Machine learning classification of port scanning and DDoS attacks: A comparative analysis

Cyber security is one of the major concerns of today's connected world. For all the platforms of today's communication technology such as wired, wireless, local and remote access, the hackers are present to corrupt the system functionalities, circumvent the security measures and steal sens...

Full description

Saved in:
Bibliographic Details
Published inMehran University research journal of engineering and technology Vol. 40; no. 1; pp. 215 - 229
Main Authors Aamir, Muhammad, Rizvi, Syed Sajjad Hussain, Hashmani, Manzoor Ahmed, Zubair, Muhammad, Usman, Jawwad Ahmed
Format Journal Article
LanguageEnglish
Published Mehran University of Engineering and Technology 01.01.2021
Subjects
Online AccessGet full text
ISSN0254-7821
2413-7219
DOI10.22581/muet1982.2101.19

Cover

Loading…
Abstract Cyber security is one of the major concerns of today's connected world. For all the platforms of today's communication technology such as wired, wireless, local and remote access, the hackers are present to corrupt the system functionalities, circumvent the security measures and steal sensitive information. Amongst many techniques of hackers, port scanning and Distributed Denial of Service (DDoS) attacks are very common. In this paper, the benefits of machine learning are taken into consideration for classification of port scanning and DDoS attacks in a mix of normal and attack traffic. Different machine learning algorithms are trained and tested on a recently published benchmark dataset (CICIDS2017) to identify the best performing algorithms on the data which contains more recent vectors of port scanning and DDoS attacks. The classification results show that all the variants of discriminant analysis and Support Vector Machine (SVM) provide good testing accuracy i.e. more than 90%. According to a subjective rating criterion mentioned in this paper, 9 algorithms from a set of machine learning experiments receive the highest rating (good) as they provide more than 85% classification (testing) accuracy out of 22 total algorithms. This comparative analysis is further extended to observe training performance of machine learning models through k-fold cross validation, Area Under Curve (AUC) analysis of the Receiver Operating Characteristic (ROC) curves, and dimensionality reduction using the Principal Component Analysis (PCA). To the best of our knowledge, a comprehensive comparison of various machine learning algorithms on CICIDS2017 dataset is found to be deficient for port scanning and DDoS attacks while considering such recent features of attack.
AbstractList Cyber security is one of the major concerns of today’s connected world. For all the platforms of today’s communication technology such as wired, wireless, local and remote access, the hackers are present to corrupt the system functionalities, circumvent the security measures and steal sensitive information. Amongst many techniques of hackers, port scanning and Distributed Denial of Service (DDoS) attacks are very common. In this paper, the benefits of machine learning are taken into consideration for classification of port scanning and DDoS attacks in a mix of normal and attack traffic. Different machine learning algorithms are trained and tested on a recently published benchmark dataset (CICIDS2017) to identify the best performing algorithms on the data which contains more recent vectors of port scanning and DDoS attacks. The classification results show that all the variants of discriminant analysis and Support Vector Machine (SVM) provide good testing accuracy i.e. more than 90%. According to a subjective rating criterion mentioned in this paper, 9 algorithms from a set of machine learning experiments receive the highest rating (good) as they provide more than 85% classification (testing) accuracy out of 22 total algorithms. This comparative analysis is further extended to observe training performance of machine learning models through k-fold cross validation, Area Under Curve (AUC) analysis of the Receiver Operating Characteristic (ROC) curves, and dimensionality reduction using the Principal Component Analysis (PCA). To the best of our knowledge, a comprehensive comparison of various machine learning algorithms on CICIDS2017 dataset is found to be deficient for port scanning and DDoS attacks while considering such recent features of attack.
Cyber security is one of the major concerns of today's connected world. For all the platforms of today's communication technology such as wired, wireless, local and remote access, the hackers are present to corrupt the system functionalities, circumvent the security measures and steal sensitive information. Amongst many techniques of hackers, port scanning and Distributed Denial of Service (DDoS) attacks are very common. In this paper, the benefits of machine learning are taken into consideration for classification of port scanning and DDoS attacks in a mix of normal and attack traffic. Different machine learning algorithms are trained and tested on a recently published benchmark dataset (CICIDS2017) to identify the best performing algorithms on the data which contains more recent vectors of port scanning and DDoS attacks. The classification results show that all the variants of discriminant analysis and Support Vector Machine (SVM) provide good testing accuracy i.e. more than 90%. According to a subjective rating criterion mentioned in this paper, 9 algorithms from a set of machine learning experiments receive the highest rating (good) as they provide more than 85% classification (testing) accuracy out of 22 total algorithms. This comparative analysis is further extended to observe training performance of machine learning models through k-fold cross validation, Area Under Curve (AUC) analysis of the Receiver Operating Characteristic (ROC) curves, and dimensionality reduction using the Principal Component Analysis (PCA). To the best of our knowledge, a comprehensive comparison of various machine learning algorithms on CICIDS2017 dataset is found to be deficient for port scanning and DDoS attacks while considering such recent features of attack. Keywords: Classification, DDoS Attacks, Machine Learning, Port Scanning, Supervised Learning.
Audience Academic
Author Manzoor Ahmed Hashmani
Muhammad Aamir
Syed Sajjad Hussain Rizvi
Muhammad Zubair
Jawwad Ahmad
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Aamir
  fullname: Aamir, Muhammad
  organization: Shaheed Zulfikar Ali Bhutto Institute of Science & Technology (SZABIST), Karachi, Pakistan
– sequence: 2
  givenname: Syed Sajjad Hussain
  surname: Rizvi
  fullname: Rizvi, Syed Sajjad Hussain
  organization: Shaheed Zulfikar Ali Bhutto Institute of Science & Technology (SZABIST), Karachi, Pakistan
– sequence: 3
  givenname: Manzoor Ahmed
  surname: Hashmani
  fullname: Hashmani, Manzoor Ahmed
  organization: Department of Computer and Information Sciences, Centre for Research in Data Science (CERDAS), Universiti Teknologi PETRONAS, Seri Iskander, Malaysia
– sequence: 4
  givenname: Muhammad
  surname: Zubair
  fullname: Zubair, Muhammad
  organization: Iqra University, Karachi, Pakistan
– sequence: 5
  givenname: Jawwad Ahmed
  surname: Usman
  fullname: Usman, Jawwad Ahmed
  organization: Institute of Technology, Karachi, Pakistan
BookMark eNp9kU1v1DAQhiNUJJbSH8AtfyCLPxJ_IC6rlkKlIg7AgZM1GduLlyRe2aZS_z3eLL30gHwYaWae16P3fd1cLHFxTfOWki1jg6Lv5j-uUK3YllFCt1S_aDasp7yTjOqLZkPY0HdSMfqqucr5QAihYugF55vm5xfAX2Fx7eQgLWHZtzhBzsEHhBLi0kbfHmMqbUZY1jkstr25id9aKAXwd37f7lqM8xFSBR5cncP0mEN-07z0MGV39a9eNj9uP36__tzdf_10d72775BLUTo5IneUoGUCFcJggTFr0Q_OMRitBc-90xKdAj8SKa0YlJZKMkUcKGH5ZXN31rURDuaYwgzp0UQIZm3EtDeQSsDJmR7GnlOmtfSyZ0KDIszjUJ3qaxlPWtuz1h7qelh8LAmwPuvmgNV0H2p_J4RiUvdcVkCeAUwx5-S8wVBW4yoYJkOJWRMyTwmZU0KG6krSZ-TT6f9jPpyZNIdiME6Tw9Nf-QAlnzjOqVjPXhfkwHouhOAD0T3j_C_-Bqt-
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3152577
crossref_primary_10_1016_j_micpro_2023_104823
crossref_primary_10_3389_frsip_2021_814129
crossref_primary_10_3390_electronics13122404
crossref_primary_10_1142_S0218001422500239
crossref_primary_10_1057_s41288_022_00266_6
crossref_primary_10_1016_j_comnet_2023_109935
Cites_doi 10.1515/jisys-2017-0472
10.3390/info10040122
10.22581/muet1982.1803.19
10.1109/asiajcis.2016.24
10.1109/isi.2007.379535
10.1007/978-3-319-40162-1_4
10.14569/ijacsa.2016.070159
10.1002/9781118874059.ch7
10.1016/j.jksuci.2019.02.003
10.1109/cisda.2009.5356528
10.1016/j.jnca.2016.03.011
10.1002/sec.1149
10.5220/0006639801080116
10.1177/875647939000600106
10.1007/978-3-642-30220-6_2
10.1016/j.future.2017.10.016
10.1007/978-1-4899-7641-3_9
10.1016/j.cose.2019.06.005
10.1109/raics.2015.7488411
10.4036/iis.2013.173
10.1007/s10207-019-00434-1
10.1145/2980258.2982110
10.1007/978-3-319-92624-7_2
10.26686/wgtn.14214497.v1
10.1109/icitech.2017.8080006
10.1145/3022227.3022260
10.1109/tsmcc.2008.923876
10.1109/cnsr.2007.22
10.1109/milcis.2015.7348942
10.1007/978-81-322-2550-8_41
10.1109/tpami.2015.2435740
ContentType Journal Article
Copyright COPYRIGHT 2021 Mehran University of Engineering and Technology
Copyright_xml – notice: COPYRIGHT 2021 Mehran University of Engineering and Technology
DBID AAYXX
CITATION
DOA
DOI 10.22581/muet1982.2101.19
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2413-7219
EndPage 229
ExternalDocumentID oai_doaj_org_article_4ab4312997f74269a802fc54134fc5bd
A668279437
10_22581_muet1982_2101_19
10.3316/informit.752436663509423
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 188
5VS
ADBBV
AINHJ
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
IAO
ITC
KQ8
M~E
OK1
RIG
AAYXX
CITATION
ID FETCH-LOGICAL-c376t-7bc3e10cd26c8ca5da22ddcf5ee2abddaf3fe97ce8afb077d6589787280ea86d3
IEDL.DBID DOA
ISSN 0254-7821
IngestDate Wed Aug 27 01:31:00 EDT 2025
Sat Mar 08 18:02:40 EST 2025
Tue Jul 01 00:21:02 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Wed Jan 29 00:06:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-7bc3e10cd26c8ca5da22ddcf5ee2abddaf3fe97ce8afb077d6589787280ea86d3
Notes MURJET.jpg
Mehran University Research Journal Of Engineering & Technology, Vol. 40, No. 1, Jan 2021: 215-229
OpenAccessLink https://doaj.org/article/4ab4312997f74269a802fc54134fc5bd
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_4ab4312997f74269a802fc54134fc5bd
gale_infotracacademiconefile_A668279437
crossref_citationtrail_10_22581_muet1982_2101_19
crossref_primary_10_22581_muet1982_2101_19
rmit_collectionsjats_10_3316_informit_752436663509423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210101
2021-1-1
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationTitle Mehran University research journal of engineering and technology
PublicationYear 2021
Publisher Mehran University of Engineering and Technology
Publisher_xml – name: Mehran University of Engineering and Technology
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref0
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1515/jisys-2017-0472
– ident: ref1
– ident: ref3
– ident: ref35
  doi: 10.3390/info10040122
– ident: ref36
  doi: 10.22581/muet1982.1803.19
– ident: ref14
  doi: 10.1109/asiajcis.2016.24
– ident: ref10
  doi: 10.1109/isi.2007.379535
– ident: ref18
  doi: 10.1007/978-3-319-40162-1_4
– ident: ref20
  doi: 10.14569/ijacsa.2016.070159
– ident: ref9
– ident: ref26
  doi: 10.1002/9781118874059.ch7
– ident: ref33
  doi: 10.1016/j.jksuci.2019.02.003
– ident: ref11
– ident: ref29
  doi: 10.1109/cisda.2009.5356528
– ident: ref27
  doi: 10.1016/j.jnca.2016.03.011
– ident: ref5
  doi: 10.1002/sec.1149
– ident: ref7
  doi: 10.5220/0006639801080116
– ident: ref31
  doi: 10.1177/875647939000600106
– ident: ref8
  doi: 10.1007/978-3-642-30220-6_2
– ident: ref37
  doi: 10.1016/j.future.2017.10.016
– ident: ref25
  doi: 10.1007/978-1-4899-7641-3_9
– ident: ref28
  doi: 10.1016/j.cose.2019.06.005
– ident: ref22
  doi: 10.1109/raics.2015.7488411
– ident: ref4
  doi: 10.4036/iis.2013.173
– ident: ref32
  doi: 10.1007/s10207-019-00434-1
– ident: ref2
  doi: 10.1145/2980258.2982110
– ident: ref23
– ident: ref34
  doi: 10.1007/978-3-319-92624-7_2
– ident: ref6
  doi: 10.26686/wgtn.14214497.v1
– ident: ref17
  doi: 10.1109/icitech.2017.8080006
– ident: ref19
  doi: 10.1145/3022227.3022260
– ident: ref12
  doi: 10.1109/tsmcc.2008.923876
– ident: ref13
  doi: 10.1109/cnsr.2007.22
– ident: ref30
  doi: 10.1109/milcis.2015.7348942
– ident: ref21
  doi: 10.1007/978-81-322-2550-8_41
– ident: ref24
  doi: 10.1109/tpami.2015.2435740
– ident: ref0
– ident: ref16
SSID ssj0001654633
Score 2.2291012
Snippet Cyber security is one of the major concerns of today's connected world. For all the platforms of today's communication technology such as wired, wireless,...
Cyber security is one of the major concerns of today’s connected world. For all the platforms of today’s communication technology such as wired, wireless,...
SourceID doaj
gale
crossref
rmit
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 215
SubjectTerms Algorithms
Classification
Communication
Comparative analysis
Computer hackers
Computer security
Cyberterrorism
Data mining
Denial of service attacks
Evaluation
Machine learning
Security management
Supervised learning (Machine learning)
Technology
Title Machine learning classification of port scanning and DDoS attacks: A comparative analysis
URI https://search.informit.org/documentSummary;dn=752436663509423;res=IELENG
https://doaj.org/article/4ab4312997f74269a802fc54134fc5bd
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXexAEIW2ym2QTb7W1FKFeaqGels0-BNFUbPr_ndmkNSe9eAqEDUxmJ_PYzHwfIdesEDYtwPtZG7EgtiIPFOcucNzkKtc5c_5oYPKUjmfx4zyZt6i-sCeshgeuFdeLVQExDpymcALHLlUWMqcT8L0xXAqD3hdiXquY8qcrOKNT88hDBRRAGIzqX5pgvlnU-1jZCqpt1oWCJ-oiyk4rKHns_o2Hbs3V-5Az2id7Ta5I-7WMB2TLlodkt4UgeEReJr4Z0tIGJ_WVepZL7P_xKqcLR7FZlE51TU5EVWnocLiY0n5V4Xz9He3TwQ8EOF2jlByT2ejheTAOGraEQIOTqAJRaG6jUBuW6kyrxCjGjNEusZapwhjluLO50DZTrgiFMJB7QAmJ9FRWZanhJ2S7XJT2lFCE5cozSBUdtzFioIkkUgZ5rcJY6zjskHCtLqkbKHFktHiXUFJ4Dcu1hiVqWEZ5h9xuHvmscTR-W3yPe7BZiBDY_gYYhmwMQ_5lGB1ygzso8UMF4bRq5g3gFRHySvbTNGMIjyc6JMFNlvjl-f63cvmmqiXKx3mUyhrCFhaIhMU8xRwNimLGz_5DzHOyw7BNxp_qXJDt6mtlLyHPqYorb9LfjEr1dQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+classification+of+port+scanning+and+DDoS+attacks%3A+A+comparative+analysis&rft.jtitle=Mehran+University+research+journal+of+engineering+and+technology&rft.au=Muhammad+Aamir&rft.au=Syed+Sajjad+Hussain+Rizvi&rft.au=Manzoor+Ahmed+Hashmani&rft.au=Muhammad+Zubair&rft.date=2021-01-01&rft.issn=0254-7821&rft.eissn=2413-7219&rft.volume=40&rft.issue=1&rft.spage=215&rft.epage=229&rft_id=info:doi/10.22581%2Fmuet1982.2101.19&rft.externalDBID=n%2Fa&rft.externalDocID=10.3316%2Finformit.752436663509423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-7821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-7821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-7821&client=summon