ANN-Based Pattern Recognition for Induction Motor Broken Rotor Bar Monitoring under Supply Frequency Regulation

The requisite of direct-on-line (DOL) starting for various applications in underground mines subjects the rotor bars of heavy-duty squirrel cage induction motors (SCIMs) to severe stresses, resulting in sustained fault in the rotor bars, unlike the applications where mostly reduced voltage starting...

Full description

Saved in:
Bibliographic Details
Published inMachines (Basel) Vol. 9; no. 5; p. 87
Main Authors Sinha, Ashish Kumar, Hati, Ananda Shankar, Benbouzid, Mohamed, Chakrabarti, Prasun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The requisite of direct-on-line (DOL) starting for various applications in underground mines subjects the rotor bars of heavy-duty squirrel cage induction motors (SCIMs) to severe stresses, resulting in sustained fault in the rotor bars, unlike the applications where mostly reduced voltage starting is preferred. Furthermore, SCIMs working in underground mines are also affected by unforeseen frequency fluctuations. Hence, the paper proposes a discrete wavelet transform (DWT)-based broken rotor bar detection scheme using the stator current analysis of SCIM when subjected to a frequency regulation (±4% of 50 Hz supply) in steady-state, as prevalent in underground mines. In this regard, the level-seven detailed coefficient obtained by the DWT-based multi-resolution analysis of stator current corresponding to the healthy rotor is compared with that of the faulty rotor to extract the necessary features to identify the fault. Further implementation of the proposed scheme is done using artificial neural network (ANN)-based pattern recognition techniques, wherein both feed-forward backdrops and cascaded forward backdrop type ANNs have been used for fault pinpointing based on the feature extraction results obtained from DWT. The scheme is developed and analysed in MATLAB/Simulink using 5.5 kW, 415 V, 50 Hz SCIM, which is further validated using the LabVIEW-based real-time implementation.
AbstractList The requisite of direct-on-line (DOL) starting for various applications in underground mines subjects the rotor bars of heavy-duty squirrel cage induction motors (SCIMs) to severe stresses, resulting in sustained fault in the rotor bars, unlike the applications where mostly reduced voltage starting is preferred. Furthermore, SCIMs working in underground mines are also affected by unforeseen frequency fluctuations. Hence, the paper proposes a discrete wavelet transform (DWT)-based broken rotor bar detection scheme using the stator current analysis of SCIM when subjected to a frequency regulation (±4% of 50 Hz supply) in steady-state, as prevalent in underground mines. In this regard, the level-seven detailed coefficient obtained by the DWT-based multi-resolution analysis of stator current corresponding to the healthy rotor is compared with that of the faulty rotor to extract the necessary features to identify the fault. Further implementation of the proposed scheme is done using artificial neural network (ANN)-based pattern recognition techniques, wherein both feed-forward backdrops and cascaded forward backdrop type ANNs have been used for fault pinpointing based on the feature extraction results obtained from DWT. The scheme is developed and analysed in MATLAB/Simulink using 5.5 kW, 415 V, 50 Hz SCIM, which is further validated using the LabVIEW-based real-time implementation.
Author Chakrabarti, Prasun
Benbouzid, Mohamed
Hati, Ananda Shankar
Sinha, Ashish Kumar
Author_xml – sequence: 1
  givenname: Ashish Kumar
  surname: Sinha
  fullname: Sinha, Ashish Kumar
– sequence: 2
  givenname: Ananda Shankar
  orcidid: 0000-0003-1414-3398
  surname: Hati
  fullname: Hati, Ananda Shankar
– sequence: 3
  givenname: Mohamed
  orcidid: 0000-0002-4844-508X
  surname: Benbouzid
  fullname: Benbouzid, Mohamed
– sequence: 4
  givenname: Prasun
  surname: Chakrabarti
  fullname: Chakrabarti, Prasun
BookMark eNp1UctOwzAQtFCRgNIz10icQx3biZMjIAqVeInH2drYTnAJdnGcQ_8etwEJIbEX76xnRrPaIzSxzmqETjJ8RmmF5x8g34zVfYVzjEu-hw4J5nmacUwmv_oDNOv7FY5VZbRk5SFy5_f36QX0WiWPEIL2NnnS0rXWBONs0jifLK0a5A7duRDxhXfvOtJGAD6OI9t5Y9tksEr75HlYr7tNsvD6c9BWbqJlO3Sw9ThG-w10vZ59v1P0urh6ubxJbx-ul5fnt6mkvAhpQWLCTGcVyxljhOUZUxgySXjRsKJUpKG4IjmD-EeAFyXkDJeKqgqitFZ0ipajr3KwEmtvPsBvhAMjdgPnWwE-GNlpQUhd1xKTqpHAGG_KuuCME1zUVHNKm-h1OnqtvYsL9UGs3OBtjC9ITgllmNAisvKRJb3re68bIU3Y7Rw8mE5kWGxPJf6cKurmf3Q_af9TfAEL7ZkY
CitedBy_id crossref_primary_10_1016_j_iswa_2022_200167
crossref_primary_10_3390_electronics13163195
crossref_primary_10_3390_machines11080827
crossref_primary_10_46632_jeae_1_1_5
crossref_primary_10_46632_jacp_1_1_4
crossref_primary_10_46632_jeae_1_1_3
crossref_primary_10_3390_machines10090757
crossref_primary_10_46632_jacp_1_1_5
crossref_primary_10_46632_jeae_1_1_4
crossref_primary_10_46632_jeae_1_1_1
crossref_primary_10_46632_jeae_1_1_2
crossref_primary_10_46632_jacp_1_1_1
crossref_primary_10_46632_daai_2_3_1
crossref_primary_10_46632_jacp_1_1_2
crossref_primary_10_46632_jacp_1_1_3
crossref_primary_10_3390_machines9100236
crossref_primary_10_46632_jemm_9_2_2
crossref_primary_10_3390_app13020945
crossref_primary_10_3390_machines11100966
crossref_primary_10_3390_machines9110250
Cites_doi 10.3390/machines8030035
10.1109/TIA.2008.921432
10.1016/j.isatra.2020.10.052
10.1108/COMPEL-11-2016-0515
10.1007/s00521-020-05033-z
10.1109/ICCONS.2018.8662833
10.1109/TIA.2013.2297448
10.1109/TEC.2004.842394
10.1109/TIE.2014.2355816
10.5772/813
10.1109/TIE.2006.888786
10.1049/PBPO056E
10.1109/TIA.2010.2090839
10.9734/PSIJ/2014/4837
10.1109/TIA.2013.2285958
10.1049/elp2.12005
10.1109/TIM.2016.2540941
10.1109/DEMPED.2005.4662547
10.1109/28.658729
10.1109/TEC.2005.847955
10.1007/978-3-319-94463-0
10.1142/S0218001420590430
10.1016/j.ymssp.2014.06.015
10.1155/2011/620689
10.4314/jfas.v3i1.11
10.1109/TII.2012.2198659
10.1016/j.measurement.2020.108671
10.1049/PBPO153E
10.1007/s00170-020-05449-w
10.1109/TII.2015.2462315
10.1109/TIA.2015.2427271
10.1007/978-981-15-4775-1_12
10.1109/28.952499
10.1109/TEC.2015.2454440
10.1109/TIA.2012.2210173
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/machines9050087
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-1702
ExternalDocumentID oai_doaj_org_article_22bbbc029fca447f8b6747206b3e733f
10_3390_machines9050087
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c376t-620911e194544424514d0a1c276f468d2f309254a4242a768a5408d3d9a620bd3
IEDL.DBID DOA
ISSN 2075-1702
IngestDate Wed Aug 27 01:30:24 EDT 2025
Fri Jul 25 11:49:38 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Tue Jul 01 02:17:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-620911e194544424514d0a1c276f468d2f309254a4242a768a5408d3d9a620bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4844-508X
0000-0003-1414-3398
OpenAccessLink https://doaj.org/article/22bbbc029fca447f8b6747206b3e733f
PQID 2532340236
PQPubID 2032370
ParticipantIDs doaj_primary_oai_doaj_org_article_22bbbc029fca447f8b6747206b3e733f
proquest_journals_2532340236
crossref_citationtrail_10_3390_machines9050087
crossref_primary_10_3390_machines9050087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machines (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Douglas (ref_10) 2005; 20
Lee (ref_21) 2015; 62
Kumar (ref_29) 2020; 28
Rodriguez (ref_12) 2006; 163
Sharma (ref_43) 2020; 34
ref_14
Bellini (ref_33) 2001; 37
ref_36
Elbouchikhi (ref_3) 2015; 52
Kang (ref_24) 2014; 50
ref_11
Palomares (ref_15) 2008; 44
ref_32
Su (ref_41) 2007; 54
Yang (ref_23) 2014; 50
ref_30
Shashidhara (ref_38) 2013; 3
Mohanraj (ref_45) 2021; 173
Filippetti (ref_13) 1998; 34
Taher (ref_31) 2011; 2011
Aviyente (ref_25) 2013; 9
ref_37
Naha (ref_18) 2016; 65
Serin (ref_44) 2020; 109
Verma (ref_42) 2021; 33
Nandi (ref_5) 2005; 20
Zhang (ref_4) 2011; 47
Li (ref_17) 2015; 30
Kumar (ref_27) 2020; 15
Park (ref_20) 2012; 48
ref_40
ref_1
ref_2
(ref_16) 2015; 51
ref_28
Sinha (ref_34) 2018; 37
ref_9
ref_8
Halem (ref_35) 2011; 3
Shi (ref_39) 2013; 69
ref_7
Gritli (ref_19) 2014; 50
Kumar (ref_26) 2021; 111
ref_6
Keskes (ref_22) 2015; 11
References_xml – ident: ref_1
  doi: 10.3390/machines8030035
– ident: ref_7
– volume: 44
  start-page: 716
  year: 2008
  ident: ref_15
  article-title: The use of the wavelet approximation signal as a tool for the diagnosis of rotor bar failures
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2008.921432
– ident: ref_30
– volume: 111
  start-page: 350
  year: 2021
  ident: ref_26
  article-title: Deep convolutional neural network based on adaptive gradient optimiser for fault detection in SCIM
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.10.052
– ident: ref_32
– volume: 37
  start-page: 242
  year: 2018
  ident: ref_34
  article-title: Empirical relation for broken bar determination in SCIM
  publication-title: COMPEL Int. J. Comput. Math. Electr. Electron. Eng.
  doi: 10.1108/COMPEL-11-2016-0515
– volume: 33
  start-page: 1297
  year: 2021
  ident: ref_42
  article-title: An efficient neural-network model for real-time fault detection in industrial machine
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05033-z
– ident: ref_8
  doi: 10.1109/ICCONS.2018.8662833
– volume: 50
  start-page: 1
  year: 2014
  ident: ref_24
  article-title: Reliable fault diagnosis of multiple induction motor defects using a 2-D representation of shannon wavelets
  publication-title: IEEE Trans. Magn.
– volume: 50
  start-page: 2493
  year: 2014
  ident: ref_23
  article-title: Reliable detection of induction motor rotor faults under the rotor axial air duct influence
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2013.2297448
– volume: 20
  start-page: 135
  year: 2005
  ident: ref_10
  article-title: Broken rotor bar detection in induction machines with transient operating speeds
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2004.842394
– volume: 62
  start-page: 1791
  year: 2015
  ident: ref_21
  article-title: Advanced induction motor rotor fault diagnosis via continuous and discrete time-frequency tools
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2355816
– ident: ref_36
  doi: 10.5772/813
– volume: 54
  start-page: 241
  year: 2007
  ident: ref_41
  article-title: Induction Machine Condition Monitoring Using Neural Network Modeling
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2006.888786
– ident: ref_6
  doi: 10.1049/PBPO056E
– volume: 47
  start-page: 34
  year: 2011
  ident: ref_4
  article-title: A survey of condition monitoring and protection methods for medium-voltage induction motors
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2010.2090839
– ident: ref_37
– ident: ref_2
  doi: 10.9734/PSIJ/2014/4837
– ident: ref_14
– volume: 50
  start-page: 1791
  year: 2014
  ident: ref_19
  article-title: Advanced diagnosis of outer cage damage in double-squirrel-cage induction motors under time-varying conditions based on wavelet analysis
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2013.2285958
– volume: 15
  start-page: 39
  year: 2020
  ident: ref_27
  article-title: Convolutional neural network with batch normalisation for fault detection in squirrel cage induction motor
  publication-title: IET Electr. Power Appl.
  doi: 10.1049/elp2.12005
– volume: 69
  start-page: 36
  year: 2013
  ident: ref_39
  article-title: Wavelet transform based broken rotor-bar fault detection and diagnosis performance evaluations
  publication-title: Int. J. Comput. Appl.
– volume: 65
  start-page: 1614
  year: 2016
  ident: ref_18
  article-title: A method for detecting half-broken rotor bar in lightly loaded induction motors using current
  publication-title: IEEE Trans Instrum. Meas.
  doi: 10.1109/TIM.2016.2540941
– ident: ref_9
  doi: 10.1109/DEMPED.2005.4662547
– volume: 163
  start-page: 526
  year: 2006
  ident: ref_12
  article-title: Signatures of electrical faults in the force distribution and vibration pattern of induction motors
  publication-title: IEEE Proc. Electr. Power Appl.
– volume: 34
  start-page: 98
  year: 1998
  ident: ref_13
  article-title: AI techniques in induction machines diagnosis including the speed ripple effect
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.658729
– volume: 3
  start-page: 1019
  year: 2013
  ident: ref_38
  article-title: Tradeoff analysis of wavelet transform techniques for the detection of broken rotor bars in induction motors
  publication-title: Adv. Electron. Electr. Eng.
– volume: 20
  start-page: 719
  year: 2005
  ident: ref_5
  article-title: Condition monitoring and fault diagnosis of electrical motors—A review
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2005.847955
– ident: ref_40
  doi: 10.1007/978-3-319-94463-0
– volume: 28
  start-page: 1
  year: 2020
  ident: ref_29
  article-title: Review on machine learning algorithm based fault detection in induction motors
  publication-title: Arch. Comput. Methods Eng.
– volume: 34
  start-page: 2059043
  year: 2020
  ident: ref_43
  article-title: Artificial Intelligence-Based Fault Diagnosis for Condition Monitoring of Electric Motors
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001420590430
– volume: 52
  start-page: 447
  year: 2015
  ident: ref_3
  article-title: Induction machine faults detection using stator current parametric spectral estimation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.06.015
– volume: 2011
  start-page: 1
  year: 2011
  ident: ref_31
  article-title: A novel technique for rotor bar failure detection in single-cage induction motor using FEM and MATLAB/SIMULINK
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2011/620689
– volume: 3
  start-page: 111
  year: 2011
  ident: ref_35
  article-title: Analysis of induction motor with broken bars and constant speed using circuit-field coupled method
  publication-title: J. Fundam. Appl. Sci.
  doi: 10.4314/jfas.v3i1.11
– volume: 9
  start-page: 100
  year: 2013
  ident: ref_25
  article-title: Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2012.2198659
– volume: 173
  start-page: 108671
  year: 2021
  ident: ref_45
  article-title: Development of tool condition monitoring system in end milling process using wavelet features and Hoelder’s exponent with machine learning algorithms
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108671
– ident: ref_11
  doi: 10.1049/PBPO153E
– volume: 109
  start-page: 953
  year: 2020
  ident: ref_44
  article-title: Review of tool condition monitoring in machining and opportunities for deep learning
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05449-w
– volume: 11
  start-page: 1059
  year: 2015
  ident: ref_22
  article-title: Recursive undecimated wavelet packet transform and DAG SVM for induction motor diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2015.2462315
– volume: 51
  start-page: 3734
  year: 2015
  ident: ref_16
  article-title: Transient-based rotor cage assessment in induction motors operating with soft starters
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2015.2427271
– ident: ref_28
  doi: 10.1007/978-981-15-4775-1_12
– volume: 37
  start-page: 1248
  year: 2001
  ident: ref_33
  article-title: Quantitative evaluation of induction motor broken bars by means of electrical signature analysis
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.952499
– volume: 30
  start-page: 1348
  year: 2015
  ident: ref_17
  article-title: A spectrum synch technique for induction motor health condition monitoring
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2015.2454440
– volume: 48
  start-page: 1539
  year: 2012
  ident: ref_20
  article-title: Detection of broken outer-cage bars for double-cage induction motors under the start-up transient
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2012.2210173
SSID ssj0000913848
Score 2.224158
Snippet The requisite of direct-on-line (DOL) starting for various applications in underground mines subjects the rotor bars of heavy-duty squirrel cage induction...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 87
SubjectTerms Algorithms
Artificial neural networks
broken rotor bar
Coal mining
condition monitoring
Discrete Wavelet Transform
discrete wavelet transforms
Feature extraction
frequency regulation
induction motor
Induction motors
Mines
multi-resolution analysis
Neural networks
Pattern recognition
Rotors
Spectrum analysis
Squirrel cage motors
Stators
Underground mines
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFLaALjAgTlEoyAMDSyCxncMToogKIVFVCCS2yI4dBiApaRn673nPccslWCIlPqTYfsdnP3-PkGNwci0SwQU6g4cIlQ6kdXIlw0JKncoSgeLtMLl-EDeP8aPfcJv4sMq5TnSK2tQF7pGfsZgzLpDv_Hz8FmDWKDxd9Sk0lkkHVHAG4KvTvxqO7ha7LMh6mYms5fThgO_PXl2Mop3IMEY6tm_myLH2_1LKztIMNsi6dxHpRTunm2TJVltk7Qtx4DapL4bDoA8GyNCRI8is6N08EqiuKDiiFHNyuDsL9LYGXE0Bbz9bqNa-qIa20oz9UbxI1lCX4HNGB00bXT2DLp98cq8d8jC4ur-8DnzqhKAAjTENEgZ_HtlIilgIPNyMhAlVVLA0KUWSGVbyUAI2VFDGFEAOBZ5bZriRCppqw3fJSlVXdo9Qo7QycarwBitYMg6ASqVaRCLVtpSq6JLT-QjmhecVx_QWLzngCxzy_MeQd8nJosG4pdT4u2ofp2RRDbmw3Ye6ecq9aOWMaa2LkMmyUEKkZaYTwEgsTDS3Kedll_TmE5p7AZ3kn8tp___iA7LKMIzFxTj2yMq0ebeH4IdM9ZFfbB_oad3y
  priority: 102
  providerName: ProQuest
Title ANN-Based Pattern Recognition for Induction Motor Broken Rotor Bar Monitoring under Supply Frequency Regulation
URI https://www.proquest.com/docview/2532340236
https://doaj.org/article/22bbbc029fca447f8b6747206b3e733f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLDAgnqJQKg8MLKGJ7Tw8tqihQmpVVVTqFtmJwwCkKC1D_z13TloVEGJhiZTEj-h8vrtPOX9HyA0EuQaJ4BwdwUW4SjvS2H0l3VRKHcocgeJwFAym4nHmz7ZKfWFOWEUPXAmuw5jWOnWZzFMlRJhHOoAImLmB5ibkPEfrCz5vC0xZGyw9Homo4vLhgOs7bzY30Syk6yMN2xc3ZNn6fxhj62HiI3JYh4a0W33SMdkxxQk52CIMPCXz7mjk9MDxZHRsiTELOllnAM0LCgEoxVoc9qwCHc4BT1PA2S8GmlU3qqTVLsbxKB4gK6kt7LmicVllVa9gyOe6qNcZmcb9p_uBU5dMcFKwFEsnQFl4xpPCFwJ_anoic5WXsjDIRRBlLOeuBEyo4B1TADUURGxRxjOpoKvO-DlpFPPCXBCaKa0yP1R4chU8GAcgpUItPBFqk0uVNsndWoJJWvOJY1mL1wRwBYo8-SbyJrnddHivqDR-b9rDJdk0Qw5s-wA0I6k1I_lLM5qktV7QpN6Yi4T5nHGBtPmX_zHHFdlnmORiMyBbpLEsP8w1RClL3Sa7UfzQJnu9_mg8aVv1_ATVGOe1
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61y4FyQDyKumUBH4rUS9qs7Tx8QKgFtlvaXVVVK_UW7NjpAUja7CK0f4rfyIyTLKWo3HqJlNjxwZ7XZ4-_AdjCINcREVxgUnzIUJtAOa9XKsyVMokqCChOpvH4XH6-iC5W4Fd3F4bSKjub6A21rXLaI9_lkeBCEt_5-6vrgKpG0elqV0KjEYsjt_iJkG327vAjru9bzkefzj6Mg7aqQJCjMs2DmKOLHDoE75GUdO43lDbUw5wncSHj1PJChAphk8Y2rjEa1xjUpFZYpfFXYwWOuwoPpBCKNCodHSz3dIhjM5VpwyCE7eHud58R6WYqjIj87S_n52sE_OMCvF8bPYHHbUDK9hoJegorrnwGj27QFD6Ham86DfbR3Vl24uk4S3ba5R1VJcOwl1EFEH9Dgk0qRPEM0f1Xh92aF12zxnbQeIyurdXMlxNdsFHd5HIvcMjLtpTYOpzfy5S-gF5ZlW4DmNVG2yjRdF8W_aZA-KYTI4cyMa5QOu_DTjeDWd6ymFMxjW8Zohma8uzWlPdhe_nDVUPgcXfXfVqSZTdi3vYfqvoyaxU549wYk4dcFbmWMilSEyMi42FshEuEKPow6BY0a83BLPsjvJv_b34DD8dnk-Ps-HB69BLWOCXQ-OzKAfTm9Q_3CiOguXntxY7Bl_uW89_BPhXJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqCwV8AIlLWK_tPHxAqEu7aimNVhWVegt27PQAJCW7CO1f49cx4yTLS3DrJVJix4fx2DOfPfMNwDN0cj0RwUU2w4fixkbah3Wleam1TXVFQPEkTw7P1Nvz-HwLvg-5MBRWOeyJYaN2TUln5BMRSyEV8Z1Pqj4sYrE_f335JaIKUnTTOpTT6FTk2K-_IXxbvjrax7l-LsT84P2bw6ivMBCVuLBWUSLQXE49AvlYKboDnCrHzbQUaVKpJHOiklwjhDLYJgx65gYdnMxJpw3-ap3Eca_BdoqoiI9ge3aQL043JzzEuJmprOMTklLzyecQH-mXmsdEBfebKQwVA_4yCMHKzW_Drd49ZXudPt2BLV_fhZu_kBbeg2Yvz6MZGj_HFoGcs2anQxRSUzN0ghnVAwn5EuykQUzPEOt_9NitezEt63YSGo9RElvLQnHRNZu3XWT3Goe86AuL3YezKxHqAxjVTe13gDljjYtTQ9mzaEUlgjmTWjVVqfWVNuUYXg4SLMqe05xKa3wqENuQyIs_RD6GF5sfLjs6j393ndGUbLoRD3f40LQXRb-sCyGstSUXuiqNUmmV2QTxmeCJlT6VshrD7jChRb85LIufqvzw_81P4TrqePHuKD9-BDcERdOEUMtdGK3ar_4xukMr-6TXOwYfrlrVfwBRWRtb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ANN-Based+Pattern+Recognition+for+Induction+Motor+Broken+Rotor+Bar+Monitoring+under+Supply+Frequency+Regulation&rft.jtitle=Machines+%28Basel%29&rft.au=Sinha%2C+Ashish+Kumar&rft.au=Hati%2C+Ananda+Shankar&rft.au=Benbouzid%2C+Mohamed&rft.au=Chakrabarti%2C+Prasun&rft.date=2021-05-01&rft.issn=2075-1702&rft.eissn=2075-1702&rft.volume=9&rft.issue=5&rft.spage=87&rft_id=info:doi/10.3390%2Fmachines9050087&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_machines9050087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon