Increasing leaching rate of gold cyanide of two-stage calcination generated from refractory ore containing arsenopyrite and pyrrhotite
For the gold locked within hematite in the two- stage calcination, which leads to a low gold leaching rate, the present work is aiming at pretreating the calcination to selectively dissolve hematite. The calcination was pre- treated by sulfuric acid with cosolvent B. The factors in- fluencing the he...
Saved in:
Published in | Rare metals Vol. 35; no. 10; pp. 804 - 810 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Nonferrous Metals Society of China
01.10.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For the gold locked within hematite in the two- stage calcination, which leads to a low gold leaching rate, the present work is aiming at pretreating the calcination to selectively dissolve hematite. The calcination was pre- treated by sulfuric acid with cosolvent B. The factors in- fluencing the hematite dissolution rate were studied, and the pretreatment parameters considered were H2SO4 con- tent, B dosage and added time, leaching temperature and time. Simultaneously, mineralogy analysis of the calcination, H2SO4 pretreatment residue and cyanide leaching residue were also carried out. Results indicate that the hematite dissolution rate is quicker, the dissolution tem- perature is lower and the dissolution time is shorter in the role of cosolvent B than without B. At the same time, the gold locked within hematite is effectively released, so the leaching rate of gold cyanide increases about 10 % than that in actual factory production. The results have an actual significance in guiding industrial production. |
---|---|
AbstractList | For the gold locked within hematite in the two-stage calcination, which leads to a low gold leaching rate, the present work is aiming at pretreating the calcination to selectively dissolve hematite. The calcination was pretreated by sulfuric acid with cosolvent B. The factors influencing the hematite dissolution rate were studied, and the pretreatment parameters considered were H sub(2)SO sub(4) content, B dosage and added time, leaching temperature and time. Simultaneously, mineralogy analysis of the calcination, H sub(2)SO sub(4) pretreatment residue and cyanide leaching residue were also carried out. Results indicate that the hematite dissolution rate is quicker, the dissolution temperature is lower and the dissolution time is shorter in the role of cosolvent B than without B. At the same time, the gold locked within hematite is effectively released, so the leaching rate of gold cyanide increases about 10 % than that in actual factory production. The results have an actual significance in guiding industrial production. For the gold locked within hematite in the two- stage calcination, which leads to a low gold leaching rate, the present work is aiming at pretreating the calcination to selectively dissolve hematite. The calcination was pre- treated by sulfuric acid with cosolvent B. The factors in- fluencing the hematite dissolution rate were studied, and the pretreatment parameters considered were H2SO4 con- tent, B dosage and added time, leaching temperature and time. Simultaneously, mineralogy analysis of the calcination, H2SO4 pretreatment residue and cyanide leaching residue were also carried out. Results indicate that the hematite dissolution rate is quicker, the dissolution tem- perature is lower and the dissolution time is shorter in the role of cosolvent B than without B. At the same time, the gold locked within hematite is effectively released, so the leaching rate of gold cyanide increases about 10 % than that in actual factory production. The results have an actual significance in guiding industrial production. For the gold locked within hematite in the two-stage calcination, which leads to a low gold leaching rate, the present work is aiming at pretreating the calcination to selectively dissolve hematite. The calcination was pretreated by sulfuric acid with cosolvent B. The factors influencing the hematite dissolution rate were studied, and the pretreatment parameters considered were H 2 SO 4 content, B dosage and added time, leaching temperature and time. Simultaneously, mineralogy analysis of the calcination, H 2 SO 4 pretreatment residue and cyanide leaching residue were also carried out. Results indicate that the hematite dissolution rate is quicker, the dissolution temperature is lower and the dissolution time is shorter in the role of cosolvent B than without B. At the same time, the gold locked within hematite is effectively released, so the leaching rate of gold cyanide increases about 10 % than that in actual factory production. The results have an actual significance in guiding industrial production. For the gold locked within hematite in the two-stage calcination, which leads to a low gold leaching rate, the present work is aiming at pretreating the calcination to selectively dissolve hematite. The calcination was pretreated by sulfuric acid with cosolvent B. The factors influencing the hematite dissolution rate were studied, and the pretreatment parameters considered were H2SO4 content, B dosage and added time, leaching temperature and time. Simultaneously, mineralogy analysis of the calcination, H2SO4 pretreatment residue and cyanide leaching residue were also carried out. Results indicate that the hematite dissolution rate is quicker, the dissolution temperature is lower and the dissolution time is shorter in the role of cosolvent B than without B. At the same time, the gold locked within hematite is effectively released, so the leaching rate of gold cyanide increases about 10 % than that in actual factory production. The results have an actual significance in guiding industrial production. |
Author | Xiao-E Dang Wen-Shuai Ke Chen Tang Jun Lv Xue Zhou Cheng-Peng Liu |
AuthorAffiliation | Key Laboratory for Gold and Resources of Shaanxi, Xi'an University of Architecture and Technology, Xi'an 710055,China Jin Rui Mining Technology Development Co., Ltd, Xi'an710055, China |
Author_xml | – sequence: 1 givenname: Xiao-E surname: Dang fullname: Dang, Xiao-E email: dxe2371@126.com organization: Key Laboratory for Gold and Resources of Shaanxi, Xi’an University of Architecture and Technology – sequence: 2 givenname: Wen-Shuai surname: Ke fullname: Ke, Wen-Shuai organization: Key Laboratory for Gold and Resources of Shaanxi, Xi’an University of Architecture and Technology – sequence: 3 givenname: Chen surname: Tang fullname: Tang, Chen organization: Key Laboratory for Gold and Resources of Shaanxi, Xi’an University of Architecture and Technology – sequence: 4 givenname: Jun surname: Lv fullname: Lv, Jun organization: Key Laboratory for Gold and Resources of Shaanxi, Xi’an University of Architecture and Technology – sequence: 5 givenname: Xue surname: Zhou fullname: Zhou, Xue organization: Key Laboratory for Gold and Resources of Shaanxi, Xi’an University of Architecture and Technology – sequence: 6 givenname: Cheng-Peng surname: Liu fullname: Liu, Cheng-Peng organization: Jin Rui Mining Technology Development Co., Ltd |
BookMark | eNp9kclqHDEQhpvggLc8gG8iueQip7S01H0MJovB4Et8Fmp1dY9MjzSWNIR5gTx31B4Tgg8-VRX8X23_eXMSYsCmuWJwzQD0l8x423cUWEtBaqDwrjljndJUs649qTkAo9Bydtqc5_wIIKVScNb8uQ0uoc0-zGRB6zZrkmxBEicyx2Uk7mCDH5_r8jvSXOyMxNnF-WCLj4HMGHAlRjKluCUJp2RdielAYqrKGIr1YW1rU8YQd4fka3sbRlLTtImllpfN-8kuGT-8xIvm4fu3Xzc_6d39j9ubr3fUCa0KVW7ohkmBRMEY9NgzxzXHXg71MsE52IHbAUEMgFxpNiLyScDYg1PMCSsums_HvrsUn_aYi9n67HBZbMC4z4Z1su2ghVZW6adX0se4T6FuV1X1tQw61VaVPqpcijnX243z5fkvJVm_GAZm9ccc_THVH7P6Y6CS7BW5S35r0-FNhh-ZXLVhxvTfTm9AH18GbWKYnyr3b5LSIBSTQoq_zdKxzQ |
CitedBy_id | crossref_primary_10_1007_s11837_024_06788_9 crossref_primary_10_1080_08827508_2020_1854248 crossref_primary_10_1016_j_gsme_2024_03_004 crossref_primary_10_1016_j_hydromet_2018_06_008 crossref_primary_10_1016_j_jece_2021_105871 crossref_primary_10_1016_j_hydromet_2021_105612 crossref_primary_10_1016_j_seppur_2025_131641 crossref_primary_10_1016_S1003_6326_20_65354_7 crossref_primary_10_1007_s40831_022_00567_z crossref_primary_10_3390_min14010002 |
Cites_doi | 10.1016/j.mineng.2007.04.003 10.1016/j.mineng.2004.05.009 10.1016/j.mineng.2008.09.002 10.1016/j.hydromet.2008.10.013 10.1016/j.mineng.2010.08.018 10.1016/S1875-5372(14)60009-6 10.1111/j.1574-6976.1993.tb00291.x 10.1016/j.jhazmat.2012.01.076 10.1016/j.hydromet.2011.12.012 10.1016/S0892-6875(99)00145-4 10.1016/S0892-6875(99)00074-6 |
ContentType | Journal Article |
Copyright | The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015 The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2016 |
Copyright_xml | – notice: The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015 – notice: The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2016 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 8BQ 8FD 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12598-015-0470-0 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China METADEX ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Increasing leaching rate of gold cyanide of two-stage calcination generated from refractory ore containing arsenopyrite and pyrrhotite |
EISSN | 1867-7185 |
EndPage | 810 |
ExternalDocumentID | 4179370871 10_1007_s12598_015_0470_0 670361434 |
GroupedDBID | --K -EM 06D 0R~ 0VY 188 1B1 29P 2B. 2C0 2KG 2RA 2VQ 30V 4.4 406 408 40D 5VR 5VS 8FE 8FG 8RM 8TC 92H 92I 92L 92R 93N 96X AAAVM AAEDT AAFGU AAHNG AAIAL AAJKR AALRI AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAXUO AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTD ABFTV ABJCF ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADMDM ADMUD ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BA0 BENPR BGLVJ BGNMA CAG CCEZO CCPQU CDRFL CHBEP COF CQIGP CW9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR I~X J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PT4 Q2X R9I RIG RLLFE ROL RSV S1Z S27 S3B SCL SCM SDC SDG SDH SHX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE T13 TCJ TGT TSG U2A UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 W92 WK8 Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 ~WA -SB -S~ 5XA 5XC AACDK AAJBT AASML AAXDM AAYZH ABAKF ABWVN ACDTI ACPIV ACRPL ADMLS ADNMO AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEB H13 Q-- SJYHP U1G U5L UY8 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIGII AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8BQ 8FD ABRTQ DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c376t-6cb8bf604e31109e91c272e94b5213220ab2abe03b0e2671dee2f30d90c61c3a3 |
IEDL.DBID | U2A |
ISSN | 1001-0521 |
IngestDate | Fri Jul 11 10:29:48 EDT 2025 Fri Jul 25 10:11:26 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Tue Jul 01 01:30:02 EDT 2025 Fri Feb 21 02:43:28 EST 2025 Wed Feb 14 10:12:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Hematite Locked gold Cosolvent B Pretreatment Two-stage calcination |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-6cb8bf604e31109e91c272e94b5213220ab2abe03b0e2671dee2f30d90c61c3a3 |
Notes | Locked gold; Hematite; Pretreatment;Two-stage calcination; Cosolvent B For the gold locked within hematite in the two- stage calcination, which leads to a low gold leaching rate, the present work is aiming at pretreating the calcination to selectively dissolve hematite. The calcination was pre- treated by sulfuric acid with cosolvent B. The factors in- fluencing the hematite dissolution rate were studied, and the pretreatment parameters considered were H2SO4 con- tent, B dosage and added time, leaching temperature and time. Simultaneously, mineralogy analysis of the calcination, H2SO4 pretreatment residue and cyanide leaching residue were also carried out. Results indicate that the hematite dissolution rate is quicker, the dissolution tem- perature is lower and the dissolution time is shorter in the role of cosolvent B than without B. At the same time, the gold locked within hematite is effectively released, so the leaching rate of gold cyanide increases about 10 % than that in actual factory production. The results have an actual significance in guiding industrial production. 11-2112/TF ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1818610865 |
PQPubID | 326325 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1845805054 proquest_journals_1818610865 crossref_citationtrail_10_1007_s12598_015_0470_0 crossref_primary_10_1007_s12598_015_0470_0 springer_journals_10_1007_s12598_015_0470_0 chongqing_primary_670361434 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Rare metals |
PublicationTitleAbbrev | Rare Met |
PublicationTitleAlternate | Rare Metals |
PublicationYear | 2016 |
Publisher | Nonferrous Metals Society of China Springer Nature B.V |
Publisher_xml | – name: Nonferrous Metals Society of China – name: Springer Nature B.V |
References | Amankwah, Yen, Ramsay (CR3) 2005; 18 Zhang, Li, Yu (CR11) 2012; 213–214 Nanthakumar, Pickles, Kelebek (CR4) 2007; 20 CR5 Curreli, Garbarino, Ghiani, Orru (CR7) 2009; 96 Chapman, Marchant, Lawrence, Knopp (CR2) 1993; 11 Ojeda, Perino, Ruiz (CR14) 2009; 22 Syed (CR12) 2012; 115–116 Awe, Sandstrom (CR8) 2010; 23 Liu, Zhang, Li, Wang (CR13) 2013; 42 Zhong, Wu, Huang, Ruan (CR1) 2013; 37 Lehmann, Leary, Dunn (CR6) 2000; 13 Zhang, Zhang, Zu (CR15) 2007; 28 Zhang, Wu (CR9) 2010; 5 CR10 YF Zhang (470_CR9) 2010; 5 S Syed (470_CR12) 2012; 115–116 B Nanthakumar (470_CR4) 2007; 20 SP Zhong (470_CR1) 2013; 37 MN Lehmann (470_CR6) 2000; 13 Samuel A Awe (470_CR8) 2010; 23 JT Chapman (470_CR2) 1993; 11 RK Amankwah (470_CR3) 2005; 18 470_CR10 L Curreli (470_CR7) 2009; 96 BL Liu (470_CR13) 2013; 42 FY Zhang (470_CR15) 2007; 28 470_CR5 YL Zhang (470_CR11) 2012; 213–214 MW Ojeda (470_CR14) 2009; 22 |
References_xml | – volume: 20 start-page: 1109 issue: 11 year: 2007 ident: CR4 article-title: Microwave pretreatment of a double refractory gold ore publication-title: Miner Eng doi: 10.1016/j.mineng.2007.04.003 – volume: 18 start-page: 103 issue: 1 year: 2005 ident: CR3 article-title: A two-stage bacterial pretreatment process for double refractory gold ores publication-title: Miner Eng doi: 10.1016/j.mineng.2004.05.009 – volume: 37 start-page: 295 issue: 2 year: 2013 ident: CR1 article-title: Oxidation kinetics reaction of gold-bearing pyrite in sulphuric acid publication-title: Chin J Rare Met – volume: 28 start-page: 37 issue: 9 year: 2007 ident: CR15 article-title: Experimental research on extracting gold and silver from cyanide residue publication-title: Gold – volume: 22 start-page: 409 issue: 4 year: 2009 ident: CR14 article-title: Gold extraction by chlorination using a pyrometallurgical process publication-title: Miner Eng doi: 10.1016/j.mineng.2008.09.002 – ident: CR10 – ident: CR5 – volume: 96 start-page: 258 issue: 2 year: 2009 ident: CR7 article-title: Arsenic leaching from a gold bearing enargite flotation concentrate publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.10.013 – volume: 23 start-page: 1227 issue: 15 year: 2010 ident: CR8 article-title: Selective leaching of arsenic and antimony from a tetrahedrite rich complex sulphide concentrate using alkaline sulphide solution publication-title: Miner Eng doi: 10.1016/j.mineng.2010.08.018 – volume: 42 start-page: 1805 issue: 9 year: 2013 ident: CR13 article-title: Recovery of gold and iron from the cyanide tailings by magnetic roasting publication-title: Rare Met Mater Eng doi: 10.1016/S1875-5372(14)60009-6 – volume: 11 start-page: 243 issue: 1–3 year: 1993 ident: CR2 article-title: Bio-oxidation of a refractory gold bearing high arsenic sulphide concentrate: a pilot study publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.1993.tb00291.x – volume: 213–214 start-page: 167 issue: 30 year: 2012 ident: CR11 article-title: Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2012.01.076 – volume: 5 start-page: 37 year: 2010 ident: CR9 article-title: Application of two-stage roasting process in gold production publication-title: Nonferrous Metall China – volume: 115–116 start-page: 30 year: 2012 ident: CR12 article-title: Recovery of gold from secondary sources—a review publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.12.012 – volume: 13 start-page: 1 issue: 1 year: 2000 ident: CR6 article-title: An evaluation of pretreatments to increase gold recovery from a refractory ore containing arsenopyrite and pyrrhotite publication-title: Miner Eng doi: 10.1016/S0892-6875(99)00145-4 – volume: 11 start-page: 243 issue: 1–3 year: 1993 ident: 470_CR2 publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.1993.tb00291.x – volume: 20 start-page: 1109 issue: 11 year: 2007 ident: 470_CR4 publication-title: Miner Eng doi: 10.1016/j.mineng.2007.04.003 – volume: 115–116 start-page: 30 year: 2012 ident: 470_CR12 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.12.012 – volume: 13 start-page: 1 issue: 1 year: 2000 ident: 470_CR6 publication-title: Miner Eng doi: 10.1016/S0892-6875(99)00145-4 – volume: 213–214 start-page: 167 issue: 30 year: 2012 ident: 470_CR11 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2012.01.076 – volume: 5 start-page: 37 year: 2010 ident: 470_CR9 publication-title: Nonferrous Metall China – volume: 37 start-page: 295 issue: 2 year: 2013 ident: 470_CR1 publication-title: Chin J Rare Met – volume: 22 start-page: 409 issue: 4 year: 2009 ident: 470_CR14 publication-title: Miner Eng doi: 10.1016/j.mineng.2008.09.002 – volume: 28 start-page: 37 issue: 9 year: 2007 ident: 470_CR15 publication-title: Gold – ident: 470_CR10 – volume: 42 start-page: 1805 issue: 9 year: 2013 ident: 470_CR13 publication-title: Rare Met Mater Eng doi: 10.1016/S1875-5372(14)60009-6 – volume: 96 start-page: 258 issue: 2 year: 2009 ident: 470_CR7 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.10.013 – volume: 18 start-page: 103 issue: 1 year: 2005 ident: 470_CR3 publication-title: Miner Eng doi: 10.1016/j.mineng.2004.05.009 – volume: 23 start-page: 1227 issue: 15 year: 2010 ident: 470_CR8 publication-title: Miner Eng doi: 10.1016/j.mineng.2010.08.018 – ident: 470_CR5 doi: 10.1016/S0892-6875(99)00074-6 |
SSID | ssj0044660 |
Score | 2.0954437 |
Snippet | For the gold locked within hematite in the two- stage calcination, which leads to a low gold leaching rate, the present work is aiming at pretreating the... For the gold locked within hematite in the two-stage calcination, which leads to a low gold leaching rate, the present work is aiming at pretreating the... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 804 |
SubjectTerms | Arsenic Arsenopyrite Biomaterials Calcination Chemistry and Materials Science Cyanide process Cyanides Dissolution Energy Energy consumption Gold Gold cyanide Hematite High temperature Leaching Materials Engineering Materials Science Metallic Materials Metallurgy Mineralogy Nanoscale Science and Technology Oxidation Physical Chemistry Plant layout Pretreatment Pyrrhotite Raw materials Refractory ores Residues Roasting Sulfur Sulfuric acid 毒砂 氰化金 浸出时间 煅烧 矿石 磁黄铁矿 酸预处理 金浸出率 |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS90wFA6bvmwPsk3Hrr_IYE-TsrRJ0_ZpbKKIoIwxwbeQJulVuCTXWpH7D_h3e06b3qvCfGtomoac5OScnJPvI-RbZaUWvfbLqyoRxshEg6pEZERbcqEz1iMxnZ3LkwtxeplfxgO325hWOerEXlHbYPCM_EeK0GtIC5T_nN8kyBqF0dVIofGWrIMKLsH5Wv99dP7n76iLMVg54BGg0ww71RjX7C_PgeWPiVx5wgSyryC6wlXw0xvYM57vUivT80W0tN-Ejj-QjWg90l-DuD-SN85_Iu-fYApukgdY8ZhoDgU6i6mSFPEgaGjoNMwsNQvtr21f7u5DAubh1FEQlbkeTgbptIeiBlOU4uUTCr1re1aeBQ0t1Ay-G2glKDjFzof5ooUxotpbCo_tFWb3uS1ycXz07_AkiWQLiQEd0yXS1GXdSCYcRxBSV6UmKzJXiRqGDVY903Wma8d4zVwmi9Q6lzWc2YoZmRqu-Wey5oN3XwitciEKy23B00Y453Rly7wAR4yLMhdNMyE7y4FW8wFUQ0lEAgPjTUwIG4demYhTjnQZM7VCWEbJKZCcQskpNiHfl5-M7b1SeXeUp4rr9VatZteEfF2-hpWG4RPtXbjDOiIvkfgPungwzoMnTfzvh9uv_3CHvAMjTA4JgrtkrWvv3B4YOl29H2fzI9Ok-fI priority: 102 providerName: ProQuest |
Title | Increasing leaching rate of gold cyanide of two-stage calcination generated from refractory ore containing arsenopyrite and pyrrhotite |
URI | http://lib.cqvip.com/qk/85314X/201610/670361434.html https://link.springer.com/article/10.1007/s12598-015-0470-0 https://www.proquest.com/docview/1818610865 https://www.proquest.com/docview/1845805054 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4ED4imWlpWROIEiOfEjyXFBu61AVAixUjlZju1sK63skqZC-wf6uzuTx25BgMQpieLYlscef5MZf0PIm9IpIzrtJ8syEdaqxICqRGZEV3BhMtYxMX0-VSdL8fFMng3nuK_GaPfRJdlp6t1hN0DqGHglEyYwW8oeOZBousMkXmazUf2if7KnIEA7GTan0ZX5pyqQUOE8htUPaO7XjWmHNn9zkHb7zuIReTgARjrrJfyY3PPhCXlwh0bwKbmBRY6x5fBA10N0JEUKCBpruoprR-3GhAvXPbc_YwKIcOUpSMde9D8D6apjnwb0SfG8CYXeNV0ing2NDZSMoe0zSVCwg32Il5sGoCo1wVG4bc4xoM8_I8vF_NuHk2TIr5BYUCttomxVVLViwnPkHfVlarM886WoYNhgoTNTZabyjFfMZypPnfdZzZkrmVWp5YY_J_shBv-C0FIKkTvucp7WwntvSlfIHGwvLgop6npCDrcDrS97Hg2tkPwL8JqYEDYOvbYDNTlmyFjrHakySk6D5DRKTrMJebv9ZKzvH4WPRnnqYYle6RS5_DDPlJyQ19vXsLjQY2KCj9dYRsgCc_1BF9-N8-BOFX9r8OV_lT4k9wGGqT5E8Ijst821fwVQp62mZK9YHE_Jwez4-6c5XN_PT798nXYT_hZcBvkf |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdY2oKR4AKKcGLndagqBCxb-ji1Um_GsZ1tpVW8TVNV-wf4OfzGzuSxW5DorbdYcZzIMx7PZMbfB_A-t4mWrfWL8zyQxiSBRlNJyIg2E1JHvEViOjhMJsfy50l8sgZ_hrMwVFY52MTWUFtv6B_555Cg14gWKN6ZnwfEGkXZ1YFCo1OLPbe4wpDtYnv3G8r3QxSNvx99nQQ9q0BgcDE1QWKKrCgTLp0gtE2XhyZKI5fLAncyVG-ui0gXjouCuyhJQ-tcVApuc26S0AgtcNx7cF8KkdOKysY_BstPqdEO_YBCdBxtyKK2R_UwzqCysTjgkrheCMvh1FfTc9yh_t4TV47uP7nZdssbP4HHva_KvnTK9RTWXPUMHt1AMHwOv9G-UFk7NtisL8xkhD7BfMmmfmaZWejqzLbt5soH6IxOHUPFMGfdf0g2bYGv0fFldNSF4dfVLQfQgvkae_qq6UgsGIbgrvLzRY0SYbqyDC_rU6oldC_g-E6E8BLWK1-5V8DyWMrUCpuKsJTOOZ3bLE4x7BMyi2VZjmBjOdFq3kF4qIRwx9BVlCPgw9Qr06OiEznHTK3wnElyCiWnSHKKj-Dj8pFhvFs6bw7yVL11uFArXR7Bu-VtXNeUrNGV85fUR8YZ0QziJ34a9ODGEP974evbX_gWHkyODvbV_u7h3gY8RPcv6UoTN2G9qS_dFrpYTfGm1WsGv-56IV0DdQA08Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKkRAcEBQQSws1Uk-gqE7sOMmxAlZtgaqHrtSb5diTbaWVs6Sp0P4Bfjcz-dgtCJC4xcrEtjz2-DkzfsPYQeG1VZ31S4siUs7pyKKpJGZEn0tlE9ExMX0908czdXqZXg55Tm_GaPfRJdnfaSCWptAeLn11uLn4hqidgrDSSCjKnHKP3UdrHNO0niVHoykmX2VPR0BnZtyoRrfmn6ogcoWrOsy_YdO_blIb5Pmbs7Tbg6ZP2OMBPPKjXttP2RaEHfboDqXgM_YDFzzFmWOBL4ZISU50ELyu-LxeeO5WNlz7rtx-ryNEh3PgqCl33f8Y5POOiRqRKKe7Jxx713RJeVa8blASB6rPKsHxTAyhXq4ahK3cBs_xsbmi4D54zmbTTxcfjqMh10Lk0MS0kXZlXlZaKJDEQQpF7JIsgUKVOGy46IUtE1uCkKWARGexB0gqKXwhnI6dtPIF2w51gJeMF6lSmZc-k3GlAMAWPk8zPIdJlaeqqiZsdz3QZtlzahhNRGCI3dSEiXHojRtoyilbxsJsCJZJcwY1Z0hzRkzYu_UnY33_EN4b9WmG5XpjYuL1o5xT6YS9Xb_GhUbeExugviUZleaU9w-7-H6cB3eq-FuDr_5Lep89OP84NV9Ozj7vsoeIznQfObjHttvmFl4jAmrLN90s_wkDTvw6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+leaching+rate+of+gold+cyanide+of+two-stage+calcination+generated+from+refractory+ore+containing+arsenopyrite+and+pyrrhotite&rft.jtitle=Rare+metals&rft.au=Dang%2C+Xiao-E&rft.au=Ke%2C+Wen-Shuai&rft.au=Tang%2C+Chen&rft.au=Lv%2C+Jun&rft.date=2016-10-01&rft.pub=Nonferrous+Metals+Society+of+China&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=35&rft.issue=10&rft.spage=804&rft.epage=810&rft_id=info:doi/10.1007%2Fs12598-015-0470-0&rft.externalDocID=10_1007_s12598_015_0470_0 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85314X%2F85314X.jpg |