A transparent, conducting tape for flexible electronics

Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible "ta...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 9; no. 4; pp. 917 - 924
Main Authors Huang, Ya, Liao, Suiyang, Ren, Jie, Khalid, Bilal, Peng, Hailin, Wu, Hui
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible "tape", which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (-90% at 550 nm wavelength) and low sheet resistance (approaching 22 Ω.sq^-1). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices.
AbstractList Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible “tape”, which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (~90% at 550 nm wavelength) and low sheet resistance (approaching 22 Ω·sq–1). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices.
Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible "tape", which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (~90% at 550 nm wavelength) and low sheet resistance (approaching 22 Omega .sq super(-1)). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices. [Figure not available: see fulltext.]
Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible “tape”, which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (~90% at 550 nm wavelength) and low sheet resistance (approaching 22 Ω·sq –1 ). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices.
Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible "tape", which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (-90% at 550 nm wavelength) and low sheet resistance (approaching 22 Ω.sq^-1). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices.
Author Ya Huang Suiyang Liao Jie Ren Bilal Khalid Hailin Peng Hui Wu
AuthorAffiliation State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Author_xml – sequence: 1
  givenname: Ya
  surname: Huang
  fullname: Huang, Ya
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 2
  givenname: Suiyang
  surname: Liao
  fullname: Liao, Suiyang
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 3
  givenname: Jie
  surname: Ren
  fullname: Ren, Jie
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 4
  givenname: Bilal
  surname: Khalid
  fullname: Khalid, Bilal
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 5
  givenname: Hailin
  surname: Peng
  fullname: Peng, Hailin
  organization: Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University
– sequence: 6
  givenname: Hui
  surname: Wu
  fullname: Wu, Hui
  email: huiwu@mails.tsinghua.edu.cn
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
BookMark eNp9kE1LAzEQhoMoWKs_wNuiFw-uzmS3yeYo4hcUvOg5ZNPZumVN2iQF_femtCp4MJfM4X3mHZ4jtu-8I8ZOEa4QQF5H5FzWJeCkBJUHtcdGqFRTQn773zPy-pAdxbgAEBzrZsTkTZGCcXFpArl0WVjvZmubejcvkllS0flQdAN99O1ABQ1kU_Cut_GYHXRmiHSy-8fs9f7u5faxnD4_PN3eTEtbSZFKqRoQk04YDqZrpQQrSanOUls17YyDNFhLXrVVJWa2BSQrZ0htTrVSWQPVmF1s9y6DX60pJv3eR0vDYBz5ddTYoAA5QSFy9PxPdOHXweXrNAfIPQJws1BuUzb4GAN12vbJpN677KEfNILeCNVboToL1RuhWmUS_5DL0L-b8Pkvw7dMzFk3p_B703_Q2a7ozbv5KnM_TUI0dSOwqaov4dSUdA
CitedBy_id crossref_primary_10_3390_nano12091457
crossref_primary_10_1016_j_mtphys_2021_100602
crossref_primary_10_1021_acs_chemrev_1c01055
crossref_primary_10_1016_j_cej_2023_142477
crossref_primary_10_1016_j_optmat_2021_111752
crossref_primary_10_1016_j_pmatsci_2025_101461
crossref_primary_10_1088_1361_6528_28_5_055709
crossref_primary_10_1002_advs_201600480
crossref_primary_10_1021_acsami_2c21697
crossref_primary_10_1007_s12274_023_6341_3
crossref_primary_10_1007_s10854_020_03351_5
crossref_primary_10_3390_polym11030468
crossref_primary_10_1021_acsami_6b15016
crossref_primary_10_1021_acsanm_8b00620
crossref_primary_10_1002_admi_202200611
crossref_primary_10_1002_smll_201703140
crossref_primary_10_1016_j_optmat_2021_111301
crossref_primary_10_3390_molecules26082167
crossref_primary_10_1016_j_eml_2024_102248
crossref_primary_10_1038_s41528_019_0050_8
crossref_primary_10_1016_j_mattod_2019_04_018
crossref_primary_10_1016_j_mtcomm_2021_103079
crossref_primary_10_1016_j_solmat_2021_111268
crossref_primary_10_1007_s12274_017_1816_8
crossref_primary_10_1039_D3TC00746D
crossref_primary_10_1002_adfm_202417906
crossref_primary_10_1364_OE_25_004500
crossref_primary_10_1016_j_jiec_2020_07_029
crossref_primary_10_1016_j_scib_2016_11_009
crossref_primary_10_1016_j_optmat_2021_111414
crossref_primary_10_20517_ss_2024_21
crossref_primary_10_1002_smll_201604291
crossref_primary_10_1016_j_matchemphys_2023_127650
crossref_primary_10_3390_ma15041449
crossref_primary_10_1016_j_solmat_2020_110885
crossref_primary_10_1002_adma_201703238
crossref_primary_10_1039_D3NR01029E
crossref_primary_10_1088_1361_6528_aca1ca
crossref_primary_10_3390_nano10122352
crossref_primary_10_1016_j_cplett_2020_137667
crossref_primary_10_1007_s10854_021_06750_4
crossref_primary_10_1063_5_0226667
crossref_primary_10_1016_j_mser_2016_08_002
crossref_primary_10_1002_smll_201602581
crossref_primary_10_1002_pola_28506
crossref_primary_10_1007_s10311_022_01471_4
crossref_primary_10_1038_srep34150
crossref_primary_10_1109_JFLEX_2022_3224636
crossref_primary_10_1021_acsami_6b15025
Cites_doi 10.1038/nnano.2013.84
10.1186/1556-276X-9-588
10.1038/nature07719
10.1038/nphoton.2012.282
10.1021/nn1005232
10.1002/adma.200800338
10.1186/1556-276X-6-75
10.1126/science.1101243
10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
10.1002/adma.201100304
10.1021/am403986f
10.1088/0957-4484/22/24/245201
10.1002/mame.201400097
10.1039/b823001c
10.1002/adma.201003398
10.1038/nmat3238
10.1038/nphoton.2010.186
10.1021/nl073296g
10.1038/nnano.2010.132
10.1007/s12274-010-0017-5
10.1002/adma.201003188
10.1002/adma.201102284
10.1021/am300058j
10.1021/cm051532n
10.1088/0957-4484/24/33/335202
10.1021/ja505741e
10.1002/adma.201306234
10.1002/adma.201001811
10.1126/science.1115311
10.1021/nn300844g
10.1039/C4TC01484G
10.1021/nn504969z
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Nano Research is a copyright of Springer, (2015). All Rights Reserved.
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
– notice: Nano Research is a copyright of Springer, (2015). All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12274-015-0974-9
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Materials Research Database
Materials Research Database


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate A transparent, conducting tape for flexible electronics
EISSN 1998-0000
EndPage 924
ExternalDocumentID 10_1007_s12274_015_0974_9
668486183
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
92L
95-
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBYP
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CQIGP
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACPIV
ADMLS
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
FRJ
H13
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c376t-798065f6a20afb770c7e99fceb38bd207a14723b336dcb01ec7d1ebc7eb79ca03
IEDL.DBID 7X7
ISSN 1998-0124
IngestDate Sun Aug 24 04:03:38 EDT 2025
Sat Aug 23 14:55:17 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
Tue Jul 01 01:46:46 EDT 2025
Fri Feb 21 02:35:33 EST 2025
Wed Feb 14 10:19:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords transparent electrode
flexible electronics
silver nanowires
tape
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-798065f6a20afb770c7e99fceb38bd207a14723b336dcb01ec7d1ebc7eb79ca03
Notes 11-5974/O4
Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of transparent conducting layers and the sealing of the device are separate steps. Here we report on a highly transparent, conductive, and flexible "tape", which can be obtained by transferring silver nanowire networks to conventional transparent tape. We utilized the viscidity of the tape to reduce the junction resistance between silver nanowires and further protect the nanowires from corrosion, oxidation and mechanical damage. By this simple method, we obtained a flexible tape with high transparency (-90% at 550 nm wavelength) and low sheet resistance (approaching 22 Ω.sq^-1). The transparent tape can be attached and stuck firmly on complex surfaces, making the surface highly conductive. We demonstrated the use of the tape as both a conducting layer and a sealing layer for flexible electronics applications including in-situ temperature monitoring and electrochromic devices.
transparent electrode,silver nanowires,tape,flexible electronics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2001476010
PQPubID 326270
PageCount 8
ParticipantIDs proquest_miscellaneous_1816075166
proquest_journals_2001476010
crossref_citationtrail_10_1007_s12274_015_0974_9
crossref_primary_10_1007_s12274_015_0974_9
springer_journals_10_1007_s12274_015_0974_9
chongqing_primary_668486183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationTitleAlternate Nano Research
PublicationYear 2016
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Sun, Xia (CR29) 2002; 14
Hauger, Al-Rafia, Buriak (CR25) 2013; 5
Zhu, Gao, Hu, Li, Su, Fan, Zhou (CR26) 2013; 24
Lu, Zhang, Ren, Liu, Choy (CR27) 2014; 8
Bonaccorso, Sun, Hasan, Ferrari (CR8) 2010; 4
Hecht, Hu, Irvin (CR10) 2011; 23
Ellmer (CR3) 2012; 6
Choi, Kim, Kim, Yang, Jung (CR12) 2014; 26
Rathmell, Wiley (CR14) 2011; 23
Zeng, Zhang, Yu, Lu (CR22) 2010; 22
Hu, Kim, Lee, Peumans, Cui (CR16) 2010; 4
Yu, Zhang, Li, Chen, Niu, Liu, Pei (CR23) 2011; 23
Wu, Kong, Ruan, Hsu, Wang, Yu, Carney, Hu, Fan, Cui (CR11) 2013; 8
Madaria, Kumar, Ishikawa, Zhou (CR19) 2010; 3
Hsu, Wu, Carney, McDowell, Yang, Garnett, Li, Hu, Cui (CR21) 2012; 6
Zhang, Fang, Zakhidov, Lee, Aliev, Williams, Atkinson, Baughman (CR6) 2005; 309
Madaria, Kumar, Zhou (CR30) 2011; 22
Krebs, Gevorgyan, Alstrup (CR4) 2009; 19
Li, Liang, Jian, Hu, Li, Pei (CR31) 2014; 299
Hsu, Kong, Wang, Wang, Welch, Wu, Cui (CR15) 2014; 136
Triambulo, Cheong, Park (CR28) 2014; 15
Wu, Chen, Du, Logan, Sippel, Nikolou, Kamaras, Reynolds, Tanner, Hebard (CR7) 2004; 305
Garnett, Cai, Cha, Mahmood, Connor, Christoforo, Cui, McGehee, Brongersma (CR20) 2012; 11
Elechiguerra, Larios-Lopez, Liu, Gutierrez, Camacho-Bragado, Yacaman (CR32) 2005; 17
He, He, Liu, Chen, Zhao, Feng, Chen, Zhang (CR17) 2014; 2
Bae, Kim, Lee, Xu, Park, Zheng, Balakrishnan, Lei, Kim, Song (CR2) 2010; 5
Lee, Connor, Cui, Peumans (CR13) 2008; 8
Na, Kim, Jo, Kim (CR5) 2008; 20
Kim, Zhao, Jang, Lee, Kim, Kim, Ahn, Kim, Choi, Hong (CR9) 2009; 457
Jing, Han, Li, Shen (CR18) 2014; 9
Pang, Hernandez, Feng, Müllen (CR1) 2011; 23
Akter, Kim (CR24) 2012; 4
Liu, Yu (CR33) 2011; 6
P. C. Hsu (974_CR21) 2012; 6
H. O. Choi (974_CR12) 2014; 26
M. Zhang (974_CR6) 2005; 309
K. S. Kim (974_CR9) 2009; 457
X. He (974_CR17) 2014; 2
R. E. Triambulo (974_CR28) 2014; 15
A. R. Madaria (974_CR30) 2011; 22
K. Ellmer (974_CR3) 2012; 6
J. Y. Lee (974_CR13) 2008; 8
E. C. Garnett (974_CR20) 2012; 11
H. Wu (974_CR11) 2013; 8
S. I. Na (974_CR5) 2008; 20
L. B. Hu (974_CR16) 2010; 4
S. W. Zhu (974_CR26) 2013; 24
D. S. Hecht (974_CR10) 2011; 23
A. R. Madaria (974_CR19) 2010; 3
Y. Sun (974_CR29) 2002; 14
J. P. Li (974_CR31) 2014; 299
S. Bae (974_CR2) 2010; 5
F. Bonaccorso (974_CR8) 2010; 4
T. Akter (974_CR24) 2012; 4
C. H. Liu (974_CR33) 2011; 6
P. C. Hsu (974_CR15) 2014; 136
X. Y. Zeng (974_CR22) 2010; 22
M. X. Jing (974_CR18) 2014; 9
T. C. Hauger (974_CR25) 2013; 5
A. R. Rathmell (974_CR14) 2011; 23
H. F. Lu (974_CR27) 2014; 8
Z. C. Wu (974_CR7) 2004; 305
Z. B. Yu (974_CR23) 2011; 23
J. L. Elechiguerra (974_CR32) 2005; 17
S. P. Pang (974_CR1) 2011; 23
F. C. Krebs (974_CR4) 2009; 19
References_xml – volume: 8
  start-page: 421
  year: 2013
  end-page: 425
  ident: CR11
  article-title: A transparent electrode based on a metal nanotrough network
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.84
– volume: 9
  start-page: 588
  year: 2014
  ident: CR18
  article-title: High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-588
– volume: 457
  start-page: 706
  year: 2009
  end-page: 710
  ident: CR9
  article-title: Large-scale pattern growth of graphene films for stretchable transparent electrodes
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 15
  start-page: 2685
  year: 2014
  end-page: 2695
  ident: CR28
  article-title: All-solutionprocessed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics. Org
  publication-title: Electron.
– volume: 6
  start-page: 809
  year: 2012
  end-page: 817
  ident: CR3
  article-title: Past achievements and future challenges in the development of optically transparent electrodes
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.282
– volume: 4
  start-page: 2955
  year: 2010
  end-page: 2963
  ident: CR16
  article-title: Scalable coating and properties of transparent, flexible, silver nanowire electrodes
  publication-title: ACS Nano
  doi: 10.1021/nn1005232
– volume: 20
  start-page: 4061
  year: 2008
  end-page: 4067
  ident: CR5
  article-title: Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800338
– volume: 6
  start-page: 75
  year: 2011
  ident: CR33
  article-title: Silver nanowire-based transparent, flexible, and conductive thin film
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-75
– volume: 305
  start-page: 1273
  year: 2004
  end-page: 1276
  ident: CR7
  article-title: Transparent, conductive carbon nanotube films
  publication-title: Science
  doi: 10.1126/science.1101243
– volume: 14
  start-page: 833
  year: 2002
  end-page: 837
  ident: CR29
  article-title: Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
– volume: 23
  start-page: 2779
  year: 2011
  end-page: 2795
  ident: CR1
  article-title: Graphene as transparent electrode material for organic electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100304
– volume: 5
  start-page: 12663
  year: 2013
  end-page: 12671
  ident: CR25
  article-title: Rolling silver nanowire electrodes: Simultaneously addressing adhesion, roughness, and conductivity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am403986f
– volume: 22
  start-page: 245201
  year: 2011
  ident: CR30
  article-title: Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/24/245201
– volume: 299
  start-page: 1403
  year: 2014
  end-page: 1409
  ident: CR31
  article-title: A flexible and transparent thin film heater based on a silver nanowire/heat-resistant polymer composite
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201400097
– volume: 19
  start-page: 5442
  year: 2009
  end-page: 5451
  ident: CR4
  article-title: A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies
  publication-title: J. Mater. Chem.
  doi: 10.1039/b823001c
– volume: 23
  start-page: 664
  year: 2011
  end-page: 668
  ident: CR23
  article-title: Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003398
– volume: 11
  start-page: 241
  year: 2012
  end-page: 249
  ident: CR20
  article-title: Self-limited plasmonic welding of silver nanowire junctions
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3238
– volume: 4
  start-page: 611
  year: 2010
  end-page: 622
  ident: CR8
  article-title: Graphene photonics and optoelectronics
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 8
  start-page: 689
  year: 2008
  end-page: 692
  ident: CR13
  article-title: Solutionprocessed metal nanowire mesh transparent electrodes
  publication-title: Nano Lett.
  doi: 10.1021/nl073296g
– volume: 5
  start-page: 574
  year: 2010
  end-page: 578
  ident: CR2
  article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 3
  start-page: 564
  year: 2010
  end-page: 573
  ident: CR19
  article-title: Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0017-5
– volume: 23
  start-page: 1482
  year: 2011
  end-page: 1513
  ident: CR10
  article-title: Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003188
– volume: 23
  start-page: 4798
  year: 2011
  end-page: 4803
  ident: CR14
  article-title: The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102284
– volume: 4
  start-page: 1855
  year: 2012
  end-page: 1859
  ident: CR24
  article-title: Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am300058j
– volume: 17
  start-page: 6042
  year: 2005
  end-page: 6052
  ident: CR32
  article-title: Corrosion at the nanoscale: The case of silver nanowires and nanoparticles
  publication-title: Chem. Mater.
  doi: 10.1021/cm051532n
– volume: 24
  start-page: 335202
  year: 2013
  ident: CR26
  article-title: Transferable self-welding silver nanowire network as high performance transparent flexible electrode
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/33/335202
– volume: 136
  start-page: 10593
  year: 2014
  end-page: 10596
  ident: CR15
  article-title: Electrolessly deposited electrospun metal nanowire transparent electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505741e
– volume: 26
  start-page: 4575
  year: 2014
  end-page: 4581
  ident: CR12
  article-title: Role of 1D metallic nanowires in polydomain graphene for highly transparent conducting films
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306234
– volume: 22
  start-page: 4484
  year: 2010
  end-page: 4488
  ident: CR22
  article-title: A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001811
– volume: 309
  start-page: 1215
  year: 2005
  end-page: 1219
  ident: CR6
  article-title: Strong, transparent, multifunctional, carbon nanotube sheets
  publication-title: Science
  doi: 10.1126/science.1115311
– volume: 6
  start-page: 5150
  year: 2012
  end-page: 5156
  ident: CR21
  article-title: Passivation coating on electrospun copper nanofibers for stable transparent electrodes
  publication-title: ACS Nano
  doi: 10.1021/nn300844g
– volume: 2
  start-page: 9737
  year: 2014
  end-page: 9745
  ident: CR17
  article-title: A highly conductive, flexible, transparent composite electrode based on the lamination of silver nanowires and polyvinyl alcohol
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01484G
– volume: 8
  start-page: 10980
  year: 2014
  end-page: 10987
  ident: CR27
  article-title: Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nanonetwork electrode
  publication-title: ACS Nano
  doi: 10.1021/nn504969z
– volume: 14
  start-page: 833
  year: 2002
  ident: 974_CR29
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
– volume: 6
  start-page: 809
  year: 2012
  ident: 974_CR3
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.282
– volume: 22
  start-page: 245201
  year: 2011
  ident: 974_CR30
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/24/245201
– volume: 23
  start-page: 2779
  year: 2011
  ident: 974_CR1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100304
– volume: 309
  start-page: 1215
  year: 2005
  ident: 974_CR6
  publication-title: Science
  doi: 10.1126/science.1115311
– volume: 4
  start-page: 2955
  year: 2010
  ident: 974_CR16
  publication-title: ACS Nano
  doi: 10.1021/nn1005232
– volume: 6
  start-page: 5150
  year: 2012
  ident: 974_CR21
  publication-title: ACS Nano
  doi: 10.1021/nn300844g
– volume: 23
  start-page: 1482
  year: 2011
  ident: 974_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003188
– volume: 4
  start-page: 1855
  year: 2012
  ident: 974_CR24
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am300058j
– volume: 5
  start-page: 12663
  year: 2013
  ident: 974_CR25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am403986f
– volume: 24
  start-page: 335202
  year: 2013
  ident: 974_CR26
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/33/335202
– volume: 136
  start-page: 10593
  year: 2014
  ident: 974_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505741e
– volume: 8
  start-page: 421
  year: 2013
  ident: 974_CR11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.84
– volume: 17
  start-page: 6042
  year: 2005
  ident: 974_CR32
  publication-title: Chem. Mater.
  doi: 10.1021/cm051532n
– volume: 6
  start-page: 75
  year: 2011
  ident: 974_CR33
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-75
– volume: 8
  start-page: 689
  year: 2008
  ident: 974_CR13
  publication-title: Nano Lett.
  doi: 10.1021/nl073296g
– volume: 23
  start-page: 4798
  year: 2011
  ident: 974_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102284
– volume: 23
  start-page: 664
  year: 2011
  ident: 974_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003398
– volume: 5
  start-page: 574
  year: 2010
  ident: 974_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 9
  start-page: 588
  year: 2014
  ident: 974_CR18
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-588
– volume: 26
  start-page: 4575
  year: 2014
  ident: 974_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306234
– volume: 2
  start-page: 9737
  year: 2014
  ident: 974_CR17
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01484G
– volume: 22
  start-page: 4484
  year: 2010
  ident: 974_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001811
– volume: 8
  start-page: 10980
  year: 2014
  ident: 974_CR27
  publication-title: ACS Nano
  doi: 10.1021/nn504969z
– volume: 457
  start-page: 706
  year: 2009
  ident: 974_CR9
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 15
  start-page: 2685
  year: 2014
  ident: 974_CR28
  publication-title: Electron.
– volume: 11
  start-page: 241
  year: 2012
  ident: 974_CR20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3238
– volume: 4
  start-page: 611
  year: 2010
  ident: 974_CR8
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 20
  start-page: 4061
  year: 2008
  ident: 974_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800338
– volume: 19
  start-page: 5442
  year: 2009
  ident: 974_CR4
  publication-title: J. Mater. Chem.
  doi: 10.1039/b823001c
– volume: 305
  start-page: 1273
  year: 2004
  ident: 974_CR7
  publication-title: Science
  doi: 10.1126/science.1101243
– volume: 3
  start-page: 564
  year: 2010
  ident: 974_CR19
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0017-5
– volume: 299
  start-page: 1403
  year: 2014
  ident: 974_CR31
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201400097
SSID ssj0062148
Score 2.354332
Snippet Transparent electrodes are essential components for optoelectronic devices such as displays and thin-film solar cells. Traditionally, the deposition of...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 917
SubjectTerms Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Conduction
Corrosion resistance
Devices
Electrochromism
Electrodes
Electronics
Flexible components
Materials Science
Nanostructure
Nanotechnology
Nanowires
Optoelectronic devices
Oxidation
Oxidation resistance
Photovoltaic cells
Protective coatings
Research Article
Sealing
Solar cells
Thin films
柔性
电子产品
电致变色器件
磁带
薄膜太阳能电池
表面电阻
透明导电层
银纳米线
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vehBfGLdVSJ4Ugt9Js1xEZdF0JMLewtJmuhh6art_n8nfWxVVPCcF50kM990Mt8AXKZUoVXTeHhjy9zfqtznQZT71NKEKyaNrXNhHh7pdJbcz9N5m8dddq_du5Bkran7ZLcIPSh0fVM_QBDs803YSp3rjod4Fo079UujsC6Z1eSOofXqQpk_TeEIFV6WxfMbLvfVMPVo81uAtLY7kz3YbQEjGTc7vA8bpjiAnU80gofAxqSqOcpdYld1Q9DFdSyu2EYq-WoI4lJiHfGlWhjS170pj2A2uXu6nfptQQRfox6ofMZdGNRSGQXSKsYCzQznVqNDnKk8CpgMExbFKo5prlUQGs3y0CjspRjXMoiPYVAsC3MChMUuqdXmFq1TIjnNco17FNJUp9LiEA-Ga8mI14b4QlCaJRlFJeBB0MlK6JZL3JW0WIieBdmJWqCohRO14B5crYd08_3RedRtgGjvVOkKZuLnOQfSg4t1M94GF-KQhVmuSoF4hSIICin14LrbuH6KXxc8_VfvIWwjbqLNA54RDKr3lTlDbFKp8_osfgD02djQ
  priority: 102
  providerName: Springer Nature
Title A transparent, conducting tape for flexible electronics
URI http://lib.cqvip.com/qk/71233X/201604/668486183.html
https://link.springer.com/article/10.1007/s12274-015-0974-9
https://www.proquest.com/docview/2001476010
https://www.proquest.com/docview/1816075166
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5UIPFS1UTVlQKnGCRjgvOz6hpdoFgUAIdaXlZNmO3R5QdmHD_2cmm2ygUrkkkp_S-DEznplvAA5zbpCrWdy8qRf0WlVGkiVlxD3PpBHa-SYW5vqGX0yzy1k-ax_clq1bZXcnNhd1Obf0Rn5Cvj8ZOXCw08VjRFmjyLraptD4AJsEXUYuXWK2Vrh4EjfZs1ZhZMjIOqtmEzqXoD6GpXnEUKSOJGEr_J1Xfx6RY7zlUb3g-Y-ttGFBk2341MqO4Wi12J9hw1Vf4OMrRMEdEKOwbuDKKcar_hmitkuArlgX1nrhQhRRQ08YmObBhX0KnOUuTCfj378uojY3QmTxSqgjIcki6rlOmPZGCGaFk9Jb1I0LUyZMaKRWkpo05aU1LHZWlLEz2MoIaTVLv8KgmlfuG4QipfhWX3pkVJmWvCgtLlfMc5trj10C2FtTRi1WGBiK8yIrON4HAbCOVsq2sOKU3eJB9YDIRGqFpFZEaiUDOFp36cZ7p_GwWwDVHq-l6jdDAD_W1XgwyNqhKzd_XioUXTjKQzHnARx3C9cP8d8Jv78_4R5soczEV847QxjUT89uH-WS2hw0mw-_xeT8ADZH5_dXY_yfjW9u77B0moxeAOAN4RI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLxE6AMjwQWI6rzs-ICqCli29HFqpd6M7dhwqLJbNhXiT_EbmUnWG0Cit17j2JbG87Jn5huAl5WwaNUcMm8RJL1WNanieZOKIEplpfGhr4U5PhHTs_LzeXW-Br9iLQylVUad2CvqZubojXyXcn9KSuDge_PLlLpGUXQ1ttAY2OLQ__yBV7bFu4MPeL6v8nzy8fT9NF12FUgdClOXSkWxxCBMzk2wUnInvVLB4a2ytk3OpcF98sIWhWic5Zl3ssm8xb-sVM7wAte9BbfLolAkUfXkU9T8Is_6bl1D2RoazhhF7Uv1crz_4dcq5ejCp4qwHL7N2q-XaKH-tomjo_tPbLY3eZMNuL_0Vdn-wFwPYM23D-HeHwiGj0Dus66HR6easu4tw9s1AcjiGOvM3DN0iVkgzE174dnYcmfxGM5uhGpPYL2dtf4pMFlQPW1oAhrG0ihRNw7ZIxOVq0zAKQlsriij5wPmhhaiLmuB-icBHmml3RLGnLppXOgRgJlIrZHUmkitVQKvV1Pietf8vBUPQC_FeaFH5kvgxWoYBZGiK6b1s6uFRldJoP-VCZHAm3hw4xL_3fDZ9Rs-hzvT0-MjfXRwcrgJd9FfE0Pi0Basd9-v_Db6RJ3d6RmRwZeb5vzfRnEaRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxUxEJ8gJkQOBkXj8iElwYu6ofvVvh6MIcILCBIPkrxbbbutHMi-B2-J8V_zr3NmP96qCdy4brdtMp3pzHRmfgOwVwiLWs0h82ZB0mtVGSuelrEIIldWGh-aWpgv5-L4Iv88KSZL8LuvhaG0yv5ObC7qcurojXyfcn9ySuDg-6FLi_h6OP44u46pgxRFWvt2Gi2LnPpfP9F9m384OcSzfpOm46Nvn47jrsNA7FCw6lgqiisGYVJugpWSO-mVCg49zJEtUy4N7plmNstE6SxPvJNl4i3-ZaVyhme47iN4LLMiIRmTk4WzJ9Kk6dzVlrChEu0jqk3ZXoq-IH4tYo7mfKwI1-FyWv24Rm31r34cjN7_4rSN-huvwdPObmUHLaM9gyVfPYfVv9AM10EesLqBSqf6svo9Q0-bwGRxjNVm5hmaxywQ_qa98mxovzN_ARcPQrWXsFxNK_8KmMyotjaUAZVkbpQYlQ5ZJRGFK0zAKRFsLiijZy3-hhZilI8E3kUR8J5W2nWQ5tRZ40oPYMxEao2k1kRqrSJ4u5jSr3fPz1v9AehOtOd6YMQIdhfDKJQUaTGVn97ONZpNAm2xRIgI3vUHNyxx54Yb92-4AyvI8_rs5Px0E56g6SbaHKItWK5vbv02mke1fd3wIYPvD834fwBVbh5z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transparent%2C+conducting+tape+for+flexible+electronics&rft.jtitle=Nano+research&rft.au=Huang%2C+Ya&rft.au=Liao%2C+Suiyang&rft.au=Ren%2C+Jie&rft.au=Khalid%2C+Bilal&rft.date=2016-04-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=9&rft.issue=4&rft.spage=917&rft.epage=924&rft_id=info:doi/10.1007%2Fs12274-015-0974-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg