Gait Event Detection in Controlled and Real-Life Situations: Repeated Measures From Healthy Subjects

A benchmark and time-effective computational method is needed to assess human gait events in real-life walking situations using few sensors to be easily reproducible. This paper fosters a reliable gait event detection system that can operate at diverse gait speeds and on diverse real-life terrains b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 10; pp. 1945 - 1956
Main Authors Figueiredo, Joana, Felix, Paulo, Costa, Luis, Moreno, Juan C., Santos, Cristina P.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A benchmark and time-effective computational method is needed to assess human gait events in real-life walking situations using few sensors to be easily reproducible. This paper fosters a reliable gait event detection system that can operate at diverse gait speeds and on diverse real-life terrains by detecting several gait events in real time. This detection only relies on the foot angular velocity measured by a wearable gyroscope mounted in the foot to facilitate its integration for daily and repeated use. To operate as a benchmark tool, the proposed detection system endows an adaptive computational method by applying a finite-state machine based on heuristic decision rules dependent on adaptive thresholds. Repeated measurements from 11 healthy subjects (28.27 ± 4.17 years) were acquired in controlled situations through a treadmill at different speeds (from 1.5 to 4.5 km/h) and slopes (from 0% to 10%). This validation also includes heterogeneous gait patterns from nine healthy subjects (27 ± 7.35 years) monitored at three self-selected paces (from 1 ± 0.2 to 2 ± 0.18 m/s) during forward walking on flat, rough, and inclined surfaces and climbing staircases. The proposed method was significantly more accurate (p > 0.9925) and time effective (c 30.53 ± 9.88 ms, p > 0.9314) in a benchmarking analysis with a state-of-the-art method during 5657 steps. Heel strike was the gait event most accurately detected under controlled (accuracy of 100%) and real-life situations (accuracy > 96.98%). Misdetection was more pronounced in middle mid swing (accuracy > 90.12%). The lower computational load, together with an improved performance, makes this detection system suitable for quantitative benchmarking in the locomotor rehabilitation field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2018.2868094