ANN-Based Pattern Recognition for Induction Motor Broken Rotor Bar Monitoring under Supply Frequency Regulation
The requisite of direct-on-line (DOL) starting for various applications in underground mines subjects the rotor bars of heavy-duty squirrel cage induction motors (SCIMs) to severe stresses, resulting in sustained fault in the rotor bars, unlike the applications where mostly reduced voltage starting...
Saved in:
Published in | Machines (Basel) Vol. 9; no. 5; p. 87 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The requisite of direct-on-line (DOL) starting for various applications in underground mines subjects the rotor bars of heavy-duty squirrel cage induction motors (SCIMs) to severe stresses, resulting in sustained fault in the rotor bars, unlike the applications where mostly reduced voltage starting is preferred. Furthermore, SCIMs working in underground mines are also affected by unforeseen frequency fluctuations. Hence, the paper proposes a discrete wavelet transform (DWT)-based broken rotor bar detection scheme using the stator current analysis of SCIM when subjected to a frequency regulation (±4% of 50 Hz supply) in steady-state, as prevalent in underground mines. In this regard, the level-seven detailed coefficient obtained by the DWT-based multi-resolution analysis of stator current corresponding to the healthy rotor is compared with that of the faulty rotor to extract the necessary features to identify the fault. Further implementation of the proposed scheme is done using artificial neural network (ANN)-based pattern recognition techniques, wherein both feed-forward backdrops and cascaded forward backdrop type ANNs have been used for fault pinpointing based on the feature extraction results obtained from DWT. The scheme is developed and analysed in MATLAB/Simulink using 5.5 kW, 415 V, 50 Hz SCIM, which is further validated using the LabVIEW-based real-time implementation. |
---|---|
AbstractList | The requisite of direct-on-line (DOL) starting for various applications in underground mines subjects the rotor bars of heavy-duty squirrel cage induction motors (SCIMs) to severe stresses, resulting in sustained fault in the rotor bars, unlike the applications where mostly reduced voltage starting is preferred. Furthermore, SCIMs working in underground mines are also affected by unforeseen frequency fluctuations. Hence, the paper proposes a discrete wavelet transform (DWT)-based broken rotor bar detection scheme using the stator current analysis of SCIM when subjected to a frequency regulation (±4% of 50 Hz supply) in steady-state, as prevalent in underground mines. In this regard, the level-seven detailed coefficient obtained by the DWT-based multi-resolution analysis of stator current corresponding to the healthy rotor is compared with that of the faulty rotor to extract the necessary features to identify the fault. Further implementation of the proposed scheme is done using artificial neural network (ANN)-based pattern recognition techniques, wherein both feed-forward backdrops and cascaded forward backdrop type ANNs have been used for fault pinpointing based on the feature extraction results obtained from DWT. The scheme is developed and analysed in MATLAB/Simulink using 5.5 kW, 415 V, 50 Hz SCIM, which is further validated using the LabVIEW-based real-time implementation. |
Author | Chakrabarti, Prasun Benbouzid, Mohamed Hati, Ananda Shankar Sinha, Ashish Kumar |
Author_xml | – sequence: 1 givenname: Ashish Kumar surname: Sinha fullname: Sinha, Ashish Kumar – sequence: 2 givenname: Ananda Shankar orcidid: 0000-0003-1414-3398 surname: Hati fullname: Hati, Ananda Shankar – sequence: 3 givenname: Mohamed orcidid: 0000-0002-4844-508X surname: Benbouzid fullname: Benbouzid, Mohamed – sequence: 4 givenname: Prasun surname: Chakrabarti fullname: Chakrabarti, Prasun |
BookMark | eNp1UctOwzAQtFCRgNIz10icQx3biZMjIAqVeInH2drYTnAJdnGcQ_8etwEJIbEX76xnRrPaIzSxzmqETjJ8RmmF5x8g34zVfYVzjEu-hw4J5nmacUwmv_oDNOv7FY5VZbRk5SFy5_f36QX0WiWPEIL2NnnS0rXWBONs0jifLK0a5A7duRDxhXfvOtJGAD6OI9t5Y9tksEr75HlYr7tNsvD6c9BWbqJlO3Sw9ThG-w10vZ59v1P0urh6ubxJbx-ul5fnt6mkvAhpQWLCTGcVyxljhOUZUxgySXjRsKJUpKG4IjmD-EeAFyXkDJeKqgqitFZ0ipajr3KwEmtvPsBvhAMjdgPnWwE-GNlpQUhd1xKTqpHAGG_KuuCME1zUVHNKm-h1OnqtvYsL9UGs3OBtjC9ITgllmNAisvKRJb3re68bIU3Y7Rw8mE5kWGxPJf6cKurmf3Q_af9TfAEL7ZkY |
CitedBy_id | crossref_primary_10_1016_j_iswa_2022_200167 crossref_primary_10_3390_electronics13163195 crossref_primary_10_3390_machines11080827 crossref_primary_10_46632_jeae_1_1_5 crossref_primary_10_46632_jacp_1_1_4 crossref_primary_10_46632_jeae_1_1_3 crossref_primary_10_3390_machines10090757 crossref_primary_10_46632_jacp_1_1_5 crossref_primary_10_46632_jeae_1_1_4 crossref_primary_10_46632_jeae_1_1_1 crossref_primary_10_46632_jeae_1_1_2 crossref_primary_10_46632_jacp_1_1_1 crossref_primary_10_46632_daai_2_3_1 crossref_primary_10_46632_jacp_1_1_2 crossref_primary_10_46632_jacp_1_1_3 crossref_primary_10_3390_machines9100236 crossref_primary_10_46632_jemm_9_2_2 crossref_primary_10_3390_app13020945 crossref_primary_10_3390_machines11100966 crossref_primary_10_3390_machines9110250 |
Cites_doi | 10.3390/machines8030035 10.1109/TIA.2008.921432 10.1016/j.isatra.2020.10.052 10.1108/COMPEL-11-2016-0515 10.1007/s00521-020-05033-z 10.1109/ICCONS.2018.8662833 10.1109/TIA.2013.2297448 10.1109/TEC.2004.842394 10.1109/TIE.2014.2355816 10.5772/813 10.1109/TIE.2006.888786 10.1049/PBPO056E 10.1109/TIA.2010.2090839 10.9734/PSIJ/2014/4837 10.1109/TIA.2013.2285958 10.1049/elp2.12005 10.1109/TIM.2016.2540941 10.1109/DEMPED.2005.4662547 10.1109/28.658729 10.1109/TEC.2005.847955 10.1007/978-3-319-94463-0 10.1142/S0218001420590430 10.1016/j.ymssp.2014.06.015 10.1155/2011/620689 10.4314/jfas.v3i1.11 10.1109/TII.2012.2198659 10.1016/j.measurement.2020.108671 10.1049/PBPO153E 10.1007/s00170-020-05449-w 10.1109/TII.2015.2462315 10.1109/TIA.2015.2427271 10.1007/978-981-15-4775-1_12 10.1109/28.952499 10.1109/TEC.2015.2454440 10.1109/TIA.2012.2210173 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/machines9050087 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-1702 |
ExternalDocumentID | oai_doaj_org_article_22bbbc029fca447f8b6747206b3e733f 10_3390_machines9050087 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ACIWK ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS RNS 7TB 8FD ABUWG AZQEC DWQXO FR3 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c376t-620911e194544424514d0a1c276f468d2f309254a4242a768a5408d3d9a620bd3 |
IEDL.DBID | DOA |
ISSN | 2075-1702 |
IngestDate | Wed Aug 27 01:30:24 EDT 2025 Fri Jul 25 11:49:38 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Tue Jul 01 02:17:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-620911e194544424514d0a1c276f468d2f309254a4242a768a5408d3d9a620bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4844-508X 0000-0003-1414-3398 |
OpenAccessLink | https://doaj.org/article/22bbbc029fca447f8b6747206b3e733f |
PQID | 2532340236 |
PQPubID | 2032370 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_22bbbc029fca447f8b6747206b3e733f proquest_journals_2532340236 crossref_citationtrail_10_3390_machines9050087 crossref_primary_10_3390_machines9050087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Machines (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Douglas (ref_10) 2005; 20 Lee (ref_21) 2015; 62 Kumar (ref_29) 2020; 28 Rodriguez (ref_12) 2006; 163 Sharma (ref_43) 2020; 34 ref_14 Bellini (ref_33) 2001; 37 ref_36 Elbouchikhi (ref_3) 2015; 52 Kang (ref_24) 2014; 50 ref_11 Palomares (ref_15) 2008; 44 ref_32 Su (ref_41) 2007; 54 Yang (ref_23) 2014; 50 ref_30 Shashidhara (ref_38) 2013; 3 Mohanraj (ref_45) 2021; 173 Filippetti (ref_13) 1998; 34 Taher (ref_31) 2011; 2011 Aviyente (ref_25) 2013; 9 ref_37 Naha (ref_18) 2016; 65 Serin (ref_44) 2020; 109 Verma (ref_42) 2021; 33 Nandi (ref_5) 2005; 20 Zhang (ref_4) 2011; 47 Li (ref_17) 2015; 30 Kumar (ref_27) 2020; 15 Park (ref_20) 2012; 48 ref_40 ref_1 ref_2 (ref_16) 2015; 51 ref_28 Sinha (ref_34) 2018; 37 ref_9 ref_8 Halem (ref_35) 2011; 3 Shi (ref_39) 2013; 69 ref_7 Gritli (ref_19) 2014; 50 Kumar (ref_26) 2021; 111 ref_6 Keskes (ref_22) 2015; 11 |
References_xml | – ident: ref_1 doi: 10.3390/machines8030035 – ident: ref_7 – volume: 44 start-page: 716 year: 2008 ident: ref_15 article-title: The use of the wavelet approximation signal as a tool for the diagnosis of rotor bar failures publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2008.921432 – ident: ref_30 – volume: 111 start-page: 350 year: 2021 ident: ref_26 article-title: Deep convolutional neural network based on adaptive gradient optimiser for fault detection in SCIM publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.10.052 – ident: ref_32 – volume: 37 start-page: 242 year: 2018 ident: ref_34 article-title: Empirical relation for broken bar determination in SCIM publication-title: COMPEL Int. J. Comput. Math. Electr. Electron. Eng. doi: 10.1108/COMPEL-11-2016-0515 – volume: 33 start-page: 1297 year: 2021 ident: ref_42 article-title: An efficient neural-network model for real-time fault detection in industrial machine publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05033-z – ident: ref_8 doi: 10.1109/ICCONS.2018.8662833 – volume: 50 start-page: 1 year: 2014 ident: ref_24 article-title: Reliable fault diagnosis of multiple induction motor defects using a 2-D representation of shannon wavelets publication-title: IEEE Trans. Magn. – volume: 50 start-page: 2493 year: 2014 ident: ref_23 article-title: Reliable detection of induction motor rotor faults under the rotor axial air duct influence publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2013.2297448 – volume: 20 start-page: 135 year: 2005 ident: ref_10 article-title: Broken rotor bar detection in induction machines with transient operating speeds publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2004.842394 – volume: 62 start-page: 1791 year: 2015 ident: ref_21 article-title: Advanced induction motor rotor fault diagnosis via continuous and discrete time-frequency tools publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2355816 – ident: ref_36 doi: 10.5772/813 – volume: 54 start-page: 241 year: 2007 ident: ref_41 article-title: Induction Machine Condition Monitoring Using Neural Network Modeling publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2006.888786 – ident: ref_6 doi: 10.1049/PBPO056E – volume: 47 start-page: 34 year: 2011 ident: ref_4 article-title: A survey of condition monitoring and protection methods for medium-voltage induction motors publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2010.2090839 – ident: ref_37 – ident: ref_2 doi: 10.9734/PSIJ/2014/4837 – ident: ref_14 – volume: 50 start-page: 1791 year: 2014 ident: ref_19 article-title: Advanced diagnosis of outer cage damage in double-squirrel-cage induction motors under time-varying conditions based on wavelet analysis publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2013.2285958 – volume: 15 start-page: 39 year: 2020 ident: ref_27 article-title: Convolutional neural network with batch normalisation for fault detection in squirrel cage induction motor publication-title: IET Electr. Power Appl. doi: 10.1049/elp2.12005 – volume: 69 start-page: 36 year: 2013 ident: ref_39 article-title: Wavelet transform based broken rotor-bar fault detection and diagnosis performance evaluations publication-title: Int. J. Comput. Appl. – volume: 65 start-page: 1614 year: 2016 ident: ref_18 article-title: A method for detecting half-broken rotor bar in lightly loaded induction motors using current publication-title: IEEE Trans Instrum. Meas. doi: 10.1109/TIM.2016.2540941 – ident: ref_9 doi: 10.1109/DEMPED.2005.4662547 – volume: 163 start-page: 526 year: 2006 ident: ref_12 article-title: Signatures of electrical faults in the force distribution and vibration pattern of induction motors publication-title: IEEE Proc. Electr. Power Appl. – volume: 34 start-page: 98 year: 1998 ident: ref_13 article-title: AI techniques in induction machines diagnosis including the speed ripple effect publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.658729 – volume: 3 start-page: 1019 year: 2013 ident: ref_38 article-title: Tradeoff analysis of wavelet transform techniques for the detection of broken rotor bars in induction motors publication-title: Adv. Electron. Electr. Eng. – volume: 20 start-page: 719 year: 2005 ident: ref_5 article-title: Condition monitoring and fault diagnosis of electrical motors—A review publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2005.847955 – ident: ref_40 doi: 10.1007/978-3-319-94463-0 – volume: 28 start-page: 1 year: 2020 ident: ref_29 article-title: Review on machine learning algorithm based fault detection in induction motors publication-title: Arch. Comput. Methods Eng. – volume: 34 start-page: 2059043 year: 2020 ident: ref_43 article-title: Artificial Intelligence-Based Fault Diagnosis for Condition Monitoring of Electric Motors publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001420590430 – volume: 52 start-page: 447 year: 2015 ident: ref_3 article-title: Induction machine faults detection using stator current parametric spectral estimation publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2014.06.015 – volume: 2011 start-page: 1 year: 2011 ident: ref_31 article-title: A novel technique for rotor bar failure detection in single-cage induction motor using FEM and MATLAB/SIMULINK publication-title: Math. Probl. Eng. doi: 10.1155/2011/620689 – volume: 3 start-page: 111 year: 2011 ident: ref_35 article-title: Analysis of induction motor with broken bars and constant speed using circuit-field coupled method publication-title: J. Fundam. Appl. Sci. doi: 10.4314/jfas.v3i1.11 – volume: 9 start-page: 100 year: 2013 ident: ref_25 article-title: Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2012.2198659 – volume: 173 start-page: 108671 year: 2021 ident: ref_45 article-title: Development of tool condition monitoring system in end milling process using wavelet features and Hoelder’s exponent with machine learning algorithms publication-title: Measurement doi: 10.1016/j.measurement.2020.108671 – ident: ref_11 doi: 10.1049/PBPO153E – volume: 109 start-page: 953 year: 2020 ident: ref_44 article-title: Review of tool condition monitoring in machining and opportunities for deep learning publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-05449-w – volume: 11 start-page: 1059 year: 2015 ident: ref_22 article-title: Recursive undecimated wavelet packet transform and DAG SVM for induction motor diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2015.2462315 – volume: 51 start-page: 3734 year: 2015 ident: ref_16 article-title: Transient-based rotor cage assessment in induction motors operating with soft starters publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2015.2427271 – ident: ref_28 doi: 10.1007/978-981-15-4775-1_12 – volume: 37 start-page: 1248 year: 2001 ident: ref_33 article-title: Quantitative evaluation of induction motor broken bars by means of electrical signature analysis publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.952499 – volume: 30 start-page: 1348 year: 2015 ident: ref_17 article-title: A spectrum synch technique for induction motor health condition monitoring publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2015.2454440 – volume: 48 start-page: 1539 year: 2012 ident: ref_20 article-title: Detection of broken outer-cage bars for double-cage induction motors under the start-up transient publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2012.2210173 |
SSID | ssj0000913848 |
Score | 2.224158 |
Snippet | The requisite of direct-on-line (DOL) starting for various applications in underground mines subjects the rotor bars of heavy-duty squirrel cage induction... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 87 |
SubjectTerms | Algorithms Artificial neural networks broken rotor bar Coal mining condition monitoring Discrete Wavelet Transform discrete wavelet transforms Feature extraction frequency regulation induction motor Induction motors Mines multi-resolution analysis Neural networks Pattern recognition Rotors Spectrum analysis Squirrel cage motors Stators Underground mines Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFLaALjAgTlEoyAMDSyCxncMToogKIVFVCCS2yI4dBiApaRn673nPccslWCIlPqTYfsdnP3-PkGNwci0SwQU6g4cIlQ6kdXIlw0JKncoSgeLtMLl-EDeP8aPfcJv4sMq5TnSK2tQF7pGfsZgzLpDv_Hz8FmDWKDxd9Sk0lkkHVHAG4KvTvxqO7ha7LMh6mYms5fThgO_PXl2Mop3IMEY6tm_myLH2_1LKztIMNsi6dxHpRTunm2TJVltk7Qtx4DapL4bDoA8GyNCRI8is6N08EqiuKDiiFHNyuDsL9LYGXE0Bbz9bqNa-qIa20oz9UbxI1lCX4HNGB00bXT2DLp98cq8d8jC4ur-8DnzqhKAAjTENEgZ_HtlIilgIPNyMhAlVVLA0KUWSGVbyUAI2VFDGFEAOBZ5bZriRCppqw3fJSlVXdo9Qo7QycarwBitYMg6ASqVaRCLVtpSq6JLT-QjmhecVx_QWLzngCxzy_MeQd8nJosG4pdT4u2ofp2RRDbmw3Ye6ecq9aOWMaa2LkMmyUEKkZaYTwEgsTDS3Kedll_TmE5p7AZ3kn8tp___iA7LKMIzFxTj2yMq0ebeH4IdM9ZFfbB_oad3y priority: 102 providerName: ProQuest |
Title | ANN-Based Pattern Recognition for Induction Motor Broken Rotor Bar Monitoring under Supply Frequency Regulation |
URI | https://www.proquest.com/docview/2532340236 https://doaj.org/article/22bbbc029fca447f8b6747206b3e733f |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLDAgnqJQKg8MLKGJ7Tw8tqihQmpVVVTqFtmJwwCkKC1D_z13TloVEGJhiZTEj-h8vrtPOX9HyA0EuQaJ4BwdwUW4SjvS2H0l3VRKHcocgeJwFAym4nHmz7ZKfWFOWEUPXAmuw5jWOnWZzFMlRJhHOoAImLmB5ibkPEfrCz5vC0xZGyw9Homo4vLhgOs7bzY30Syk6yMN2xc3ZNn6fxhj62HiI3JYh4a0W33SMdkxxQk52CIMPCXz7mjk9MDxZHRsiTELOllnAM0LCgEoxVoc9qwCHc4BT1PA2S8GmlU3qqTVLsbxKB4gK6kt7LmicVllVa9gyOe6qNcZmcb9p_uBU5dMcFKwFEsnQFl4xpPCFwJ_anoic5WXsjDIRRBlLOeuBEyo4B1TADUURGxRxjOpoKvO-DlpFPPCXBCaKa0yP1R4chU8GAcgpUItPBFqk0uVNsndWoJJWvOJY1mL1wRwBYo8-SbyJrnddHivqDR-b9rDJdk0Qw5s-wA0I6k1I_lLM5qktV7QpN6Yi4T5nHGBtPmX_zHHFdlnmORiMyBbpLEsP8w1RClL3Sa7UfzQJnu9_mg8aVv1_ATVGOe1 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61y4FyQDyKumUBH4rUS9qs7Tx8QKgFtlvaXVVVK_UW7NjpAUja7CK0f4rfyIyTLKWo3HqJlNjxwZ7XZ4-_AdjCINcREVxgUnzIUJtAOa9XKsyVMokqCChOpvH4XH6-iC5W4Fd3F4bSKjub6A21rXLaI9_lkeBCEt_5-6vrgKpG0elqV0KjEYsjt_iJkG327vAjru9bzkefzj6Mg7aqQJCjMs2DmKOLHDoE75GUdO43lDbUw5wncSHj1PJChAphk8Y2rjEa1xjUpFZYpfFXYwWOuwoPpBCKNCodHSz3dIhjM5VpwyCE7eHud58R6WYqjIj87S_n52sE_OMCvF8bPYHHbUDK9hoJegorrnwGj27QFD6Ham86DfbR3Vl24uk4S3ba5R1VJcOwl1EFEH9Dgk0qRPEM0f1Xh92aF12zxnbQeIyurdXMlxNdsFHd5HIvcMjLtpTYOpzfy5S-gF5ZlW4DmNVG2yjRdF8W_aZA-KYTI4cyMa5QOu_DTjeDWd6ymFMxjW8Zohma8uzWlPdhe_nDVUPgcXfXfVqSZTdi3vYfqvoyaxU549wYk4dcFbmWMilSEyMi42FshEuEKPow6BY0a83BLPsjvJv_b34DD8dnk-Ps-HB69BLWOCXQ-OzKAfTm9Q_3CiOguXntxY7Bl_uW89_BPhXJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqCwV8AIlLWK_tPHxAqEu7aimNVhWVegt27PQAJCW7CO1f49cx4yTLS3DrJVJix4fx2DOfPfMNwDN0cj0RwUU2w4fixkbah3Wleam1TXVFQPEkTw7P1Nvz-HwLvg-5MBRWOeyJYaN2TUln5BMRSyEV8Z1Pqj4sYrE_f335JaIKUnTTOpTT6FTk2K-_IXxbvjrax7l-LsT84P2bw6ivMBCVuLBWUSLQXE49AvlYKboDnCrHzbQUaVKpJHOiklwjhDLYJgx65gYdnMxJpw3-ap3Eca_BdoqoiI9ge3aQL043JzzEuJmprOMTklLzyecQH-mXmsdEBfebKQwVA_4yCMHKzW_Drd49ZXudPt2BLV_fhZu_kBbeg2Yvz6MZGj_HFoGcs2anQxRSUzN0ghnVAwn5EuykQUzPEOt_9NitezEt63YSGo9RElvLQnHRNZu3XWT3Goe86AuL3YezKxHqAxjVTe13gDljjYtTQ9mzaEUlgjmTWjVVqfWVNuUYXg4SLMqe05xKa3wqENuQyIs_RD6GF5sfLjs6j393ndGUbLoRD3f40LQXRb-sCyGstSUXuiqNUmmV2QTxmeCJlT6VshrD7jChRb85LIufqvzw_81P4TrqePHuKD9-BDcERdOEUMtdGK3ar_4xukMr-6TXOwYfrlrVfwBRWRtb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ANN-Based+Pattern+Recognition+for+Induction+Motor+Broken+Rotor+Bar+Monitoring+under+Supply+Frequency+Regulation&rft.jtitle=Machines+%28Basel%29&rft.au=Sinha%2C+Ashish+Kumar&rft.au=Hati%2C+Ananda+Shankar&rft.au=Benbouzid%2C+Mohamed&rft.au=Chakrabarti%2C+Prasun&rft.date=2021-05-01&rft.issn=2075-1702&rft.eissn=2075-1702&rft.volume=9&rft.issue=5&rft.spage=87&rft_id=info:doi/10.3390%2Fmachines9050087&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_machines9050087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon |