Study on electromagnetic response in cavity to relic high-frequency gravitational waves with nontensorial polarizations

The relic gravitational waves (RGWs) originating from the early stages of the universe represent one of the most significant and highly focused targets for future gravitational wave (GW) detections, due to that these waves contain crucial information about the evolution of the cosmos and serve as ke...

Full description

Saved in:
Bibliographic Details
Published inNuclear physics. B Vol. 1002; p. 116537
Main Authors Zhang, Minghui, Wen, Hao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2024
Elsevier
Online AccessGet full text
ISSN0550-3213
1873-1562
DOI10.1016/j.nuclphysb.2024.116537

Cover

Abstract The relic gravitational waves (RGWs) originating from the early stages of the universe represent one of the most significant and highly focused targets for future gravitational wave (GW) detections, due to that these waves contain crucial information about the evolution of the cosmos and serve as key evidence for various cosmological models such as the big bang. RGWs cover exceptionally broad frequency bands encompassing the gigahertz (GHz) range (109 Hz), and the schemes based on electromagnetic (EM) response to GWs have been long and widely studied for such GHz band. Differently to previous works, we work out analytical and numerical forms of EM signals (with acquired novel characteristics and distinctive behaviors) caused by relic high-frequency GWs (RHFGWs) in simulated resonant cavity. By joint application of constructed effective and targeted deep learning neural networks, we successfully identify these EM signals amidst noise, and for the first time distinguish the different oscillating factors in focused model of RGW; also, we estimate typical parameters of corresponding RHFGWs and associated cosmological models, and establish a new scheme to explore the possible extra polarizations of RHFGWs in resonant cavity. In brief, we obtain new connections between the distinctive features of caused EM signals in cavity and corresponding parameters of cosmological models and RGWs; the results and methods would not only contribute to current theoretical investigation but also could provide valuable insights and preparation for potential experiments aimed at detecting such RHFGWs in the future, or may placing constraints on relevant GW parameters and theories of gravity.
AbstractList The relic gravitational waves (RGWs) originating from the early stages of the universe represent one of the most significant and highly focused targets for future gravitational wave (GW) detections, due to that these waves contain crucial information about the evolution of the cosmos and serve as key evidence for various cosmological models such as the big bang. RGWs cover exceptionally broad frequency bands encompassing the gigahertz (GHz) range (109 Hz), and the schemes based on electromagnetic (EM) response to GWs have been long and widely studied for such GHz band. Differently to previous works, we work out analytical and numerical forms of EM signals (with acquired novel characteristics and distinctive behaviors) caused by relic high-frequency GWs (RHFGWs) in simulated resonant cavity. By joint application of constructed effective and targeted deep learning neural networks, we successfully identify these EM signals amidst noise, and for the first time distinguish the different oscillating factors in focused model of RGW; also, we estimate typical parameters of corresponding RHFGWs and associated cosmological models, and establish a new scheme to explore the possible extra polarizations of RHFGWs in resonant cavity. In brief, we obtain new connections between the distinctive features of caused EM signals in cavity and corresponding parameters of cosmological models and RGWs; the results and methods would not only contribute to current theoretical investigation but also could provide valuable insights and preparation for potential experiments aimed at detecting such RHFGWs in the future, or may placing constraints on relevant GW parameters and theories of gravity.
ArticleNumber 116537
Author Wen, Hao
Zhang, Minghui
Author_xml – sequence: 1
  givenname: Minghui
  surname: Zhang
  fullname: Zhang, Minghui
– sequence: 2
  givenname: Hao
  orcidid: 0000-0003-4087-6456
  surname: Wen
  fullname: Wen, Hao
  email: wenhao@cqu.edu.cn
BookMark eNqFkd1uGyEQhVGUSHXSPEN5gXVhWWD3Mor6EylSL9peo1mYtbE24AC2tX364rjKbblBOjPzac6cW3IdYkBCPnG25oyrz7t1ONh5v13yuG5Z2605V1LoK7LivRYNl6q9JismJWtEy8UHcpvzjtWnRL8ip5_l4BYaA8UZbUnxBTYBi7c0Yd7HkJH6QC0cfVloiVWda23rN9tmSvh6wGAXuknnOhQfA8z0BEfM9OTLltZVC4Yck6_6Ps6Q_J-3tvyR3EwwZ7z_99-R31-__Hr83jz_-Pb0-PDcWKFVadRg-cRFNzE-Oi4dOD1JJjQMox0UyKEbO9U6xl0n7MB0Zxn21X7LJtBcorgjTxeui7Az--RfIC0mgjdvQkwbA6nandG0ctKiB2eVgI6NFTBCz6exVaOUWsrK0heWTTHnhNM7jzNzzsLszHsW5pyFuWRRJx8uk1itHj0mk62vp0PnU7163cX_l_EXnjacYQ
Cites_doi 10.1140/epjc/s10052-020-08429-2
10.1007/BF02710177
10.1038/nphoton.2009.42
10.1103/PhysRevD.89.104025
10.1103/PhysRevA.85.013837
10.1103/PhysRevD.60.123511
10.1038/scientificamerican0504-54
10.1088/0264-9381/23/11/007
10.1103/PhysRevLett.119.141101
10.1088/0264-9381/31/22/225002
10.1103/PhysRevLett.120.141103
10.1016/0550-3213(84)90329-8
10.1016/j.physletb.2017.12.053
10.1070/PU2005v048n12ABEH005795
10.1103/PhysRevLett.30.884
10.1103/PhysRevD.100.103025
10.1088/0264-9381/26/4/045004
10.12942/lrr-2006-3
10.1103/PhysRevD.100.044009
10.1103/PhysRevD.98.024050
10.1103/PhysRevLett.120.031104
10.1103/PhysRevD.16.2915
10.1103/PhysRevD.102.063015
10.1103/PhysRevD.67.104008
10.1016/0370-2693(83)91322-9
10.1088/1674-1056/22/12/120402
10.1103/PhysRevLett.116.241103
10.1088/1475-7516/2016/04/035
10.1103/PhysRevD.97.101501
10.3847/2041-8213/ac082e
10.1103/PhysRevD.80.084022
10.1103/PhysRevD.97.044039
10.1088/0264-9381/33/17/175012
10.1103/PhysRevD.86.024012
10.1088/0264-9381/16/12A/307
10.1088/0264-9381/22/7/011
10.1016/S0370-1573(02)00389-7
10.1103/PhysRevD.80.064013
10.1007/s41114-016-0002-8
10.1103/PhysRevD.101.104003
10.1103/PhysRevLett.116.131103
10.1007/s11467-020-0966-4
10.1016/0375-9601(94)90698-X
10.1016/j.physletb.2019.135081
10.1140/epjc/s10052-008-0656-9
10.1088/1361-6382/aab793
10.1016/0370-2693(82)90641-4
10.1103/PhysRevD.85.122006
10.1103/PhysRevD.75.104009
10.1103/PhysRevLett.74.634
10.1016/j.nuclphysb.2016.08.009
10.1016/0550-3213(86)90494-3
10.1088/0264-9381/32/2/024001
10.1016/j.nuclphysb.2019.114796
10.1016/j.physletb.2020.135330
10.1103/PhysRevD.8.3308
10.1103/PhysRevD.97.063001
10.1007/s11467-021-1150-1
10.1140/epjc/s10052-014-2998-9
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.nuclphysb.2024.116537
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-1562
ExternalDocumentID oai_doaj_org_article_25f738adc63a40bfa7ba81fb26b55755
10_1016_j_nuclphysb_2024_116537
S0550321324001032
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6I.
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACKIV
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFMIJ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIBLX
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
ER.
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HME
HVGLF
HZ~
IHE
IPNFZ
IXB
J1W
KOM
KQ8
LZ4
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSQ
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
YYP
~G-
AAFWJ
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPKN
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c376t-69c1f134f01bd15dad7f5037a9bc96a594b462d01d43c9074c0e865320fa715e3
IEDL.DBID IXB
ISSN 0550-3213
IngestDate Wed Aug 27 01:25:09 EDT 2025
Tue Jul 01 01:00:26 EDT 2025
Sat May 04 15:44:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-69c1f134f01bd15dad7f5037a9bc96a594b462d01d43c9074c0e865320fa715e3
ORCID 0000-0003-4087-6456
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0550321324001032
ParticipantIDs doaj_primary_oai_doaj_org_article_25f738adc63a40bfa7ba81fb26b55755
crossref_primary_10_1016_j_nuclphysb_2024_116537
elsevier_sciencedirect_doi_10_1016_j_nuclphysb_2024_116537
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Nuclear physics. B
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Schutz (br0180) 1999; 16
Adams, Buskulic, Germain, Guidi, Marion, Montani, Mours, Piergiovanni, Wang (br0490) 2016; 33
George, Huerta (br0530) 2018; 97
Long, Van Soa, Tuan (br0320) 1994; 186
Thorne (br0170) 1995
Wei, Huerta (br0660) 2020; 800
Abbott, Wise (br0150) 1984; 244
Abbott, Harari (br0120) 1986; 264
Gabbard, Williams, Hayes, Messenger (br0550) 2018; 120
George, Huerta (br0630) 2018; 97
Starobinsky (br0130) 1979; 30
Giovannini (br0230) 1999; 60
Scientific, Abbott, Abbott, Abbott, Acernese, Ackley, Adams, Adams, Addesso, Adhikari (br0050) 2017; 118
Abbott (br0440) 2018; 120
Li, Baker, Fang, Stephenson, Chen (br0340) 2008; 56
br0780
Hooper, Chung, Luan, Blair, Chen, Wen (br0510) 2012; 86
Li, Wen, Fang, Li, Zhang (br0270) 2020; 80
Rubakov, Sazhin, Veryaskin (br0110) 1982; 115
Miao, Zhang (br0720) 2007; 75
Krastev (br0570) 2020; 803
Abbott, Abbott, Abbott, Abernathy, Acernese, Ackley, Adams, Adams, Addesso, Adhikari (br0040) 2016; 116
Li, Yu, Fan, Babu (br0670) 2020; 15
Grishchuk (br0190) 2005; 48
(br0020) 2021
Bond, Brown, Freise, Strain (br0740) 2016; 19
Ito, Soda (br0260) 2016; 2016
Abbott, Abbott, Abbott, Abernathy, Acernese, Ackley, Adams, Adams, Addesso, Adhikari (br0030) 2016; 116
Li, Wen, Fang (br0360) 2013; 22
Eardley, Lee, Lightman (br0410) 1973; 8
Agarap (br0760) 2019
Boccaletti, De Sabbata, Fortini, Gualdi (br0280) 1970; 70
Li, Yang, Fang, Baker, Stephenson, Wen (br0350) 2009; 80
Acernese, Agathos, Agatsuma, Aisa (br0470) 2014; 32
Wen, Li, Fang (br0380) 2014; 89
Schäfer, Zelenka, Nitz, Ohme, Brügmann (br0690) 2022; 105
Zhang, Yuan, Zhao, Chen (br0710) 2005; 22
Abbott, Abbott, Abraham, Acernese, Ackley, Adams, Adams, Adhikari, Adya, Affeldt (br0100) 2021; 11
Grishchuk (br0730) 2001
Abbott, Abbott, Acernese, Ackley, Adams, Adhikari, Adhikari, Adya, Affeldt, Agarwal (br0070) 2021
Abbott, Abbott, Acernese, Ackley, Adams, Adhikari, Adhikari, Adya, Affeldt, Agarwal (br0080) 2021
Zhang, Er, Xia, Zhao, Miao (br0700) 2006; 23
Tong, Zhang (br0200) 2009; 80
Fabbri, Pollock (br0140) 1983; 125
Sachdev, Caudill, Fong (br0480) 2019
Wang, Wu, Cao, Liu, Zhu (br0650) 2020; 101
Will (br0430) 2006; 9
Abbott, Abbott, Abbott, Acernese, Ackley, Adams, Adams, Addesso, Adhikari, Adya (br0060) 2017; 119
P. Chen, Stanford linear accelerator center, Report (slac-pub-6666) March 23, 1994, Rome, Italy (1994) 379.
Razzano, Cuoco (br0620) 2018; 35
Abbott, Abbott, Abraham, Acernese, Ackley, Adams, Adams, Adhikari, Adya, Affeldt (br0090) 2021; 915
Huerta, Zhao (br0600) 2021
Nitz, Dal Canton, Davis, Reyes (br0500) 2018; 98
George, Huerta (br0540) 2018; 778
Luo, Xiong, Liu (br0790) 2019
De Logi, Mickelson (br0290) 1977; 16
Chen (br0300) 1995; 74
Li, Tang, Shi (br0330) 2003; 67
(br0160) 1987
Giovannini (br0240) 2009; 26
Chatterjee, Wen, Vinsen, Kovalam, Datta (br0640) 2019; 100
Jiang, Yang, Li (br0810) 2022; 17
Gasperini, Veneziano (br0210) 2003; 373
Favero, Karrai (br0450) 2009; 3
George, Shen, Huerta (br0610) 2018; 97
Dreissigacker, Sharma, Messenger, Zhao, Prix (br0560) 2019; 100
br0770
Wen, Li, Li, Fang (br0370) 2019; 949
(br0010) 2021
Eardley, Lee, Lightman, Wagoner, Will (br0420) 1973; 30
Giovannini (br0250) 2014; 31
Schäfer, Ohme, Nitz (br0580) 2020; 102
Veneziano (br0220) 2004; 290
Brown (br0750) 2016
Berceau, Fouché, Battesti, Rizzo (br0460) 2012; 85
Kingma, Ba (br0800) 2017
Allen, Anderson, Brady, Brown, Creighton (br0520) 2012; 85
Cuoco, Powell, Cavaglià, Ackley, Bejger, Chatterjee, Coughlin, Coughlin, Easter, Essick, Gabbard, Gebhard, Ghosh, Haegel, Iess, Keitel, Márka, Márka, Morawski, Nguyen, Ormiston, Pürrer, Razzano, Staats, Vajente, Williams (br0590) 2020; 2
González, Guzmán (br0680) 2018; 97
Li, Wen, Fang, Wei, Wang, Zhang (br0400) 2016; 911
Ruder (br0820) 2017
Wen, Li, Fang, Beckwith (br0390) 2014; 74
Wang (10.1016/j.nuclphysb.2024.116537_br0650) 2020; 101
Veneziano (10.1016/j.nuclphysb.2024.116537_br0220) 2004; 290
Abbott (10.1016/j.nuclphysb.2024.116537_br0150) 1984; 244
Abbott (10.1016/j.nuclphysb.2024.116537_br0080)
Luo (10.1016/j.nuclphysb.2024.116537_br0790) 2019
Ito (10.1016/j.nuclphysb.2024.116537_br0260) 2016; 2016
Eardley (10.1016/j.nuclphysb.2024.116537_br0420) 1973; 30
Li (10.1016/j.nuclphysb.2024.116537_br0350) 2009; 80
Grishchuk (10.1016/j.nuclphysb.2024.116537_br0730) 2001
Kingma (10.1016/j.nuclphysb.2024.116537_br0800)
Schutz (10.1016/j.nuclphysb.2024.116537_br0180) 1999; 16
Hooper (10.1016/j.nuclphysb.2024.116537_br0510) 2012; 86
George (10.1016/j.nuclphysb.2024.116537_br0630) 2018; 97
Eardley (10.1016/j.nuclphysb.2024.116537_br0410) 1973; 8
González (10.1016/j.nuclphysb.2024.116537_br0680) 2018; 97
Li (10.1016/j.nuclphysb.2024.116537_br0340) 2008; 56
Zhang (10.1016/j.nuclphysb.2024.116537_br0710) 2005; 22
George (10.1016/j.nuclphysb.2024.116537_br0530) 2018; 97
Long (10.1016/j.nuclphysb.2024.116537_br0320) 1994; 186
Agarap (10.1016/j.nuclphysb.2024.116537_br0760)
Scientific (10.1016/j.nuclphysb.2024.116537_br0050) 2017; 118
(10.1016/j.nuclphysb.2024.116537_br0160) 1987
Jiang (10.1016/j.nuclphysb.2024.116537_br0810) 2022; 17
Abbott (10.1016/j.nuclphysb.2024.116537_br0100) 2021; 11
De Logi (10.1016/j.nuclphysb.2024.116537_br0290) 1977; 16
Krastev (10.1016/j.nuclphysb.2024.116537_br0570) 2020; 803
Brown (10.1016/j.nuclphysb.2024.116537_br0750) 2016
Wen (10.1016/j.nuclphysb.2024.116537_br0390) 2014; 74
Schäfer (10.1016/j.nuclphysb.2024.116537_br0690) 2022; 105
Giovannini (10.1016/j.nuclphysb.2024.116537_br0230) 1999; 60
Chen (10.1016/j.nuclphysb.2024.116537_br0300) 1995; 74
Li (10.1016/j.nuclphysb.2024.116537_br0670) 2020; 15
Wen (10.1016/j.nuclphysb.2024.116537_br0380) 2014; 89
Allen (10.1016/j.nuclphysb.2024.116537_br0520) 2012; 85
Will (10.1016/j.nuclphysb.2024.116537_br0430) 2006; 9
Ruder (10.1016/j.nuclphysb.2024.116537_br0820)
10.1016/j.nuclphysb.2024.116537_br0310
Abbott (10.1016/j.nuclphysb.2024.116537_br0120) 1986; 264
Abbott (10.1016/j.nuclphysb.2024.116537_br0060) 2017; 119
Thorne (10.1016/j.nuclphysb.2024.116537_br0170) 1995
Li (10.1016/j.nuclphysb.2024.116537_br0330) 2003; 67
Chatterjee (10.1016/j.nuclphysb.2024.116537_br0640) 2019; 100
Bond (10.1016/j.nuclphysb.2024.116537_br0740) 2016; 19
Li (10.1016/j.nuclphysb.2024.116537_br0400) 2016; 911
Abbott (10.1016/j.nuclphysb.2024.116537_br0440) 2018; 120
Zhang (10.1016/j.nuclphysb.2024.116537_br0700) 2006; 23
Abbott (10.1016/j.nuclphysb.2024.116537_br0070)
Wen (10.1016/j.nuclphysb.2024.116537_br0370) 2019; 949
Adams (10.1016/j.nuclphysb.2024.116537_br0490) 2016; 33
Starobinsky (10.1016/j.nuclphysb.2024.116537_br0130) 1979; 30
Cuoco (10.1016/j.nuclphysb.2024.116537_br0590) 2020; 2
Grishchuk (10.1016/j.nuclphysb.2024.116537_br0190) 2005; 48
Giovannini (10.1016/j.nuclphysb.2024.116537_br0240) 2009; 26
Li (10.1016/j.nuclphysb.2024.116537_br0360) 2013; 22
Favero (10.1016/j.nuclphysb.2024.116537_br0450) 2009; 3
Tong (10.1016/j.nuclphysb.2024.116537_br0200) 2009; 80
Wei (10.1016/j.nuclphysb.2024.116537_br0660) 2020; 800
Abbott (10.1016/j.nuclphysb.2024.116537_br0030) 2016; 116
Abbott (10.1016/j.nuclphysb.2024.116537_br0040) 2016; 116
Dreissigacker (10.1016/j.nuclphysb.2024.116537_br0560) 2019; 100
Miao (10.1016/j.nuclphysb.2024.116537_br0720) 2007; 75
Berceau (10.1016/j.nuclphysb.2024.116537_br0460) 2012; 85
Gabbard (10.1016/j.nuclphysb.2024.116537_br0550) 2018; 120
Giovannini (10.1016/j.nuclphysb.2024.116537_br0250) 2014; 31
George (10.1016/j.nuclphysb.2024.116537_br0540) 2018; 778
Fabbri (10.1016/j.nuclphysb.2024.116537_br0140) 1983; 125
Li (10.1016/j.nuclphysb.2024.116537_br0270) 2020; 80
Acernese (10.1016/j.nuclphysb.2024.116537_br0470) 2014; 32
Huerta (10.1016/j.nuclphysb.2024.116537_br0600) 2021
Boccaletti (10.1016/j.nuclphysb.2024.116537_br0280) 1970; 70
Rubakov (10.1016/j.nuclphysb.2024.116537_br0110) 1982; 115
Gasperini (10.1016/j.nuclphysb.2024.116537_br0210) 2003; 373
George (10.1016/j.nuclphysb.2024.116537_br0610) 2018; 97
Schäfer (10.1016/j.nuclphysb.2024.116537_br0580) 2020; 102
Razzano (10.1016/j.nuclphysb.2024.116537_br0620) 2018; 35
Sachdev (10.1016/j.nuclphysb.2024.116537_br0480)
Nitz (10.1016/j.nuclphysb.2024.116537_br0500) 2018; 98
Abbott (10.1016/j.nuclphysb.2024.116537_br0090) 2021; 915
References_xml – volume: 30
  start-page: 884
  year: 1973
  end-page: 886
  ident: br0420
  article-title: Gravitational-wave observations as a tool for testing relativistic gravity
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 2915
  year: 1977
  end-page: 2927
  ident: br0290
  article-title: Electrogravitational conversion cross sections in static electromagnetic fields
  publication-title: Phys. Rev. D
– start-page: 1
  year: 2021
  end-page: 27
  ident: br0600
  article-title: Advances in machine and deep learning for modeling and real-time detection of multi-messenger sources
  publication-title: Handbook of Gravitational Wave Astronomy
– volume: 56
  start-page: 407
  year: 2008
  end-page: 423
  ident: br0340
  article-title: Perturbative photon fluxes generated by high-frequency gravitational waves and their physical effects
  publication-title: Eur. Phys. J. C
– volume: 89
  year: 2014
  ident: br0380
  article-title: Electromagnetic response produced by interaction of high-frequency gravitational waves from braneworld with galactic-extragalactic magnetic fields
  publication-title: Phys. Rev. D
– volume: 120
  year: 2018
  ident: br0550
  article-title: Matching matched filtering with deep networks for gravitational-wave astronomy
  publication-title: Phys. Rev. Lett.
– volume: 22
  start-page: 1383
  year: 2005
  ident: br0710
  article-title: Relic gravitational waves in the accelerating universe
  publication-title: Class. Quantum Gravity
– volume: 373
  start-page: 1
  year: 2003
  end-page: 212
  ident: br0210
  article-title: The pre-big bang scenario in string cosmology
  publication-title: Phys. Rep.
– volume: 80
  year: 2009
  ident: br0200
  article-title: Relic gravitational waves with a running spectral index and its constraints at high frequencies
  publication-title: Phys. Rev. D
– volume: 26
  year: 2009
  ident: br0240
  article-title: The thermal history of the plasma and high-frequency gravitons
  publication-title: Class. Quantum Gravity
– volume: 8
  start-page: 3308
  year: 1973
  end-page: 3321
  ident: br0410
  article-title: Gravitational-wave observations as a tool for testing relativistic gravity
  publication-title: Phys. Rev. D
– volume: 778
  start-page: 64
  year: 2018
  end-page: 70
  ident: br0540
  article-title: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced ligo data
  publication-title: Phys. Lett. B
– volume: 3
  start-page: 201
  year: 2009
  end-page: 205
  ident: br0450
  article-title: Optomechanics of deformable optical cavities
  publication-title: Nat. Photonics
– volume: 100
  year: 2019
  ident: br0560
  article-title: Deep-learning continuous gravitational waves
  publication-title: Phys. Rev. D
– volume: 119
  year: 2017
  ident: br0060
  article-title: Gw170814: a three-detector observation of gravitational waves from a binary black hole coalescence
  publication-title: Phys. Rev. Lett.
– volume: 15
  year: 2020
  ident: br0670
  article-title: Some optimizations on detecting gravitational wave using convolutional neural network
  publication-title: Front. Phys.
– volume: 97
  year: 2018
  ident: br0610
  article-title: Classification and unsupervised clustering of ligo data with deep transfer learning
  publication-title: Phys. Rev. D
– volume: 30
  start-page: 131
  year: 1979
  end-page: 132
  ident: br0130
  article-title: Relict gravitation radiation spectrum and initial state of the universe
  publication-title: JETP Lett.
– volume: 48
  start-page: 1235
  year: 2005
  end-page: 1247
  ident: br0190
  article-title: Relic gravitational waves and cosmology
  publication-title: Phys. Usp.
– volume: 911
  start-page: 500
  year: 2016
  end-page: 516
  ident: br0400
  article-title: Quasi-b-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes
  publication-title: Nucl. Phys. B
– volume: 98
  year: 2018
  ident: br0500
  article-title: Rapid detection of gravitational waves from compact binary mergers with pycbc live
  publication-title: Phys. Rev. D
– volume: 22
  year: 2013
  ident: br0360
  article-title: High-frequency gravitational waves having large spectral densities and their electromagnetic response
  publication-title: Chin. Phys. B
– volume: 186
  start-page: 382
  year: 1994
  end-page: 386
  ident: br0320
  article-title: The conversion of gravitons into photons in a periodic external electromagnetic field
  publication-title: Phys. Lett. A
– volume: 70
  start-page: 129
  year: 1970
  end-page: 146
  ident: br0280
  article-title: Conversion of photons into gravitons and vice versa in a static electromagnetic field
  publication-title: Il Nuovo Cimento B (1965–1970)
– volume: 115
  start-page: 189
  year: 1982
  end-page: 192
  ident: br0110
  article-title: Graviton creation in the inflationary universe and the grand unification scale
  publication-title: Phys. Lett. B
– volume: 75
  year: 2007
  ident: br0720
  article-title: Analytic spectrum of relic gravitational waves modified by neutrino free streaming and dark energy
  publication-title: Phys. Rev. D
– volume: 101
  year: 2020
  ident: br0650
  article-title: Gravitational-wave signal recognition of ligo data by deep learning
  publication-title: Phys. Rev. D
– volume: 97
  year: 2018
  ident: br0530
  article-title: Deep neural networks to enable real-time multimessenger astrophysics
  publication-title: Phys. Rev. D
– volume: 97
  year: 2018
  ident: br0680
  article-title: Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks
  publication-title: Phys. Rev. D
– volume: 80
  start-page: 1
  year: 2020
  end-page: 24
  ident: br0270
  article-title: Electromagnetic response to high-frequency gravitational waves having additional polarization states: distinguishing and probing tensor-mode, vector-mode and scalar-mode gravitons
  publication-title: Eur. Phys. J. C
– year: 2017
  ident: br0800
  article-title: Adam: a method for stochastic optimization
– volume: 33
  year: 2016
  ident: br0490
  article-title: Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era
  publication-title: Class. Quantum Gravity
– volume: 803
  year: 2020
  ident: br0570
  article-title: Real-time detection of gravitational waves from binary neutron stars using artificial neural networks
  publication-title: Phys. Lett. B
– volume: 16
  start-page: A131
  year: 1999
  ident: br0180
  article-title: Gravitational wave astronomy
  publication-title: Class. Quantum Gravity
– volume: 2016
  year: 2016
  ident: br0260
  article-title: Mhz gravitational waves from short-term anisotropic inflation
  publication-title: J. Cosmol. Astropart. Phys.
– year: 2021
  ident: br0020
  article-title: Virgo
– volume: 116
  year: 2016
  ident: br0040
  article-title: Gw151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence
  publication-title: Phys. Rev. Lett.
– volume: 125
  start-page: 445
  year: 1983
  end-page: 448
  ident: br0140
  article-title: The effect of primordially produced gravitons upon the anisotropy of the cosmological microwave background radiation
  publication-title: Phys. Lett. B
– volume: 120
  year: 2018
  ident: br0440
  article-title: First search for nontensorial gravitational waves from known pulsars
  publication-title: Phys. Rev. Lett.
– volume: 105
  year: 2022
  ident: br0690
  article-title: Training strategies for deep learning gravitational-wave searches
  publication-title: Phys. Rev. D
– volume: 264
  start-page: 487
  year: 1986
  end-page: 492
  ident: br0120
  article-title: Graviton production in inflationary cosmology
  publication-title: Nucl. Phys. B
– volume: 11
  year: 2021
  ident: br0100
  article-title: Gwtc-2: compact binary coalescences observed by ligo and virgo during the first half of the third observing run
  publication-title: Phys. Rev. X
– start-page: 160
  year: 1995
  ident: br0170
  article-title: Particle and nuclear astrophysics and cosmology in the next millenium
  publication-title: Proceedings of the 1994 Snowmass Summer Study Held, vol. 29
– volume: 800
  year: 2020
  ident: br0660
  article-title: Gravitational wave denoising of binary black hole mergers with deep learning
  publication-title: Phys. Lett. B
– volume: 85
  year: 2012
  ident: br0460
  article-title: Magnetic linear birefringence measurements using pulsed fields
  publication-title: Phys. Rev. A
– volume: 97
  year: 2018
  ident: br0630
  article-title: Deep neural networks to enable real-time multimessenger astrophysics
  publication-title: Phys. Rev. D
– year: 2021
  ident: br0010
  article-title: Ligo
– volume: 74
  start-page: 1
  year: 2014
  end-page: 15
  ident: br0390
  article-title: Impulsive cylindrical gravitational wave: one possible radiative form emitted from cosmic strings and corresponding electromagnetic response
  publication-title: Eur. Phys. J. C
– year: 2019
  ident: br0760
  article-title: Deep learning using rectified linear units (relu)
– volume: 60
  year: 1999
  ident: br0230
  article-title: Production and detection of relic gravitons in quintessential inflationary models
  publication-title: Phys. Rev. D
– volume: 35
  year: 2018
  ident: br0620
  article-title: Image-based deep learning for classification of noise transients in gravitational wave detectors
  publication-title: Class. Quantum Gravity
– volume: 102
  year: 2020
  ident: br0580
  article-title: Detection of gravitational-wave signals from binary neutron star mergers using machine learning
  publication-title: Phys. Rev. D
– ident: br0780
– volume: 915
  start-page: L5
  year: 2021
  ident: br0090
  article-title: Observation of gravitational waves from two neutron star–black hole coalescences
  publication-title: Astrophys. J. Lett.
– volume: 74
  start-page: 634
  year: 1995
  end-page: 637
  ident: br0300
  article-title: Resonant photon-graviton conversion and cosmic microwave background fluctuations
  publication-title: Phys. Rev. Lett.
– volume: 31
  year: 2014
  ident: br0250
  article-title: Cosmic backgrounds of relic gravitons and their absolute normalization
  publication-title: Class. Quantum Gravity
– volume: 290
  start-page: 54
  year: 2004
  end-page: 65
  ident: br0220
  article-title: The myth of the beginning of time
  publication-title: Sci. Am.
– volume: 19
  start-page: 1
  year: 2016
  end-page: 217
  ident: br0740
  article-title: Interferometer techniques for gravitational-wave detection
  publication-title: Living Rev. Relativ.
– volume: 23
  start-page: 3783
  year: 2006
  ident: br0700
  article-title: An exact analytic spectrum of relic gravitational waves in an accelerating universe
  publication-title: Class. Quantum Gravity
– volume: 9
  start-page: 3
  year: 2006
  ident: br0430
  article-title: The confrontation between general relativity and experiment
  publication-title: Living Rev. Relativ.
– volume: 116
  year: 2016
  ident: br0030
  article-title: Gw150914: the advanced ligo detectors in the era of first discoveries
  publication-title: Phys. Rev. Lett.
– volume: 949
  year: 2019
  ident: br0370
  article-title: Characteristic electromagnetic waves caused by tensorial and possible nontensorial thermal high-frequency gravitational waves from magnetars
  publication-title: Nucl. Phys. B
– year: 2017
  ident: br0820
  article-title: An overview of gradient descent optimization algorithms
– ident: br0770
– volume: 100
  year: 2019
  ident: br0640
  article-title: Using deep learning to localize gravitational wave sources
  publication-title: Phys. Rev. D
– year: 2021
  ident: br0070
  article-title: Gwtc-3: compact binary coalescences observed by ligo and virgo during the second part of the third observing run
– volume: 85
  year: 2012
  ident: br0520
  article-title: Findchirp: an algorithm for detection of gravitational waves from inspiraling compact binaries
  publication-title: Phys. Rev. D
– volume: 32
  year: 2014
  ident: br0470
  article-title: Advanced virgo: a second-generation interferometric gravitational wave detector
  publication-title: Class. Quantum Gravity
– volume: 67
  year: 2003
  ident: br0330
  article-title: Electromagnetic response of a Gaussian beam to high-frequency relic gravitational waves in quintessential inflationary models
  publication-title: Phys. Rev. D
– volume: 80
  year: 2009
  ident: br0350
  article-title: Signal photon flux and background noise in a coupling electromagnetic detecting system for high-frequency gravitational waves
  publication-title: Phys. Rev. D
– volume: 118
  year: 2017
  ident: br0050
  article-title: Gw170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2
  publication-title: Phys. Rev. Lett.
– year: 2019
  ident: br0480
  article-title: The gstlal search analysis methods for compact binary mergers in advanced ligo's second and advanced virgo's first observing runs
– year: 2021
  ident: br0080
  article-title: Gwtc-2.1: deep extended catalog of compact binary coalescences observed by ligo and virgo during the first half of the third observing run
– start-page: 167
  year: 2001
  end-page: 192
  ident: br0730
  article-title: Relic gravitational waves and their detection
  publication-title: Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space
– year: 2016
  ident: br0750
  article-title: Interactions of light and mirrors: advanced techniques for modelling future gravitational wave detectors
– volume: 17
  year: 2022
  ident: br0810
  article-title: Identify real gravitational wave events in the ligo-virgo catalog gwtc-1 and gwtc-2 with convolutional neural network
  publication-title: Front. Phys.
– volume: 2
  year: 2020
  ident: br0590
  article-title: Enhancing gravitational-wave science with machine learning
  publication-title: Mach. Learn.: Sci. Technol.
– year: 2019
  ident: br0790
  article-title: Adaptive gradient methods with dynamic bound of learning rate
  publication-title: International Conference on Learning Representations
– year: 1987
  ident: br0160
  publication-title: 300 Years of Gravitation
– reference: P. Chen, Stanford linear accelerator center, Report (slac-pub-6666) March 23, 1994, Rome, Italy (1994) 379.
– volume: 86
  year: 2012
  ident: br0510
  article-title: Summed parallel infinite impulse response filters for low-latency detection of chirping gravitational waves
  publication-title: Phys. Rev. D
– volume: 244
  start-page: 541
  year: 1984
  end-page: 548
  ident: br0150
  article-title: Constraints on generalized inflationary cosmologies
  publication-title: Nucl. Phys. B
– volume: 80
  start-page: 1
  year: 2020
  ident: 10.1016/j.nuclphysb.2024.116537_br0270
  article-title: Electromagnetic response to high-frequency gravitational waves having additional polarization states: distinguishing and probing tensor-mode, vector-mode and scalar-mode gravitons
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08429-2
– volume: 70
  start-page: 129
  issue: 2
  year: 1970
  ident: 10.1016/j.nuclphysb.2024.116537_br0280
  article-title: Conversion of photons into gravitons and vice versa in a static electromagnetic field
  publication-title: Il Nuovo Cimento B (1965–1970)
  doi: 10.1007/BF02710177
– volume: 3
  start-page: 201
  issue: 4
  year: 2009
  ident: 10.1016/j.nuclphysb.2024.116537_br0450
  article-title: Optomechanics of deformable optical cavities
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.42
– volume: 89
  year: 2014
  ident: 10.1016/j.nuclphysb.2024.116537_br0380
  article-title: Electromagnetic response produced by interaction of high-frequency gravitational waves from braneworld with galactic-extragalactic magnetic fields
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.104025
– volume: 85
  year: 2012
  ident: 10.1016/j.nuclphysb.2024.116537_br0460
  article-title: Magnetic linear birefringence measurements using pulsed fields
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.013837
– year: 2016
  ident: 10.1016/j.nuclphysb.2024.116537_br0750
– start-page: 167
  year: 2001
  ident: 10.1016/j.nuclphysb.2024.116537_br0730
  article-title: Relic gravitational waves and their detection
– ident: 10.1016/j.nuclphysb.2024.116537_br0800
– volume: 60
  year: 1999
  ident: 10.1016/j.nuclphysb.2024.116537_br0230
  article-title: Production and detection of relic gravitons in quintessential inflationary models
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.123511
– volume: 290
  start-page: 54
  issue: 5
  year: 2004
  ident: 10.1016/j.nuclphysb.2024.116537_br0220
  article-title: The myth of the beginning of time
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0504-54
– volume: 23
  start-page: 3783
  issue: 11
  year: 2006
  ident: 10.1016/j.nuclphysb.2024.116537_br0700
  article-title: An exact analytic spectrum of relic gravitational waves in an accelerating universe
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/23/11/007
– volume: 119
  issue: 14
  year: 2017
  ident: 10.1016/j.nuclphysb.2024.116537_br0060
  article-title: Gw170814: a three-detector observation of gravitational waves from a binary black hole coalescence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.141101
– volume: 31
  issue: 22
  year: 2014
  ident: 10.1016/j.nuclphysb.2024.116537_br0250
  article-title: Cosmic backgrounds of relic gravitons and their absolute normalization
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/31/22/225002
– volume: 120
  year: 2018
  ident: 10.1016/j.nuclphysb.2024.116537_br0550
  article-title: Matching matched filtering with deep networks for gravitational-wave astronomy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.141103
– volume: 105
  year: 2022
  ident: 10.1016/j.nuclphysb.2024.116537_br0690
  article-title: Training strategies for deep learning gravitational-wave searches
  publication-title: Phys. Rev. D
– volume: 244
  start-page: 541
  issue: 2
  year: 1984
  ident: 10.1016/j.nuclphysb.2024.116537_br0150
  article-title: Constraints on generalized inflationary cosmologies
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(84)90329-8
– volume: 778
  start-page: 64
  year: 2018
  ident: 10.1016/j.nuclphysb.2024.116537_br0540
  article-title: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced ligo data
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.12.053
– volume: 48
  start-page: 1235
  issue: 12
  year: 2005
  ident: 10.1016/j.nuclphysb.2024.116537_br0190
  article-title: Relic gravitational waves and cosmology
  publication-title: Phys. Usp.
  doi: 10.1070/PU2005v048n12ABEH005795
– volume: 30
  start-page: 884
  year: 1973
  ident: 10.1016/j.nuclphysb.2024.116537_br0420
  article-title: Gravitational-wave observations as a tool for testing relativistic gravity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.30.884
– volume: 118
  issue: 22
  year: 2017
  ident: 10.1016/j.nuclphysb.2024.116537_br0050
  article-title: Gw170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2
  publication-title: Phys. Rev. Lett.
– volume: 100
  year: 2019
  ident: 10.1016/j.nuclphysb.2024.116537_br0640
  article-title: Using deep learning to localize gravitational wave sources
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.103025
– volume: 26
  issue: 4
  year: 2009
  ident: 10.1016/j.nuclphysb.2024.116537_br0240
  article-title: The thermal history of the plasma and high-frequency gravitons
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/26/4/045004
– volume: 9
  start-page: 3
  year: 2006
  ident: 10.1016/j.nuclphysb.2024.116537_br0430
  article-title: The confrontation between general relativity and experiment
  publication-title: Living Rev. Relativ.
  doi: 10.12942/lrr-2006-3
– volume: 100
  year: 2019
  ident: 10.1016/j.nuclphysb.2024.116537_br0560
  article-title: Deep-learning continuous gravitational waves
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.044009
– volume: 98
  year: 2018
  ident: 10.1016/j.nuclphysb.2024.116537_br0500
  article-title: Rapid detection of gravitational waves from compact binary mergers with pycbc live
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.024050
– volume: 120
  year: 2018
  ident: 10.1016/j.nuclphysb.2024.116537_br0440
  article-title: First search for nontensorial gravitational waves from known pulsars
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.031104
– volume: 16
  start-page: 2915
  year: 1977
  ident: 10.1016/j.nuclphysb.2024.116537_br0290
  article-title: Electrogravitational conversion cross sections in static electromagnetic fields
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.16.2915
– volume: 102
  year: 2020
  ident: 10.1016/j.nuclphysb.2024.116537_br0580
  article-title: Detection of gravitational-wave signals from binary neutron star mergers using machine learning
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.063015
– volume: 11
  issue: 2
  year: 2021
  ident: 10.1016/j.nuclphysb.2024.116537_br0100
  article-title: Gwtc-2: compact binary coalescences observed by ligo and virgo during the first half of the third observing run
  publication-title: Phys. Rev. X
– volume: 67
  year: 2003
  ident: 10.1016/j.nuclphysb.2024.116537_br0330
  article-title: Electromagnetic response of a Gaussian beam to high-frequency relic gravitational waves in quintessential inflationary models
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.67.104008
– volume: 125
  start-page: 445
  issue: 6
  year: 1983
  ident: 10.1016/j.nuclphysb.2024.116537_br0140
  article-title: The effect of primordially produced gravitons upon the anisotropy of the cosmological microwave background radiation
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)91322-9
– ident: 10.1016/j.nuclphysb.2024.116537_br0310
– volume: 22
  issue: 12
  year: 2013
  ident: 10.1016/j.nuclphysb.2024.116537_br0360
  article-title: High-frequency gravitational waves having large spectral densities and their electromagnetic response
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/22/12/120402
– volume: 116
  issue: 24
  year: 2016
  ident: 10.1016/j.nuclphysb.2024.116537_br0040
  article-title: Gw151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.241103
– ident: 10.1016/j.nuclphysb.2024.116537_br0080
– volume: 2016
  issue: 04
  year: 2016
  ident: 10.1016/j.nuclphysb.2024.116537_br0260
  article-title: Mhz gravitational waves from short-term anisotropic inflation
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/04/035
– volume: 97
  year: 2018
  ident: 10.1016/j.nuclphysb.2024.116537_br0610
  article-title: Classification and unsupervised clustering of ligo data with deep transfer learning
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.101501
– volume: 915
  start-page: L5
  issue: 1
  year: 2021
  ident: 10.1016/j.nuclphysb.2024.116537_br0090
  article-title: Observation of gravitational waves from two neutron star–black hole coalescences
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ac082e
– year: 1987
  ident: 10.1016/j.nuclphysb.2024.116537_br0160
– volume: 80
  year: 2009
  ident: 10.1016/j.nuclphysb.2024.116537_br0200
  article-title: Relic gravitational waves with a running spectral index and its constraints at high frequencies
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.084022
– ident: 10.1016/j.nuclphysb.2024.116537_br0480
– volume: 97
  year: 2018
  ident: 10.1016/j.nuclphysb.2024.116537_br0630
  article-title: Deep neural networks to enable real-time multimessenger astrophysics
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.044039
– volume: 33
  issue: 17
  year: 2016
  ident: 10.1016/j.nuclphysb.2024.116537_br0490
  article-title: Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/33/17/175012
– volume: 86
  year: 2012
  ident: 10.1016/j.nuclphysb.2024.116537_br0510
  article-title: Summed parallel infinite impulse response filters for low-latency detection of chirping gravitational waves
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.024012
– volume: 16
  start-page: A131
  issue: 12A
  year: 1999
  ident: 10.1016/j.nuclphysb.2024.116537_br0180
  article-title: Gravitational wave astronomy
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/16/12A/307
– volume: 22
  start-page: 1383
  issue: 7
  year: 2005
  ident: 10.1016/j.nuclphysb.2024.116537_br0710
  article-title: Relic gravitational waves in the accelerating universe
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/22/7/011
– volume: 373
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.nuclphysb.2024.116537_br0210
  article-title: The pre-big bang scenario in string cosmology
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(02)00389-7
– volume: 80
  year: 2009
  ident: 10.1016/j.nuclphysb.2024.116537_br0350
  article-title: Signal photon flux and background noise in a coupling electromagnetic detecting system for high-frequency gravitational waves
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.064013
– volume: 19
  start-page: 1
  year: 2016
  ident: 10.1016/j.nuclphysb.2024.116537_br0740
  article-title: Interferometer techniques for gravitational-wave detection
  publication-title: Living Rev. Relativ.
  doi: 10.1007/s41114-016-0002-8
– ident: 10.1016/j.nuclphysb.2024.116537_br0820
– volume: 101
  year: 2020
  ident: 10.1016/j.nuclphysb.2024.116537_br0650
  article-title: Gravitational-wave signal recognition of ligo data by deep learning
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.104003
– volume: 116
  issue: 13
  year: 2016
  ident: 10.1016/j.nuclphysb.2024.116537_br0030
  article-title: Gw150914: the advanced ligo detectors in the era of first discoveries
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.131103
– volume: 97
  year: 2018
  ident: 10.1016/j.nuclphysb.2024.116537_br0530
  article-title: Deep neural networks to enable real-time multimessenger astrophysics
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.044039
– volume: 15
  issue: 5
  year: 2020
  ident: 10.1016/j.nuclphysb.2024.116537_br0670
  article-title: Some optimizations on detecting gravitational wave using convolutional neural network
  publication-title: Front. Phys.
  doi: 10.1007/s11467-020-0966-4
– ident: 10.1016/j.nuclphysb.2024.116537_br0760
– volume: 186
  start-page: 382
  issue: 5
  year: 1994
  ident: 10.1016/j.nuclphysb.2024.116537_br0320
  article-title: The conversion of gravitons into photons in a periodic external electromagnetic field
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(94)90698-X
– ident: 10.1016/j.nuclphysb.2024.116537_br0070
– volume: 800
  year: 2020
  ident: 10.1016/j.nuclphysb.2024.116537_br0660
  article-title: Gravitational wave denoising of binary black hole mergers with deep learning
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.135081
– volume: 56
  start-page: 407
  year: 2008
  ident: 10.1016/j.nuclphysb.2024.116537_br0340
  article-title: Perturbative photon fluxes generated by high-frequency gravitational waves and their physical effects
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-008-0656-9
– volume: 30
  start-page: 131
  issue: 682–685
  year: 1979
  ident: 10.1016/j.nuclphysb.2024.116537_br0130
  article-title: Relict gravitation radiation spectrum and initial state of the universe
  publication-title: JETP Lett.
– year: 2019
  ident: 10.1016/j.nuclphysb.2024.116537_br0790
  article-title: Adaptive gradient methods with dynamic bound of learning rate
– volume: 2
  issue: 1
  year: 2020
  ident: 10.1016/j.nuclphysb.2024.116537_br0590
  article-title: Enhancing gravitational-wave science with machine learning
  publication-title: Mach. Learn.: Sci. Technol.
– volume: 35
  issue: 9
  year: 2018
  ident: 10.1016/j.nuclphysb.2024.116537_br0620
  article-title: Image-based deep learning for classification of noise transients in gravitational wave detectors
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/aab793
– volume: 115
  start-page: 189
  issue: 3
  year: 1982
  ident: 10.1016/j.nuclphysb.2024.116537_br0110
  article-title: Graviton creation in the inflationary universe and the grand unification scale
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(82)90641-4
– volume: 85
  year: 2012
  ident: 10.1016/j.nuclphysb.2024.116537_br0520
  article-title: Findchirp: an algorithm for detection of gravitational waves from inspiraling compact binaries
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.122006
– volume: 75
  year: 2007
  ident: 10.1016/j.nuclphysb.2024.116537_br0720
  article-title: Analytic spectrum of relic gravitational waves modified by neutrino free streaming and dark energy
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.75.104009
– volume: 74
  start-page: 634
  year: 1995
  ident: 10.1016/j.nuclphysb.2024.116537_br0300
  article-title: Resonant photon-graviton conversion and cosmic microwave background fluctuations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.634
– volume: 911
  start-page: 500
  year: 2016
  ident: 10.1016/j.nuclphysb.2024.116537_br0400
  article-title: Quasi-b-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2016.08.009
– volume: 264
  start-page: 487
  year: 1986
  ident: 10.1016/j.nuclphysb.2024.116537_br0120
  article-title: Graviton production in inflationary cosmology
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90494-3
– volume: 32
  issue: 2
  year: 2014
  ident: 10.1016/j.nuclphysb.2024.116537_br0470
  article-title: Advanced virgo: a second-generation interferometric gravitational wave detector
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/32/2/024001
– volume: 949
  year: 2019
  ident: 10.1016/j.nuclphysb.2024.116537_br0370
  article-title: Characteristic electromagnetic waves caused by tensorial and possible nontensorial thermal high-frequency gravitational waves from magnetars
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2019.114796
– start-page: 160
  year: 1995
  ident: 10.1016/j.nuclphysb.2024.116537_br0170
  article-title: Particle and nuclear astrophysics and cosmology in the next millenium
– volume: 803
  year: 2020
  ident: 10.1016/j.nuclphysb.2024.116537_br0570
  article-title: Real-time detection of gravitational waves from binary neutron stars using artificial neural networks
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135330
– volume: 8
  start-page: 3308
  year: 1973
  ident: 10.1016/j.nuclphysb.2024.116537_br0410
  article-title: Gravitational-wave observations as a tool for testing relativistic gravity
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.8.3308
– volume: 97
  year: 2018
  ident: 10.1016/j.nuclphysb.2024.116537_br0680
  article-title: Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.063001
– volume: 17
  issue: 5
  year: 2022
  ident: 10.1016/j.nuclphysb.2024.116537_br0810
  article-title: Identify real gravitational wave events in the ligo-virgo catalog gwtc-1 and gwtc-2 with convolutional neural network
  publication-title: Front. Phys.
  doi: 10.1007/s11467-021-1150-1
– start-page: 1
  year: 2021
  ident: 10.1016/j.nuclphysb.2024.116537_br0600
  article-title: Advances in machine and deep learning for modeling and real-time detection of multi-messenger sources
– volume: 74
  start-page: 1
  year: 2014
  ident: 10.1016/j.nuclphysb.2024.116537_br0390
  article-title: Impulsive cylindrical gravitational wave: one possible radiative form emitted from cosmic strings and corresponding electromagnetic response
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-014-2998-9
SSID ssj0000638
Score 2.4463174
Snippet The relic gravitational waves (RGWs) originating from the early stages of the universe represent one of the most significant and highly focused targets for...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 116537
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJSQWxKcoX_LAGrDj2EnYAFFVDExU6hbZjoOKSlK1KVX_PXdxUpWpC6tjna3zxX5nPb8j5C5RUhhl8iCB7T9AiB3osFBIpoJ0RHNpvNrnuxqOorexHG-V-kJOmJcH9o57CGURi0TnVgkdMVPo2OiEF2DCSIAajXopS1mXTG324KaGNQP8HYiQiz_MrnJpp3hvYCA9DKN7FKDBMuhb51Ij3791PG0dOYMjcthiRfrk53hM9lx5QvYbzqZdnJIVcgDXtCppW8vmW3-W-CaRzj3x1dFJSa3G6hC0rqB1Ct9Qnzgo5p5BvaZYfqiV6YahVvrHLSjezdKyasjtFQYonWEC3L3YPCOjwevHyzBo6ygEFraPOlCp5QUXUcG4ybnMdR4XkolYp8amSss0MpEKc8bzSFhMli1zuIYhA29z6cQ56cGg7oLQ2DHoD5CQA3AxMjJhbDVXibNpDP-b7hPWeTGbebmMrOORfWUbx2fo-Mw7vk-e0dub7qh33TRAFGRtFGS7oqBPHru1ylro4CEBmJrsmsHlf8zgihygSc-FvCa9er50N4BXanPbhOYveg7pqw
  priority: 102
  providerName: Directory of Open Access Journals
Title Study on electromagnetic response in cavity to relic high-frequency gravitational waves with nontensorial polarizations
URI https://dx.doi.org/10.1016/j.nuclphysb.2024.116537
https://doaj.org/article/25f738adc63a40bfa7ba81fb26b55755
Volume 1002
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgCIkL4inGY8qBa1nTNmnLbZuYBkhcAGm3KknTaQjaaQ8QF347dh9onDhwbOq2keM6dvT5M8BlJIWvpU6dCN2_QyG2o7xMEpgK0xHFha7YPh_k6Dm4G4vxBgyaWhiCVda-v_LppbeuR7q1Nruz6bT76GJw7XucGOWoWQH5YaoqpSK-cX_NG5fdrEnYIelfGK98ZV7pBEFjougFV0RFQw3R13aoksh_baNa23yGe7BbR42sV01sHzZsfgDbJXrTLA7hg9CAn6zIWd3V5k1NcqpOZPMKAmvZNGdGUZ8Itixw9BXvEVOxk80rLPUno0ZENWE3fupDvdsFo1NalhclzL0gU2UzSoWb2s0jeB7ePA1GTt1RwTHoSJaOjA3PuB9kLtcpF6lKwwyVGKpYm1gqEQc6kF7q8jTwDaXNxrW0mp6bqZAL6x9DCz9qT4CF1kV5DA45hjBaBNoLjeIysiYO8c9TbXAbLSazijgjaRBlL8mP4hNSfFIpvg190vaPODFflwPFfJLUS594Igv9SKVG-ipwNc5Lq4hnaFJaYOgp2nDdrFXyy5DwVdO_ZnD6n4fPYIeuKjTkObSW85W9wIhlqTuwefXFO7DVu70fPXTKvL9Tmuk3lTvvFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCMGCeIry9MAaGiexk7DRClSgdKFI3SzbcVBRSapQqPrvucsDtRMDq32OrfPlfGd9_o6Qq0hwXwudOBG4fwdDbEd5qUAwFaQjinFdsX0ORO81eBzx0RrpNm9hEFZZ-_7Kp5feum5p19psT8fj9osLwbXvMWSUw2IF4Ic3YC6BBPoPo86SOy7LWaO0g-IrIK_sy0zwCkFDpugF18hFgxXRl46oksl_6aRaOn3ud8lOHTbS22ple2TNZvtks4Rvms8DMkc44ILmGa3L2nyotwyfJ9KiwsBaOs6oUVgogs5yaJ1AH1IVO2lRgakXFCsR1YzdMNVcfdtPite0NMtLnHuOtkqnmAs3jzcPyev93bDbc-qSCo4BTzJzRGxYyvwgdZlOGE9UEqagxVDF2sRC8TjQgfASlyWBbzBvNq7F7fTcVIWMW_-IrMOk9pjQ0LogD9EhgxhG80B7oVFMRNbEIfx6qkXcRotyWjFnyAZS9i5_FS9R8bJSfIt0UNu_4kh9XTbkxZus9156PA39SCVG-CpwNaxLq4ilYFOaQ-zJW-Sm2Su5YknwqfFfKzj5z-BLstUbPvdl_2HwdEq2saeCRp6R9VnxZc8hfJnpi9I8fwDzWu64
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+electromagnetic+response+in+cavity+to+relic+high-frequency+gravitational+waves+with+nontensorial+polarizations&rft.jtitle=Nuclear+physics.+B&rft.au=Zhang%2C+Minghui&rft.au=Wen%2C+Hao&rft.date=2024-05-01&rft.issn=0550-3213&rft.volume=1002&rft.spage=116537&rft_id=info:doi/10.1016%2Fj.nuclphysb.2024.116537&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nuclphysb_2024_116537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0550-3213&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0550-3213&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0550-3213&client=summon