Thermomechanical and Shape Memory Properties of SCF/SBS/LLDPE Composites
A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer(SBS)/linear low density polyethylene(LLDPE) prior to curing. These composites have excellent processability compared with other...
Saved in:
Published in | Chinese journal of polymer science Vol. 34; no. 11; pp. 1354 - 1362 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Chinese Chemical Society and Institute of Chemistry, CAS
01.11.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer(SBS)/linear low density polyethylene(LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis(DMA) and differential scanning calorimetry(DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope(SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content. |
---|---|
AbstractList | A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer(SBS)/linear low density polyethylene(LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis(DMA) and differential scanning calorimetry(DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope(SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content. A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene- b -butadiene- b -styrene) triblock copolymer (SBS)/linear low density polyethylene (LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope (SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content. A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer (SBS)/linear low density polyethylene (LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope (SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content. A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene-b-butadiene-b-styren e) triblock copolymer (SBS)/linear low density polyethylene (LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope (SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content. |
Author | Yong-kun Wang Wen-chao Tian Guang-ming Zhu Jian-qiang Xie |
AuthorAffiliation | Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi 'an 710071, China Department of Applied Chemistry, Northwestern Polytehnical University, Xi 'an 710129, China Department of Polymer materials and Engineering, College of Material Science and Engineering, North China University of Science and Technology, Tangshan 063009, China |
Author_xml | – sequence: 1 givenname: Yong-kun surname: Wang fullname: Wang, Yong-kun email: ykwang@xidian.edu.cn organization: Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University – sequence: 2 givenname: Wen-chao surname: Tian fullname: Tian, Wen-chao organization: Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University – sequence: 3 givenname: Guang-ming surname: Zhu fullname: Zhu, Guang-ming organization: Department of Applied Chemistry, Northwestern Polytehnical University – sequence: 4 givenname: Jian-qiang surname: Xie fullname: Xie, Jian-qiang organization: Department of Polymer materials and Engineering, College of Material Science and Engineering, North China University of Science and Technology |
BookMark | eNp9kDtPwzAURi0EEuXxA9giWFhC_Uh97RHKUyoCqTBbxrmlQYkd7HTg3-OqCCGGTl7O8f10DsiuDx4JOWH0glEK48QoY6qkTJZMCVXqHTJildCl5FTskhHlE1mCBL1PDlL6oFRWMIERuX9ZYuxCh25pfeNsW1hfF_Ol7bF4xC7Er-I5hh7j0GAqwqKYT2_H86v5eDa7fr4ppqHrQ2oGTEdkb2HbhMc_7yF5vb15md6Xs6e7h-nlrHQC5FCCq6yrJ47WDKyta8Fcnv9mwVGpOa8QhK4BnNVoBThUios3oI5TCYy5ShyS882_fQyfK0yD6ZrksG2tx7BKhinQWlUgRUbP_qEfYRV9XpcpRZXkSrNMsQ3lYkgp4sL0sels_DKMmnVbs2lrcluzbmt0duCf45rBDk3wQ7RNu9XkGzPlK_4d459NW6TTn3PL4N8_s_e7UQLloHM08Q0YDpjh |
CitedBy_id | crossref_primary_10_1002_app_48930 crossref_primary_10_1007_s00289_023_05003_0 crossref_primary_10_1108_PRT_09_2019_0087 crossref_primary_10_1021_acsomega_0c05839 crossref_primary_10_1080_10584587_2022_2072127 crossref_primary_10_3390_app7010108 crossref_primary_10_1108_PRT_04_2017_0037 crossref_primary_10_1016_j_radphyschem_2024_112290 crossref_primary_10_1177_00952443231212553 crossref_primary_10_1080_10584587_2022_2065583 |
Cites_doi | 10.1007/s10965-011-9777-1 10.1016/j.polymer.2010.05.049 10.1016/j.compositesa.2004.03.001 10.1016/j.compscitech.2008.08.016 10.1007/s10965-014-0515-3 10.1007/s10965-013-0082-z 10.1002/pi.2785 10.1007/s00396-014-3266-0 10.1016/j.matlet.2011.06.083 10.1007/s10965-012-9952-z 10.1039/C5PY00172B 10.1016/j.compscitech.2012.03.027 10.1088/0964-1726/18/2/024002 |
ContentType | Journal Article |
Copyright | Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media 2016 |
Copyright_xml | – notice: Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media 2016 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1007/s10118-016-1838-9 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Thermomechanical and Shape Memory Properties of SCF/SBS/LLDPE Composites |
EISSN | 1439-6203 |
EndPage | 1362 |
ExternalDocumentID | 10_1007_s10118_016_1838_9 670279739 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 29B 2B. 2C. 2KG 2RA 2VQ 30V 4.4 406 408 40D 5GY 5VR 67Z 6J9 8TC 92E 92I 92L 92Q 93N 96X AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACREN ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFDTA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA CAG CCEZO CDRFL CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK ESBYG EST ESX FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HF~ HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y ML~ NPVJJ NQJWS NU0 O9- O9J P9N PT4 R9I RIG RLLFE RSV RWJ S1Z S27 S3B SCL SCM SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE T13 TCJ TGP TSG TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z5O Z7R Z7V Z7X ZE2 ZMTXR ~WA -SB -S~ 5XA 5XC AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV ACUHS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEB H13 Q-- ROL SJYHP U1G U5L AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c376t-7c4acd5c0d17aadd31c007ba7c069224e739d77ca9ea37ce8823b70c206711c43 |
IEDL.DBID | U2A |
ISSN | 0256-7679 |
IngestDate | Thu Jul 10 18:28:46 EDT 2025 Fri Jul 25 11:07:10 EDT 2025 Tue Jul 01 02:13:20 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Fri Feb 21 02:35:25 EST 2025 Wed Feb 14 10:15:33 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Mechanical properties Shape memory behavior Short carbon fiber SCF/SBS/LLDPE composite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-7c4acd5c0d17aadd31c007ba7c069224e739d77ca9ea37ce8823b70c206711c43 |
Notes | blend styrene calorimetry copolymer polyethylene curing thermally butadiene modulus prior A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer(SBS)/linear low density polyethylene(LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis(DMA) and differential scanning calorimetry(DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope(SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content. 11-2015/O6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1880862891 |
PQPubID | 2043655 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1879984763 proquest_journals_1880862891 crossref_primary_10_1007_s10118_016_1838_9 crossref_citationtrail_10_1007_s10118_016_1838_9 springer_journals_10_1007_s10118_016_1838_9 chongqing_primary_670279739 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Chinese journal of polymer science |
PublicationTitleAbbrev | Chin J Polym Sci |
PublicationTitleAlternate | Chinese Journal of Polymer Science |
PublicationYear | 2016 |
Publisher | Chinese Chemical Society and Institute of Chemistry, CAS Springer Nature B.V |
Publisher_xml | – name: Chinese Chemical Society and Institute of Chemistry, CAS – name: Springer Nature B.V |
References | LvH.B.YuK.SunS.H.LiuY.J.LengJ.S.Polym. Int.2010596766 AmirianM.ChakoliA.N.SuiJ.H.CaiW.J. Polym. Res.2012192977710.1007/s10965-011-9777-1 VoitW.WareT.GallK.Polymer20105115355510.1016/j.polymer.2010.05.049 WangW.X.LiuD.Y.LiuY.J.LengJ.S.BhattacharyyaD.Compos. Sci. Technol.20151062210.1016/j.compscitech.2014.10.016 KimB.K.LeeS.Y.XuM.Polymer19963726578910.1016/S0032-3861(96)00442-9 WangY.K.ZhuG.M.CuiX.P.LiuT.T.LiuZ.WangK.Colloid Polym. Sci.2014292923111:CAS:528:DC%2BC2cXovVWrtLk%3D10.1007/s00396-014-3266-0 WangY.K.ZhuG.M.XieJ.Q.MenQ.N.LiuT.T.RenF.J. Polym. Res.201421851510.1007/s10965-014-0515-3 WangY.K.ZhuG.M.TangT.S.XieJ.Q.LiuT.T.LiuZ.J. Polym. Res.20142142 LiuC.QinH.MatherP.T.J. Mater. Chem.20071716154410.1039/b615954k ZhaoQ.QiH.J.XieT.Prog. Polym. Sci.20154980 WangC.C.HuangW.M.DingZ.ZhaoY.PurnawaliH.Compos. Sci. Technol.2012721011781:CAS:528:DC%2BC38XlvFagu7k%3D10.1016/j.compscitech.2012.03.027 ZhangJ.N.MaY.M.ZhangJ.J.XuD.YangQ.L.GuanJ.G.CaoX.Y.JiangL.Mater. Lett.2011652336391:CAS:528:DC%2BC3MXhtFynu7rL10.1016/j.matlet.2011.06.083 LanX.LiuY.J.LvH.B.WangX.H.LengJ.S.DuS.Y.Smart. Mater. Struct.200918202400210.1088/0964-1726/18/2/024002 BijiuR.NairC.P.R.J. Polym. Res.20132028210.1007/s10965-013-0082-z LiuY.J.LvH.B.LanX.LengJ.S.DuS.Y.Compos. Sci. Technol.2009691320641:CAS:528:DC%2BD1MXptVCqu7s%3D10.1016/j.compscitech.2008.08.016 WangY.K.ZhuG.M.TangT.S.LiuT.T.XieJ.Q.RenF.J. Appl. Polym. Sci.2014131740691 OhkiT.NiQ.Q.OhsakoN.LwamotoM.Compos. Part A-Appl. S.2004359106910.1016/j.compositesa.2004.03.001 GuoW.S.ShenZ.L.GuoB.C.ZhangL.Q.JiaD.Polymer20145516432810.1016/j.polymer.2014.06.044 ZhenW.M.ZhaoY.WangC.C.DingZ.PurnawaliH.TangC.ZhangJ.L.J. Polym. Res.2012199995210.1007/s10965-012-9952-z ZhengN.FangG.Q.CaoZ.L.ZhaoQ.XieT.Polym. Chem-UK.2015616304810.1039/C5PY00172B B.K. Kim (1838_CR18) 1996; 37 M. Amirian (1838_CR19) 2012; 19 T. Ohki (1838_CR20) 2004; 35 J.N. Zhang (1838_CR13) 2011; 65 H.B. Lv (1838_CR14) 2010; 59 C. Liu (1838_CR8) 2007; 17 Y.K. Wang (1838_CR2) 2014; 21 C.C. Wang (1838_CR10) 2012; 72 Y.J. Liu (1838_CR5) 2009; 69 W.M. Zhen (1838_CR7) 2012; 19 Y.K. Wang (1838_CR1) 2014; 292 R. Bijiu (1838_CR11) 2013; 20 W. Voit (1838_CR12) 2010; 51 W.X. Wang (1838_CR17) 2015; 106 N. Zheng (1838_CR9) 2015; 6 W.S. Guo (1838_CR16) 2014; 55 Y.K. Wang (1838_CR3) 2014; 13 X. Lan (1838_CR15) 2009; 18 Y.K. Wang (1838_CR4) 2014; 21 Q. Zhao (1838_CR6) 2015; 49 |
References_xml | – reference: WangY.K.ZhuG.M.TangT.S.XieJ.Q.LiuT.T.LiuZ.J. Polym. Res.20142142 – reference: LanX.LiuY.J.LvH.B.WangX.H.LengJ.S.DuS.Y.Smart. Mater. Struct.200918202400210.1088/0964-1726/18/2/024002 – reference: ZhenW.M.ZhaoY.WangC.C.DingZ.PurnawaliH.TangC.ZhangJ.L.J. Polym. Res.2012199995210.1007/s10965-012-9952-z – reference: ZhangJ.N.MaY.M.ZhangJ.J.XuD.YangQ.L.GuanJ.G.CaoX.Y.JiangL.Mater. Lett.2011652336391:CAS:528:DC%2BC3MXhtFynu7rL10.1016/j.matlet.2011.06.083 – reference: ZhaoQ.QiH.J.XieT.Prog. Polym. Sci.20154980 – reference: LiuC.QinH.MatherP.T.J. Mater. Chem.20071716154410.1039/b615954k – reference: WangY.K.ZhuG.M.TangT.S.LiuT.T.XieJ.Q.RenF.J. Appl. Polym. Sci.2014131740691 – reference: LvH.B.YuK.SunS.H.LiuY.J.LengJ.S.Polym. Int.2010596766 – reference: LiuY.J.LvH.B.LanX.LengJ.S.DuS.Y.Compos. Sci. Technol.2009691320641:CAS:528:DC%2BD1MXptVCqu7s%3D10.1016/j.compscitech.2008.08.016 – reference: BijiuR.NairC.P.R.J. Polym. Res.20132028210.1007/s10965-013-0082-z – reference: VoitW.WareT.GallK.Polymer20105115355510.1016/j.polymer.2010.05.049 – reference: WangY.K.ZhuG.M.XieJ.Q.MenQ.N.LiuT.T.RenF.J. Polym. Res.201421851510.1007/s10965-014-0515-3 – reference: KimB.K.LeeS.Y.XuM.Polymer19963726578910.1016/S0032-3861(96)00442-9 – reference: WangC.C.HuangW.M.DingZ.ZhaoY.PurnawaliH.Compos. Sci. Technol.2012721011781:CAS:528:DC%2BC38XlvFagu7k%3D10.1016/j.compscitech.2012.03.027 – reference: ZhengN.FangG.Q.CaoZ.L.ZhaoQ.XieT.Polym. Chem-UK.2015616304810.1039/C5PY00172B – reference: WangW.X.LiuD.Y.LiuY.J.LengJ.S.BhattacharyyaD.Compos. Sci. Technol.20151062210.1016/j.compscitech.2014.10.016 – reference: AmirianM.ChakoliA.N.SuiJ.H.CaiW.J. Polym. Res.2012192977710.1007/s10965-011-9777-1 – reference: WangY.K.ZhuG.M.CuiX.P.LiuT.T.LiuZ.WangK.Colloid Polym. Sci.2014292923111:CAS:528:DC%2BC2cXovVWrtLk%3D10.1007/s00396-014-3266-0 – reference: GuoW.S.ShenZ.L.GuoB.C.ZhangL.Q.JiaD.Polymer20145516432810.1016/j.polymer.2014.06.044 – reference: OhkiT.NiQ.Q.OhsakoN.LwamotoM.Compos. Part A-Appl. S.2004359106910.1016/j.compositesa.2004.03.001 – volume: 19 start-page: 9777 issue: 2 year: 2012 ident: 1838_CR19 publication-title: J. Polym. Res. doi: 10.1007/s10965-011-9777-1 – volume: 51 start-page: 3555 issue: 15 year: 2010 ident: 1838_CR12 publication-title: Polymer doi: 10.1016/j.polymer.2010.05.049 – volume: 55 start-page: 4328 issue: 16 year: 2014 ident: 1838_CR16 publication-title: Polymer – volume: 21 start-page: 2 issue: 4 year: 2014 ident: 1838_CR2 publication-title: J. Polym. Res. – volume: 35 start-page: 1069 issue: 9 year: 2004 ident: 1838_CR20 publication-title: Compos. Part A-Appl. S. doi: 10.1016/j.compositesa.2004.03.001 – volume: 69 start-page: 2064 issue: 13 year: 2009 ident: 1838_CR5 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2008.08.016 – volume: 21 start-page: 515 issue: 8 year: 2014 ident: 1838_CR4 publication-title: J. Polym. Res. doi: 10.1007/s10965-014-0515-3 – volume: 17 start-page: 1544 issue: 16 year: 2007 ident: 1838_CR8 publication-title: J. Mater. Chem. – volume: 20 start-page: 82 issue: 2 year: 2013 ident: 1838_CR11 publication-title: J. Polym. Res. doi: 10.1007/s10965-013-0082-z – volume: 59 start-page: 766 issue: 6 year: 2010 ident: 1838_CR14 publication-title: Polym. Int. doi: 10.1002/pi.2785 – volume: 37 start-page: 5789 issue: 26 year: 1996 ident: 1838_CR18 publication-title: Polymer – volume: 106 start-page: 22 year: 2015 ident: 1838_CR17 publication-title: Compos. Sci. Technol. – volume: 292 start-page: 2311 issue: 9 year: 2014 ident: 1838_CR1 publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-014-3266-0 – volume: 65 start-page: 3639 issue: 23 year: 2011 ident: 1838_CR13 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.06.083 – volume: 49 start-page: 80 year: 2015 ident: 1838_CR6 publication-title: Prog. Polym. Sci. – volume: 19 start-page: 9952 issue: 9 year: 2012 ident: 1838_CR7 publication-title: J. Polym. Res. doi: 10.1007/s10965-012-9952-z – volume: 13 start-page: 40691 issue: 17 year: 2014 ident: 1838_CR3 publication-title: J. Appl. Polym. Sci. – volume: 6 start-page: 3048 issue: 16 year: 2015 ident: 1838_CR9 publication-title: Polym. Chem-UK. doi: 10.1039/C5PY00172B – volume: 72 start-page: 1178 issue: 10 year: 2012 ident: 1838_CR10 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2012.03.027 – volume: 18 start-page: 024002 issue: 2 year: 2009 ident: 1838_CR15 publication-title: Smart. Mater. Struct. doi: 10.1088/0964-1726/18/2/024002 |
SSID | ssj0064757 |
Score | 2.109793 |
Snippet | A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene)... A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene- b -butadiene- b -styrene)... A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene-b-butadiene-b-styrene)... A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene-b-butadiene-b-styren e)... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1354 |
SubjectTerms | Block copolymers Carbon fiber reinforced plastics Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Curing Differential scanning calorimetry Dynamic mechanical analysis Industrial Chemistry/Chemical Engineering LLDPE Low density polyethylenes Polyethylenes Polymer blends Polymer matrix composites Polymer Sciences Polymers Polystyrene resins Recovery time SBS Scanning electron microscopy SCF Shape effects Shape memory Styrenes Thermomechanical properties 形状记忆行为 热机械性能 线性低密度聚乙烯 聚乙烯复合材料 聚合物复合材料 |
Title | Thermomechanical and Shape Memory Properties of SCF/SBS/LLDPE Composites |
URI | http://lib.cqvip.com/qk/86788X/201611/670279739.html https://link.springer.com/article/10.1007/s10118-016-1838-9 https://www.proquest.com/docview/1880862891 https://www.proquest.com/docview/1879984763 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHPRifEYUSU08aTbuu_QICBJFYoIkeNrsdoseZBd5HPz3zixbQKMmnjabbafZmXYenelXgAsuo7hqcmkMrVgZrq08QygHXyNbmAQ76WdbFw9dv9137wbeID_HPdXV7jolmWnqtcNu6Axj6OsbOA1xlW5C0cPQneq4-nZNq1_f5Qt4T7TlBve50KnMn0gQoMJrmry843BfDdPK2_yWIM3sTmsXdnKHkdUWEt6DDZXsw1ZD39N2AG2U9GSUjhSd4SWWszCJ2fQ1HCs2ojraDzamHfcJQaeydMh6jdZ1r9677nRuHpuMasqpcEtND6Hfaj412kZ-P4IhUS3MDC7dUMaeNGOLh6inHEviX0Yhl6Yv0DQr7oiYcxkKFTpcKnSmnYibkhDbLUu6zhEUkjRRx8Ck50eWpdTQk7GrkAja-aqIPLtKiU3BS3C6ZFQwXuBgBD7HmFbgICUwNesCmUOL0w0Xb8EKFJk4H1A5GXE-wC6Xyy6a3h-Ny1oeQb7EpgEByWE4VhVWCc6Xn5H3lPEIE5XOqQ3HcNJFHVqCKy3HNRK_DXjyr9ansG1nc4o2ZspQmE3m6gxdlVlUgWKtVa936Xn7fN-sZFP1EyS-3_A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONALAtqKFAqL1F5aWfi93kMPEIhCCahSiMRtsdcTODR2SIIQv4c_yozjDQ9RJA4cLe_O2vPYndmZ_RbguzRZnrjSOH0vRyf0MXIUBvSY-cpl2Mm42ro4PonbvfDPWXQ2B3f2LExV7W5TktVM_eiwGznDFPrGDqkhWWldSXmEtzcUp41_H-6TUH_4fuvgtNl26qsEHEMWNHGkCVOTR8bNPZmSSQeeIZpZKo0bK1rFUAYql9KkCtNAGiS_M8ikaxjc3PNMGBDdD7BAvkfCptPzd-10H4dyCidKvoMjY6ls6vSlT2YAh8uyuLii33u6ED54t88SstU611qGpdpBFbtTjVqBOSxWYbFp74X7BG3SrNGgHCCfGWYRi7TIxfgyHaIYcN3urRjyDv-IoVpF2RfdZmunu9fd6XT2_x4IrmHnQjEcf4beuzDxC8wXZYFrIEwUZ56H2I9MHiIRIb8iUVnkJ5xIVbIB6zNG6eEUd0PHkmJoRYM0wLWs06aGMucbNf7pBxBm5rzm8jXmvKYuP2ddLL1XGm9YeejapMeageso_EuU14Dt2WviPWdY0gLLa24jKXwNac5uwC8rx0ck_jfg1ze13oLF9ulxR3cOT47W4aNf6RdvCm3A_GR0jd_ITZpkm5WaCjh_b7u4B7NrGfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RKlEuFS1UBCh1pXIpWmXfjg89QEIUSoqQ0kjc3F3vhBzIbshDVX5V_2JnNusAFa3UA8fV2uPd8Yw945n5DPBJmjRruNI4Ay9DJ_QxchQG9Jj6ymXYybg8uvh2GXf64dfr6HoNftlamDLb3YYklzUNjNKUz-rjbFB_UPhGhjG5wbFDIkkaW2VVXuDiJ_ls0y_nLZrgI99vn31vdpzqWgHHkDbNHGnCxGSRcTNPJqTegWeIZppI48aKdjSUgcqkNInCJJAGyQYNUukaBjr3PBMGRPcFvAy5-JgUqO-f2KU_DuUSWpTsCEfGUtkw6lOfzGAOwyK_uaNffbwp3lu6fwRnyz2vvQWvK2NVnCyl6w2sYf4WXjXtHXHb0CEpm4yKEXL9ME-3SPJMTIfJGMWIc3gXYsyn_ROGbRXFQPSa7XrvtFfvdltXZ4Lz2TlpDKc70H8WJr6D9bzIcReEieLU8xAHkclCJCJkYzRUGvkNDqoqWYP9FaP0eInBoWNJ_rSiQWrgWtZpU8Ga8-0at_oekJk5rzmVjTmvqcvnVRdL7x-ND-x86Eq9p5pB7MgVbCivBh9Xr4n3HG1Jcizm3EaSKxvS-l2DYzuPD0j8bcC9_2r9ATauWm3dPb-82IdNvxQvPh86gPXZZI7vyWKapYellAr48dxq8RtOKh4n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermomechanical+and+Shape+Memory+Properties+of+SCF%2FSBS%2FLLDPE+Composites&rft.jtitle=%E9%AB%98%E5%88%86%E5%AD%90%E7%A7%91%E5%AD%A6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Yong-kun+Wang+Wen-chao+Tian+Guang-ming+Zhu+Jian-qiang+Xie&rft.date=2016-11-01&rft.issn=0256-7679&rft.eissn=1439-6203&rft.issue=11&rft.spage=1354&rft.epage=1362&rft_id=info:doi/10.1007%2Fs10118-016-1838-9&rft.externalDocID=670279739 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86788X%2F86788X.jpg |