Dopamine Selectively Induces Migration and Homing of Naive CD8+ T Cells via Dopamine Receptor D3
The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. The secondary lymphoid tissues are highly innervated by sympathetic nerve fibers that...
Saved in:
Published in | The Journal of immunology (1950) Vol. 176; no. 2; pp. 848 - 856 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Assoc Immnol
15.01.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. The secondary lymphoid tissues are highly innervated by sympathetic nerve fibers that store dopamine at high contents. Lymphocytes also produce dopamine. In this study, we examined expression and function of dopamine receptors in lymphocytes. We found that D3 was the predominant subtype of dopamine receptors in the secondary lymphoid tissues and selectively expressed by naive CD8+ T cells of both humans and mice. Dopamine induced calcium flux and chemotaxis in mouse L1.2 cells stably expressing human D3. These responses were almost completely inhibited by pertussis toxin, indicating that D3 was coupled with the Galphai class of G proteins. Consistently, dopamine selectively induced chemotactic responses in naive CD8+ T cells of both humans and mice in a manner sensitive to pertussis toxin and D3 antagonists. Dopamine was highly synergistic with CCL19, CCL21, and CXCL12 in induction of chemotaxis in naive CD8+ T cells. Dopamine selectively induced adhesion of naive CD8+ T cells to fibronectin and ICAM-1 through activation of integrins. Intraperitoneal injection of mice with dopamine selectively attracted naive CD8+ T cells into the peritoneal cavity. Treatment of mice with a D3 antagonist U-99194A selectively reduced homing of naive CD8+ T cells into lymph nodes. Collectively, naive CD8+ T cells selectively express D3 in both humans and mice, and dopamine plays a significant role in migration and homing of naive CD8+ T cells via D3. |
---|---|
AbstractList | The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. The secondary lymphoid tissues are highly innervated by sympathetic nerve fibers that store dopamine at high contents. Lymphocytes also produce dopamine. In this study, we examined expression and function of dopamine receptors in lymphocytes. We found that D3 was the predominant subtype of dopamine receptors in the secondary lymphoid tissues and selectively expressed by naive CD8+ T cells of both humans and mice. Dopamine induced calcium flux and chemotaxis in mouse L1.2 cells stably expressing human D3. These responses were almost completely inhibited by pertussis toxin, indicating that D3 was coupled with the Galphai class of G proteins. Consistently, dopamine selectively induced chemotactic responses in naive CD8+ T cells of both humans and mice in a manner sensitive to pertussis toxin and D3 antagonists. Dopamine was highly synergistic with CCL19, CCL21, and CXCL12 in induction of chemotaxis in naive CD8+ T cells. Dopamine selectively induced adhesion of naive CD8+ T cells to fibronectin and ICAM-1 through activation of integrins. Intraperitoneal injection of mice with dopamine selectively attracted naive CD8+ T cells into the peritoneal cavity. Treatment of mice with a D3 antagonist U-99194A selectively reduced homing of naive CD8+ T cells into lymph nodes. Collectively, naive CD8+ T cells selectively express D3 in both humans and mice, and dopamine plays a significant role in migration and homing of naive CD8+ T cells via D3. Abstract The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. The secondary lymphoid tissues are highly innervated by sympathetic nerve fibers that store dopamine at high contents. Lymphocytes also produce dopamine. In this study, we examined expression and function of dopamine receptors in lymphocytes. We found that D3 was the predominant subtype of dopamine receptors in the secondary lymphoid tissues and selectively expressed by naive CD8+ T cells of both humans and mice. Dopamine induced calcium flux and chemotaxis in mouse L1.2 cells stably expressing human D3. These responses were almost completely inhibited by pertussis toxin, indicating that D3 was coupled with the Gαi class of G proteins. Consistently, dopamine selectively induced chemotactic responses in naive CD8+ T cells of both humans and mice in a manner sensitive to pertussis toxin and D3 antagonists. Dopamine was highly synergistic with CCL19, CCL21, and CXCL12 in induction of chemotaxis in naive CD8+ T cells. Dopamine selectively induced adhesion of naive CD8+ T cells to fibronectin and ICAM-1 through activation of integrins. Intraperitoneal injection of mice with dopamine selectively attracted naive CD8+ T cells into the peritoneal cavity. Treatment of mice with a D3 antagonist U-99194A selectively reduced homing of naive CD8+ T cells into lymph nodes. Collectively, naive CD8+ T cells selectively express D3 in both humans and mice, and dopamine plays a significant role in migration and homing of naive CD8+ T cells via D3. |
Author | Yoshie, Osamu Jin, Zhe Nagakubo, Daisuke Katou, Fuminori Hashimoto, Kenji Watanabe, Yoshiko Nakayama, Takashi Hieshima, Kunio |
Author_xml | – sequence: 1 fullname: Watanabe, Yoshiko – sequence: 2 fullname: Nakayama, Takashi – sequence: 3 fullname: Nagakubo, Daisuke – sequence: 4 fullname: Hieshima, Kunio – sequence: 5 fullname: Jin, Zhe – sequence: 6 fullname: Katou, Fuminori – sequence: 7 fullname: Hashimoto, Kenji – sequence: 8 fullname: Yoshie, Osamu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16393968$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkF1LwzAUhoNM3If-AS8kV95Ia9KkaXopm7rBVNDdx7RJt4y2KU23sn9vZNNdnQPneV8OzxgMaltrAG4xCimi6ePWVNWutmWIExZGIaf8AoxwHKOAMcQGYIRQFAX-mAzB2LktQoihiF6BIWYkJSnjI_A9s42sTK3hly513pm9Lg9wUatdrh18M-tWdsbWUNYKzq0H19AW8F16Dk5n_AGu4FSXpYN7I-F_16fOddPZFs7INbgsZOn0zWlOwOrleTWdB8uP18X0aRnkJGFdwJDMeJoRxZIYMxozRjJEuX-SYlLoIktymfpF5QRLzHTBGc4U5TJWOsKKTEB0rM1b61yrC9G0ppLtQWAkfm2JP1vCCxGR8LZ86O4YanZZpdU5ctLjgfsjsDHrTW9aLVwly9LjWPR9f276ASVJdrQ |
CitedBy_id | crossref_primary_10_1038_s41577_023_00949_8 crossref_primary_10_1016_j_jneuroim_2014_02_009 crossref_primary_10_1016_j_jneuroim_2016_12_014 crossref_primary_10_1080_13813455_2019_1638942 crossref_primary_10_1124_pharmrev_122_000618 crossref_primary_10_1016_j_imbio_2014_12_021 crossref_primary_10_1021_acs_jproteome_2c00707 crossref_primary_10_1186_s13075_023_03071_1 crossref_primary_10_1016_j_bbih_2021_100199 crossref_primary_10_1016_j_neuro_2014_01_006 crossref_primary_10_2177_jsci_32_1 crossref_primary_10_1007_s11481_017_9749_2 crossref_primary_10_17116_jnevro20151159165_69 crossref_primary_10_1016_j_jneuroim_2019_02_007 crossref_primary_10_1111_j_1365_2567_2006_02511_x crossref_primary_10_1186_1742_2094_9_203 crossref_primary_10_1155_2014_207651 crossref_primary_10_4049_jimmunol_1203121 crossref_primary_10_3389_fphar_2020_00394 crossref_primary_10_4049_jimmunol_177_11_7525 crossref_primary_10_1016_j_earlhumdev_2015_09_010 crossref_primary_10_1111_j_1759_1961_2011_00023_x crossref_primary_10_1016_j_intimp_2016_04_030 crossref_primary_10_3389_fcell_2021_688953 crossref_primary_10_17650_1726_9784_2019_18_4_25_33 crossref_primary_10_1016_j_intimp_2019_105908 crossref_primary_10_3389_fnins_2022_1002004 crossref_primary_10_17116_jnevro2015115228_15 crossref_primary_10_1016_j_jneuroim_2019_04_006 crossref_primary_10_1038_s41385_020_00354_7 crossref_primary_10_1080_08923973_2022_2052894 crossref_primary_10_3389_fimmu_2018_00284 crossref_primary_10_1186_1471_2172_10_62 crossref_primary_10_1186_s12974_021_02338_1 crossref_primary_10_1371_journal_pone_0117450 crossref_primary_10_2337_db10_0054 crossref_primary_10_1007_s11481_015_9626_9 crossref_primary_10_1111_j_1471_4159_2010_06799_x crossref_primary_10_1016_j_vetpar_2009_09_028 crossref_primary_10_1159_000501187 crossref_primary_10_1097_WNF_0B013E3181761466 crossref_primary_10_1016_j_imbio_2014_10_016 crossref_primary_10_1016_j_euroneuro_2008_04_014 crossref_primary_10_1007_s00406_010_0098_x crossref_primary_10_1016_j_bbi_2021_08_220 crossref_primary_10_1016_j_cellsig_2022_110449 crossref_primary_10_1155_2016_3160486 crossref_primary_10_1093_biolre_ioy085 crossref_primary_10_1007_s00281_020_00819_8 crossref_primary_10_1002_cti2_1469 crossref_primary_10_3389_fimmu_2014_00117 crossref_primary_10_1016_j_phrs_2019_104293 crossref_primary_10_1182_blood_2009_08_240077 crossref_primary_10_1016_j_ygcen_2011_12_006 crossref_primary_10_1016_j_imbio_2012_11_002 crossref_primary_10_1111_apha_12476 crossref_primary_10_1111_j_1399_3038_2007_00578_x crossref_primary_10_1182_blood_2006_01_028423 crossref_primary_10_1159_000530765 crossref_primary_10_1177_1756286418774225 crossref_primary_10_1016_j_ajog_2012_08_009 crossref_primary_10_1007_s11481_018_9825_2 crossref_primary_10_3390_cells11223536 crossref_primary_10_1007_s11481_019_09851_4 crossref_primary_10_3389_fimmu_2020_01869 crossref_primary_10_1158_0008_5472_CAN_21_4084 crossref_primary_10_1007_s11481_013_9443_y crossref_primary_10_1016_j_scib_2024_04_002 crossref_primary_10_1016_j_semcancer_2007_12_007 crossref_primary_10_1111_ejn_12598 crossref_primary_10_1111_febs_12549 crossref_primary_10_4049_jimmunol_1401114 crossref_primary_10_1126_sciadv_adi6799 crossref_primary_10_1016_j_psyneuen_2018_06_023 crossref_primary_10_1016_j_bbi_2009_10_015 crossref_primary_10_4049_jimmunol_1103096 crossref_primary_10_1371_journal_pone_0065860 crossref_primary_10_1016_j_ejphar_2019_172826 crossref_primary_10_1016_j_bbrc_2008_06_012 crossref_primary_10_1136_lupus_2023_000943 crossref_primary_10_1146_annurev_biophys_052118_115534 crossref_primary_10_1155_2013_705232 crossref_primary_10_4049_jimmunol_1502420 crossref_primary_10_1016_j_bbi_2018_03_020 crossref_primary_10_1007_s00702_016_1640_4 crossref_primary_10_1016_j_it_2007_07_005 crossref_primary_10_1111_imm_13109 crossref_primary_10_1007_s00702_014_1242_y crossref_primary_10_1016_j_bone_2013_04_019 crossref_primary_10_1186_s13041_022_00902_1 crossref_primary_10_3389_fmicb_2024_1345684 crossref_primary_10_4049_jimmunol_1002475 crossref_primary_10_1155_2015_496759 crossref_primary_10_1155_2015_103969 |
Cites_doi | 10.1016/0165-5728(95)00004-L 10.1006/bbrc.1993.1829 10.1016/S0165-5728(96)00148-8 10.1016/S0065-2776(01)78002-9 10.1084/jem.193.9.1105 10.1016/0165-5728(94)90057-4 10.1016/S0165-5728(96)00127-0 10.1002/ijc.20288 10.1084/jem.191.1.77 10.1016/S0165-5728(99)00176-9 10.1084/jem.191.1.61 10.4049/jimmunol.173.3.2078 10.1034/j.1600-065X.2003.00067.x 10.1073/pnas.91.26.12912 10.1016/S0960-5428(96)00018-6 10.1146/annurev.iy.12.040194.003113 10.1016/S0074-7742(08)60573-5 10.1016/S0014-5793(99)01114-X 10.1016/S0006-2952(98)00153-1 10.1016/S0165-5728(99)00042-9 10.1016/0014-5793(92)81452-R 10.1016/0165-5728(93)90170-4 10.1146/annurev.immunol.18.1.593 10.1002/1521-4141(200112)31:12<3504::AID-IMMU3504>3.0.CO;2-F 10.4049/jimmunol.168.12.6173 10.1016/S1567-5769(03)00100-0 10.1210/edrv-4-3-291 10.1002/elps.1150181009 10.1084/jem.186.9.1407 10.1126/science.272.5258.60 10.1016/S1471-4906(03)00176-5 10.1073/pnas.93.5.1945 10.3109/00207459108985446 10.1097/01.fbp.0000137857.26150.ab 10.1016/S0165-5728(02)00280-1 10.1152/physrev.1998.78.1.189 10.1097/00041552-200201000-00013 10.1002/eji.1830250640 10.4049/jimmunol.163.10.5535 10.1016/S0165-5728(98)00207-0 10.1182/blood.V82.1.182.bloodjournal821182 10.1126/science.286.5447.2098 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.4049/jimmunol.176.2.848 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 856 |
ExternalDocumentID | 10_4049_jimmunol_176_2_848 16393968 www176_2_848 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS 79B 85S 8RP AALRV AARDX ABEFU ABFLS ABOCM ABPPZ ABPTK ACGFS ACIWK ACNCT ACPRK ADACO ADBBV ADKFC AENEX AETEA AFFNX AFRAH AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL D0L DIK DU5 E3Z EBS EJD F5P FH7 FRP G8K GJ GX1 H13 IH2 J5H K-O K78 KQ8 L7B MVM MYA NEJ O0- OK1 P0W P2P PQEST PQQKQ R.V RHF RHI RZQ SJN TWZ WH7 WOQ X X7M XJT ZA5 ZE2 ZGI --- -~X .55 .GJ 18M ABCQX ABJNI ACGFO ADNWM AFHIN AFOSN AHWXS AIZAD BTFSW CGR CUY CVF ECM EIF NPM TR2 W8F XSW XTH YHG AAYXX CITATION |
ID | FETCH-LOGICAL-c376t-60ab89b3d6751645663b048396413fefb7ca93fedc31a16ef861bd48a5de21d3 |
ISSN | 0022-1767 |
IngestDate | Thu Sep 26 18:30:05 EDT 2024 Sat Sep 28 08:38:41 EDT 2024 Tue Nov 10 19:50:45 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c376t-60ab89b3d6751645663b048396413fefb7ca93fedc31a16ef861bd48a5de21d3 |
OpenAccessLink | https://journals.aai.org/jimmunol/article-pdf/176/2/848/1214521/848.pdf |
PMID | 16393968 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_4049_jimmunol_176_2_848 pubmed_primary_16393968 highwire_smallpub1_www176_2_848 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | 20060115 2006-Jan-15 2006-01-15 |
PublicationDateYYYYMMDD | 2006-01-15 |
PublicationDate_xml | – month: 01 year: 2006 text: 20060115 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2006 |
Publisher | Am Assoc Immnol |
Publisher_xml | – name: Am Assoc Immnol |
References | 2023010121012072500_R22 2023010121012072500_R44 2023010121012072500_R23 2023010121012072500_R20 2023010121012072500_R42 2023010121012072500_R21 2023010121012072500_R43 2023010121012072500_R40 2023010121012072500_R41 2023010121012072500_R28 2023010121012072500_R29 2023010121012072500_R26 2023010121012072500_R27 2023010121012072500_R24 2023010121012072500_R25 2023010121012072500_R11 2023010121012072500_R33 2023010121012072500_R12 2023010121012072500_R34 2023010121012072500_R31 2023010121012072500_R10 2023010121012072500_R32 2023010121012072500_R30 2023010121012072500_R19 2023010121012072500_R17 2023010121012072500_R39 2023010121012072500_R18 2023010121012072500_R7 2023010121012072500_R15 2023010121012072500_R37 2023010121012072500_R6 2023010121012072500_R16 2023010121012072500_R38 2023010121012072500_R9 2023010121012072500_R13 2023010121012072500_R35 2023010121012072500_R8 2023010121012072500_R14 2023010121012072500_R36 2023010121012072500_R3 2023010121012072500_R2 2023010121012072500_R5 2023010121012072500_R4 2023010121012072500_R1 |
References_xml | – ident: 2023010121012072500_R15 doi: 10.1016/0165-5728(95)00004-L – ident: 2023010121012072500_R10 doi: 10.1006/bbrc.1993.1829 – ident: 2023010121012072500_R11 doi: 10.1016/S0165-5728(96)00148-8 – ident: 2023010121012072500_R21 doi: 10.1016/S0065-2776(01)78002-9 – ident: 2023010121012072500_R41 doi: 10.1084/jem.193.9.1105 – ident: 2023010121012072500_R14 doi: 10.1016/0165-5728(94)90057-4 – ident: 2023010121012072500_R16 doi: 10.1016/S0165-5728(96)00127-0 – ident: 2023010121012072500_R30 doi: 10.1002/ijc.20288 – ident: 2023010121012072500_R40 doi: 10.1084/jem.191.1.77 – ident: 2023010121012072500_R24 doi: 10.1016/S0165-5728(99)00176-9 – ident: 2023010121012072500_R39 doi: 10.1084/jem.191.1.61 – ident: 2023010121012072500_R28 doi: 10.4049/jimmunol.173.3.2078 – ident: 2023010121012072500_R38 doi: 10.1034/j.1600-065X.2003.00067.x – ident: 2023010121012072500_R8 doi: 10.1073/pnas.91.26.12912 – ident: 2023010121012072500_R5 doi: 10.1016/S0960-5428(96)00018-6 – ident: 2023010121012072500_R20 – ident: 2023010121012072500_R33 doi: 10.1146/annurev.iy.12.040194.003113 – ident: 2023010121012072500_R4 doi: 10.1016/S0074-7742(08)60573-5 – ident: 2023010121012072500_R27 doi: 10.1016/S0014-5793(99)01114-X – ident: 2023010121012072500_R6 doi: 10.1016/S0006-2952(98)00153-1 – ident: 2023010121012072500_R18 doi: 10.1016/S0165-5728(99)00042-9 – ident: 2023010121012072500_R9 doi: 10.1016/0014-5793(92)81452-R – ident: 2023010121012072500_R13 doi: 10.1016/0165-5728(93)90170-4 – ident: 2023010121012072500_R22 doi: 10.1146/annurev.immunol.18.1.593 – ident: 2023010121012072500_R25 doi: 10.1002/1521-4141(200112)31:12<3504::AID-IMMU3504>3.0.CO;2-F – ident: 2023010121012072500_R32 doi: 10.4049/jimmunol.168.12.6173 – ident: 2023010121012072500_R12 doi: 10.1016/S1567-5769(03)00100-0 – ident: 2023010121012072500_R2 doi: 10.1210/edrv-4-3-291 – ident: 2023010121012072500_R23 doi: 10.1002/elps.1150181009 – ident: 2023010121012072500_R31 doi: 10.1084/jem.186.9.1407 – ident: 2023010121012072500_R36 doi: 10.1126/science.272.5258.60 – ident: 2023010121012072500_R43 doi: 10.1016/S1471-4906(03)00176-5 – ident: 2023010121012072500_R44 doi: 10.1073/pnas.93.5.1945 – ident: 2023010121012072500_R7 doi: 10.3109/00207459108985446 – ident: 2023010121012072500_R29 doi: 10.1097/01.fbp.0000137857.26150.ab – ident: 2023010121012072500_R19 doi: 10.1016/S0165-5728(02)00280-1 – ident: 2023010121012072500_R1 doi: 10.1152/physrev.1998.78.1.189 – ident: 2023010121012072500_R3 doi: 10.1097/00041552-200201000-00013 – ident: 2023010121012072500_R34 doi: 10.1002/eji.1830250640 – ident: 2023010121012072500_R35 doi: 10.4049/jimmunol.163.10.5535 – ident: 2023010121012072500_R17 doi: 10.1016/S0165-5728(98)00207-0 – ident: 2023010121012072500_R26 doi: 10.1182/blood.V82.1.182.bloodjournal821182 – ident: 2023010121012072500_R42 – ident: 2023010121012072500_R37 doi: 10.1126/science.286.5447.2098 |
SSID | ssj0006024 |
Score | 2.2447917 |
Snippet | The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different... Abstract The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different... |
SourceID | crossref pubmed highwire |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 848 |
SubjectTerms | Animals Base Sequence Calcium Signaling - drug effects CD4-Positive T-Lymphocytes - metabolism CD8-Positive T-Lymphocytes - drug effects CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - physiology Cell Adhesion - drug effects Cell Movement - drug effects Chemokines - pharmacology Chemotaxis, Leukocyte - drug effects Chemotaxis, Leukocyte - physiology DNA, Complementary - genetics Dopamine - pharmacology Drug Synergism Female Fibronectins - metabolism Gene Expression Humans Integrins - metabolism Intercellular Adhesion Molecule-1 - metabolism Mice Mice, Inbred C57BL Receptors, Dopamine D3 - genetics Receptors, Dopamine D3 - physiology |
Title | Dopamine Selectively Induces Migration and Homing of Naive CD8+ T Cells via Dopamine Receptor D3 |
URI | http://www.jimmunol.org/cgi/content/abstract/176/2/848 https://www.ncbi.nlm.nih.gov/pubmed/16393968 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIhCXFSywLE8f2FOU0jiJ4x6hBSpQ90IQ5RTs2NmNmjYr2mxVfhS_kXGcVwtILJfITZpJ6vk0r84DoZeBFEOeEGkTGsfgoHDf5q7ybRXLQIJ9JHmi4x3TMzr57H2Y-bNe72cna6lYi3784491Jf_DVTgHfNVVstfgbEMUTsAa-AtH4DAc_4nHY_B4F9pM_FROswHBlW0tPYxDp1lN0_OKuzo2PskXVX7zGdfJQqMxOyVvrNAaqSxbWVcptxpqYEqqS_DFrbHbtV3bKjLTaEJXlpgOTqfl_2SDTlThCwejk4syWvo1X12k87wJO_M53_JFabSGsIaL7aVzPi9EbpLt01Uxb2EHHv1Fau76WCxN9thuuMIUbHbKB5zAzODoq0rq-uDD0gHdEctmLkyFP9IRssz05qz1tWlMvq8KPHB9tCqoNqMP5Pqk39za7bu9pw-bLEXwjzSVqKYRAY2IREDjBrpJQLBpifp-1qYU0QHx6u70-ieaIi1N49Xv77FrCNXNqfe8m9LKCe-iw4q9-LXB2j3UU8sjdMsMLN0eodvTKhXjPvpWwwV3wIcr8OEGfBjAhw34cJ7gEnwYwGfhEJfQwwA93NCqoYfH7gMUvnsbjiZ2Na7DjkFLrW064IINhSvBBwUnHPwEV-iBBUMKhlKiEhHEfAgLGbsOd6hKGHWE9Bj3pSKOdB-ig2W-VI8Q9pkqK7pBGyVe4BHOpK9ijzNG4VMiTpBVb110aZqyRH9n1gl6Ue9utFrwLIMNdqLNZtP5xrHZ9JYaGO7w4uzxtZ70BN1pIf8UHay_F-oZ2Kxr8bwEyi9M-5ax |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopamine+Selectively+Induces+Migration+and+Homing+of+Naive+CD8%2B+T+Cells+via+Dopamine+Receptor+D3&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Watanabe%2C+Yoshiko&rft.au=Nakayama%2C+Takashi&rft.au=Nagakubo%2C+Daisuke&rft.au=Hieshima%2C+Kunio&rft.date=2006-01-15&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=176&rft.issue=2&rft.spage=848&rft.epage=856&rft_id=info:doi/10.4049%2Fjimmunol.176.2.848&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_176_2_848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |