Nanobiochar: production, properties, and multifunctional applications

Nanobiochar has received much attention recently among engineered biochar types owing to its useful chemical and physical properties. Research efforts have attempted to discover novel methods for nanobiochar preparation and applications. In this review, we summarize the literature on various aspects...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental Science: Nano Vol. 7; no. 11; pp. 3279 - 3302
Main Authors Ramanayaka, Sammani, Vithanage, Meththika, Alessi, Daniel S, Liu, Wu-Jun, Jayasundera, Anil C. A, Ok, Yong Sik
Format Journal Article
LanguageEnglish
Japanese
Published Cambridge Royal Society of Chemistry (RSC) 01.01.2020
Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanobiochar has received much attention recently among engineered biochar types owing to its useful chemical and physical properties. Research efforts have attempted to discover novel methods for nanobiochar preparation and applications. In this review, we summarize the literature on various aspects of nanobiochar preparation, production and use. Often, the bulk parent biochar is obtained from biomass pyrolysis, and mechanically ground using different milling processes to fabricate nanobiochar. Apart from mechanical means, direct fabrication of nanobiochar through flash heating resulting in graphitic nanosheets has been reported. Process conditions applied to the parent biochar directly influence the properties of the resulting nanobiochar. For instance, over 70% of 33 nanobiochar samples derived from biomass pyrolyzed above 450 °C demonstrated 32 times greater BET specific surface areas than nanobiochar produced at <450 °C. Nanobiochar has diverse applications, such as in wastewater treatment, health care applications, use as an electrode material, and in supercapacitors and sensors, owing to its wide range of physical and chemical properties. However, the toxicity of nanobiochar to human and ecosystem health has not received sufficient research attention. More research should be performed to elucidate the drawbacks, such as the high agglomeration potential and low yield, of nanobiochar for practical uses. Furthermore, reported data are insufficient to obtain a clear idea of the nature and behavior of nanobiochar, despite the growing interest in the research topic. Hence, future research should be driven towards exploring techniques to improve the yield of nanobiochar, reduce agglomeration, upscale it for electrode supercapacitor production and understand toxicological aspects. Biochar conversion into nanobiochar induced multiple potential applications as an adsorbent, sensor, capacitor, and photocatalytic and plant nanobionic material.
AbstractList Nanobiochar has received much attention recently among engineered biochar types owing to its useful chemical and physical properties. Research efforts have attempted to discover novel methods for nanobiochar preparation and applications. In this review, we summarize the literature on various aspects of nanobiochar preparation, production and use. Often, the bulk parent biochar is obtained from biomass pyrolysis, and mechanically ground using different milling processes to fabricate nanobiochar. Apart from mechanical means, direct fabrication of nanobiochar through flash heating resulting in graphitic nanosheets has been reported. Process conditions applied to the parent biochar directly influence the properties of the resulting nanobiochar. For instance, over 70% of 33 nanobiochar samples derived from biomass pyrolyzed above 450 °C demonstrated 32 times greater BET specific surface areas than nanobiochar produced at <450 °C. Nanobiochar has diverse applications, such as in wastewater treatment, health care applications, use as an electrode material, and in supercapacitors and sensors, owing to its wide range of physical and chemical properties. However, the toxicity of nanobiochar to human and ecosystem health has not received sufficient research attention. More research should be performed to elucidate the drawbacks, such as the high agglomeration potential and low yield, of nanobiochar for practical uses. Furthermore, reported data are insufficient to obtain a clear idea of the nature and behavior of nanobiochar, despite the growing interest in the research topic. Hence, future research should be driven towards exploring techniques to improve the yield of nanobiochar, reduce agglomeration, upscale it for electrode supercapacitor production and understand toxicological aspects.
Nanobiochar has received much attention recently among engineered biochar types owing to its useful chemical and physical properties. Research efforts have attempted to discover novel methods for nanobiochar preparation and applications. In this review, we summarize the literature on various aspects of nanobiochar preparation, production and use. Often, the bulk parent biochar is obtained from biomass pyrolysis, and mechanically ground using different milling processes to fabricate nanobiochar. Apart from mechanical means, direct fabrication of nanobiochar through flash heating resulting in graphitic nanosheets has been reported. Process conditions applied to the parent biochar directly influence the properties of the resulting nanobiochar. For instance, over 70% of 33 nanobiochar samples derived from biomass pyrolyzed above 450 °C demonstrated 32 times greater BET specific surface areas than nanobiochar produced at <450 °C. Nanobiochar has diverse applications, such as in wastewater treatment, health care applications, use as an electrode material, and in supercapacitors and sensors, owing to its wide range of physical and chemical properties. However, the toxicity of nanobiochar to human and ecosystem health has not received sufficient research attention. More research should be performed to elucidate the drawbacks, such as the high agglomeration potential and low yield, of nanobiochar for practical uses. Furthermore, reported data are insufficient to obtain a clear idea of the nature and behavior of nanobiochar, despite the growing interest in the research topic. Hence, future research should be driven towards exploring techniques to improve the yield of nanobiochar, reduce agglomeration, upscale it for electrode supercapacitor production and understand toxicological aspects. Biochar conversion into nanobiochar induced multiple potential applications as an adsorbent, sensor, capacitor, and photocatalytic and plant nanobionic material.
Author Anil C. A. Jayasundera
Sammani Ramanayaka
Meththika Vithanage
Daniel S. Alessi
Yong Sik Ok
Wu-Jun Liu
AuthorAffiliation University of Alberta
Department of Applied Chemistry
CAS Key Laboratory of Urban Pollutant Conversion
Ecosphere Resilience Research Center
Faculty of Applied Sciences
University of Science & Technology of China
University of Sri Jayewardenepura
Department of Earth and Atmospheric Sciences
Department of Chemistry
University of Peradeniya
Korea University
Korea Biochar Research Center
APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering
AuthorAffiliation_xml – name: University of Alberta
– name: Korea University
– name: CAS Key Laboratory of Urban Pollutant Conversion
– name: Department of Chemistry
– name: Ecosphere Resilience Research Center
– name: University of Science & Technology of China
– name: Faculty of Applied Sciences
– name: Department of Earth and Atmospheric Sciences
– name: University of Peradeniya
– name: Korea Biochar Research Center
– name: APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering
– name: University of Sri Jayewardenepura
– name: Department of Applied Chemistry
Author_xml – sequence: 1
  givenname: Sammani
  surname: Ramanayaka
  fullname: Ramanayaka, Sammani
– sequence: 2
  givenname: Meththika
  surname: Vithanage
  fullname: Vithanage, Meththika
– sequence: 3
  givenname: Daniel S
  surname: Alessi
  fullname: Alessi, Daniel S
– sequence: 4
  givenname: Wu-Jun
  surname: Liu
  fullname: Liu, Wu-Jun
– sequence: 5
  givenname: Anil C. A
  surname: Jayasundera
  fullname: Jayasundera, Anil C. A
– sequence: 6
  givenname: Yong Sik
  surname: Ok
  fullname: Ok, Yong Sik
BackLink https://cir.nii.ac.jp/crid/1872553967378659712$$DView record in CiNii
BookMark eNptUE1LxDAUDKLguu7Fu1DQk-zqS16Tpt5kXT9gWS96LmmaYqSb1qQ9-O9tt7KCeHkfzLxh3pyQQ1c7Q8gZhWsKmN4UYBxALIU-IBMGnC4kFfRwP3M8JrMQbA4MqUhThhOy2ihX57bW78rfRo2vi063tnbzYW6Mb60J80i5Itp2VWvLzu1gVUWqaSqr1bCFU3JUqiqY2U-fkreH1evyabF-eXxe3q0XGhPRLgSlOTM5wxJzXhiIQSXApIRUSwaCoZRlgSXnUmpARGlA5zGLCw1cFmmOU3Ix6vbmPjsT2uyj7nzvJmQsFiBS6GvPuhpZ2tcheFNmjbdb5b8yCtmQVHYPq80uqWVPhj9kbdvdV61Xtvr_5Hw88UHvpX_D7_HLEXfW9mpDpTJhnGMqEkyk4GlCGX4DLwqAAA
CitedBy_id crossref_primary_10_1142_S1793292024500310
crossref_primary_10_1016_j_jclepro_2021_128759
crossref_primary_10_1016_j_psep_2023_03_069
crossref_primary_10_1016_j_jes_2021_10_030
crossref_primary_10_1021_acssuschemeng_1c02823
crossref_primary_10_1002_saj2_20669
crossref_primary_10_1016_j_jelechem_2022_117071
crossref_primary_10_1007_s11356_023_28908_9
crossref_primary_10_1079_cabireviews_2024_0051
crossref_primary_10_1002_ldr_4620
crossref_primary_10_1016_j_cej_2024_153698
crossref_primary_10_1021_acssuschemeng_1c01814
crossref_primary_10_1016_j_cej_2022_135864
crossref_primary_10_3390_su16187997
crossref_primary_10_3390_plants12091740
crossref_primary_10_1007_s10311_022_01424_x
crossref_primary_10_1016_j_jafr_2021_100191
crossref_primary_10_3390_su141610118
crossref_primary_10_1016_j_scitotenv_2021_146417
crossref_primary_10_1515_pac_2021_0106
crossref_primary_10_1007_s42768_024_00211_4
crossref_primary_10_1007_s42773_022_00152_3
crossref_primary_10_1007_s42773_023_00282_2
crossref_primary_10_1016_j_envres_2023_115934
crossref_primary_10_1016_j_ijoes_2025_100959
crossref_primary_10_1051_bioconf_202411001007
crossref_primary_10_1016_j_scitotenv_2023_167012
crossref_primary_10_1016_j_scitotenv_2024_177629
crossref_primary_10_1016_j_chemosphere_2023_138072
crossref_primary_10_1016_j_porgcoat_2021_106351
crossref_primary_10_1016_j_ccr_2023_215329
crossref_primary_10_1038_s41598_024_70515_2
crossref_primary_10_1016_j_enmm_2022_100687
crossref_primary_10_3390_catal12020186
crossref_primary_10_1007_s11356_024_35272_9
crossref_primary_10_1016_j_jhazmat_2023_131491
crossref_primary_10_1007_s41204_024_00377_6
crossref_primary_10_1016_j_stress_2024_100615
crossref_primary_10_3390_plants12061312
crossref_primary_10_1016_j_solmat_2021_111378
crossref_primary_10_1016_j_scitotenv_2022_158810
crossref_primary_10_3390_nano14121035
crossref_primary_10_1021_acsomega_3c07804
crossref_primary_10_3390_environments9050060
crossref_primary_10_1016_j_cej_2021_131967
crossref_primary_10_1007_s13399_021_02108_2
crossref_primary_10_1039_D4RA03506B
crossref_primary_10_1007_s12517_022_09539_9
crossref_primary_10_1016_j_jhazmat_2022_129337
crossref_primary_10_1016_j_nanoso_2024_101100
crossref_primary_10_1016_j_rser_2021_112057
crossref_primary_10_1016_j_scitotenv_2024_173372
crossref_primary_10_1016_j_scitotenv_2024_176883
crossref_primary_10_3389_fpls_2022_1066790
crossref_primary_10_1007_s42773_025_00429_3
crossref_primary_10_1016_j_scitotenv_2023_169618
crossref_primary_10_1002_slct_202302288
crossref_primary_10_1021_acs_est_4c07027
crossref_primary_10_1021_acsomega_2c05117
crossref_primary_10_3390_ma14051059
crossref_primary_10_3390_chemosensors10050168
crossref_primary_10_3390_horticulturae9050521
crossref_primary_10_1007_s42773_022_00201_x
crossref_primary_10_1007_s42773_024_00412_4
crossref_primary_10_1080_00103624_2024_2420855
Cites_doi 10.1016/j.jenvman.2019.06.008
10.1021/acs.chemrev.5b00195
10.1016/j.chemosphere.2013.10.071
10.1016/j.jlumin.2013.02.032
10.1016/B978-0-08-102426-3.00015-1
10.1016/j.watres.2018.03.012
10.1007/s11356-019-04899-4
10.1016/j.fuproc.2015.06.029
10.1186/1477-3155-8-26
10.1016/j.cej.2020.124687
10.1039/C8NJ03642J
10.1016/j.cej.2019.123842
10.1016/j.biortech.2014.01.058
10.1016/j.chemosphere.2016.09.151
10.1016/j.ijhydene.2018.09.111
10.1016/j.jelechem.2017.06.020
10.1007/s11356-013-1659-0
10.1007/s00107-010-0504-0
10.1016/j.scitotenv.2019.01.193
10.1007/s42773-019-00014-5
10.1016/j.micromeso.2007.06.047
10.1016/j.scitotenv.2015.01.061
10.1021/es500073r
10.1016/j.jhazmat.2019.121980
10.1007/s11356-019-05181-3
10.1016/S1452-3981(23)15903-7
10.1023/A:1009691626946
10.1016/j.rser.2014.12.039
10.1038/srep25127
10.1016/j.cej.2017.10.130
10.1016/j.ijbiomac.2018.04.105
10.1016/j.chemosphere.2019.125044
10.1007/s11157-020-09523-3
10.1016/j.ijpharm.2015.08.061
10.1186/s40643-019-0268-2
10.1016/j.fuel.2017.12.054
10.1016/j.cej.2019.02.165
10.1002/smll.200901911
10.1155/2019/4506314
10.1016/j.jenvman.2019.05.034
10.1016/j.chemosphere.2015.07.080
10.1016/j.eti.2015.08.003
10.1016/j.envpol.2019.113809
10.1016/j.cej.2018.10.022
10.1016/j.envpol.2017.10.037
10.1039/C4TA06110A
10.1016/j.scitotenv.2019.135725
10.1080/00908319950014425
10.1016/j.jclepro.2017.07.084
10.1016/j.biortech.2010.02.052
10.1016/j.scitotenv.2018.11.393
10.1038/s41598-017-01873-3
10.1016/j.fuel.2010.06.043
10.1016/j.biortech.2010.08.028
10.1021/acs.est.5b03541
10.1016/j.biortech.2017.03.162
10.1039/C7NJ00742F
10.1021/acs.est.7b06261
10.1016/j.envpol.2018.01.073
10.1186/2251-6832-4-44
10.1021/acs.chemrev.6b00647
10.1016/S0961-9534(03)00084-9
10.1016/j.rser.2019.109359
10.1016/j.powtec.2012.05.005
10.1016/S0008-6223(96)00136-4
10.1038/srep02419
10.1016/j.powtec.2012.09.045
10.1016/j.jenvman.2019.01.010
10.1016/j.biombioe.2014.03.059
10.1039/C9EE00206E
10.1021/es9031419
10.1016/j.jaap.2016.07.017
10.1016/j.jiec.2017.12.013
10.1016/j.biortech.2016.01.065
10.1016/j.carbon.2015.09.106
10.1021/acssuschemeng.7b02170
10.1021/acs.est.7b04232
10.1021/acs.est.8b01481
10.1016/j.jhazmat.2019.121095
10.1021/acs.est.8b05066
10.1016/j.envpol.2012.07.009
10.4155/bfs.10.81
10.1016/j.scitotenv.2019.01.005
10.1016/j.scitotenv.2018.11.364
10.1007/s11356-018-1497-1
10.4324/9781849775328
10.1016/j.ijbiomac.2018.11.234
10.1016/j.arabjc.2016.12.025
10.1016/j.molliq.2020.112659
10.1016/j.powtec.2010.05.034
10.1016/j.biombioe.2012.05.004
10.1021/es301029g
10.1016/j.energy.2011.02.045
10.1039/C5RA14536H
10.1016/j.wasman.2019.11.019
10.1016/j.indcrop.2019.111791
10.1039/C6TA10382K
10.1021/acs.est.8b01715
10.1016/j.cej.2019.123311
10.1021/acssuschemeng.8b02799
10.1007/s11356-014-3434-2
10.1016/j.fuel.2012.06.112
10.1007/978-1-4020-9031-8_28
10.1039/c2nr32408c
10.1080/17583004.2014.973684
10.1016/j.chemosphere.2019.125344
10.1016/S0960-8524(99)00085-1
10.1016/j.electacta.2015.09.096
10.1016/j.biortech.2017.07.060
10.1016/j.jhazmat.2019.121357
10.1039/C4RA06535B
10.1016/j.cej.2019.123276
10.1016/j.scitotenv.2019.06.342
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID RYH
AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/d0en00486c
DatabaseName CiNii Complete
CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2051-8161
EndPage 3302
ExternalDocumentID 10_1039_D0EN00486C
d0en00486c
GroupedDBID 0R~
4.4
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
RYH
0R
AAGNR
ABGFH
AGSTE
AGSWI
CKLOX
HZ
JG
RIG
AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c376t-611b2eb23f3b5de040a7028809c82062388fd3f5588c03338e0cb424dc058d9b3
ISSN 2051-8153
IngestDate Mon Jun 30 12:05:38 EDT 2025
Tue Jul 01 02:35:37 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Sat Jan 08 03:48:18 EST 2022
Thu Jun 26 23:57:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-611b2eb23f3b5de040a7028809c82062388fd3f5588c03338e0cb424dc058d9b3
Notes 10.1039/d0en00486c
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8774-009x
0000-0003-3401-0912
0000-0002-6804-1808
0000-0002-5696-1180
0000-0002-8360-8251
0000-0003-2923-4065
0000-0002-8774-009X
PQID 2460690460
PQPubID 2047519
PageCount 24
ParticipantIDs crossref_primary_10_1039_D0EN00486C
rsc_primary_d0en00486c
proquest_journals_2460690460
crossref_citationtrail_10_1039_D0EN00486C
nii_cinii_1872553967378659712
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Environmental Science: Nano
PublicationYear 2020
Publisher Royal Society of Chemistry (RSC)
Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry (RSC)
– name: Royal Society of Chemistry
References Yang (D0EN00486C-(cit116)/*[position()=1]) 2015; 182
Liu (D0EN00486C-(cit50)/*[position()=1]) 2019; 243
Luong (D0EN00486C-(cit33)/*[position()=1]) 2020
Qian (D0EN00486C-(cit92)/*[position()=1]) 2016; 206
Naghdi (D0EN00486C-(cit72)/*[position()=1]) 2016
Yuan (D0EN00486C-(cit62)/*[position()=1]) 2019
Azwar (D0EN00486C-(cit115)/*[position()=1]) 2018; 43
Naghdi (D0EN00486C-(cit45)/*[position()=1]) 2019; 12
Banek (D0EN00486C-(cit107)/*[position()=1]) 2018; 6
Chen (D0EN00486C-(cit11)/*[position()=1]) 2015; 44
Ndirangu (D0EN00486C-(cit126)/*[position()=1]) 2019; 2019
Noumi (D0EN00486C-(cit86)/*[position()=1]) 2014
Liu (D0EN00486C-(cit111)/*[position()=1]) 2016; 11
Chen (D0EN00486C-(cit76)/*[position()=1]) 2011; 36
Xiang (D0EN00486C-(cit42)/*[position()=1]) 2020; 385
Wang (D0EN00486C-(cit59)/*[position()=1]) 2020; 241
Liu (D0EN00486C-(cit26)/*[position()=1]) 2013; 3
Zheng (D0EN00486C-(cit109)/*[position()=1]) 2020; 243
Ok (D0EN00486C-(cit15)/*[position()=1]) 2015; 4
Zhou (D0EN00486C-(cit66)/*[position()=1]) 2020; 303
Genovese (D0EN00486C-(cit14)/*[position()=1]) 2017; 5
Plácido (D0EN00486C-(cit56)/*[position()=1]) 2019; 688
Agar (D0EN00486C-(cit68)/*[position()=1]) 2012; 44
Fidel (D0EN00486C-(cit101)/*[position()=1]) 2017; 167
von Gunten (D0EN00486C-(cit125)/*[position()=1]) 2017; 236
Shah (D0EN00486C-(cit70)/*[position()=1]) 2015; 495
Alam (D0EN00486C-(cit79)/*[position()=1]) 2018; 52
He (D0EN00486C-(cit36)/*[position()=1]) 2020; 384
Thek (D0EN00486C-(cit95)/*[position()=1]) 2012
Islam (D0EN00486C-(cit117)/*[position()=1]) 2000; 73
Xiao (D0EN00486C-(cit46)/*[position()=1]) 2020; 384
Das (D0EN00486C-(cit82)/*[position()=1]) 2015; 512
Xu (D0EN00486C-(cit93)/*[position()=1]) 2017; 51
Lam (D0EN00486C-(cit108)/*[position()=1]) 2019; 115
Xu (D0EN00486C-(cit38)/*[position()=1]) 2019; 368
Munkhbayar (D0EN00486C-(cit103)/*[position()=1]) 2013; 234
Freddo (D0EN00486C-(cit123)/*[position()=1]) 2012; 171
Li (D0EN00486C-(cit48)/*[position()=1]) 2017; 41
Phanphanich (D0EN00486C-(cit87)/*[position()=1]) 2011; 102
Ohliger (D0EN00486C-(cit23)/*[position()=1]) 2013; 104
Liu (D0EN00486C-(cit7)/*[position()=1]) 2017; 117
Li (D0EN00486C-(cit10)/*[position()=1]) 2004; 26
Plötze (D0EN00486C-(cit22)/*[position()=1]) 2011; 69
Zhang (D0EN00486C-(cit53)/*[position()=1]) 2019; 659
Bridgeman (D0EN00486C-(cit89)/*[position()=1]) 2010; 89
Plácido (D0EN00486C-(cit96)/*[position()=1]) 2019; 656
Wallace (D0EN00486C-(cit34)/*[position()=1]) 2019; 6
Dubey (D0EN00486C-(cit121)/*[position()=1]) 2015; 5
Oleszczuk (D0EN00486C-(cit29)/*[position()=1]) 2016; 121
Vikrant (D0EN00486C-(cit110)/*[position()=1]) 2019; 358
Cifuentes (D0EN00486C-(cit119)/*[position()=1]) 2010; 8
Safari (D0EN00486C-(cit90)/*[position()=1]) 2019; 1
Hernandez-Soriano (D0EN00486C-(cit112)/*[position()=1]) 2016; 6
Charkhi (D0EN00486C-(cit69)/*[position()=1]) 2010; 203
Oleszczuk (D0EN00486C-(cit124)/*[position()=1]) 2018; 237
Qin (D0EN00486C-(cit41)/*[position()=1]) 2019
Wang (D0EN00486C-(cit71)/*[position()=1]) 2018; 61
Lehmann (D0EN00486C-(cit1)/*[position()=1]) 2009
Xue (D0EN00486C-(cit54)/*[position()=1]) 2019; 141
de Oliveira (D0EN00486C-(cit13)/*[position()=1]) 2017; 799
Lian (D0EN00486C-(cit60)/*[position()=1]) 2018; 53
Alam (D0EN00486C-(cit80)/*[position()=1]) 2018; 52
Chen (D0EN00486C-(cit120)/*[position()=1]) 2010; 6
Zhang (D0EN00486C-(cit17)/*[position()=1]) 2013; 20
Lyu (D0EN00486C-(cit51)/*[position()=1]) 2020; 384
Li (D0EN00486C-(cit57)/*[position()=1]) 2020; 384
Kim (D0EN00486C-(cit21)/*[position()=1]) 2020
Iizuka (D0EN00486C-(cit84)/*[position()=1]) 1999; 6
Cheng (D0EN00486C-(cit113)/*[position()=1]) 2017; 246
Zhao (D0EN00486C-(cit105)/*[position()=1]) 2013; 256
Cheah (D0EN00486C-(cit100)/*[position()=1]) 2014; 48
Lyu (D0EN00486C-(cit129)/*[position()=1]) 2017; 5
Vithanage (D0EN00486C-(cit99)/*[position()=1]) 2015; 22
Föhr (D0EN00486C-(cit94)/*[position()=1]) 2017; 62
Xiao (D0EN00486C-(cit25)/*[position()=1]) 2013; 140
Sonkar (D0EN00486C-(cit122)/*[position()=1]) 2012; 4
Yek (D0EN00486C-(cit128)/*[position()=1]) 2019; 236
Mokhtar (D0EN00486C-(cit73)/*[position()=1]) 2018; 13
Zhao (D0EN00486C-(cit102)/*[position()=1]) 2016; 141
Strezov (D0EN00486C-(cit9)/*[position()=1]) 2015; 57
Lyu (D0EN00486C-(cit35)/*[position()=1]) 2018; 233
Nath (D0EN00486C-(cit4)/*[position()=1]) 2019; 246
Dong (D0EN00486C-(cit127)/*[position()=1]) 2019; 6
Yu (D0EN00486C-(cit81)/*[position()=1]) 2013; 4
Ahmad (D0EN00486C-(cit3)/*[position()=1]) 2014; 99
Mayakaduwa (D0EN00486C-(cit78)/*[position()=1]) 2016; 144
Xiao (D0EN00486C-(cit63)/*[position()=1]) 2020; 387
Bhati (D0EN00486C-(cit118)/*[position()=1]) 2018; 42
Lyu (D0EN00486C-(cit37)/*[position()=1]) 2019; 26
Jiang (D0EN00486C-(cit65)/*[position()=1]) 2020; 102
Liu (D0EN00486C-(cit8)/*[position()=1]) 2019; 12
Ma (D0EN00486C-(cit52)/*[position()=1]) 2019; 26
Keiluweit (D0EN00486C-(cit106)/*[position()=1]) 2010; 44
Song (D0EN00486C-(cit47)/*[position()=1]) 2019; 661
Naghdi (D0EN00486C-(cit44)/*[position()=1]) 2018; 115
Qu (D0EN00486C-(cit104)/*[position()=1]) 2016; 96
Basu (D0EN00486C-(cit77)/*[position()=1]) 2013
Saxena (D0EN00486C-(cit27)/*[position()=1]) 2014; 4
Cao (D0EN00486C-(cit16)/*[position()=1]) 2010; 101
Tomczyk (D0EN00486C-(cit75)/*[position()=1]) 2020; 19
Yusof (D0EN00486C-(cit67)/*[position()=1]) 2014
Zhang (D0EN00486C-(cit97)/*[position()=1]) 2014; 5
Liu (D0EN00486C-(cit6)/*[position()=1]) 2015; 115
Li (D0EN00486C-(cit32)/*[position()=1]) 2017; 7
Peterson (D0EN00486C-(cit58)/*[position()=1]) 2012; 228
Wang (D0EN00486C-(cit40)/*[position()=1]) 2019; 26
Qin (D0EN00486C-(cit31)/*[position()=1]) 2018; 137
Naghdi (D0EN00486C-(cit43)/*[position()=1]) 2019; 124
Ramanayaka (D0EN00486C-(cit49)/*[position()=1]) 2020; 706
Heckley (D0EN00486C-(cit98)/*[position()=1]) 2014
Liu (D0EN00486C-(cit18)/*[position()=1]) 2018; 52
Huggins (D0EN00486C-(cit12)/*[position()=1]) 2014; 157
Jenie (D0EN00486C-(cit55)/*[position()=1]) 2017; vol. 1904
Shen (D0EN00486C-(cit64)/*[position()=1]) 2020; 7
Zhang (D0EN00486C-(cit114)/*[position()=1]) 2019; 30
Weber (D0EN00486C-(cit19)/*[position()=1]) 2018; 217
Azargohar (D0EN00486C-(cit20)/*[position()=1]) 2008; 110
Yue (D0EN00486C-(cit61)/*[position()=1]) 2019; 656
Genovese (D0EN00486C-(cit28)/*[position()=1]) 2015; 3
Kumar (D0EN00486C-(cit85)/*[position()=1]) 1999; 21
Zhang (D0EN00486C-(cit88)/*[position()=1]) 2019
Naghdi (D0EN00486C-(cit24)/*[position()=1]) 2017; 164
Manyà (D0EN00486C-(cit2)/*[position()=1]) 2012; 46
Lyu (D0EN00486C-(cit30)/*[position()=1]) 2018; 335
Yi (D0EN00486C-(cit91)/*[position()=1]) 2015; 49
Brewer (D0EN00486C-(cit74)/*[position()=1]) 2014; 66
Huang (D0EN00486C-(cit39)/*[position()=1]) 2020; 258
Libra (D0EN00486C-(cit5)/*[position()=1]) 2011; 2
Byrne (D0EN00486C-(cit83)/*[position()=1]) 1997; 35
References_xml – issn: 2017
  issue: vol. 1904
  end-page: 20018
  publication-title: AIP Conference Proceedings
  doi: Jenie Kristiani Kustomo Simanungkalit Mansur
– issn: 2019
  end-page: p 327-368
  publication-title: Biopolymer-Based Materials, and Bioenergy
  doi: Zhang Zhang
– issn: 2014
  publication-title: Optimization of quality of charcoal for steelmaking using statistical analysis approach
  doi: Noumi Blin Rousset
– issn: 2014
  publication-title: Structural Changes of Hydrothermally Treated Biochar with Ball-Milling
  doi: Heckley Toto Venegas
– issn: 2009
  end-page: p 473-486
  publication-title: BT - Amazonian Dark Earths: Wim Sombroek's Vision
  doi: Lehmann
– issn: 2012
  publication-title: The pellet handbook: the production and thermal utilization of biomass pellets
  doi: Thek Obernberger
– issn: 2013
  end-page: p 199-248
  publication-title: Biomass Gasification, Pyrolysis Torrefaction
  doi: Basu
– volume: 246
  start-page: 397
  year: 2019
  ident: D0EN00486C-(cit4)/*[position()=1]
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.06.008
– volume: 115
  start-page: 12251
  year: 2015
  ident: D0EN00486C-(cit6)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00195
– volume: 99
  start-page: 19
  year: 2014
  ident: D0EN00486C-(cit3)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 30
  start-page: 20881
  year: 2019
  ident: D0EN00486C-(cit114)/*[position()=1]
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 140
  start-page: 120
  year: 2013
  ident: D0EN00486C-(cit25)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2013.02.032
– volume-title: Biopolymer-Based Materials, and Bioenergy
  year: 2019
  ident: D0EN00486C-(cit88)/*[position()=1]
  doi: 10.1016/B978-0-08-102426-3.00015-1
– volume: 137
  start-page: 130
  year: 2018
  ident: D0EN00486C-(cit31)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.012
– volume: 26
  start-page: 14693
  year: 2019
  ident: D0EN00486C-(cit37)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-04899-4
– volume: 141
  start-page: 54
  year: 2016
  ident: D0EN00486C-(cit102)/*[position()=1]
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2015.06.029
– volume: 8
  start-page: 26
  year: 2010
  ident: D0EN00486C-(cit119)/*[position()=1]
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-8-26
– start-page: 124687
  year: 2020
  ident: D0EN00486C-(cit21)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124687
– volume: 57
  start-page: 1126
  year: 2015
  ident: D0EN00486C-(cit9)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
– volume: 42
  start-page: 16411
  year: 2018
  ident: D0EN00486C-(cit118)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ03642J
– volume: 385
  start-page: 123842
  year: 2020
  ident: D0EN00486C-(cit42)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123842
– volume: 157
  start-page: 114
  year: 2014
  ident: D0EN00486C-(cit12)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.058
– volume: 167
  start-page: 367
  year: 2017
  ident: D0EN00486C-(cit101)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.09.151
– volume: 43
  start-page: 20811
  year: 2018
  ident: D0EN00486C-(cit115)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.09.111
– volume: 799
  start-page: 602
  year: 2017
  ident: D0EN00486C-(cit13)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.06.020
– volume: 20
  start-page: 8472
  year: 2013
  ident: D0EN00486C-(cit17)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-013-1659-0
– volume: 69
  start-page: 649
  year: 2011
  ident: D0EN00486C-(cit22)/*[position()=1]
  publication-title: Eur. J. Wood Wood Prod.
  doi: 10.1007/s00107-010-0504-0
– volume: 661
  start-page: 685
  year: 2019
  ident: D0EN00486C-(cit47)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.193
– volume: 1
  start-page: 151
  year: 2019
  ident: D0EN00486C-(cit90)/*[position()=1]
  publication-title: Biochar
  doi: 10.1007/s42773-019-00014-5
– volume: 110
  start-page: 413
  year: 2008
  ident: D0EN00486C-(cit20)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2007.06.047
– volume: 512
  start-page: 682
  year: 2015
  ident: D0EN00486C-(cit82)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.01.061
– volume: 256
  start-page: 1
  year: 2013
  ident: D0EN00486C-(cit105)/*[position()=1]
  publication-title: J. Hazard. Mater.
– volume: 48
  start-page: 8474
  year: 2014
  ident: D0EN00486C-(cit100)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500073r
– volume: 13
  start-page: 3313
  year: 2018
  ident: D0EN00486C-(cit73)/*[position()=1]
  publication-title: J. Eng. Sci. Technol.
– volume: 387
  start-page: 121980
  year: 2020
  ident: D0EN00486C-(cit63)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121980
– volume: 26
  start-page: 18636
  year: 2019
  ident: D0EN00486C-(cit52)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05181-3
– volume: 11
  start-page: 1041
  year: 2016
  ident: D0EN00486C-(cit111)/*[position()=1]
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15903-7
– volume: 6
  start-page: 175
  year: 1999
  ident: D0EN00486C-(cit84)/*[position()=1]
  publication-title: J. Porous Mater.
  doi: 10.1023/A:1009691626946
– volume: 44
  start-page: 847
  year: 2015
  ident: D0EN00486C-(cit11)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2014.12.039
– volume: 6
  start-page: 25127
  year: 2016
  ident: D0EN00486C-(cit112)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep25127
– volume: 335
  start-page: 110
  year: 2018
  ident: D0EN00486C-(cit30)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.130
– volume: 6
  start-page: 1527
  year: 2019
  ident: D0EN00486C-(cit127)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 115
  start-page: 563
  year: 2018
  ident: D0EN00486C-(cit44)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.04.105
– volume: 241
  start-page: 125044
  year: 2020
  ident: D0EN00486C-(cit59)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125044
– volume: 19
  start-page: 191
  year: 2020
  ident: D0EN00486C-(cit75)/*[position()=1]
  publication-title: Rev. Environ. Sci. Bio/Technol.
  doi: 10.1007/s11157-020-09523-3
– volume: 495
  start-page: 234
  year: 2015
  ident: D0EN00486C-(cit70)/*[position()=1]
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.08.061
– volume: 6
  start-page: 33
  year: 2019
  ident: D0EN00486C-(cit34)/*[position()=1]
  publication-title: Bioresour. Bioprocess.
  doi: 10.1186/s40643-019-0268-2
– volume: 217
  start-page: 240
  year: 2018
  ident: D0EN00486C-(cit19)/*[position()=1]
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.12.054
– volume: 368
  start-page: 564
  year: 2019
  ident: D0EN00486C-(cit38)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.165
– volume: 6
  start-page: 612
  year: 2010
  ident: D0EN00486C-(cit120)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.200901911
– volume: 2019
  start-page: 4506314
  year: 2019
  ident: D0EN00486C-(cit126)/*[position()=1]
  publication-title: J. Chem.
  doi: 10.1155/2019/4506314
– volume: 243
  start-page: 308
  year: 2019
  ident: D0EN00486C-(cit50)/*[position()=1]
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.05.034
– volume: 144
  start-page: 2516
  year: 2016
  ident: D0EN00486C-(cit78)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.07.080
– start-page: 1
  year: 2019
  ident: D0EN00486C-(cit41)/*[position()=1]
  publication-title: Environ. Geochem. Health
– volume: 4
  start-page: 206
  year: 2015
  ident: D0EN00486C-(cit15)/*[position()=1]
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2015.08.003
– volume: 258
  start-page: 113809
  year: 2020
  ident: D0EN00486C-(cit39)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113809
– volume: 358
  start-page: 264
  year: 2019
  ident: D0EN00486C-(cit110)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.10.022
– volume: 233
  start-page: 54
  year: 2018
  ident: D0EN00486C-(cit35)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.10.037
– volume: 3
  start-page: 2903
  year: 2015
  ident: D0EN00486C-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06110A
– volume: 706
  start-page: 135725
  year: 2020
  ident: D0EN00486C-(cit49)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135725
– volume: 21
  start-page: 675
  year: 1999
  ident: D0EN00486C-(cit85)/*[position()=1]
  publication-title: Energy Sources
  doi: 10.1080/00908319950014425
– volume: 164
  start-page: 1394
  year: 2017
  ident: D0EN00486C-(cit24)/*[position()=1]
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2017.07.084
– start-page: 1
  year: 2020
  ident: D0EN00486C-(cit33)/*[position()=1]
  publication-title: Nature
– volume: 101
  start-page: 5222
  year: 2010
  ident: D0EN00486C-(cit16)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.052
– volume: 656
  start-page: 531
  year: 2019
  ident: D0EN00486C-(cit96)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.393
– volume: 7
  start-page: 1685
  year: 2017
  ident: D0EN00486C-(cit32)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01873-3
– volume: 89
  start-page: 3911
  year: 2010
  ident: D0EN00486C-(cit89)/*[position()=1]
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.06.043
– volume: 102
  start-page: 1246
  year: 2011
  ident: D0EN00486C-(cit87)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.08.028
– volume: 49
  start-page: 13294
  year: 2015
  ident: D0EN00486C-(cit91)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03541
– volume: 236
  start-page: 106
  year: 2017
  ident: D0EN00486C-(cit125)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.162
– volume: vol. 1904
  start-page: 20018
  volume-title: AIP Conference Proceedings
  year: 2017
  ident: D0EN00486C-(cit55)/*[position()=1]
– volume: 41
  start-page: 9649
  year: 2017
  ident: D0EN00486C-(cit48)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ00742F
– volume: 52
  start-page: 6246
  year: 2018
  ident: D0EN00486C-(cit79)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b06261
– volume: 237
  start-page: 65
  year: 2018
  ident: D0EN00486C-(cit124)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.01.073
– volume: 4
  start-page: 44
  year: 2013
  ident: D0EN00486C-(cit81)/*[position()=1]
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1186/2251-6832-4-44
– volume: 117
  start-page: 6367
  year: 2017
  ident: D0EN00486C-(cit7)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00647
– volume: 26
  start-page: 171
  year: 2004
  ident: D0EN00486C-(cit10)/*[position()=1]
  publication-title: Biomass Bioenergy
  doi: 10.1016/S0961-9534(03)00084-9
– volume-title: Optimization of quality of charcoal for steelmaking using statistical analysis approach
  year: 2014
  ident: D0EN00486C-(cit86)/*[position()=1]
– volume: 115
  start-page: 109359
  year: 2019
  ident: D0EN00486C-(cit108)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2019.109359
– volume: 228
  start-page: 115
  year: 2012
  ident: D0EN00486C-(cit58)/*[position()=1]
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.05.005
– volume: 35
  start-page: 259
  year: 1997
  ident: D0EN00486C-(cit83)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/S0008-6223(96)00136-4
– volume: 3
  start-page: 2419
  year: 2013
  ident: D0EN00486C-(cit26)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep02419
– volume: 234
  start-page: 132
  year: 2013
  ident: D0EN00486C-(cit103)/*[position()=1]
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.09.045
– volume: 236
  start-page: 245
  year: 2019
  ident: D0EN00486C-(cit128)/*[position()=1]
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.01.010
– start-page: 5292
  year: 2016
  ident: D0EN00486C-(cit72)/*[position()=1]
  publication-title: Arabian J. Chem.
– start-page: 1
  year: 2019
  ident: D0EN00486C-(cit62)/*[position()=1]
  publication-title: Instrum. Sci. Technol.
– volume: 62
  start-page: 481
  year: 2017
  ident: D0EN00486C-(cit94)/*[position()=1]
  publication-title: Wood Res.
– volume: 66
  start-page: 176
  year: 2014
  ident: D0EN00486C-(cit74)/*[position()=1]
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.03.059
– volume-title: Biomass Gasification, Pyrolysis Torrefaction
  year: 2013
  ident: D0EN00486C-(cit77)/*[position()=1]
– volume: 12
  start-page: 1751
  year: 2019
  ident: D0EN00486C-(cit8)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00206E
– volume: 44
  start-page: 1247
  year: 2010
  ident: D0EN00486C-(cit106)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 121
  start-page: 165
  year: 2016
  ident: D0EN00486C-(cit29)/*[position()=1]
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2016.07.017
– volume: 61
  start-page: 161
  year: 2018
  ident: D0EN00486C-(cit71)/*[position()=1]
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.12.013
– volume: 206
  start-page: 217
  year: 2016
  ident: D0EN00486C-(cit92)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.01.065
– volume: 96
  start-page: 759
  year: 2016
  ident: D0EN00486C-(cit104)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.09.106
– volume: 5
  start-page: 9568
  year: 2017
  ident: D0EN00486C-(cit129)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02170
– volume: 51
  start-page: 13723
  year: 2017
  ident: D0EN00486C-(cit93)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04232
– volume: 52
  start-page: 10369
  year: 2018
  ident: D0EN00486C-(cit18)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01481
– volume: 384
  start-page: 121095
  year: 2020
  ident: D0EN00486C-(cit57)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121095
– volume: 53
  start-page: 661
  year: 2018
  ident: D0EN00486C-(cit60)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05066
– volume: 171
  start-page: 18
  year: 2012
  ident: D0EN00486C-(cit123)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.07.009
– volume: 2
  start-page: 71
  year: 2011
  ident: D0EN00486C-(cit5)/*[position()=1]
  publication-title: Biofuels
  doi: 10.4155/bfs.10.81
– volume: 659
  start-page: 1537
  year: 2019
  ident: D0EN00486C-(cit53)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.005
– volume: 656
  start-page: 9
  year: 2019
  ident: D0EN00486C-(cit61)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.364
– volume: 26
  start-page: 11535
  year: 2019
  ident: D0EN00486C-(cit40)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-1497-1
– volume-title: The pellet handbook: the production and thermal utilization of biomass pellets
  year: 2012
  ident: D0EN00486C-(cit95)/*[position()=1]
  doi: 10.4324/9781849775328
– volume: 124
  start-page: 530
  year: 2019
  ident: D0EN00486C-(cit43)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.11.234
– volume: 12
  start-page: 5292
  year: 2019
  ident: D0EN00486C-(cit45)/*[position()=1]
  publication-title: Arabian J. Chem.
  doi: 10.1016/j.arabjc.2016.12.025
– volume: 303
  start-page: 112659
  year: 2020
  ident: D0EN00486C-(cit66)/*[position()=1]
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.112659
– volume: 203
  start-page: 389
  year: 2010
  ident: D0EN00486C-(cit69)/*[position()=1]
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2010.05.034
– volume: 44
  start-page: 107
  year: 2012
  ident: D0EN00486C-(cit68)/*[position()=1]
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.05.004
– volume: 46
  start-page: 7939
  year: 2012
  ident: D0EN00486C-(cit2)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301029g
– volume: 7
  start-page: 116
  year: 2020
  ident: D0EN00486C-(cit64)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 36
  start-page: 3012
  year: 2011
  ident: D0EN00486C-(cit76)/*[position()=1]
  publication-title: Energy
  doi: 10.1016/j.energy.2011.02.045
– volume: 5
  start-page: 87528
  year: 2015
  ident: D0EN00486C-(cit121)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA14536H
– volume: 102
  start-page: 732
  year: 2020
  ident: D0EN00486C-(cit65)/*[position()=1]
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2019.11.019
– volume: 141
  start-page: 111791
  year: 2019
  ident: D0EN00486C-(cit54)/*[position()=1]
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2019.111791
– volume: 5
  start-page: 3939
  year: 2017
  ident: D0EN00486C-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10382K
– start-page: 125
  year: 2014
  ident: D0EN00486C-(cit67)/*[position()=1]
  publication-title: J. Eng. Sci. Technol.
– volume: 52
  start-page: 13057
  year: 2018
  ident: D0EN00486C-(cit80)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01715
– volume: 384
  start-page: 123311
  year: 2020
  ident: D0EN00486C-(cit46)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123311
– volume: 6
  start-page: 13199
  year: 2018
  ident: D0EN00486C-(cit107)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02799
– volume-title: Structural Changes of Hydrothermally Treated Biochar with Ball-Milling
  year: 2014
  ident: D0EN00486C-(cit98)/*[position()=1]
– volume: 22
  start-page: 2175
  year: 2015
  ident: D0EN00486C-(cit99)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3434-2
– volume: 104
  start-page: 607
  year: 2013
  ident: D0EN00486C-(cit23)/*[position()=1]
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.06.112
– volume-title: BT - Amazonian Dark Earths: Wim Sombroek's Vision
  year: 2009
  ident: D0EN00486C-(cit1)/*[position()=1]
  doi: 10.1007/978-1-4020-9031-8_28
– volume: 4
  start-page: 7670
  year: 2012
  ident: D0EN00486C-(cit122)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr32408c
– volume: 5
  start-page: 255
  year: 2014
  ident: D0EN00486C-(cit97)/*[position()=1]
  publication-title: Carbon Manage.
  doi: 10.1080/17583004.2014.973684
– volume: 243
  start-page: 125344
  year: 2020
  ident: D0EN00486C-(cit109)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125344
– volume: 73
  start-page: 67
  year: 2000
  ident: D0EN00486C-(cit117)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(99)00085-1
– volume: 182
  start-page: 264
  year: 2015
  ident: D0EN00486C-(cit116)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.09.096
– volume: 246
  start-page: 224
  year: 2017
  ident: D0EN00486C-(cit113)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.060
– volume: 384
  start-page: 121357
  year: 2020
  ident: D0EN00486C-(cit51)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121357
– volume: 4
  start-page: 39948
  year: 2014
  ident: D0EN00486C-(cit27)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA06535B
– volume: 384
  start-page: 123276
  year: 2020
  ident: D0EN00486C-(cit36)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123276
– volume: 688
  start-page: 751
  year: 2019
  ident: D0EN00486C-(cit56)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.342
SSID ssib023169923
ssj0001125367
Score 2.522563
SecondaryResourceType review_article
Snippet Nanobiochar has received much attention recently among engineered biochar types owing to its useful chemical and physical properties. Research efforts have...
SourceID proquest
crossref
rsc
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3279
SubjectTerms Agglomeration
Biomass
Charcoal
Chemical properties
Chemicophysical properties
Electrode materials
Electrodes
Fabrication
Literature reviews
Physical properties
Pyrolysis
Supercapacitors
Toxicity
Wastewater treatment
Yields
Title Nanobiochar: production, properties, and multifunctional applications
URI https://cir.nii.ac.jp/crid/1872553967378659712
https://www.proquest.com/docview/2460690460
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF0l6YULAkFFoEWW4IKog3fXdtbcohJUqtILKerN8n5YtVrcKNiH9sRPZ8b2ep22h8JlFdnORtl5np2ZnXlDyPtcSAZWhfRppoQfavBTkpiFPqU609wgVSxWI38_jY_OwuPz6Hw0-jPIWqorOVO3D9aV_I9U4RrIFatk_0Gy_aRwAT6DfGEECcP4KBmDakQWJaycQs9-3bK3Fu1B-hrD7BvkS7UZmk3yIG5kXfxveHi9FaF3xW-2ZFKZGSria3cshGmvN9ll1oaVfyGNhr35s8B4fNY1bTfVRXVRXPbqf3GFmbeuvP3jj5m9dVLUTc5f7R_X5TAewYJBPKJRWwxec1_QlgJ4ZobXWtp1q3fnQ3jRgRLlrO0v023InDc12feVfcCRK_VLsDxtiAMP3ZZmj_Hv7HR9_mFz8s6T1H13THYAs4xNyM5iufp24uJ0YAHyphFx_8csyy1PPrkJtuyacVkUWy7LeGP7yTR2y-oZedo5HN6iRc9zMjLlC7IcIOez53Bz4DnUHHiAGe8OZrwhZl6Ss6_L1eGR3zXU8BXsI5UfUyqZkYznXEbagP7O5mBfiiBRSOMP1pvINc-jSAgVcM6FCZQMWahVEAmdSL5LJuV1aV4RD_krNZiWIhNokcssDvM511LFKkpCRafkg12OVHVs89j05Cq9v_ZT8q5_dt1yrDz41D6sKkyGIxVz8IV5gl2WRAxOMWVTsmfXO-3e0d8pC2Ok4oZxSnZBBv38OjBlM696_ahff0OeOLDvkUm1qc0-mKOVfNsh5i__pYSR
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanobiochar%3A+production%2C+properties%2C+and+multifunctional+applications&rft.jtitle=Environmental+science.+Nano&rft.au=Ramanayaka%2C+Sammani&rft.au=Vithanage%2C+Meththika&rft.au=Alessi%2C+Daniel+S.&rft.au=Liu%2C+Wu-Jun&rft.date=2020-01-01&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=7&rft.issue=11&rft.spage=3279&rft.epage=3302&rft_id=info:doi/10.1039%2FD0EN00486C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0EN00486C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon