Thermomechanical and Shape Memory Properties of SCF/SBS/LLDPE Composites

A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer(SBS)/linear low density polyethylene(LLDPE) prior to curing. These composites have excellent processability compared with other...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of polymer science Vol. 34; no. 11; pp. 1354 - 1362
Main Authors Wang, Yong-kun, Tian, Wen-chao, Zhu, Guang-ming, Xie, Jian-qiang
Format Journal Article
LanguageEnglish
Published Beijing Chinese Chemical Society and Institute of Chemistry, CAS 01.11.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer(SBS)/linear low density polyethylene(LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis(DMA) and differential scanning calorimetry(DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope(SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content.
AbstractList A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer(SBS)/linear low density polyethylene(LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis(DMA) and differential scanning calorimetry(DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope(SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content.
A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene- b -butadiene- b -styrene) triblock copolymer (SBS)/linear low density polyethylene (LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope (SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content.
A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer (SBS)/linear low density polyethylene (LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope (SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content.
A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene-b-butadiene-b-styren e) triblock copolymer (SBS)/linear low density polyethylene (LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope (SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content.
Author Yong-kun Wang Wen-chao Tian Guang-ming Zhu Jian-qiang Xie
AuthorAffiliation Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi 'an 710071, China Department of Applied Chemistry, Northwestern Polytehnical University, Xi 'an 710129, China Department of Polymer materials and Engineering, College of Material Science and Engineering, North China University of Science and Technology, Tangshan 063009, China
Author_xml – sequence: 1
  givenname: Yong-kun
  surname: Wang
  fullname: Wang, Yong-kun
  email: ykwang@xidian.edu.cn
  organization: Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University
– sequence: 2
  givenname: Wen-chao
  surname: Tian
  fullname: Tian, Wen-chao
  organization: Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University
– sequence: 3
  givenname: Guang-ming
  surname: Zhu
  fullname: Zhu, Guang-ming
  organization: Department of Applied Chemistry, Northwestern Polytehnical University
– sequence: 4
  givenname: Jian-qiang
  surname: Xie
  fullname: Xie, Jian-qiang
  organization: Department of Polymer materials and Engineering, College of Material Science and Engineering, North China University of Science and Technology
BookMark eNp9kDtPwzAURi0EEuXxA9giWFhC_Uh97RHKUyoCqTBbxrmlQYkd7HTg3-OqCCGGTl7O8f10DsiuDx4JOWH0glEK48QoY6qkTJZMCVXqHTJildCl5FTskhHlE1mCBL1PDlL6oFRWMIERuX9ZYuxCh25pfeNsW1hfF_Ol7bF4xC7Er-I5hh7j0GAqwqKYT2_H86v5eDa7fr4ppqHrQ2oGTEdkb2HbhMc_7yF5vb15md6Xs6e7h-nlrHQC5FCCq6yrJ47WDKyta8Fcnv9mwVGpOa8QhK4BnNVoBThUios3oI5TCYy5ShyS882_fQyfK0yD6ZrksG2tx7BKhinQWlUgRUbP_qEfYRV9XpcpRZXkSrNMsQ3lYkgp4sL0sels_DKMmnVbs2lrcluzbmt0duCf45rBDk3wQ7RNu9XkGzPlK_4d459NW6TTn3PL4N8_s_e7UQLloHM08Q0YDpjh
CitedBy_id crossref_primary_10_1002_app_48930
crossref_primary_10_1007_s00289_023_05003_0
crossref_primary_10_1108_PRT_09_2019_0087
crossref_primary_10_1021_acsomega_0c05839
crossref_primary_10_1080_10584587_2022_2072127
crossref_primary_10_3390_app7010108
crossref_primary_10_1108_PRT_04_2017_0037
crossref_primary_10_1016_j_radphyschem_2024_112290
crossref_primary_10_1177_00952443231212553
crossref_primary_10_1080_10584587_2022_2065583
Cites_doi 10.1007/s10965-011-9777-1
10.1016/j.polymer.2010.05.049
10.1016/j.compositesa.2004.03.001
10.1016/j.compscitech.2008.08.016
10.1007/s10965-014-0515-3
10.1007/s10965-013-0082-z
10.1002/pi.2785
10.1007/s00396-014-3266-0
10.1016/j.matlet.2011.06.083
10.1007/s10965-012-9952-z
10.1039/C5PY00172B
10.1016/j.compscitech.2012.03.027
10.1088/0964-1726/18/2/024002
ContentType Journal Article
Copyright Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2016
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1007/s10118-016-1838-9
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Thermomechanical and Shape Memory Properties of SCF/SBS/LLDPE Composites
EISSN 1439-6203
EndPage 1362
ExternalDocumentID 10_1007_s10118_016_1838_9
670279739
GroupedDBID -EM
06D
0R~
0VY
1N0
29B
2B.
2C.
2KG
2RA
2VQ
30V
4.4
406
408
40D
5GY
5VR
67Z
6J9
8TC
92E
92I
92L
92Q
93N
96X
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACREN
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFDTA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAG
CCEZO
CDRFL
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
ESBYG
EST
ESX
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HF~
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
ML~
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PT4
R9I
RIG
RLLFE
RSV
RWJ
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
T13
TCJ
TGP
TSG
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7R
Z7V
Z7X
ZE2
ZMTXR
~WA
-SB
-S~
5XA
5XC
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
ACUHS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEB
H13
Q--
ROL
SJYHP
U1G
U5L
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c376t-7c4acd5c0d17aadd31c007ba7c069224e739d77ca9ea37ce8823b70c206711c43
IEDL.DBID U2A
ISSN 0256-7679
IngestDate Thu Jul 10 18:28:46 EDT 2025
Fri Jul 25 11:07:10 EDT 2025
Tue Jul 01 02:13:20 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
Fri Feb 21 02:35:25 EST 2025
Wed Feb 14 10:15:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Mechanical properties
Shape memory behavior
Short carbon fiber
SCF/SBS/LLDPE composite
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-7c4acd5c0d17aadd31c007ba7c069224e739d77ca9ea37ce8823b70c206711c43
Notes blend styrene calorimetry copolymer polyethylene curing thermally butadiene modulus prior
A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene) triblock copolymer(SBS)/linear low density polyethylene(LLDPE) prior to curing. These composites have excellent processability compared with other thermosets. The dynamic mechanical analysis(DMA) and differential scanning calorimetry(DSC) were investigated to assess the thermomechanical properties of the SCF/SBS/LLDPE composite. Scanning electron microscope(SEM) imaging of the samples was performed to show the distribution of the SCF in the composite. The study specifically focused on the effect of SCF on the shape memory behavior of the SCF/SBS/LLDPE composite. The results indicated that the large amount of SCF significantly improved the mechanical property of the polymer composites while not damaging the shape memory performance. The SCF/SBS/LLDPE composites exhibited excellent shape memory behavior when the SCF content was less than 15.0 wt%. Moreover, the shape fixity ratio and shape recovery time of the SCF/SBS/LLDPE composites increased with the SCF content.
11-2015/O6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1880862891
PQPubID 2043655
PageCount 9
ParticipantIDs proquest_miscellaneous_1879984763
proquest_journals_1880862891
crossref_primary_10_1007_s10118_016_1838_9
crossref_citationtrail_10_1007_s10118_016_1838_9
springer_journals_10_1007_s10118_016_1838_9
chongqing_primary_670279739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Chinese journal of polymer science
PublicationTitleAbbrev Chin J Polym Sci
PublicationTitleAlternate Chinese Journal of Polymer Science
PublicationYear 2016
Publisher Chinese Chemical Society and Institute of Chemistry, CAS
Springer Nature B.V
Publisher_xml – name: Chinese Chemical Society and Institute of Chemistry, CAS
– name: Springer Nature B.V
References LvH.B.YuK.SunS.H.LiuY.J.LengJ.S.Polym. Int.2010596766
AmirianM.ChakoliA.N.SuiJ.H.CaiW.J. Polym. Res.2012192977710.1007/s10965-011-9777-1
VoitW.WareT.GallK.Polymer20105115355510.1016/j.polymer.2010.05.049
WangW.X.LiuD.Y.LiuY.J.LengJ.S.BhattacharyyaD.Compos. Sci. Technol.20151062210.1016/j.compscitech.2014.10.016
KimB.K.LeeS.Y.XuM.Polymer19963726578910.1016/S0032-3861(96)00442-9
WangY.K.ZhuG.M.CuiX.P.LiuT.T.LiuZ.WangK.Colloid Polym. Sci.2014292923111:CAS:528:DC%2BC2cXovVWrtLk%3D10.1007/s00396-014-3266-0
WangY.K.ZhuG.M.XieJ.Q.MenQ.N.LiuT.T.RenF.J. Polym. Res.201421851510.1007/s10965-014-0515-3
WangY.K.ZhuG.M.TangT.S.XieJ.Q.LiuT.T.LiuZ.J. Polym. Res.20142142
LiuC.QinH.MatherP.T.J. Mater. Chem.20071716154410.1039/b615954k
ZhaoQ.QiH.J.XieT.Prog. Polym. Sci.20154980
WangC.C.HuangW.M.DingZ.ZhaoY.PurnawaliH.Compos. Sci. Technol.2012721011781:CAS:528:DC%2BC38XlvFagu7k%3D10.1016/j.compscitech.2012.03.027
ZhangJ.N.MaY.M.ZhangJ.J.XuD.YangQ.L.GuanJ.G.CaoX.Y.JiangL.Mater. Lett.2011652336391:CAS:528:DC%2BC3MXhtFynu7rL10.1016/j.matlet.2011.06.083
LanX.LiuY.J.LvH.B.WangX.H.LengJ.S.DuS.Y.Smart. Mater. Struct.200918202400210.1088/0964-1726/18/2/024002
BijiuR.NairC.P.R.J. Polym. Res.20132028210.1007/s10965-013-0082-z
LiuY.J.LvH.B.LanX.LengJ.S.DuS.Y.Compos. Sci. Technol.2009691320641:CAS:528:DC%2BD1MXptVCqu7s%3D10.1016/j.compscitech.2008.08.016
WangY.K.ZhuG.M.TangT.S.LiuT.T.XieJ.Q.RenF.J. Appl. Polym. Sci.2014131740691
OhkiT.NiQ.Q.OhsakoN.LwamotoM.Compos. Part A-Appl. S.2004359106910.1016/j.compositesa.2004.03.001
GuoW.S.ShenZ.L.GuoB.C.ZhangL.Q.JiaD.Polymer20145516432810.1016/j.polymer.2014.06.044
ZhenW.M.ZhaoY.WangC.C.DingZ.PurnawaliH.TangC.ZhangJ.L.J. Polym. Res.2012199995210.1007/s10965-012-9952-z
ZhengN.FangG.Q.CaoZ.L.ZhaoQ.XieT.Polym. Chem-UK.2015616304810.1039/C5PY00172B
B.K. Kim (1838_CR18) 1996; 37
M. Amirian (1838_CR19) 2012; 19
T. Ohki (1838_CR20) 2004; 35
J.N. Zhang (1838_CR13) 2011; 65
H.B. Lv (1838_CR14) 2010; 59
C. Liu (1838_CR8) 2007; 17
Y.K. Wang (1838_CR2) 2014; 21
C.C. Wang (1838_CR10) 2012; 72
Y.J. Liu (1838_CR5) 2009; 69
W.M. Zhen (1838_CR7) 2012; 19
Y.K. Wang (1838_CR1) 2014; 292
R. Bijiu (1838_CR11) 2013; 20
W. Voit (1838_CR12) 2010; 51
W.X. Wang (1838_CR17) 2015; 106
N. Zheng (1838_CR9) 2015; 6
W.S. Guo (1838_CR16) 2014; 55
Y.K. Wang (1838_CR3) 2014; 13
X. Lan (1838_CR15) 2009; 18
Y.K. Wang (1838_CR4) 2014; 21
Q. Zhao (1838_CR6) 2015; 49
References_xml – reference: WangY.K.ZhuG.M.TangT.S.XieJ.Q.LiuT.T.LiuZ.J. Polym. Res.20142142
– reference: LanX.LiuY.J.LvH.B.WangX.H.LengJ.S.DuS.Y.Smart. Mater. Struct.200918202400210.1088/0964-1726/18/2/024002
– reference: ZhenW.M.ZhaoY.WangC.C.DingZ.PurnawaliH.TangC.ZhangJ.L.J. Polym. Res.2012199995210.1007/s10965-012-9952-z
– reference: ZhangJ.N.MaY.M.ZhangJ.J.XuD.YangQ.L.GuanJ.G.CaoX.Y.JiangL.Mater. Lett.2011652336391:CAS:528:DC%2BC3MXhtFynu7rL10.1016/j.matlet.2011.06.083
– reference: ZhaoQ.QiH.J.XieT.Prog. Polym. Sci.20154980
– reference: LiuC.QinH.MatherP.T.J. Mater. Chem.20071716154410.1039/b615954k
– reference: WangY.K.ZhuG.M.TangT.S.LiuT.T.XieJ.Q.RenF.J. Appl. Polym. Sci.2014131740691
– reference: LvH.B.YuK.SunS.H.LiuY.J.LengJ.S.Polym. Int.2010596766
– reference: LiuY.J.LvH.B.LanX.LengJ.S.DuS.Y.Compos. Sci. Technol.2009691320641:CAS:528:DC%2BD1MXptVCqu7s%3D10.1016/j.compscitech.2008.08.016
– reference: BijiuR.NairC.P.R.J. Polym. Res.20132028210.1007/s10965-013-0082-z
– reference: VoitW.WareT.GallK.Polymer20105115355510.1016/j.polymer.2010.05.049
– reference: WangY.K.ZhuG.M.XieJ.Q.MenQ.N.LiuT.T.RenF.J. Polym. Res.201421851510.1007/s10965-014-0515-3
– reference: KimB.K.LeeS.Y.XuM.Polymer19963726578910.1016/S0032-3861(96)00442-9
– reference: WangC.C.HuangW.M.DingZ.ZhaoY.PurnawaliH.Compos. Sci. Technol.2012721011781:CAS:528:DC%2BC38XlvFagu7k%3D10.1016/j.compscitech.2012.03.027
– reference: ZhengN.FangG.Q.CaoZ.L.ZhaoQ.XieT.Polym. Chem-UK.2015616304810.1039/C5PY00172B
– reference: WangW.X.LiuD.Y.LiuY.J.LengJ.S.BhattacharyyaD.Compos. Sci. Technol.20151062210.1016/j.compscitech.2014.10.016
– reference: AmirianM.ChakoliA.N.SuiJ.H.CaiW.J. Polym. Res.2012192977710.1007/s10965-011-9777-1
– reference: WangY.K.ZhuG.M.CuiX.P.LiuT.T.LiuZ.WangK.Colloid Polym. Sci.2014292923111:CAS:528:DC%2BC2cXovVWrtLk%3D10.1007/s00396-014-3266-0
– reference: GuoW.S.ShenZ.L.GuoB.C.ZhangL.Q.JiaD.Polymer20145516432810.1016/j.polymer.2014.06.044
– reference: OhkiT.NiQ.Q.OhsakoN.LwamotoM.Compos. Part A-Appl. S.2004359106910.1016/j.compositesa.2004.03.001
– volume: 19
  start-page: 9777
  issue: 2
  year: 2012
  ident: 1838_CR19
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-011-9777-1
– volume: 51
  start-page: 3555
  issue: 15
  year: 2010
  ident: 1838_CR12
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.05.049
– volume: 55
  start-page: 4328
  issue: 16
  year: 2014
  ident: 1838_CR16
  publication-title: Polymer
– volume: 21
  start-page: 2
  issue: 4
  year: 2014
  ident: 1838_CR2
  publication-title: J. Polym. Res.
– volume: 35
  start-page: 1069
  issue: 9
  year: 2004
  ident: 1838_CR20
  publication-title: Compos. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2004.03.001
– volume: 69
  start-page: 2064
  issue: 13
  year: 2009
  ident: 1838_CR5
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2008.08.016
– volume: 21
  start-page: 515
  issue: 8
  year: 2014
  ident: 1838_CR4
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-014-0515-3
– volume: 17
  start-page: 1544
  issue: 16
  year: 2007
  ident: 1838_CR8
  publication-title: J. Mater. Chem.
– volume: 20
  start-page: 82
  issue: 2
  year: 2013
  ident: 1838_CR11
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-013-0082-z
– volume: 59
  start-page: 766
  issue: 6
  year: 2010
  ident: 1838_CR14
  publication-title: Polym. Int.
  doi: 10.1002/pi.2785
– volume: 37
  start-page: 5789
  issue: 26
  year: 1996
  ident: 1838_CR18
  publication-title: Polymer
– volume: 106
  start-page: 22
  year: 2015
  ident: 1838_CR17
  publication-title: Compos. Sci. Technol.
– volume: 292
  start-page: 2311
  issue: 9
  year: 2014
  ident: 1838_CR1
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-014-3266-0
– volume: 65
  start-page: 3639
  issue: 23
  year: 2011
  ident: 1838_CR13
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.06.083
– volume: 49
  start-page: 80
  year: 2015
  ident: 1838_CR6
  publication-title: Prog. Polym. Sci.
– volume: 19
  start-page: 9952
  issue: 9
  year: 2012
  ident: 1838_CR7
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-012-9952-z
– volume: 13
  start-page: 40691
  issue: 17
  year: 2014
  ident: 1838_CR3
  publication-title: J. Appl. Polym. Sci.
– volume: 6
  start-page: 3048
  issue: 16
  year: 2015
  ident: 1838_CR9
  publication-title: Polym. Chem-UK.
  doi: 10.1039/C5PY00172B
– volume: 72
  start-page: 1178
  issue: 10
  year: 2012
  ident: 1838_CR10
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2012.03.027
– volume: 18
  start-page: 024002
  issue: 2
  year: 2009
  ident: 1838_CR15
  publication-title: Smart. Mater. Struct.
  doi: 10.1088/0964-1726/18/2/024002
SSID ssj0064757
Score 2.109793
Snippet A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber(SCF) into a blend of poly(styrene-b-butadiene-b-styrene)...
A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene- b -butadiene- b -styrene)...
A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene-b-butadiene-b-styrene)...
A thermally triggered shape memory polymer composite was prepared by blending short carbon fiber (SCF) into a blend of poly(styrene-b-butadiene-b-styren e)...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1354
SubjectTerms Block copolymers
Carbon fiber reinforced plastics
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Curing
Differential scanning calorimetry
Dynamic mechanical analysis
Industrial Chemistry/Chemical Engineering
LLDPE
Low density polyethylenes
Polyethylenes
Polymer blends
Polymer matrix composites
Polymer Sciences
Polymers
Polystyrene resins
Recovery time
SBS
Scanning electron microscopy
SCF
Shape effects
Shape memory
Styrenes
Thermomechanical properties
形状记忆行为
热机械性能
线性低密度聚乙烯
聚乙烯复合材料
聚合物复合材料
Title Thermomechanical and Shape Memory Properties of SCF/SBS/LLDPE Composites
URI http://lib.cqvip.com/qk/86788X/201611/670279739.html
https://link.springer.com/article/10.1007/s10118-016-1838-9
https://www.proquest.com/docview/1880862891
https://www.proquest.com/docview/1879984763
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHPRifEYUSU08aTbuu_QICBJFYoIkeNrsdoseZBd5HPz3zixbQKMmnjabbafZmXYenelXgAsuo7hqcmkMrVgZrq08QygHXyNbmAQ76WdbFw9dv9137wbeID_HPdXV7jolmWnqtcNu6Axj6OsbOA1xlW5C0cPQneq4-nZNq1_f5Qt4T7TlBve50KnMn0gQoMJrmry843BfDdPK2_yWIM3sTmsXdnKHkdUWEt6DDZXsw1ZD39N2AG2U9GSUjhSd4SWWszCJ2fQ1HCs2ojraDzamHfcJQaeydMh6jdZ1r9677nRuHpuMasqpcEtND6Hfaj412kZ-P4IhUS3MDC7dUMaeNGOLh6inHEviX0Yhl6Yv0DQr7oiYcxkKFTpcKnSmnYibkhDbLUu6zhEUkjRRx8Ck50eWpdTQk7GrkAja-aqIPLtKiU3BS3C6ZFQwXuBgBD7HmFbgICUwNesCmUOL0w0Xb8EKFJk4H1A5GXE-wC6Xyy6a3h-Ny1oeQb7EpgEByWE4VhVWCc6Xn5H3lPEIE5XOqQ3HcNJFHVqCKy3HNRK_DXjyr9ansG1nc4o2ZspQmE3m6gxdlVlUgWKtVa936Xn7fN-sZFP1EyS-3_A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONALAtqKFAqL1F5aWfi93kMPEIhCCahSiMRtsdcTODR2SIIQv4c_yozjDQ9RJA4cLe_O2vPYndmZ_RbguzRZnrjSOH0vRyf0MXIUBvSY-cpl2Mm42ro4PonbvfDPWXQ2B3f2LExV7W5TktVM_eiwGznDFPrGDqkhWWldSXmEtzcUp41_H-6TUH_4fuvgtNl26qsEHEMWNHGkCVOTR8bNPZmSSQeeIZpZKo0bK1rFUAYql9KkCtNAGiS_M8ikaxjc3PNMGBDdD7BAvkfCptPzd-10H4dyCidKvoMjY6ls6vSlT2YAh8uyuLii33u6ED54t88SstU611qGpdpBFbtTjVqBOSxWYbFp74X7BG3SrNGgHCCfGWYRi7TIxfgyHaIYcN3urRjyDv-IoVpF2RfdZmunu9fd6XT2_x4IrmHnQjEcf4beuzDxC8wXZYFrIEwUZ56H2I9MHiIRIb8iUVnkJ5xIVbIB6zNG6eEUd0PHkmJoRYM0wLWs06aGMucbNf7pBxBm5rzm8jXmvKYuP2ddLL1XGm9YeejapMeageso_EuU14Dt2WviPWdY0gLLa24jKXwNac5uwC8rx0ck_jfg1ze13oLF9ulxR3cOT47W4aNf6RdvCm3A_GR0jd_ITZpkm5WaCjh_b7u4B7NrGfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RKlEuFS1UBCh1pXIpWmXfjg89QEIUSoqQ0kjc3F3vhBzIbshDVX5V_2JnNusAFa3UA8fV2uPd8Yw945n5DPBJmjRruNI4Ay9DJ_QxchQG9Jj6ymXYybg8uvh2GXf64dfr6HoNftlamDLb3YYklzUNjNKUz-rjbFB_UPhGhjG5wbFDIkkaW2VVXuDiJ_ls0y_nLZrgI99vn31vdpzqWgHHkDbNHGnCxGSRcTNPJqTegWeIZppI48aKdjSUgcqkNInCJJAGyQYNUukaBjr3PBMGRPcFvAy5-JgUqO-f2KU_DuUSWpTsCEfGUtkw6lOfzGAOwyK_uaNffbwp3lu6fwRnyz2vvQWvK2NVnCyl6w2sYf4WXjXtHXHb0CEpm4yKEXL9ME-3SPJMTIfJGMWIc3gXYsyn_ROGbRXFQPSa7XrvtFfvdltXZ4Lz2TlpDKc70H8WJr6D9bzIcReEieLU8xAHkclCJCJkYzRUGvkNDqoqWYP9FaP0eInBoWNJ_rSiQWrgWtZpU8Ga8-0at_oekJk5rzmVjTmvqcvnVRdL7x-ND-x86Eq9p5pB7MgVbCivBh9Xr4n3HG1Jcizm3EaSKxvS-l2DYzuPD0j8bcC9_2r9ATauWm3dPb-82IdNvxQvPh86gPXZZI7vyWKapYellAr48dxq8RtOKh4n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermomechanical+and+Shape+Memory+Properties+of+SCF%2FSBS%2FLLDPE+Composites&rft.jtitle=%E9%AB%98%E5%88%86%E5%AD%90%E7%A7%91%E5%AD%A6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Yong-kun+Wang+Wen-chao+Tian+Guang-ming+Zhu+Jian-qiang+Xie&rft.date=2016-11-01&rft.issn=0256-7679&rft.eissn=1439-6203&rft.issue=11&rft.spage=1354&rft.epage=1362&rft_id=info:doi/10.1007%2Fs10118-016-1838-9&rft.externalDocID=670279739
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86788X%2F86788X.jpg