Study on electromagnetic response in cavity to relic high-frequency gravitational waves with nontensorial polarizations
The relic gravitational waves (RGWs) originating from the early stages of the universe represent one of the most significant and highly focused targets for future gravitational wave (GW) detections, due to that these waves contain crucial information about the evolution of the cosmos and serve as ke...
Saved in:
Published in | Nuclear physics. B Vol. 1002; p. 116537 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2024
Elsevier |
Online Access | Get full text |
ISSN | 0550-3213 1873-1562 |
DOI | 10.1016/j.nuclphysb.2024.116537 |
Cover
Abstract | The relic gravitational waves (RGWs) originating from the early stages of the universe represent one of the most significant and highly focused targets for future gravitational wave (GW) detections, due to that these waves contain crucial information about the evolution of the cosmos and serve as key evidence for various cosmological models such as the big bang. RGWs cover exceptionally broad frequency bands encompassing the gigahertz (GHz) range (109 Hz), and the schemes based on electromagnetic (EM) response to GWs have been long and widely studied for such GHz band. Differently to previous works, we work out analytical and numerical forms of EM signals (with acquired novel characteristics and distinctive behaviors) caused by relic high-frequency GWs (RHFGWs) in simulated resonant cavity. By joint application of constructed effective and targeted deep learning neural networks, we successfully identify these EM signals amidst noise, and for the first time distinguish the different oscillating factors in focused model of RGW; also, we estimate typical parameters of corresponding RHFGWs and associated cosmological models, and establish a new scheme to explore the possible extra polarizations of RHFGWs in resonant cavity. In brief, we obtain new connections between the distinctive features of caused EM signals in cavity and corresponding parameters of cosmological models and RGWs; the results and methods would not only contribute to current theoretical investigation but also could provide valuable insights and preparation for potential experiments aimed at detecting such RHFGWs in the future, or may placing constraints on relevant GW parameters and theories of gravity. |
---|---|
AbstractList | The relic gravitational waves (RGWs) originating from the early stages of the universe represent one of the most significant and highly focused targets for future gravitational wave (GW) detections, due to that these waves contain crucial information about the evolution of the cosmos and serve as key evidence for various cosmological models such as the big bang. RGWs cover exceptionally broad frequency bands encompassing the gigahertz (GHz) range (109 Hz), and the schemes based on electromagnetic (EM) response to GWs have been long and widely studied for such GHz band. Differently to previous works, we work out analytical and numerical forms of EM signals (with acquired novel characteristics and distinctive behaviors) caused by relic high-frequency GWs (RHFGWs) in simulated resonant cavity. By joint application of constructed effective and targeted deep learning neural networks, we successfully identify these EM signals amidst noise, and for the first time distinguish the different oscillating factors in focused model of RGW; also, we estimate typical parameters of corresponding RHFGWs and associated cosmological models, and establish a new scheme to explore the possible extra polarizations of RHFGWs in resonant cavity. In brief, we obtain new connections between the distinctive features of caused EM signals in cavity and corresponding parameters of cosmological models and RGWs; the results and methods would not only contribute to current theoretical investigation but also could provide valuable insights and preparation for potential experiments aimed at detecting such RHFGWs in the future, or may placing constraints on relevant GW parameters and theories of gravity. |
ArticleNumber | 116537 |
Author | Wen, Hao Zhang, Minghui |
Author_xml | – sequence: 1 givenname: Minghui surname: Zhang fullname: Zhang, Minghui – sequence: 2 givenname: Hao orcidid: 0000-0003-4087-6456 surname: Wen fullname: Wen, Hao email: wenhao@cqu.edu.cn |
BookMark | eNqFkd1uGyEQhVGUSHXSPEN5gXVhWWD3Mor6EylSL9peo1mYtbE24AC2tX364rjKbblBOjPzac6cW3IdYkBCPnG25oyrz7t1ONh5v13yuG5Z2605V1LoK7LivRYNl6q9JismJWtEy8UHcpvzjtWnRL8ip5_l4BYaA8UZbUnxBTYBi7c0Yd7HkJH6QC0cfVloiVWda23rN9tmSvh6wGAXuknnOhQfA8z0BEfM9OTLltZVC4Yck6_6Ps6Q_J-3tvyR3EwwZ7z_99-R31-__Hr83jz_-Pb0-PDcWKFVadRg-cRFNzE-Oi4dOD1JJjQMox0UyKEbO9U6xl0n7MB0Zxn21X7LJtBcorgjTxeui7Az--RfIC0mgjdvQkwbA6nandG0ctKiB2eVgI6NFTBCz6exVaOUWsrK0heWTTHnhNM7jzNzzsLszHsW5pyFuWRRJx8uk1itHj0mk62vp0PnU7163cX_l_EXnjacYQ |
Cites_doi | 10.1140/epjc/s10052-020-08429-2 10.1007/BF02710177 10.1038/nphoton.2009.42 10.1103/PhysRevD.89.104025 10.1103/PhysRevA.85.013837 10.1103/PhysRevD.60.123511 10.1038/scientificamerican0504-54 10.1088/0264-9381/23/11/007 10.1103/PhysRevLett.119.141101 10.1088/0264-9381/31/22/225002 10.1103/PhysRevLett.120.141103 10.1016/0550-3213(84)90329-8 10.1016/j.physletb.2017.12.053 10.1070/PU2005v048n12ABEH005795 10.1103/PhysRevLett.30.884 10.1103/PhysRevD.100.103025 10.1088/0264-9381/26/4/045004 10.12942/lrr-2006-3 10.1103/PhysRevD.100.044009 10.1103/PhysRevD.98.024050 10.1103/PhysRevLett.120.031104 10.1103/PhysRevD.16.2915 10.1103/PhysRevD.102.063015 10.1103/PhysRevD.67.104008 10.1016/0370-2693(83)91322-9 10.1088/1674-1056/22/12/120402 10.1103/PhysRevLett.116.241103 10.1088/1475-7516/2016/04/035 10.1103/PhysRevD.97.101501 10.3847/2041-8213/ac082e 10.1103/PhysRevD.80.084022 10.1103/PhysRevD.97.044039 10.1088/0264-9381/33/17/175012 10.1103/PhysRevD.86.024012 10.1088/0264-9381/16/12A/307 10.1088/0264-9381/22/7/011 10.1016/S0370-1573(02)00389-7 10.1103/PhysRevD.80.064013 10.1007/s41114-016-0002-8 10.1103/PhysRevD.101.104003 10.1103/PhysRevLett.116.131103 10.1007/s11467-020-0966-4 10.1016/0375-9601(94)90698-X 10.1016/j.physletb.2019.135081 10.1140/epjc/s10052-008-0656-9 10.1088/1361-6382/aab793 10.1016/0370-2693(82)90641-4 10.1103/PhysRevD.85.122006 10.1103/PhysRevD.75.104009 10.1103/PhysRevLett.74.634 10.1016/j.nuclphysb.2016.08.009 10.1016/0550-3213(86)90494-3 10.1088/0264-9381/32/2/024001 10.1016/j.nuclphysb.2019.114796 10.1016/j.physletb.2020.135330 10.1103/PhysRevD.8.3308 10.1103/PhysRevD.97.063001 10.1007/s11467-021-1150-1 10.1140/epjc/s10052-014-2998-9 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.nuclphysb.2024.116537 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-1562 |
ExternalDocumentID | oai_doaj_org_article_25f738adc63a40bfa7ba81fb26b55755 10_1016_j_nuclphysb_2024_116537 S0550321324001032 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 6I. 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACKIV ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFKWA AFMIJ AFTJW AGHFR AGUBO AGYEJ AHHHB AIBLX AIEXJ AIGVJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 ER. FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HME HVGLF HZ~ IHE IPNFZ IXB J1W KOM KQ8 LZ4 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SHN SPC SPCBC SPD SSQ SSW SSZ T5K TN5 WH7 WUQ XJT XPP YYP ~G- AAFWJ AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPKN AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c376t-69c1f134f01bd15dad7f5037a9bc96a594b462d01d43c9074c0e865320fa715e3 |
IEDL.DBID | IXB |
ISSN | 0550-3213 |
IngestDate | Wed Aug 27 01:25:09 EDT 2025 Tue Jul 01 01:00:26 EDT 2025 Sat May 04 15:44:34 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-69c1f134f01bd15dad7f5037a9bc96a594b462d01d43c9074c0e865320fa715e3 |
ORCID | 0000-0003-4087-6456 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0550321324001032 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25f738adc63a40bfa7ba81fb26b55755 crossref_primary_10_1016_j_nuclphysb_2024_116537 elsevier_sciencedirect_doi_10_1016_j_nuclphysb_2024_116537 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Nuclear physics. B |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Schutz (br0180) 1999; 16 Adams, Buskulic, Germain, Guidi, Marion, Montani, Mours, Piergiovanni, Wang (br0490) 2016; 33 George, Huerta (br0530) 2018; 97 Long, Van Soa, Tuan (br0320) 1994; 186 Thorne (br0170) 1995 Wei, Huerta (br0660) 2020; 800 Abbott, Wise (br0150) 1984; 244 Abbott, Harari (br0120) 1986; 264 Gabbard, Williams, Hayes, Messenger (br0550) 2018; 120 George, Huerta (br0630) 2018; 97 Starobinsky (br0130) 1979; 30 Giovannini (br0230) 1999; 60 Scientific, Abbott, Abbott, Abbott, Acernese, Ackley, Adams, Adams, Addesso, Adhikari (br0050) 2017; 118 Abbott (br0440) 2018; 120 Li, Baker, Fang, Stephenson, Chen (br0340) 2008; 56 br0780 Hooper, Chung, Luan, Blair, Chen, Wen (br0510) 2012; 86 Li, Wen, Fang, Li, Zhang (br0270) 2020; 80 Rubakov, Sazhin, Veryaskin (br0110) 1982; 115 Miao, Zhang (br0720) 2007; 75 Krastev (br0570) 2020; 803 Abbott, Abbott, Abbott, Abernathy, Acernese, Ackley, Adams, Adams, Addesso, Adhikari (br0040) 2016; 116 Li, Yu, Fan, Babu (br0670) 2020; 15 Grishchuk (br0190) 2005; 48 (br0020) 2021 Bond, Brown, Freise, Strain (br0740) 2016; 19 Ito, Soda (br0260) 2016; 2016 Abbott, Abbott, Abbott, Abernathy, Acernese, Ackley, Adams, Adams, Addesso, Adhikari (br0030) 2016; 116 Li, Wen, Fang (br0360) 2013; 22 Eardley, Lee, Lightman (br0410) 1973; 8 Agarap (br0760) 2019 Boccaletti, De Sabbata, Fortini, Gualdi (br0280) 1970; 70 Li, Yang, Fang, Baker, Stephenson, Wen (br0350) 2009; 80 Acernese, Agathos, Agatsuma, Aisa (br0470) 2014; 32 Wen, Li, Fang (br0380) 2014; 89 Schäfer, Zelenka, Nitz, Ohme, Brügmann (br0690) 2022; 105 Zhang, Yuan, Zhao, Chen (br0710) 2005; 22 Abbott, Abbott, Abraham, Acernese, Ackley, Adams, Adams, Adhikari, Adya, Affeldt (br0100) 2021; 11 Grishchuk (br0730) 2001 Abbott, Abbott, Acernese, Ackley, Adams, Adhikari, Adhikari, Adya, Affeldt, Agarwal (br0070) 2021 Abbott, Abbott, Acernese, Ackley, Adams, Adhikari, Adhikari, Adya, Affeldt, Agarwal (br0080) 2021 Zhang, Er, Xia, Zhao, Miao (br0700) 2006; 23 Tong, Zhang (br0200) 2009; 80 Fabbri, Pollock (br0140) 1983; 125 Sachdev, Caudill, Fong (br0480) 2019 Wang, Wu, Cao, Liu, Zhu (br0650) 2020; 101 Will (br0430) 2006; 9 Abbott, Abbott, Abbott, Acernese, Ackley, Adams, Adams, Addesso, Adhikari, Adya (br0060) 2017; 119 P. Chen, Stanford linear accelerator center, Report (slac-pub-6666) March 23, 1994, Rome, Italy (1994) 379. Razzano, Cuoco (br0620) 2018; 35 Abbott, Abbott, Abraham, Acernese, Ackley, Adams, Adams, Adhikari, Adya, Affeldt (br0090) 2021; 915 Huerta, Zhao (br0600) 2021 Nitz, Dal Canton, Davis, Reyes (br0500) 2018; 98 George, Huerta (br0540) 2018; 778 Luo, Xiong, Liu (br0790) 2019 De Logi, Mickelson (br0290) 1977; 16 Chen (br0300) 1995; 74 Li, Tang, Shi (br0330) 2003; 67 (br0160) 1987 Giovannini (br0240) 2009; 26 Chatterjee, Wen, Vinsen, Kovalam, Datta (br0640) 2019; 100 Jiang, Yang, Li (br0810) 2022; 17 Gasperini, Veneziano (br0210) 2003; 373 Favero, Karrai (br0450) 2009; 3 George, Shen, Huerta (br0610) 2018; 97 Dreissigacker, Sharma, Messenger, Zhao, Prix (br0560) 2019; 100 br0770 Wen, Li, Li, Fang (br0370) 2019; 949 (br0010) 2021 Eardley, Lee, Lightman, Wagoner, Will (br0420) 1973; 30 Giovannini (br0250) 2014; 31 Schäfer, Ohme, Nitz (br0580) 2020; 102 Veneziano (br0220) 2004; 290 Brown (br0750) 2016 Berceau, Fouché, Battesti, Rizzo (br0460) 2012; 85 Kingma, Ba (br0800) 2017 Allen, Anderson, Brady, Brown, Creighton (br0520) 2012; 85 Cuoco, Powell, Cavaglià, Ackley, Bejger, Chatterjee, Coughlin, Coughlin, Easter, Essick, Gabbard, Gebhard, Ghosh, Haegel, Iess, Keitel, Márka, Márka, Morawski, Nguyen, Ormiston, Pürrer, Razzano, Staats, Vajente, Williams (br0590) 2020; 2 González, Guzmán (br0680) 2018; 97 Li, Wen, Fang, Wei, Wang, Zhang (br0400) 2016; 911 Ruder (br0820) 2017 Wen, Li, Fang, Beckwith (br0390) 2014; 74 Wang (10.1016/j.nuclphysb.2024.116537_br0650) 2020; 101 Veneziano (10.1016/j.nuclphysb.2024.116537_br0220) 2004; 290 Abbott (10.1016/j.nuclphysb.2024.116537_br0150) 1984; 244 Abbott (10.1016/j.nuclphysb.2024.116537_br0080) Luo (10.1016/j.nuclphysb.2024.116537_br0790) 2019 Ito (10.1016/j.nuclphysb.2024.116537_br0260) 2016; 2016 Eardley (10.1016/j.nuclphysb.2024.116537_br0420) 1973; 30 Li (10.1016/j.nuclphysb.2024.116537_br0350) 2009; 80 Grishchuk (10.1016/j.nuclphysb.2024.116537_br0730) 2001 Kingma (10.1016/j.nuclphysb.2024.116537_br0800) Schutz (10.1016/j.nuclphysb.2024.116537_br0180) 1999; 16 Hooper (10.1016/j.nuclphysb.2024.116537_br0510) 2012; 86 George (10.1016/j.nuclphysb.2024.116537_br0630) 2018; 97 Eardley (10.1016/j.nuclphysb.2024.116537_br0410) 1973; 8 González (10.1016/j.nuclphysb.2024.116537_br0680) 2018; 97 Li (10.1016/j.nuclphysb.2024.116537_br0340) 2008; 56 Zhang (10.1016/j.nuclphysb.2024.116537_br0710) 2005; 22 George (10.1016/j.nuclphysb.2024.116537_br0530) 2018; 97 Long (10.1016/j.nuclphysb.2024.116537_br0320) 1994; 186 Agarap (10.1016/j.nuclphysb.2024.116537_br0760) Scientific (10.1016/j.nuclphysb.2024.116537_br0050) 2017; 118 (10.1016/j.nuclphysb.2024.116537_br0160) 1987 Jiang (10.1016/j.nuclphysb.2024.116537_br0810) 2022; 17 Abbott (10.1016/j.nuclphysb.2024.116537_br0100) 2021; 11 De Logi (10.1016/j.nuclphysb.2024.116537_br0290) 1977; 16 Krastev (10.1016/j.nuclphysb.2024.116537_br0570) 2020; 803 Brown (10.1016/j.nuclphysb.2024.116537_br0750) 2016 Wen (10.1016/j.nuclphysb.2024.116537_br0390) 2014; 74 Schäfer (10.1016/j.nuclphysb.2024.116537_br0690) 2022; 105 Giovannini (10.1016/j.nuclphysb.2024.116537_br0230) 1999; 60 Chen (10.1016/j.nuclphysb.2024.116537_br0300) 1995; 74 Li (10.1016/j.nuclphysb.2024.116537_br0670) 2020; 15 Wen (10.1016/j.nuclphysb.2024.116537_br0380) 2014; 89 Allen (10.1016/j.nuclphysb.2024.116537_br0520) 2012; 85 Will (10.1016/j.nuclphysb.2024.116537_br0430) 2006; 9 Ruder (10.1016/j.nuclphysb.2024.116537_br0820) 10.1016/j.nuclphysb.2024.116537_br0310 Abbott (10.1016/j.nuclphysb.2024.116537_br0120) 1986; 264 Abbott (10.1016/j.nuclphysb.2024.116537_br0060) 2017; 119 Thorne (10.1016/j.nuclphysb.2024.116537_br0170) 1995 Li (10.1016/j.nuclphysb.2024.116537_br0330) 2003; 67 Chatterjee (10.1016/j.nuclphysb.2024.116537_br0640) 2019; 100 Bond (10.1016/j.nuclphysb.2024.116537_br0740) 2016; 19 Li (10.1016/j.nuclphysb.2024.116537_br0400) 2016; 911 Abbott (10.1016/j.nuclphysb.2024.116537_br0440) 2018; 120 Zhang (10.1016/j.nuclphysb.2024.116537_br0700) 2006; 23 Abbott (10.1016/j.nuclphysb.2024.116537_br0070) Wen (10.1016/j.nuclphysb.2024.116537_br0370) 2019; 949 Adams (10.1016/j.nuclphysb.2024.116537_br0490) 2016; 33 Starobinsky (10.1016/j.nuclphysb.2024.116537_br0130) 1979; 30 Cuoco (10.1016/j.nuclphysb.2024.116537_br0590) 2020; 2 Grishchuk (10.1016/j.nuclphysb.2024.116537_br0190) 2005; 48 Giovannini (10.1016/j.nuclphysb.2024.116537_br0240) 2009; 26 Li (10.1016/j.nuclphysb.2024.116537_br0360) 2013; 22 Favero (10.1016/j.nuclphysb.2024.116537_br0450) 2009; 3 Tong (10.1016/j.nuclphysb.2024.116537_br0200) 2009; 80 Wei (10.1016/j.nuclphysb.2024.116537_br0660) 2020; 800 Abbott (10.1016/j.nuclphysb.2024.116537_br0030) 2016; 116 Abbott (10.1016/j.nuclphysb.2024.116537_br0040) 2016; 116 Dreissigacker (10.1016/j.nuclphysb.2024.116537_br0560) 2019; 100 Miao (10.1016/j.nuclphysb.2024.116537_br0720) 2007; 75 Berceau (10.1016/j.nuclphysb.2024.116537_br0460) 2012; 85 Gabbard (10.1016/j.nuclphysb.2024.116537_br0550) 2018; 120 Giovannini (10.1016/j.nuclphysb.2024.116537_br0250) 2014; 31 George (10.1016/j.nuclphysb.2024.116537_br0540) 2018; 778 Fabbri (10.1016/j.nuclphysb.2024.116537_br0140) 1983; 125 Li (10.1016/j.nuclphysb.2024.116537_br0270) 2020; 80 Acernese (10.1016/j.nuclphysb.2024.116537_br0470) 2014; 32 Huerta (10.1016/j.nuclphysb.2024.116537_br0600) 2021 Boccaletti (10.1016/j.nuclphysb.2024.116537_br0280) 1970; 70 Rubakov (10.1016/j.nuclphysb.2024.116537_br0110) 1982; 115 Gasperini (10.1016/j.nuclphysb.2024.116537_br0210) 2003; 373 George (10.1016/j.nuclphysb.2024.116537_br0610) 2018; 97 Schäfer (10.1016/j.nuclphysb.2024.116537_br0580) 2020; 102 Razzano (10.1016/j.nuclphysb.2024.116537_br0620) 2018; 35 Sachdev (10.1016/j.nuclphysb.2024.116537_br0480) Nitz (10.1016/j.nuclphysb.2024.116537_br0500) 2018; 98 Abbott (10.1016/j.nuclphysb.2024.116537_br0090) 2021; 915 |
References_xml | – volume: 30 start-page: 884 year: 1973 end-page: 886 ident: br0420 article-title: Gravitational-wave observations as a tool for testing relativistic gravity publication-title: Phys. Rev. Lett. – volume: 16 start-page: 2915 year: 1977 end-page: 2927 ident: br0290 article-title: Electrogravitational conversion cross sections in static electromagnetic fields publication-title: Phys. Rev. D – start-page: 1 year: 2021 end-page: 27 ident: br0600 article-title: Advances in machine and deep learning for modeling and real-time detection of multi-messenger sources publication-title: Handbook of Gravitational Wave Astronomy – volume: 56 start-page: 407 year: 2008 end-page: 423 ident: br0340 article-title: Perturbative photon fluxes generated by high-frequency gravitational waves and their physical effects publication-title: Eur. Phys. J. C – volume: 89 year: 2014 ident: br0380 article-title: Electromagnetic response produced by interaction of high-frequency gravitational waves from braneworld with galactic-extragalactic magnetic fields publication-title: Phys. Rev. D – volume: 120 year: 2018 ident: br0550 article-title: Matching matched filtering with deep networks for gravitational-wave astronomy publication-title: Phys. Rev. Lett. – volume: 22 start-page: 1383 year: 2005 ident: br0710 article-title: Relic gravitational waves in the accelerating universe publication-title: Class. Quantum Gravity – volume: 373 start-page: 1 year: 2003 end-page: 212 ident: br0210 article-title: The pre-big bang scenario in string cosmology publication-title: Phys. Rep. – volume: 80 year: 2009 ident: br0200 article-title: Relic gravitational waves with a running spectral index and its constraints at high frequencies publication-title: Phys. Rev. D – volume: 26 year: 2009 ident: br0240 article-title: The thermal history of the plasma and high-frequency gravitons publication-title: Class. Quantum Gravity – volume: 8 start-page: 3308 year: 1973 end-page: 3321 ident: br0410 article-title: Gravitational-wave observations as a tool for testing relativistic gravity publication-title: Phys. Rev. D – volume: 778 start-page: 64 year: 2018 end-page: 70 ident: br0540 article-title: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced ligo data publication-title: Phys. Lett. B – volume: 3 start-page: 201 year: 2009 end-page: 205 ident: br0450 article-title: Optomechanics of deformable optical cavities publication-title: Nat. Photonics – volume: 100 year: 2019 ident: br0560 article-title: Deep-learning continuous gravitational waves publication-title: Phys. Rev. D – volume: 119 year: 2017 ident: br0060 article-title: Gw170814: a three-detector observation of gravitational waves from a binary black hole coalescence publication-title: Phys. Rev. Lett. – volume: 15 year: 2020 ident: br0670 article-title: Some optimizations on detecting gravitational wave using convolutional neural network publication-title: Front. Phys. – volume: 97 year: 2018 ident: br0610 article-title: Classification and unsupervised clustering of ligo data with deep transfer learning publication-title: Phys. Rev. D – volume: 30 start-page: 131 year: 1979 end-page: 132 ident: br0130 article-title: Relict gravitation radiation spectrum and initial state of the universe publication-title: JETP Lett. – volume: 48 start-page: 1235 year: 2005 end-page: 1247 ident: br0190 article-title: Relic gravitational waves and cosmology publication-title: Phys. Usp. – volume: 911 start-page: 500 year: 2016 end-page: 516 ident: br0400 article-title: Quasi-b-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes publication-title: Nucl. Phys. B – volume: 98 year: 2018 ident: br0500 article-title: Rapid detection of gravitational waves from compact binary mergers with pycbc live publication-title: Phys. Rev. D – volume: 22 year: 2013 ident: br0360 article-title: High-frequency gravitational waves having large spectral densities and their electromagnetic response publication-title: Chin. Phys. B – volume: 186 start-page: 382 year: 1994 end-page: 386 ident: br0320 article-title: The conversion of gravitons into photons in a periodic external electromagnetic field publication-title: Phys. Lett. A – volume: 70 start-page: 129 year: 1970 end-page: 146 ident: br0280 article-title: Conversion of photons into gravitons and vice versa in a static electromagnetic field publication-title: Il Nuovo Cimento B (1965–1970) – volume: 115 start-page: 189 year: 1982 end-page: 192 ident: br0110 article-title: Graviton creation in the inflationary universe and the grand unification scale publication-title: Phys. Lett. B – volume: 75 year: 2007 ident: br0720 article-title: Analytic spectrum of relic gravitational waves modified by neutrino free streaming and dark energy publication-title: Phys. Rev. D – volume: 101 year: 2020 ident: br0650 article-title: Gravitational-wave signal recognition of ligo data by deep learning publication-title: Phys. Rev. D – volume: 97 year: 2018 ident: br0530 article-title: Deep neural networks to enable real-time multimessenger astrophysics publication-title: Phys. Rev. D – volume: 97 year: 2018 ident: br0680 article-title: Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks publication-title: Phys. Rev. D – volume: 80 start-page: 1 year: 2020 end-page: 24 ident: br0270 article-title: Electromagnetic response to high-frequency gravitational waves having additional polarization states: distinguishing and probing tensor-mode, vector-mode and scalar-mode gravitons publication-title: Eur. Phys. J. C – year: 2017 ident: br0800 article-title: Adam: a method for stochastic optimization – volume: 33 year: 2016 ident: br0490 article-title: Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era publication-title: Class. Quantum Gravity – volume: 803 year: 2020 ident: br0570 article-title: Real-time detection of gravitational waves from binary neutron stars using artificial neural networks publication-title: Phys. Lett. B – volume: 16 start-page: A131 year: 1999 ident: br0180 article-title: Gravitational wave astronomy publication-title: Class. Quantum Gravity – volume: 2016 year: 2016 ident: br0260 article-title: Mhz gravitational waves from short-term anisotropic inflation publication-title: J. Cosmol. Astropart. Phys. – year: 2021 ident: br0020 article-title: Virgo – volume: 116 year: 2016 ident: br0040 article-title: Gw151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence publication-title: Phys. Rev. Lett. – volume: 125 start-page: 445 year: 1983 end-page: 448 ident: br0140 article-title: The effect of primordially produced gravitons upon the anisotropy of the cosmological microwave background radiation publication-title: Phys. Lett. B – volume: 120 year: 2018 ident: br0440 article-title: First search for nontensorial gravitational waves from known pulsars publication-title: Phys. Rev. Lett. – volume: 105 year: 2022 ident: br0690 article-title: Training strategies for deep learning gravitational-wave searches publication-title: Phys. Rev. D – volume: 264 start-page: 487 year: 1986 end-page: 492 ident: br0120 article-title: Graviton production in inflationary cosmology publication-title: Nucl. Phys. B – volume: 11 year: 2021 ident: br0100 article-title: Gwtc-2: compact binary coalescences observed by ligo and virgo during the first half of the third observing run publication-title: Phys. Rev. X – start-page: 160 year: 1995 ident: br0170 article-title: Particle and nuclear astrophysics and cosmology in the next millenium publication-title: Proceedings of the 1994 Snowmass Summer Study Held, vol. 29 – volume: 800 year: 2020 ident: br0660 article-title: Gravitational wave denoising of binary black hole mergers with deep learning publication-title: Phys. Lett. B – volume: 85 year: 2012 ident: br0460 article-title: Magnetic linear birefringence measurements using pulsed fields publication-title: Phys. Rev. A – volume: 97 year: 2018 ident: br0630 article-title: Deep neural networks to enable real-time multimessenger astrophysics publication-title: Phys. Rev. D – year: 2021 ident: br0010 article-title: Ligo – volume: 74 start-page: 1 year: 2014 end-page: 15 ident: br0390 article-title: Impulsive cylindrical gravitational wave: one possible radiative form emitted from cosmic strings and corresponding electromagnetic response publication-title: Eur. Phys. J. C – year: 2019 ident: br0760 article-title: Deep learning using rectified linear units (relu) – volume: 60 year: 1999 ident: br0230 article-title: Production and detection of relic gravitons in quintessential inflationary models publication-title: Phys. Rev. D – volume: 35 year: 2018 ident: br0620 article-title: Image-based deep learning for classification of noise transients in gravitational wave detectors publication-title: Class. Quantum Gravity – volume: 102 year: 2020 ident: br0580 article-title: Detection of gravitational-wave signals from binary neutron star mergers using machine learning publication-title: Phys. Rev. D – ident: br0780 – volume: 915 start-page: L5 year: 2021 ident: br0090 article-title: Observation of gravitational waves from two neutron star–black hole coalescences publication-title: Astrophys. J. Lett. – volume: 74 start-page: 634 year: 1995 end-page: 637 ident: br0300 article-title: Resonant photon-graviton conversion and cosmic microwave background fluctuations publication-title: Phys. Rev. Lett. – volume: 31 year: 2014 ident: br0250 article-title: Cosmic backgrounds of relic gravitons and their absolute normalization publication-title: Class. Quantum Gravity – volume: 290 start-page: 54 year: 2004 end-page: 65 ident: br0220 article-title: The myth of the beginning of time publication-title: Sci. Am. – volume: 19 start-page: 1 year: 2016 end-page: 217 ident: br0740 article-title: Interferometer techniques for gravitational-wave detection publication-title: Living Rev. Relativ. – volume: 23 start-page: 3783 year: 2006 ident: br0700 article-title: An exact analytic spectrum of relic gravitational waves in an accelerating universe publication-title: Class. Quantum Gravity – volume: 9 start-page: 3 year: 2006 ident: br0430 article-title: The confrontation between general relativity and experiment publication-title: Living Rev. Relativ. – volume: 116 year: 2016 ident: br0030 article-title: Gw150914: the advanced ligo detectors in the era of first discoveries publication-title: Phys. Rev. Lett. – volume: 949 year: 2019 ident: br0370 article-title: Characteristic electromagnetic waves caused by tensorial and possible nontensorial thermal high-frequency gravitational waves from magnetars publication-title: Nucl. Phys. B – year: 2017 ident: br0820 article-title: An overview of gradient descent optimization algorithms – ident: br0770 – volume: 100 year: 2019 ident: br0640 article-title: Using deep learning to localize gravitational wave sources publication-title: Phys. Rev. D – year: 2021 ident: br0070 article-title: Gwtc-3: compact binary coalescences observed by ligo and virgo during the second part of the third observing run – volume: 85 year: 2012 ident: br0520 article-title: Findchirp: an algorithm for detection of gravitational waves from inspiraling compact binaries publication-title: Phys. Rev. D – volume: 32 year: 2014 ident: br0470 article-title: Advanced virgo: a second-generation interferometric gravitational wave detector publication-title: Class. Quantum Gravity – volume: 67 year: 2003 ident: br0330 article-title: Electromagnetic response of a Gaussian beam to high-frequency relic gravitational waves in quintessential inflationary models publication-title: Phys. Rev. D – volume: 80 year: 2009 ident: br0350 article-title: Signal photon flux and background noise in a coupling electromagnetic detecting system for high-frequency gravitational waves publication-title: Phys. Rev. D – volume: 118 year: 2017 ident: br0050 article-title: Gw170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2 publication-title: Phys. Rev. Lett. – year: 2019 ident: br0480 article-title: The gstlal search analysis methods for compact binary mergers in advanced ligo's second and advanced virgo's first observing runs – year: 2021 ident: br0080 article-title: Gwtc-2.1: deep extended catalog of compact binary coalescences observed by ligo and virgo during the first half of the third observing run – start-page: 167 year: 2001 end-page: 192 ident: br0730 article-title: Relic gravitational waves and their detection publication-title: Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space – year: 2016 ident: br0750 article-title: Interactions of light and mirrors: advanced techniques for modelling future gravitational wave detectors – volume: 17 year: 2022 ident: br0810 article-title: Identify real gravitational wave events in the ligo-virgo catalog gwtc-1 and gwtc-2 with convolutional neural network publication-title: Front. Phys. – volume: 2 year: 2020 ident: br0590 article-title: Enhancing gravitational-wave science with machine learning publication-title: Mach. Learn.: Sci. Technol. – year: 2019 ident: br0790 article-title: Adaptive gradient methods with dynamic bound of learning rate publication-title: International Conference on Learning Representations – year: 1987 ident: br0160 publication-title: 300 Years of Gravitation – reference: P. Chen, Stanford linear accelerator center, Report (slac-pub-6666) March 23, 1994, Rome, Italy (1994) 379. – volume: 86 year: 2012 ident: br0510 article-title: Summed parallel infinite impulse response filters for low-latency detection of chirping gravitational waves publication-title: Phys. Rev. D – volume: 244 start-page: 541 year: 1984 end-page: 548 ident: br0150 article-title: Constraints on generalized inflationary cosmologies publication-title: Nucl. Phys. B – volume: 80 start-page: 1 year: 2020 ident: 10.1016/j.nuclphysb.2024.116537_br0270 article-title: Electromagnetic response to high-frequency gravitational waves having additional polarization states: distinguishing and probing tensor-mode, vector-mode and scalar-mode gravitons publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08429-2 – volume: 70 start-page: 129 issue: 2 year: 1970 ident: 10.1016/j.nuclphysb.2024.116537_br0280 article-title: Conversion of photons into gravitons and vice versa in a static electromagnetic field publication-title: Il Nuovo Cimento B (1965–1970) doi: 10.1007/BF02710177 – volume: 3 start-page: 201 issue: 4 year: 2009 ident: 10.1016/j.nuclphysb.2024.116537_br0450 article-title: Optomechanics of deformable optical cavities publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.42 – volume: 89 year: 2014 ident: 10.1016/j.nuclphysb.2024.116537_br0380 article-title: Electromagnetic response produced by interaction of high-frequency gravitational waves from braneworld with galactic-extragalactic magnetic fields publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.104025 – volume: 85 year: 2012 ident: 10.1016/j.nuclphysb.2024.116537_br0460 article-title: Magnetic linear birefringence measurements using pulsed fields publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.013837 – year: 2016 ident: 10.1016/j.nuclphysb.2024.116537_br0750 – start-page: 167 year: 2001 ident: 10.1016/j.nuclphysb.2024.116537_br0730 article-title: Relic gravitational waves and their detection – ident: 10.1016/j.nuclphysb.2024.116537_br0800 – volume: 60 year: 1999 ident: 10.1016/j.nuclphysb.2024.116537_br0230 article-title: Production and detection of relic gravitons in quintessential inflationary models publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.123511 – volume: 290 start-page: 54 issue: 5 year: 2004 ident: 10.1016/j.nuclphysb.2024.116537_br0220 article-title: The myth of the beginning of time publication-title: Sci. Am. doi: 10.1038/scientificamerican0504-54 – volume: 23 start-page: 3783 issue: 11 year: 2006 ident: 10.1016/j.nuclphysb.2024.116537_br0700 article-title: An exact analytic spectrum of relic gravitational waves in an accelerating universe publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/23/11/007 – volume: 119 issue: 14 year: 2017 ident: 10.1016/j.nuclphysb.2024.116537_br0060 article-title: Gw170814: a three-detector observation of gravitational waves from a binary black hole coalescence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.141101 – volume: 31 issue: 22 year: 2014 ident: 10.1016/j.nuclphysb.2024.116537_br0250 article-title: Cosmic backgrounds of relic gravitons and their absolute normalization publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/31/22/225002 – volume: 120 year: 2018 ident: 10.1016/j.nuclphysb.2024.116537_br0550 article-title: Matching matched filtering with deep networks for gravitational-wave astronomy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.141103 – volume: 105 year: 2022 ident: 10.1016/j.nuclphysb.2024.116537_br0690 article-title: Training strategies for deep learning gravitational-wave searches publication-title: Phys. Rev. D – volume: 244 start-page: 541 issue: 2 year: 1984 ident: 10.1016/j.nuclphysb.2024.116537_br0150 article-title: Constraints on generalized inflationary cosmologies publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(84)90329-8 – volume: 778 start-page: 64 year: 2018 ident: 10.1016/j.nuclphysb.2024.116537_br0540 article-title: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced ligo data publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.12.053 – volume: 48 start-page: 1235 issue: 12 year: 2005 ident: 10.1016/j.nuclphysb.2024.116537_br0190 article-title: Relic gravitational waves and cosmology publication-title: Phys. Usp. doi: 10.1070/PU2005v048n12ABEH005795 – volume: 30 start-page: 884 year: 1973 ident: 10.1016/j.nuclphysb.2024.116537_br0420 article-title: Gravitational-wave observations as a tool for testing relativistic gravity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.30.884 – volume: 118 issue: 22 year: 2017 ident: 10.1016/j.nuclphysb.2024.116537_br0050 article-title: Gw170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2 publication-title: Phys. Rev. Lett. – volume: 100 year: 2019 ident: 10.1016/j.nuclphysb.2024.116537_br0640 article-title: Using deep learning to localize gravitational wave sources publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.103025 – volume: 26 issue: 4 year: 2009 ident: 10.1016/j.nuclphysb.2024.116537_br0240 article-title: The thermal history of the plasma and high-frequency gravitons publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/26/4/045004 – volume: 9 start-page: 3 year: 2006 ident: 10.1016/j.nuclphysb.2024.116537_br0430 article-title: The confrontation between general relativity and experiment publication-title: Living Rev. Relativ. doi: 10.12942/lrr-2006-3 – volume: 100 year: 2019 ident: 10.1016/j.nuclphysb.2024.116537_br0560 article-title: Deep-learning continuous gravitational waves publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.044009 – volume: 98 year: 2018 ident: 10.1016/j.nuclphysb.2024.116537_br0500 article-title: Rapid detection of gravitational waves from compact binary mergers with pycbc live publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.024050 – volume: 120 year: 2018 ident: 10.1016/j.nuclphysb.2024.116537_br0440 article-title: First search for nontensorial gravitational waves from known pulsars publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.031104 – volume: 16 start-page: 2915 year: 1977 ident: 10.1016/j.nuclphysb.2024.116537_br0290 article-title: Electrogravitational conversion cross sections in static electromagnetic fields publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.16.2915 – volume: 102 year: 2020 ident: 10.1016/j.nuclphysb.2024.116537_br0580 article-title: Detection of gravitational-wave signals from binary neutron star mergers using machine learning publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.063015 – volume: 11 issue: 2 year: 2021 ident: 10.1016/j.nuclphysb.2024.116537_br0100 article-title: Gwtc-2: compact binary coalescences observed by ligo and virgo during the first half of the third observing run publication-title: Phys. Rev. X – volume: 67 year: 2003 ident: 10.1016/j.nuclphysb.2024.116537_br0330 article-title: Electromagnetic response of a Gaussian beam to high-frequency relic gravitational waves in quintessential inflationary models publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.67.104008 – volume: 125 start-page: 445 issue: 6 year: 1983 ident: 10.1016/j.nuclphysb.2024.116537_br0140 article-title: The effect of primordially produced gravitons upon the anisotropy of the cosmological microwave background radiation publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)91322-9 – ident: 10.1016/j.nuclphysb.2024.116537_br0310 – volume: 22 issue: 12 year: 2013 ident: 10.1016/j.nuclphysb.2024.116537_br0360 article-title: High-frequency gravitational waves having large spectral densities and their electromagnetic response publication-title: Chin. Phys. B doi: 10.1088/1674-1056/22/12/120402 – volume: 116 issue: 24 year: 2016 ident: 10.1016/j.nuclphysb.2024.116537_br0040 article-title: Gw151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.241103 – ident: 10.1016/j.nuclphysb.2024.116537_br0080 – volume: 2016 issue: 04 year: 2016 ident: 10.1016/j.nuclphysb.2024.116537_br0260 article-title: Mhz gravitational waves from short-term anisotropic inflation publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/04/035 – volume: 97 year: 2018 ident: 10.1016/j.nuclphysb.2024.116537_br0610 article-title: Classification and unsupervised clustering of ligo data with deep transfer learning publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.101501 – volume: 915 start-page: L5 issue: 1 year: 2021 ident: 10.1016/j.nuclphysb.2024.116537_br0090 article-title: Observation of gravitational waves from two neutron star–black hole coalescences publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ac082e – year: 1987 ident: 10.1016/j.nuclphysb.2024.116537_br0160 – volume: 80 year: 2009 ident: 10.1016/j.nuclphysb.2024.116537_br0200 article-title: Relic gravitational waves with a running spectral index and its constraints at high frequencies publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.084022 – ident: 10.1016/j.nuclphysb.2024.116537_br0480 – volume: 97 year: 2018 ident: 10.1016/j.nuclphysb.2024.116537_br0630 article-title: Deep neural networks to enable real-time multimessenger astrophysics publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.044039 – volume: 33 issue: 17 year: 2016 ident: 10.1016/j.nuclphysb.2024.116537_br0490 article-title: Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/33/17/175012 – volume: 86 year: 2012 ident: 10.1016/j.nuclphysb.2024.116537_br0510 article-title: Summed parallel infinite impulse response filters for low-latency detection of chirping gravitational waves publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.024012 – volume: 16 start-page: A131 issue: 12A year: 1999 ident: 10.1016/j.nuclphysb.2024.116537_br0180 article-title: Gravitational wave astronomy publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/16/12A/307 – volume: 22 start-page: 1383 issue: 7 year: 2005 ident: 10.1016/j.nuclphysb.2024.116537_br0710 article-title: Relic gravitational waves in the accelerating universe publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/22/7/011 – volume: 373 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.nuclphysb.2024.116537_br0210 article-title: The pre-big bang scenario in string cosmology publication-title: Phys. Rep. doi: 10.1016/S0370-1573(02)00389-7 – volume: 80 year: 2009 ident: 10.1016/j.nuclphysb.2024.116537_br0350 article-title: Signal photon flux and background noise in a coupling electromagnetic detecting system for high-frequency gravitational waves publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.064013 – volume: 19 start-page: 1 year: 2016 ident: 10.1016/j.nuclphysb.2024.116537_br0740 article-title: Interferometer techniques for gravitational-wave detection publication-title: Living Rev. Relativ. doi: 10.1007/s41114-016-0002-8 – ident: 10.1016/j.nuclphysb.2024.116537_br0820 – volume: 101 year: 2020 ident: 10.1016/j.nuclphysb.2024.116537_br0650 article-title: Gravitational-wave signal recognition of ligo data by deep learning publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.104003 – volume: 116 issue: 13 year: 2016 ident: 10.1016/j.nuclphysb.2024.116537_br0030 article-title: Gw150914: the advanced ligo detectors in the era of first discoveries publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.131103 – volume: 97 year: 2018 ident: 10.1016/j.nuclphysb.2024.116537_br0530 article-title: Deep neural networks to enable real-time multimessenger astrophysics publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.044039 – volume: 15 issue: 5 year: 2020 ident: 10.1016/j.nuclphysb.2024.116537_br0670 article-title: Some optimizations on detecting gravitational wave using convolutional neural network publication-title: Front. Phys. doi: 10.1007/s11467-020-0966-4 – ident: 10.1016/j.nuclphysb.2024.116537_br0760 – volume: 186 start-page: 382 issue: 5 year: 1994 ident: 10.1016/j.nuclphysb.2024.116537_br0320 article-title: The conversion of gravitons into photons in a periodic external electromagnetic field publication-title: Phys. Lett. A doi: 10.1016/0375-9601(94)90698-X – ident: 10.1016/j.nuclphysb.2024.116537_br0070 – volume: 800 year: 2020 ident: 10.1016/j.nuclphysb.2024.116537_br0660 article-title: Gravitational wave denoising of binary black hole mergers with deep learning publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.135081 – volume: 56 start-page: 407 year: 2008 ident: 10.1016/j.nuclphysb.2024.116537_br0340 article-title: Perturbative photon fluxes generated by high-frequency gravitational waves and their physical effects publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-008-0656-9 – volume: 30 start-page: 131 issue: 682–685 year: 1979 ident: 10.1016/j.nuclphysb.2024.116537_br0130 article-title: Relict gravitation radiation spectrum and initial state of the universe publication-title: JETP Lett. – year: 2019 ident: 10.1016/j.nuclphysb.2024.116537_br0790 article-title: Adaptive gradient methods with dynamic bound of learning rate – volume: 2 issue: 1 year: 2020 ident: 10.1016/j.nuclphysb.2024.116537_br0590 article-title: Enhancing gravitational-wave science with machine learning publication-title: Mach. Learn.: Sci. Technol. – volume: 35 issue: 9 year: 2018 ident: 10.1016/j.nuclphysb.2024.116537_br0620 article-title: Image-based deep learning for classification of noise transients in gravitational wave detectors publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/aab793 – volume: 115 start-page: 189 issue: 3 year: 1982 ident: 10.1016/j.nuclphysb.2024.116537_br0110 article-title: Graviton creation in the inflationary universe and the grand unification scale publication-title: Phys. Lett. B doi: 10.1016/0370-2693(82)90641-4 – volume: 85 year: 2012 ident: 10.1016/j.nuclphysb.2024.116537_br0520 article-title: Findchirp: an algorithm for detection of gravitational waves from inspiraling compact binaries publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.122006 – volume: 75 year: 2007 ident: 10.1016/j.nuclphysb.2024.116537_br0720 article-title: Analytic spectrum of relic gravitational waves modified by neutrino free streaming and dark energy publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.75.104009 – volume: 74 start-page: 634 year: 1995 ident: 10.1016/j.nuclphysb.2024.116537_br0300 article-title: Resonant photon-graviton conversion and cosmic microwave background fluctuations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.634 – volume: 911 start-page: 500 year: 2016 ident: 10.1016/j.nuclphysb.2024.116537_br0400 article-title: Quasi-b-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2016.08.009 – volume: 264 start-page: 487 year: 1986 ident: 10.1016/j.nuclphysb.2024.116537_br0120 article-title: Graviton production in inflationary cosmology publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90494-3 – volume: 32 issue: 2 year: 2014 ident: 10.1016/j.nuclphysb.2024.116537_br0470 article-title: Advanced virgo: a second-generation interferometric gravitational wave detector publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/32/2/024001 – volume: 949 year: 2019 ident: 10.1016/j.nuclphysb.2024.116537_br0370 article-title: Characteristic electromagnetic waves caused by tensorial and possible nontensorial thermal high-frequency gravitational waves from magnetars publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2019.114796 – start-page: 160 year: 1995 ident: 10.1016/j.nuclphysb.2024.116537_br0170 article-title: Particle and nuclear astrophysics and cosmology in the next millenium – volume: 803 year: 2020 ident: 10.1016/j.nuclphysb.2024.116537_br0570 article-title: Real-time detection of gravitational waves from binary neutron stars using artificial neural networks publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135330 – volume: 8 start-page: 3308 year: 1973 ident: 10.1016/j.nuclphysb.2024.116537_br0410 article-title: Gravitational-wave observations as a tool for testing relativistic gravity publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.8.3308 – volume: 97 year: 2018 ident: 10.1016/j.nuclphysb.2024.116537_br0680 article-title: Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.063001 – volume: 17 issue: 5 year: 2022 ident: 10.1016/j.nuclphysb.2024.116537_br0810 article-title: Identify real gravitational wave events in the ligo-virgo catalog gwtc-1 and gwtc-2 with convolutional neural network publication-title: Front. Phys. doi: 10.1007/s11467-021-1150-1 – start-page: 1 year: 2021 ident: 10.1016/j.nuclphysb.2024.116537_br0600 article-title: Advances in machine and deep learning for modeling and real-time detection of multi-messenger sources – volume: 74 start-page: 1 year: 2014 ident: 10.1016/j.nuclphysb.2024.116537_br0390 article-title: Impulsive cylindrical gravitational wave: one possible radiative form emitted from cosmic strings and corresponding electromagnetic response publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-014-2998-9 |
SSID | ssj0000638 |
Score | 2.4463174 |
Snippet | The relic gravitational waves (RGWs) originating from the early stages of the universe represent one of the most significant and highly focused targets for... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 116537 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJSQWxKcoX_LAGrDj2EnYAFFVDExU6hbZjoOKSlK1KVX_PXdxUpWpC6tjna3zxX5nPb8j5C5RUhhl8iCB7T9AiB3osFBIpoJ0RHNpvNrnuxqOorexHG-V-kJOmJcH9o57CGURi0TnVgkdMVPo2OiEF2DCSIAajXopS1mXTG324KaGNQP8HYiQiz_MrnJpp3hvYCA9DKN7FKDBMuhb51Ij3791PG0dOYMjcthiRfrk53hM9lx5QvYbzqZdnJIVcgDXtCppW8vmW3-W-CaRzj3x1dFJSa3G6hC0rqB1Ct9Qnzgo5p5BvaZYfqiV6YahVvrHLSjezdKyasjtFQYonWEC3L3YPCOjwevHyzBo6ygEFraPOlCp5QUXUcG4ybnMdR4XkolYp8amSss0MpEKc8bzSFhMli1zuIYhA29z6cQ56cGg7oLQ2DHoD5CQA3AxMjJhbDVXibNpDP-b7hPWeTGbebmMrOORfWUbx2fo-Mw7vk-e0dub7qh33TRAFGRtFGS7oqBPHru1ylro4CEBmJrsmsHlf8zgihygSc-FvCa9er50N4BXanPbhOYveg7pqw priority: 102 providerName: Directory of Open Access Journals |
Title | Study on electromagnetic response in cavity to relic high-frequency gravitational waves with nontensorial polarizations |
URI | https://dx.doi.org/10.1016/j.nuclphysb.2024.116537 https://doaj.org/article/25f738adc63a40bfa7ba81fb26b55755 |
Volume | 1002 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgCIkL4inGY8qBa1nTNmnLbZuYBkhcAGm3KknTaQjaaQ8QF347dh9onDhwbOq2keM6dvT5M8BlJIWvpU6dCN2_QyG2o7xMEpgK0xHFha7YPh_k6Dm4G4vxBgyaWhiCVda-v_LppbeuR7q1Nruz6bT76GJw7XucGOWoWQH5YaoqpSK-cX_NG5fdrEnYIelfGK98ZV7pBEFjougFV0RFQw3R13aoksh_baNa23yGe7BbR42sV01sHzZsfgDbJXrTLA7hg9CAn6zIWd3V5k1NcqpOZPMKAmvZNGdGUZ8Itixw9BXvEVOxk80rLPUno0ZENWE3fupDvdsFo1NalhclzL0gU2UzSoWb2s0jeB7ePA1GTt1RwTHoSJaOjA3PuB9kLtcpF6lKwwyVGKpYm1gqEQc6kF7q8jTwDaXNxrW0mp6bqZAL6x9DCz9qT4CF1kV5DA45hjBaBNoLjeIysiYO8c9TbXAbLSazijgjaRBlL8mP4hNSfFIpvg190vaPODFflwPFfJLUS594Igv9SKVG-ipwNc5Lq4hnaFJaYOgp2nDdrFXyy5DwVdO_ZnD6n4fPYIeuKjTkObSW85W9wIhlqTuwefXFO7DVu70fPXTKvL9Tmuk3lTvvFQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCMGCeIry9MAaGiexk7DRClSgdKFI3SzbcVBRSapQqPrvucsDtRMDq32OrfPlfGd9_o6Qq0hwXwudOBG4fwdDbEd5qUAwFaQjinFdsX0ORO81eBzx0RrpNm9hEFZZ-_7Kp5feum5p19psT8fj9osLwbXvMWSUw2IF4Ic3YC6BBPoPo86SOy7LWaO0g-IrIK_sy0zwCkFDpugF18hFgxXRl46oksl_6aRaOn3ud8lOHTbS22ple2TNZvtks4Rvms8DMkc44ILmGa3L2nyotwyfJ9KiwsBaOs6oUVgogs5yaJ1AH1IVO2lRgakXFCsR1YzdMNVcfdtPite0NMtLnHuOtkqnmAs3jzcPyev93bDbc-qSCo4BTzJzRGxYyvwgdZlOGE9UEqagxVDF2sRC8TjQgfASlyWBbzBvNq7F7fTcVIWMW_-IrMOk9pjQ0LogD9EhgxhG80B7oVFMRNbEIfx6qkXcRotyWjFnyAZS9i5_FS9R8bJSfIt0UNu_4kh9XTbkxZus9156PA39SCVG-CpwNaxLq4ilYFOaQ-zJW-Sm2Su5YknwqfFfKzj5z-BLstUbPvdl_2HwdEq2saeCRp6R9VnxZc8hfJnpi9I8fwDzWu64 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+electromagnetic+response+in+cavity+to+relic+high-frequency+gravitational+waves+with+nontensorial+polarizations&rft.jtitle=Nuclear+physics.+B&rft.au=Zhang%2C+Minghui&rft.au=Wen%2C+Hao&rft.date=2024-05-01&rft.issn=0550-3213&rft.volume=1002&rft.spage=116537&rft_id=info:doi/10.1016%2Fj.nuclphysb.2024.116537&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nuclphysb_2024_116537 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0550-3213&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0550-3213&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0550-3213&client=summon |