compfluid.2007.03.011_bib30) 1994; 32 10.1016/j.compfluid.2007.03.011_bib11 10.1016/j.compfluid.2007.03.011_bib33 10.1016/j.compfluid.2007.03.011_bib10 10.1016/j.compfluid.2007.03.011_bib32 10.1016/j.compfluid.2007.03.011_bib13 10.1016/j.compfluid.2007.03.011_bib35 10.1016/j.compfluid.2007.03.011_bib12 10.1016/j.compfluid.2007.03.011_bib34 10.1016/j.compfluid.2007.03.011_bib15 Beam (10.1016/j.compfluid.2007.03.011_bib16) 1978; 16 10.1016/j.compfluid.2007.03.011_bib37 Pulliam (10.1016/j.compfluid.2007.03.011_bib18) 1981; 39 10.1016/j.compfluid.2007.03.011_bib36 10.1016/j.compfluid.2007.03.011_bib17 10.1016/j.compfluid.2007.03.011_bib39 10.1016/j.compfluid.2007.03.011_bib38 10.1016/j.compfluid.2007.03.011_bib9 Visbal (10.1016/j.compfluid.2007.03.011_bib22) 1994; 32 10.1016/j.compfluid.2007.03.011_bib7 10.1016/j.compfluid.2007.03.011_bib8 Gordnier (10.1016/j.compfluid.2007.03.011_bib20) 1995; 32 10.1016/j.compfluid.2007.03.011_bib2 Sherman (10.1016/j.compfluid.2007.03.011_bib40) 1990 Panton (10.1016/j.compfluid.2007.03.011_bib1) 1984 10.1016/j.compfluid.2007.03.011_bib5 Pulliam (10.1016/j.compfluid.2007.03.011_bib14) 1980; 18 10.1016/j.compfluid.2007.03.011_bib6 10.1016/j.compfluid.2007.03.011_bib3 Rizzetta (10.1016/j.compfluid.2007.03.011_bib27) 2001; 39 10.1016/j.compfluid.2007.03.011_bib4 10.1016/j.compfluid.2007.03.011_bib21 10.1016/j.compfluid.2007.03.011_bib23 10.1016/j.compfluid.2007.03.011_bib26 10.1016/j.compfluid.2007.03.011_bib25 10.1016/j.compfluid.2007.03.011_bib28 Gordnier (10.1016/j.compfluid.2007.03.011_bib19) 1998; 2 Jones (10.1016/j.compfluid.2007.03.011_bib29) 1972; 15 Rizzetta (10.1016/j.compfluid.2007.03.011_bib24) 1999; 37 |
References_xml | – year: 1984 ident: bib1 article-title: Incompressible flow – reference: Visbal MR, Gaitonde DV, Gogineni SP. Direct numerical simulation of a forced transitional plane wall jet. AIAA Paper 1998-2643. – reference: Nichols RH, Nelson CC. Weapons bay acoustic predictions using a multi-scale turbulence model. In: Proceedings of the ITEA 2001 aircraft-stores compatibility symposium, March 2001. – volume: 39 start-page: 347 year: 1981 end-page: 363 ident: bib18 article-title: A diagonal form of an implicit approximate-factorization algorithm publication-title: J Comput Phys – reference: Rizzetta DP, Visbal MR, Blaisdell GA. Application of a high-order compact difference scheme to large-eddy and direct numerical simulation. AIAA Paper 99-3714. – volume: 39 start-page: 2283 year: 2001 end-page: 2292 ident: bib27 article-title: Large-eddy simulation of supersonic compression-ramp flow by a high-order method publication-title: AIAA J – volume: 32 start-page: 1568 year: 1994 end-page: 1575 ident: bib22 article-title: Onset of vortex breakdown above a pitching delta wing publication-title: AIAA J – reference: Rizzetta DP, Visbal MR. Large-eddy simulation of supersonic cavity flowfields including flow control. AIAA Paper 2002-2853. – reference: Kim SW, Chen CP. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum. AIAA Paper 88-0221. – volume: 18 start-page: 159 year: 1980 end-page: 167 ident: bib14 article-title: Implicit finite difference simulation of three-dimensional compressible flows publication-title: AIAA J – reference: Benek JA, Dougherty FC, Steger JL, Buning PG. Chimera: a grid-embedding technique. AEDC-TR-85-64, December 1985. – volume: 2 start-page: 347 year: 1998 end-page: 357 ident: bib19 article-title: Numerical simulation of Delta-Wing roll publication-title: Aerospace Science and Technology – reference: Grove J. Private communication, April 2006. – reference: Duncan B, Liou W. A multiple-scale turbulence model for incompressible flow. AIAA Paper 93-0086. – reference: Stanek MJ. Control of high speed turbulent free shear flows – stabilization and destabilization. Keynote Lecture No. ICCES0520051003975, International conference on computational and experimental engineering and sciences (ICCES). Indian Institute of Technology Madras, Chennai, India, December, 2005. – reference: Gaitonde D, Visbal MR. High-order schemes for Navier–Stokes equations: algorithm and implementation into FDL3DI. AFRL-VA-WP-TR-1998-3060. – volume: 32 start-page: 1113 year: 1994 end-page: 1119 ident: bib30 article-title: Numerical simulation of turbulent cylinder juncture flowfields publication-title: AIAA J – year: 1990 ident: bib40 article-title: Viscous flow – reference: Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. AIAA Paper 81-1259. – reference: Benek JA, Donegan TL, Suhs NE. Extended Chimera grid-embedding scheme with applications to viscous flows. AIAA Paper 87-1126, June 1987. – reference: Das K, Hamed A, Basu D. Numerical investigations of transonic cavity flow control using steady and pulsed fluidic injection. ASME Paper FEDSM2005-77422. – reference: Arunajatesan S, Shipman JD, Sinha N. Hybrid RANS-LES simulation of cavity flowfields with control. AIAA Paper 2002-1130. – volume: vol. 2 start-page: 36 year: 1980 end-page: 49 ident: bib31 article-title: Multiple-time-scale concepts in turbulent shear flows publication-title: Turbulent shear flows – reference: Stanek MJ, Raman G, Ross JA, Odedra J, Peto J, Alvi F, Kibens V. High frequency acoustic suppression – the role of mass flow, the notion of superposition, and the role of inviscid instability – a new model (Part II). AIAA Paper 2002-2404. – reference: Nichols RH, Nelson CC. Application of hybrid RANS-LES turbulence models. AIAA Paper 2003-0083. – reference: Visbal MR. Computational study of vortex breakdown on a pitching delta wing. AIAA Paper 93-2974. – reference: McGrath S, Shaw L. Active control of shallow cavity acoustic resonance. AIAA Paper 96-1949. – reference: Rizzetta DP, Visbal MR. Large-eddy simulation of supersonic compression ramp flows. AIAA Paper 2001-2858. – reference: Stanek MJ, Ross JA, Wrisdale I. High frequency acoustic suppression – experimental and computational overview. Paper No. 29, NATO RTO symposium on aging mechanisms and control, Manchester, UK, October 2001. – reference: Stanek MJ, Raman G, Kibens V, Ross JA, Odedra J, Peto JW. Control of cavity resonance through very high frequency forcing. AIAA Paper 2000-1905. – reference: Tramel R, Rock S, Ellis J, Sharpes D. Comparison of large cavity aeroacoustic computations with flight test results. AIAA Paper 2005-2800. – reference: Stanek MJ. A numerical study of the effect of frequency of pulsed flow control applied to a rectangular cavity in supersonic crossflow. Ph.D. Thesis, University of Cincinnati, July, 2005. – volume: 37 start-page: 919 year: 1999 end-page: 927 ident: bib24 article-title: Numerical investigation of synthetic jet flowfields publication-title: AIAA J – reference: Stanek MJ, Ross JA, Odedra J, Peto J. High frequency acoustic suppression – the mystery of the rod-in-crossflow revealed. AIAA Paper 2003-0007. – volume: 15 start-page: 301 year: 1972 end-page: 314 ident: bib29 article-title: The prediction of laminarization with a two-equation model of turbulence publication-title: Int J Heat Mass Transfer – reference: Message Passing Interface Forum. MPI: a message-passing interface standard. Computer Science Department Technical Report, CS-94-230. University of Tennessee, Knoxville, TN, April 1994. – volume: 32 start-page: 486 year: 1995 end-page: 492 ident: bib20 article-title: Computation of Delta-Wing roll maneuvers publication-title: J Aircraft – volume: 16 start-page: 393 year: 1978 end-page: 402 ident: bib16 article-title: An implicit factored scheme for the compressible Navier–Stokes equations publication-title: AIAA J – reference: Suhs NE, Rogers SE, Dietz WE. PEGASUS 5: an automated pre-processor for overset-grid CFD. AIAA Paper 2002-3186. – reference: Cattafesta LN, Williams D, Rowley C, Alvi F. Review of active control of flow-induced cavity resonance. ALAA Paper 2003-3567. – volume: 39 start-page: 2283 issue: 12 year: 2001 ident: 10.1016/j.compfluid.2007.03.011_bib27 article-title: Large-eddy simulation of supersonic compression-ramp flow by a high-order method publication-title: AIAA J doi: 10.2514/2.1266 – ident: 10.1016/j.compfluid.2007.03.011_bib21 – ident: 10.1016/j.compfluid.2007.03.011_bib23 doi: 10.2514/6.1998-2643 – volume: 32 start-page: 1113 issue: 6 year: 1994 ident: 10.1016/j.compfluid.2007.03.011_bib30 article-title: Numerical simulation of turbulent cylinder juncture flowfields publication-title: AIAA J doi: 10.2514/3.12109 – ident: 10.1016/j.compfluid.2007.03.011_bib4 – volume: 18 start-page: 159 issue: 2 year: 1980 ident: 10.1016/j.compfluid.2007.03.011_bib14 article-title: Implicit finite difference simulation of three-dimensional compressible flows publication-title: AIAA J doi: 10.2514/3.50745 – ident: 10.1016/j.compfluid.2007.03.011_bib2 – ident: 10.1016/j.compfluid.2007.03.011_bib6 doi: 10.2514/6.2000-1905 – ident: 10.1016/j.compfluid.2007.03.011_bib8 doi: 10.2514/6.2003-7 – ident: 10.1016/j.compfluid.2007.03.011_bib17 – ident: 10.1016/j.compfluid.2007.03.011_bib15 – ident: 10.1016/j.compfluid.2007.03.011_bib28 doi: 10.2514/6.2003-3552 – volume: 37 start-page: 919 issue: 8 year: 1999 ident: 10.1016/j.compfluid.2007.03.011_bib24 article-title: Numerical investigation of synthetic jet flowfields publication-title: AIAA J doi: 10.2514/2.811 – volume: 15 start-page: 301 issue: 2 year: 1972 ident: 10.1016/j.compfluid.2007.03.011_bib29 article-title: The prediction of laminarization with a two-equation model of turbulence publication-title: Int J Heat Mass Transfer doi: 10.1016/0017-9310(72)90076-2 – ident: 10.1016/j.compfluid.2007.03.011_bib35 doi: 10.2514/6.1987-1126 – ident: 10.1016/j.compfluid.2007.03.011_bib13 doi: 10.21236/ADA364301 – ident: 10.1016/j.compfluid.2007.03.011_bib32 – ident: 10.1016/j.compfluid.2007.03.011_bib38 – ident: 10.1016/j.compfluid.2007.03.011_bib9 doi: 10.2514/6.2002-2853 – volume: 32 start-page: 1568 issue: 8 year: 1994 ident: 10.1016/j.compfluid.2007.03.011_bib22 article-title: Onset of vortex breakdown above a pitching delta wing publication-title: AIAA J doi: 10.2514/3.12145 – ident: 10.1016/j.compfluid.2007.03.011_bib7 doi: 10.2514/6.2002-2404 – ident: 10.1016/j.compfluid.2007.03.011_bib11 doi: 10.2514/6.2005-2800 – ident: 10.1016/j.compfluid.2007.03.011_bib36 doi: 10.2514/6.2002-3186 – ident: 10.1016/j.compfluid.2007.03.011_bib12 doi: 10.1115/FEDSM2005-77422 – ident: 10.1016/j.compfluid.2007.03.011_bib3 doi: 10.2514/6.2003-3567 – volume: 16 start-page: 393 issue: 4 year: 1978 ident: 10.1016/j.compfluid.2007.03.011_bib16 article-title: An implicit factored scheme for the compressible Navier–Stokes equations publication-title: AIAA J doi: 10.2514/3.60901 – ident: 10.1016/j.compfluid.2007.03.011_bib34 doi: 10.2514/6.1985-1523 – ident: 10.1016/j.compfluid.2007.03.011_bib33 – ident: 10.1016/j.compfluid.2007.03.011_bib10 doi: 10.2514/6.2002-1130 – ident: 10.1016/j.compfluid.2007.03.011_bib37 – volume: 39 start-page: 347 issue: 2 year: 1981 ident: 10.1016/j.compfluid.2007.03.011_bib18 article-title: A diagonal form of an implicit approximate-factorization algorithm publication-title: J Comput Phys doi: 10.1016/0021-9991(81)90156-X – year: 1984 ident: 10.1016/j.compfluid.2007.03.011_bib1 – ident: 10.1016/j.compfluid.2007.03.011_bib39 – ident: 10.1016/j.compfluid.2007.03.011_bib5 – year: 1990 ident: 10.1016/j.compfluid.2007.03.011_bib40 – volume: 32 start-page: 486 issue: 3 year: 1995 ident: 10.1016/j.compfluid.2007.03.011_bib20 article-title: Computation of Delta-Wing roll maneuvers publication-title: J Aircraft doi: 10.2514/3.46746 – ident: 10.1016/j.compfluid.2007.03.011_bib25 – ident: 10.1016/j.compfluid.2007.03.011_bib26 doi: 10.2514/6.2001-2858 – volume: 2 start-page: 347 issue: 6 year: 1998 ident: 10.1016/j.compfluid.2007.03.011_bib19 article-title: Numerical simulation of Delta-Wing roll publication-title: Aerospace Science and Technology doi: 10.1016/S1270-9638(99)80023-6 – volume: vol. 2 start-page: 36 year: 1980 ident: 10.1016/j.compfluid.2007.03.011_bib31 article-title: Multiple-time-scale concepts in turbulent shear flows |
SSID | ssj0004324 |
Score | 1.9276221 |
Snippet | Turbulent free shear flows are subject to the well-known Kelvin–Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability,... Turbulent free shear flows are subject to the well-known Kelvin-Helmholtz type [Panton RL. Incompressible flow. John Wiley and Sons; 1984. p. 675] instability,... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1621 |
SubjectTerms | Computational methods in fluid dynamics Exact sciences and technology Flow control Fluid dynamics Fundamental areas of phenomenology (including applications) Physics |
Title | On a mechanism of stabilizing turbulent free shear layers in cavity flows |
URI | https://dx.doi.org/10.1016/j.compfluid.2007.03.011 https://www.proquest.com/docview/30959666 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA6iF5dF1N1lZ9Uxh722dk-604k3EWVUdC8reAvVeUAvY89gz7Dgwd9uVT_UQcSD125CQlWlvkpS9RVjvyGRTqcqxbOJlFFqweOecxB5neYpJLEVMRUnX13L8U16cZvdrrCTvhaG0io739_69MZbd18OO2kezsqSanzTDK2LCGsa1iiqYE9zsvKDx5c0D2Kca1-ZiZpRxEs5XpS2HSaL0nVchuIgTpL3EOrrDGqUW2gbXrzx3Q0gnW2yjS6S5MftYrfYiq-22ZdX_ILf2PmfigO_81TdW9Z3fBo4BoOUDvuA_zmiTbEg1OHh3nteU3NrPgEKwnlZcQvUV4KHyfR__Z3dnJ3-PRlHXe-EyKLLmEdKe5koNwJhtaZy0yQG7ZxUkKAqcqHVKHjpRjaAzD0oK3EjI54VrsicsEL8YKvVtPI_GR_ZAhyx9mQaoQwUiAB5VuRBFaqQ0g6Y7OVlbEcsTv0tJqbPIPtnngVNbS9zEwuDgh6w-HngrOXW-HjIUa8Qs2QmBhHg48HDJRW-TKrxnIiR1IDt9zo1uMvo6QQqP13URtB1KZ70fn1m_h223twMN8kwu2x1fr_wexjSzIthY7NDtnZ8fjm-fgIlSPe6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgCEEE-xPFofuKZN1oljc0MV1Rbacmml3qyJH1LQNrtqdlWpB347M3m0rBDqgWsiy9aMZ76xPfMNwCfMlDe5zulsolSSOwxkcx6TYPIyxyx1MuXi5JNTNTvPv10UF1twMNbCcFrl4Pt7n9556-HL_iDN_WVdc41vXtDuYsKajjXqATzMyXy5jcHer7s8D6ac65-ZmZtRphtJXpy3Hefr2g9khnIvzbJ_QdTTJbYkuNh3vPjLeXeIdPgcng2hpPjSr_YFbIXmJTz5g2DwFRz9aASKy8DlvXV7KRZRUDTI-bA39F8Q3FRrhh0Rr0IQLXe3FnPkKFzUjXDIjSVEnC-u29dwfvj17GCWDM0TEkc-Y5VoE1Sm_RSlM4brTbMUjfdKY0a6KKXR0xiUn7qIqgyonSJLJkCrfFV46aR8A9vNoglvQUxdhZ5pewpDWIYaZcSyqMqoK10p5SagRnlZNzCLc4OLuR1TyH7aW0Fz38vSptKSoCeQ3g5c9uQa9w_5PCrEbuwTSxBw_-CdDRXeTWrooEih1AR2R51aMjN-O8EmLNatlXxfSke9d_8z_y48mp2dHNvjo9Pv7-Fxd03cZcZ8gO3V1Tp8pPhmVe10-_c3yIX5SA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+mechanism+of+stabilizing+turbulent+free+shear+layers+in+cavity+flows&rft.jtitle=Computers+%26+fluids&rft.au=Stanek%2C+Michael+J&rft.au=Visbal%2C+Miguel+R&rft.au=Rizzetta%2C+Donald+P&rft.au=Rubin%2C+Stanley+G&rft.date=2007-12-01&rft.issn=0045-7930&rft.volume=36&rft.issue=10&rft.spage=1621&rft.epage=1637&rft_id=info:doi/10.1016%2Fj.compfluid.2007.03.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |