A transparent, conducting tape for flexible electronics
Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible "ta...
Saved in:
Published in | Nano research Vol. 9; no. 4; pp. 917 - 924 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible "tape", which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (-90% at 550 nm wavelength) and low sheet resistance (approaching 22 Ω.sq^-1). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices. |
---|---|
AbstractList | Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible “tape”, which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (~90% at 550 nm wavelength) and low sheet resistance (approaching 22 Ω·sq–1). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices. Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible "tape", which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (~90% at 550 nm wavelength) and low sheet resistance (approaching 22 Omega .sq super(-1)). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices. [Figure not available: see fulltext.] Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible “tape”, which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (~90% at 550 nm wavelength) and low sheet resistance (approaching 22 Ω·sq –1 ). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices. Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible "tape", which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (-90% at 550 nm wavelength) and low sheet resistance (approaching 22 Ω.sq^-1). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices. |
Author | Ya Huang Suiyang Liao Jie Ren Bilal Khalid Hailin Peng Hui Wu |
AuthorAffiliation | State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China |
Author_xml | – sequence: 1 givenname: Ya surname: Huang fullname: Huang, Ya organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 2 givenname: Suiyang surname: Liao fullname: Liao, Suiyang organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 3 givenname: Jie surname: Ren fullname: Ren, Jie organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 4 givenname: Bilal surname: Khalid fullname: Khalid, Bilal organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 5 givenname: Hailin surname: Peng fullname: Peng, Hailin organization: Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University – sequence: 6 givenname: Hui surname: Wu fullname: Wu, Hui email: huiwu@mails.tsinghua.edu.cn organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University |
BookMark | eNp9kE1LAzEQhoMoWKs_wNuiFw-uzmS3yeYo4hcUvOg5ZNPZumVN2iQF_femtCp4MJfM4X3mHZ4jtu-8I8ZOEa4QQF5H5FzWJeCkBJUHtcdGqFRTQn773zPy-pAdxbgAEBzrZsTkTZGCcXFpArl0WVjvZmubejcvkllS0flQdAN99O1ABQ1kU_Cut_GYHXRmiHSy-8fs9f7u5faxnD4_PN3eTEtbSZFKqRoQk04YDqZrpQQrSanOUls17YyDNFhLXrVVJWa2BSQrZ0htTrVSWQPVmF1s9y6DX60pJv3eR0vDYBz5ddTYoAA5QSFy9PxPdOHXweXrNAfIPQJws1BuUzb4GAN12vbJpN677KEfNILeCNVboToL1RuhWmUS_5DL0L-b8Pkvw7dMzFk3p_B703_Q2a7ozbv5KnM_TUI0dSOwqaov4dSUdA |
CitedBy_id | crossref_primary_10_3390_nano12091457 crossref_primary_10_1016_j_mtphys_2021_100602 crossref_primary_10_1021_acs_chemrev_1c01055 crossref_primary_10_1016_j_cej_2023_142477 crossref_primary_10_1016_j_optmat_2021_111752 crossref_primary_10_1016_j_pmatsci_2025_101461 crossref_primary_10_1088_1361_6528_28_5_055709 crossref_primary_10_1002_advs_201600480 crossref_primary_10_1021_acsami_2c21697 crossref_primary_10_1007_s12274_023_6341_3 crossref_primary_10_1007_s10854_020_03351_5 crossref_primary_10_3390_polym11030468 crossref_primary_10_1021_acsami_6b15016 crossref_primary_10_1021_acsanm_8b00620 crossref_primary_10_1002_admi_202200611 crossref_primary_10_1002_smll_201703140 crossref_primary_10_1016_j_optmat_2021_111301 crossref_primary_10_3390_molecules26082167 crossref_primary_10_1016_j_eml_2024_102248 crossref_primary_10_1038_s41528_019_0050_8 crossref_primary_10_1016_j_mattod_2019_04_018 crossref_primary_10_1016_j_mtcomm_2021_103079 crossref_primary_10_1016_j_solmat_2021_111268 crossref_primary_10_1007_s12274_017_1816_8 crossref_primary_10_1039_D3TC00746D crossref_primary_10_1002_adfm_202417906 crossref_primary_10_1364_OE_25_004500 crossref_primary_10_1016_j_jiec_2020_07_029 crossref_primary_10_1016_j_scib_2016_11_009 crossref_primary_10_1016_j_optmat_2021_111414 crossref_primary_10_20517_ss_2024_21 crossref_primary_10_1002_smll_201604291 crossref_primary_10_1016_j_matchemphys_2023_127650 crossref_primary_10_3390_ma15041449 crossref_primary_10_1016_j_solmat_2020_110885 crossref_primary_10_1002_adma_201703238 crossref_primary_10_1039_D3NR01029E crossref_primary_10_1088_1361_6528_aca1ca crossref_primary_10_3390_nano10122352 crossref_primary_10_1016_j_cplett_2020_137667 crossref_primary_10_1007_s10854_021_06750_4 crossref_primary_10_1063_5_0226667 crossref_primary_10_1016_j_mser_2016_08_002 crossref_primary_10_1002_smll_201602581 crossref_primary_10_1002_pola_28506 crossref_primary_10_1007_s10311_022_01471_4 crossref_primary_10_1038_srep34150 crossref_primary_10_1109_JFLEX_2022_3224636 crossref_primary_10_1021_acsami_6b15025 |
Cites_doi | 10.1038/nnano.2013.84 10.1186/1556-276X-9-588 10.1038/nature07719 10.1038/nphoton.2012.282 10.1021/nn1005232 10.1002/adma.200800338 10.1186/1556-276X-6-75 10.1126/science.1101243 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K 10.1002/adma.201100304 10.1021/am403986f 10.1088/0957-4484/22/24/245201 10.1002/mame.201400097 10.1039/b823001c 10.1002/adma.201003398 10.1038/nmat3238 10.1038/nphoton.2010.186 10.1021/nl073296g 10.1038/nnano.2010.132 10.1007/s12274-010-0017-5 10.1002/adma.201003188 10.1002/adma.201102284 10.1021/am300058j 10.1021/cm051532n 10.1088/0957-4484/24/33/335202 10.1021/ja505741e 10.1002/adma.201306234 10.1002/adma.201001811 10.1126/science.1115311 10.1021/nn300844g 10.1039/C4TC01484G 10.1021/nn504969z |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015 Nano Research is a copyright of Springer, (2015). All Rights Reserved. |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015 – notice: Nano Research is a copyright of Springer, (2015). All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12274-015-0974-9 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | A transparent, conducting tape for flexible electronics |
EISSN | 1998-0000 |
EndPage | 924 |
ExternalDocumentID | 10_1007_s12274_015_0974_9 668486183 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 92L 95- 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBYP ACCUX ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACVWB ACWMK ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CQIGP CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 ~WA AACDK AAJBT AASML AAYZH ABAKF ABQSL ACPIV ADMLS AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS FRJ H13 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c376t-798065f6a20afb770c7e99fceb38bd207a14723b336dcb01ec7d1ebc7eb79ca03 |
IEDL.DBID | 7X7 |
ISSN | 1998-0124 |
IngestDate | Sun Aug 24 04:03:38 EDT 2025 Sat Aug 23 14:55:17 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Tue Jul 01 01:46:46 EDT 2025 Fri Feb 21 02:35:33 EST 2025 Wed Feb 14 10:19:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | transparent electrode flexible electronics silver nanowires tape |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-798065f6a20afb770c7e99fceb38bd207a14723b336dcb01ec7d1ebc7eb79ca03 |
Notes | 11-5974/O4 Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible "tape", which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (-90% at 550 nm wavelength) and low sheet resistance (approaching 22 Ω.sq^-1). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices. transparent electrode,silver nanowires,tape,flexible electronics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2001476010 |
PQPubID | 326270 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1816075166 proquest_journals_2001476010 crossref_citationtrail_10_1007_s12274_015_0974_9 crossref_primary_10_1007_s12274_015_0974_9 springer_journals_10_1007_s12274_015_0974_9 chongqing_primary_668486183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationTitleAlternate | Nano Research |
PublicationYear | 2016 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Sun, Xia (CR29) 2002; 14 Hauger, Al-Rafia, Buriak (CR25) 2013; 5 Zhu, Gao, Hu, Li, Su, Fan, Zhou (CR26) 2013; 24 Lu, Zhang, Ren, Liu, Choy (CR27) 2014; 8 Bonaccorso, Sun, Hasan, Ferrari (CR8) 2010; 4 Hecht, Hu, Irvin (CR10) 2011; 23 Ellmer (CR3) 2012; 6 Choi, Kim, Kim, Yang, Jung (CR12) 2014; 26 Rathmell, Wiley (CR14) 2011; 23 Zeng, Zhang, Yu, Lu (CR22) 2010; 22 Hu, Kim, Lee, Peumans, Cui (CR16) 2010; 4 Yu, Zhang, Li, Chen, Niu, Liu, Pei (CR23) 2011; 23 Wu, Kong, Ruan, Hsu, Wang, Yu, Carney, Hu, Fan, Cui (CR11) 2013; 8 Madaria, Kumar, Ishikawa, Zhou (CR19) 2010; 3 Hsu, Wu, Carney, McDowell, Yang, Garnett, Li, Hu, Cui (CR21) 2012; 6 Zhang, Fang, Zakhidov, Lee, Aliev, Williams, Atkinson, Baughman (CR6) 2005; 309 Madaria, Kumar, Zhou (CR30) 2011; 22 Krebs, Gevorgyan, Alstrup (CR4) 2009; 19 Li, Liang, Jian, Hu, Li, Pei (CR31) 2014; 299 Hsu, Kong, Wang, Wang, Welch, Wu, Cui (CR15) 2014; 136 Triambulo, Cheong, Park (CR28) 2014; 15 Wu, Chen, Du, Logan, Sippel, Nikolou, Kamaras, Reynolds, Tanner, Hebard (CR7) 2004; 305 Garnett, Cai, Cha, Mahmood, Connor, Christoforo, Cui, McGehee, Brongersma (CR20) 2012; 11 Elechiguerra, Larios-Lopez, Liu, Gutierrez, Camacho-Bragado, Yacaman (CR32) 2005; 17 He, He, Liu, Chen, Zhao, Feng, Chen, Zhang (CR17) 2014; 2 Bae, Kim, Lee, Xu, Park, Zheng, Balakrishnan, Lei, Kim, Song (CR2) 2010; 5 Lee, Connor, Cui, Peumans (CR13) 2008; 8 Na, Kim, Jo, Kim (CR5) 2008; 20 Kim, Zhao, Jang, Lee, Kim, Kim, Ahn, Kim, Choi, Hong (CR9) 2009; 457 Jing, Han, Li, Shen (CR18) 2014; 9 Pang, Hernandez, Feng, Müllen (CR1) 2011; 23 Akter, Kim (CR24) 2012; 4 Liu, Yu (CR33) 2011; 6 P. C. Hsu (974_CR21) 2012; 6 H. O. Choi (974_CR12) 2014; 26 M. Zhang (974_CR6) 2005; 309 K. S. Kim (974_CR9) 2009; 457 X. He (974_CR17) 2014; 2 R. E. Triambulo (974_CR28) 2014; 15 A. R. Madaria (974_CR30) 2011; 22 K. Ellmer (974_CR3) 2012; 6 J. Y. Lee (974_CR13) 2008; 8 E. C. Garnett (974_CR20) 2012; 11 H. Wu (974_CR11) 2013; 8 S. I. Na (974_CR5) 2008; 20 L. B. Hu (974_CR16) 2010; 4 S. W. Zhu (974_CR26) 2013; 24 D. S. Hecht (974_CR10) 2011; 23 A. R. Madaria (974_CR19) 2010; 3 Y. Sun (974_CR29) 2002; 14 J. P. Li (974_CR31) 2014; 299 S. Bae (974_CR2) 2010; 5 F. Bonaccorso (974_CR8) 2010; 4 T. Akter (974_CR24) 2012; 4 C. H. Liu (974_CR33) 2011; 6 P. C. Hsu (974_CR15) 2014; 136 X. Y. Zeng (974_CR22) 2010; 22 M. X. Jing (974_CR18) 2014; 9 T. C. Hauger (974_CR25) 2013; 5 A. R. Rathmell (974_CR14) 2011; 23 H. F. Lu (974_CR27) 2014; 8 Z. C. Wu (974_CR7) 2004; 305 Z. B. Yu (974_CR23) 2011; 23 J. L. Elechiguerra (974_CR32) 2005; 17 S. P. Pang (974_CR1) 2011; 23 F. C. Krebs (974_CR4) 2009; 19 |
References_xml | – volume: 8 start-page: 421 year: 2013 end-page: 425 ident: CR11 article-title: A transparent electrode based on a metal nanotrough network publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.84 – volume: 9 start-page: 588 year: 2014 ident: CR18 article-title: High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-9-588 – volume: 457 start-page: 706 year: 2009 end-page: 710 ident: CR9 article-title: Large-scale pattern growth of graphene films for stretchable transparent electrodes publication-title: Nature doi: 10.1038/nature07719 – volume: 15 start-page: 2685 year: 2014 end-page: 2695 ident: CR28 article-title: All-solutionprocessed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics. Org publication-title: Electron. – volume: 6 start-page: 809 year: 2012 end-page: 817 ident: CR3 article-title: Past achievements and future challenges in the development of optically transparent electrodes publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.282 – volume: 4 start-page: 2955 year: 2010 end-page: 2963 ident: CR16 article-title: Scalable coating and properties of transparent, flexible, silver nanowire electrodes publication-title: ACS Nano doi: 10.1021/nn1005232 – volume: 20 start-page: 4061 year: 2008 end-page: 4067 ident: CR5 article-title: Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes publication-title: Adv. Mater. doi: 10.1002/adma.200800338 – volume: 6 start-page: 75 year: 2011 ident: CR33 article-title: Silver nanowire-based transparent, flexible, and conductive thin film publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-75 – volume: 305 start-page: 1273 year: 2004 end-page: 1276 ident: CR7 article-title: Transparent, conductive carbon nanotube films publication-title: Science doi: 10.1126/science.1101243 – volume: 14 start-page: 833 year: 2002 end-page: 837 ident: CR29 article-title: Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K – volume: 23 start-page: 2779 year: 2011 end-page: 2795 ident: CR1 article-title: Graphene as transparent electrode material for organic electronics publication-title: Adv. Mater. doi: 10.1002/adma.201100304 – volume: 5 start-page: 12663 year: 2013 end-page: 12671 ident: CR25 article-title: Rolling silver nanowire electrodes: Simultaneously addressing adhesion, roughness, and conductivity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403986f – volume: 22 start-page: 245201 year: 2011 ident: CR30 article-title: Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens publication-title: Nanotechnology doi: 10.1088/0957-4484/22/24/245201 – volume: 299 start-page: 1403 year: 2014 end-page: 1409 ident: CR31 article-title: A flexible and transparent thin film heater based on a silver nanowire/heat-resistant polymer composite publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201400097 – volume: 19 start-page: 5442 year: 2009 end-page: 5451 ident: CR4 article-title: A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies publication-title: J. Mater. Chem. doi: 10.1039/b823001c – volume: 23 start-page: 664 year: 2011 end-page: 668 ident: CR23 article-title: Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes publication-title: Adv. Mater. doi: 10.1002/adma.201003398 – volume: 11 start-page: 241 year: 2012 end-page: 249 ident: CR20 article-title: Self-limited plasmonic welding of silver nanowire junctions publication-title: Nat. Mater. doi: 10.1038/nmat3238 – volume: 4 start-page: 611 year: 2010 end-page: 622 ident: CR8 article-title: Graphene photonics and optoelectronics publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.186 – volume: 8 start-page: 689 year: 2008 end-page: 692 ident: CR13 article-title: Solutionprocessed metal nanowire mesh transparent electrodes publication-title: Nano Lett. doi: 10.1021/nl073296g – volume: 5 start-page: 574 year: 2010 end-page: 578 ident: CR2 article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 3 start-page: 564 year: 2010 end-page: 573 ident: CR19 article-title: Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique publication-title: Nano Res. doi: 10.1007/s12274-010-0017-5 – volume: 23 start-page: 1482 year: 2011 end-page: 1513 ident: CR10 article-title: Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures publication-title: Adv. Mater. doi: 10.1002/adma.201003188 – volume: 23 start-page: 4798 year: 2011 end-page: 4803 ident: CR14 article-title: The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates publication-title: Adv. Mater. doi: 10.1002/adma.201102284 – volume: 4 start-page: 1855 year: 2012 end-page: 1859 ident: CR24 article-title: Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am300058j – volume: 17 start-page: 6042 year: 2005 end-page: 6052 ident: CR32 article-title: Corrosion at the nanoscale: The case of silver nanowires and nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm051532n – volume: 24 start-page: 335202 year: 2013 ident: CR26 article-title: Transferable self-welding silver nanowire network as high performance transparent flexible electrode publication-title: Nanotechnology doi: 10.1088/0957-4484/24/33/335202 – volume: 136 start-page: 10593 year: 2014 end-page: 10596 ident: CR15 article-title: Electrolessly deposited electrospun metal nanowire transparent electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505741e – volume: 26 start-page: 4575 year: 2014 end-page: 4581 ident: CR12 article-title: Role of 1D metallic nanowires in polydomain graphene for highly transparent conducting films publication-title: Adv. Mater. doi: 10.1002/adma.201306234 – volume: 22 start-page: 4484 year: 2010 end-page: 4488 ident: CR22 article-title: A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer publication-title: Adv. Mater. doi: 10.1002/adma.201001811 – volume: 309 start-page: 1215 year: 2005 end-page: 1219 ident: CR6 article-title: Strong, transparent, multifunctional, carbon nanotube sheets publication-title: Science doi: 10.1126/science.1115311 – volume: 6 start-page: 5150 year: 2012 end-page: 5156 ident: CR21 article-title: Passivation coating on electrospun copper nanofibers for stable transparent electrodes publication-title: ACS Nano doi: 10.1021/nn300844g – volume: 2 start-page: 9737 year: 2014 end-page: 9745 ident: CR17 article-title: A highly conductive, flexible, transparent composite electrode based on the lamination of silver nanowires and polyvinyl alcohol publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01484G – volume: 8 start-page: 10980 year: 2014 end-page: 10987 ident: CR27 article-title: Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nanonetwork electrode publication-title: ACS Nano doi: 10.1021/nn504969z – volume: 14 start-page: 833 year: 2002 ident: 974_CR29 publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K – volume: 6 start-page: 809 year: 2012 ident: 974_CR3 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.282 – volume: 22 start-page: 245201 year: 2011 ident: 974_CR30 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/24/245201 – volume: 23 start-page: 2779 year: 2011 ident: 974_CR1 publication-title: Adv. Mater. doi: 10.1002/adma.201100304 – volume: 309 start-page: 1215 year: 2005 ident: 974_CR6 publication-title: Science doi: 10.1126/science.1115311 – volume: 4 start-page: 2955 year: 2010 ident: 974_CR16 publication-title: ACS Nano doi: 10.1021/nn1005232 – volume: 6 start-page: 5150 year: 2012 ident: 974_CR21 publication-title: ACS Nano doi: 10.1021/nn300844g – volume: 23 start-page: 1482 year: 2011 ident: 974_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.201003188 – volume: 4 start-page: 1855 year: 2012 ident: 974_CR24 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am300058j – volume: 5 start-page: 12663 year: 2013 ident: 974_CR25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403986f – volume: 24 start-page: 335202 year: 2013 ident: 974_CR26 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/33/335202 – volume: 136 start-page: 10593 year: 2014 ident: 974_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505741e – volume: 8 start-page: 421 year: 2013 ident: 974_CR11 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.84 – volume: 17 start-page: 6042 year: 2005 ident: 974_CR32 publication-title: Chem. Mater. doi: 10.1021/cm051532n – volume: 6 start-page: 75 year: 2011 ident: 974_CR33 publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-75 – volume: 8 start-page: 689 year: 2008 ident: 974_CR13 publication-title: Nano Lett. doi: 10.1021/nl073296g – volume: 23 start-page: 4798 year: 2011 ident: 974_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201102284 – volume: 23 start-page: 664 year: 2011 ident: 974_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.201003398 – volume: 5 start-page: 574 year: 2010 ident: 974_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 9 start-page: 588 year: 2014 ident: 974_CR18 publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-9-588 – volume: 26 start-page: 4575 year: 2014 ident: 974_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201306234 – volume: 2 start-page: 9737 year: 2014 ident: 974_CR17 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01484G – volume: 22 start-page: 4484 year: 2010 ident: 974_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201001811 – volume: 8 start-page: 10980 year: 2014 ident: 974_CR27 publication-title: ACS Nano doi: 10.1021/nn504969z – volume: 457 start-page: 706 year: 2009 ident: 974_CR9 publication-title: Nature doi: 10.1038/nature07719 – volume: 15 start-page: 2685 year: 2014 ident: 974_CR28 publication-title: Electron. – volume: 11 start-page: 241 year: 2012 ident: 974_CR20 publication-title: Nat. Mater. doi: 10.1038/nmat3238 – volume: 4 start-page: 611 year: 2010 ident: 974_CR8 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.186 – volume: 20 start-page: 4061 year: 2008 ident: 974_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.200800338 – volume: 19 start-page: 5442 year: 2009 ident: 974_CR4 publication-title: J. Mater. Chem. doi: 10.1039/b823001c – volume: 305 start-page: 1273 year: 2004 ident: 974_CR7 publication-title: Science doi: 10.1126/science.1101243 – volume: 3 start-page: 564 year: 2010 ident: 974_CR19 publication-title: Nano Res. doi: 10.1007/s12274-010-0017-5 – volume: 299 start-page: 1403 year: 2014 ident: 974_CR31 publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201400097 |
SSID | ssj0062148 |
Score | 2.354332 |
Snippet | Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 917 |
SubjectTerms | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Conduction Corrosion resistance Devices Electrochromism Electrodes Electronics Flexible components Materials Science Nanostructure Nanotechnology Nanowires Optoelectronic devices Oxidation Oxidation resistance Photovoltaic cells Protective coatings Research Article Sealing Solar cells Thin films 柔性 电子产品 电致变色器件 磁带 薄膜太阳能电池 表面电阻 透明导电层 银纳米线 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vehBfGLdVSJ4Ugt9Js1xEZdF0JMLewtJmuhh6art_n8nfWxVVPCcF50kM990Mt8AXKZUoVXTeHhjy9zfqtznQZT71NKEKyaNrXNhHh7pdJbcz9N5m8dddq_du5Bkran7ZLcIPSh0fVM_QBDs803YSp3rjod4Fo079UujsC6Z1eSOofXqQpk_TeEIFV6WxfMbLvfVMPVo81uAtLY7kz3YbQEjGTc7vA8bpjiAnU80gofAxqSqOcpdYld1Q9DFdSyu2EYq-WoI4lJiHfGlWhjS170pj2A2uXu6nfptQQRfox6ofMZdGNRSGQXSKsYCzQznVqNDnKk8CpgMExbFKo5prlUQGs3y0CjspRjXMoiPYVAsC3MChMUuqdXmFq1TIjnNco17FNJUp9LiEA-Ga8mI14b4QlCaJRlFJeBB0MlK6JZL3JW0WIieBdmJWqCohRO14B5crYd08_3RedRtgGjvVOkKZuLnOQfSg4t1M94GF-KQhVmuSoF4hSIICin14LrbuH6KXxc8_VfvIWwjbqLNA54RDKr3lTlDbFKp8_osfgD02djQ priority: 102 providerName: Springer Nature |
Title | A transparent, conducting tape for flexible electronics |
URI | http://lib.cqvip.com/qk/71233X/201604/668486183.html https://link.springer.com/article/10.1007/s12274-015-0974-9 https://www.proquest.com/docview/2001476010 https://www.proquest.com/docview/1816075166 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5UIPFS1UTVlQKnGCRjgvOz6hpdoFgUAIdaXlZNmO3R5QdmHD_2cmm2ygUrkkkp_S-DEznplvAA5zbpCrWdy8qRf0WlVGkiVlxD3PpBHa-SYW5vqGX0yzy1k-ax_clq1bZXcnNhd1Obf0Rn5Cvj8ZOXCw08VjRFmjyLraptD4AJsEXUYuXWK2Vrh4EjfZs1ZhZMjIOqtmEzqXoD6GpXnEUKSOJGEr_J1Xfx6RY7zlUb3g-Y-ttGFBk2341MqO4Wi12J9hw1Vf4OMrRMEdEKOwbuDKKcar_hmitkuArlgX1nrhQhRRQ08YmObBhX0KnOUuTCfj378uojY3QmTxSqgjIcki6rlOmPZGCGaFk9Jb1I0LUyZMaKRWkpo05aU1LHZWlLEz2MoIaTVLv8KgmlfuG4QipfhWX3pkVJmWvCgtLlfMc5trj10C2FtTRi1WGBiK8yIrON4HAbCOVsq2sOKU3eJB9YDIRGqFpFZEaiUDOFp36cZ7p_GwWwDVHq-l6jdDAD_W1XgwyNqhKzd_XioUXTjKQzHnARx3C9cP8d8Jv78_4R5soczEV847QxjUT89uH-WS2hw0mw-_xeT8ADZH5_dXY_yfjW9u77B0moxeAOAN4RI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLxE6AMjwQWI6rzs-ICqCli29HFqpd6M7dhwqLJbNhXiT_EbmUnWG0Cit17j2JbG87Jn5huAl5WwaNUcMm8RJL1WNanieZOKIEplpfGhr4U5PhHTs_LzeXW-Br9iLQylVUad2CvqZubojXyXcn9KSuDge_PLlLpGUXQ1ttAY2OLQ__yBV7bFu4MPeL6v8nzy8fT9NF12FUgdClOXSkWxxCBMzk2wUnInvVLB4a2ytk3OpcF98sIWhWic5Zl3ssm8xb-sVM7wAte9BbfLolAkUfXkU9T8Is_6bl1D2RoazhhF7Uv1crz_4dcq5ejCp4qwHL7N2q-XaKH-tomjo_tPbLY3eZMNuL_0Vdn-wFwPYM23D-HeHwiGj0Dus66HR6easu4tw9s1AcjiGOvM3DN0iVkgzE174dnYcmfxGM5uhGpPYL2dtf4pMFlQPW1oAhrG0ihRNw7ZIxOVq0zAKQlsriij5wPmhhaiLmuB-icBHmml3RLGnLppXOgRgJlIrZHUmkitVQKvV1Pietf8vBUPQC_FeaFH5kvgxWoYBZGiK6b1s6uFRldJoP-VCZHAm3hw4xL_3fDZ9Rs-hzvT0-MjfXRwcrgJd9FfE0Pi0Basd9-v_Db6RJ3d6RmRwZeb5vzfRnEaRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxUxEJ8gJkQOBkXj8iElwYu6ofvVvh6MIcILCBIPkrxbbbutHMi-B2-J8V_zr3NmP96qCdy4brdtMp3pzHRmfgOwVwiLWs0h82ZB0mtVGSuelrEIIldWGh-aWpgv5-L4Iv88KSZL8LuvhaG0yv5ObC7qcurojXyfcn9ySuDg-6FLi_h6OP44u46pgxRFWvt2Gi2LnPpfP9F9m384OcSzfpOm46Nvn47jrsNA7FCw6lgqiisGYVJugpWSO-mVCg49zJEtUy4N7plmNstE6SxPvJNl4i3-ZaVyhme47iN4LLMiIRmTk4WzJ9Kk6dzVlrChEu0jqk3ZXoq-IH4tYo7mfKwI1-FyWv24Rm31r34cjN7_4rSN-huvwdPObmUHLaM9gyVfPYfVv9AM10EesLqBSqf6svo9Q0-bwGRxjNVm5hmaxywQ_qa98mxovzN_ARcPQrWXsFxNK_8KmMyotjaUAZVkbpQYlQ5ZJRGFK0zAKRFsLiijZy3-hhZilI8E3kUR8J5W2nWQ5tRZ40oPYMxEao2k1kRqrSJ4u5jSr3fPz1v9AehOtOd6YMQIdhfDKJQUaTGVn97ONZpNAm2xRIgI3vUHNyxx54Yb92-4AyvI8_rs5Px0E56g6SbaHKItWK5vbv02mke1fd3wIYPvD834fwBVbh5z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transparent%2C+conducting+tape+for+flexible+electronics&rft.jtitle=Nano+research&rft.au=Huang%2C+Ya&rft.au=Liao%2C+Suiyang&rft.au=Ren%2C+Jie&rft.au=Khalid%2C+Bilal&rft.date=2016-04-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=9&rft.issue=4&rft.spage=917&rft.epage=924&rft_id=info:doi/10.1007%2Fs12274-015-0974-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg |