Dopamine Selectively Induces Migration and Homing of Naive CD8+ T Cells via Dopamine Receptor D3

The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. The secondary lymphoid tissues are highly innervated by sympathetic nerve fibers that...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 176; no. 2; pp. 848 - 856
Main Authors Watanabe, Yoshiko, Nakayama, Takashi, Nagakubo, Daisuke, Hieshima, Kunio, Jin, Zhe, Katou, Fuminori, Hashimoto, Kenji, Yoshie, Osamu
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 15.01.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. The secondary lymphoid tissues are highly innervated by sympathetic nerve fibers that store dopamine at high contents. Lymphocytes also produce dopamine. In this study, we examined expression and function of dopamine receptors in lymphocytes. We found that D3 was the predominant subtype of dopamine receptors in the secondary lymphoid tissues and selectively expressed by naive CD8+ T cells of both humans and mice. Dopamine induced calcium flux and chemotaxis in mouse L1.2 cells stably expressing human D3. These responses were almost completely inhibited by pertussis toxin, indicating that D3 was coupled with the Galphai class of G proteins. Consistently, dopamine selectively induced chemotactic responses in naive CD8+ T cells of both humans and mice in a manner sensitive to pertussis toxin and D3 antagonists. Dopamine was highly synergistic with CCL19, CCL21, and CXCL12 in induction of chemotaxis in naive CD8+ T cells. Dopamine selectively induced adhesion of naive CD8+ T cells to fibronectin and ICAM-1 through activation of integrins. Intraperitoneal injection of mice with dopamine selectively attracted naive CD8+ T cells into the peritoneal cavity. Treatment of mice with a D3 antagonist U-99194A selectively reduced homing of naive CD8+ T cells into lymph nodes. Collectively, naive CD8+ T cells selectively express D3 in both humans and mice, and dopamine plays a significant role in migration and homing of naive CD8+ T cells via D3.
AbstractList The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. The secondary lymphoid tissues are highly innervated by sympathetic nerve fibers that store dopamine at high contents. Lymphocytes also produce dopamine. In this study, we examined expression and function of dopamine receptors in lymphocytes. We found that D3 was the predominant subtype of dopamine receptors in the secondary lymphoid tissues and selectively expressed by naive CD8+ T cells of both humans and mice. Dopamine induced calcium flux and chemotaxis in mouse L1.2 cells stably expressing human D3. These responses were almost completely inhibited by pertussis toxin, indicating that D3 was coupled with the Galphai class of G proteins. Consistently, dopamine selectively induced chemotactic responses in naive CD8+ T cells of both humans and mice in a manner sensitive to pertussis toxin and D3 antagonists. Dopamine was highly synergistic with CCL19, CCL21, and CXCL12 in induction of chemotaxis in naive CD8+ T cells. Dopamine selectively induced adhesion of naive CD8+ T cells to fibronectin and ICAM-1 through activation of integrins. Intraperitoneal injection of mice with dopamine selectively attracted naive CD8+ T cells into the peritoneal cavity. Treatment of mice with a D3 antagonist U-99194A selectively reduced homing of naive CD8+ T cells into lymph nodes. Collectively, naive CD8+ T cells selectively express D3 in both humans and mice, and dopamine plays a significant role in migration and homing of naive CD8+ T cells via D3.
Abstract The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. The secondary lymphoid tissues are highly innervated by sympathetic nerve fibers that store dopamine at high contents. Lymphocytes also produce dopamine. In this study, we examined expression and function of dopamine receptors in lymphocytes. We found that D3 was the predominant subtype of dopamine receptors in the secondary lymphoid tissues and selectively expressed by naive CD8+ T cells of both humans and mice. Dopamine induced calcium flux and chemotaxis in mouse L1.2 cells stably expressing human D3. These responses were almost completely inhibited by pertussis toxin, indicating that D3 was coupled with the Gαi class of G proteins. Consistently, dopamine selectively induced chemotactic responses in naive CD8+ T cells of both humans and mice in a manner sensitive to pertussis toxin and D3 antagonists. Dopamine was highly synergistic with CCL19, CCL21, and CXCL12 in induction of chemotaxis in naive CD8+ T cells. Dopamine selectively induced adhesion of naive CD8+ T cells to fibronectin and ICAM-1 through activation of integrins. Intraperitoneal injection of mice with dopamine selectively attracted naive CD8+ T cells into the peritoneal cavity. Treatment of mice with a D3 antagonist U-99194A selectively reduced homing of naive CD8+ T cells into lymph nodes. Collectively, naive CD8+ T cells selectively express D3 in both humans and mice, and dopamine plays a significant role in migration and homing of naive CD8+ T cells via D3.
Author Yoshie, Osamu
Jin, Zhe
Nagakubo, Daisuke
Katou, Fuminori
Hashimoto, Kenji
Watanabe, Yoshiko
Nakayama, Takashi
Hieshima, Kunio
Author_xml – sequence: 1
  fullname: Watanabe, Yoshiko
– sequence: 2
  fullname: Nakayama, Takashi
– sequence: 3
  fullname: Nagakubo, Daisuke
– sequence: 4
  fullname: Hieshima, Kunio
– sequence: 5
  fullname: Jin, Zhe
– sequence: 6
  fullname: Katou, Fuminori
– sequence: 7
  fullname: Hashimoto, Kenji
– sequence: 8
  fullname: Yoshie, Osamu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16393968$$D View this record in MEDLINE/PubMed
BookMark eNpFkF1LwzAUhoNM3If-AS8kV95Ia9KkaXopm7rBVNDdx7RJt4y2KU23sn9vZNNdnQPneV8OzxgMaltrAG4xCimi6ePWVNWutmWIExZGIaf8AoxwHKOAMcQGYIRQFAX-mAzB2LktQoihiF6BIWYkJSnjI_A9s42sTK3hly513pm9Lg9wUatdrh18M-tWdsbWUNYKzq0H19AW8F16Dk5n_AGu4FSXpYN7I-F_16fOddPZFs7INbgsZOn0zWlOwOrleTWdB8uP18X0aRnkJGFdwJDMeJoRxZIYMxozRjJEuX-SYlLoIktymfpF5QRLzHTBGc4U5TJWOsKKTEB0rM1b61yrC9G0ppLtQWAkfm2JP1vCCxGR8LZ86O4YanZZpdU5ctLjgfsjsDHrTW9aLVwly9LjWPR9f276ASVJdrQ
CitedBy_id crossref_primary_10_1038_s41577_023_00949_8
crossref_primary_10_1016_j_jneuroim_2014_02_009
crossref_primary_10_1016_j_jneuroim_2016_12_014
crossref_primary_10_1080_13813455_2019_1638942
crossref_primary_10_1124_pharmrev_122_000618
crossref_primary_10_1016_j_imbio_2014_12_021
crossref_primary_10_1021_acs_jproteome_2c00707
crossref_primary_10_1186_s13075_023_03071_1
crossref_primary_10_1016_j_bbih_2021_100199
crossref_primary_10_1016_j_neuro_2014_01_006
crossref_primary_10_2177_jsci_32_1
crossref_primary_10_1007_s11481_017_9749_2
crossref_primary_10_17116_jnevro20151159165_69
crossref_primary_10_1016_j_jneuroim_2019_02_007
crossref_primary_10_1111_j_1365_2567_2006_02511_x
crossref_primary_10_1186_1742_2094_9_203
crossref_primary_10_1155_2014_207651
crossref_primary_10_4049_jimmunol_1203121
crossref_primary_10_3389_fphar_2020_00394
crossref_primary_10_4049_jimmunol_177_11_7525
crossref_primary_10_1016_j_earlhumdev_2015_09_010
crossref_primary_10_1111_j_1759_1961_2011_00023_x
crossref_primary_10_1016_j_intimp_2016_04_030
crossref_primary_10_3389_fcell_2021_688953
crossref_primary_10_17650_1726_9784_2019_18_4_25_33
crossref_primary_10_1016_j_intimp_2019_105908
crossref_primary_10_3389_fnins_2022_1002004
crossref_primary_10_17116_jnevro2015115228_15
crossref_primary_10_1016_j_jneuroim_2019_04_006
crossref_primary_10_1038_s41385_020_00354_7
crossref_primary_10_1080_08923973_2022_2052894
crossref_primary_10_3389_fimmu_2018_00284
crossref_primary_10_1186_1471_2172_10_62
crossref_primary_10_1186_s12974_021_02338_1
crossref_primary_10_1371_journal_pone_0117450
crossref_primary_10_2337_db10_0054
crossref_primary_10_1007_s11481_015_9626_9
crossref_primary_10_1111_j_1471_4159_2010_06799_x
crossref_primary_10_1016_j_vetpar_2009_09_028
crossref_primary_10_1159_000501187
crossref_primary_10_1097_WNF_0B013E3181761466
crossref_primary_10_1016_j_imbio_2014_10_016
crossref_primary_10_1016_j_euroneuro_2008_04_014
crossref_primary_10_1007_s00406_010_0098_x
crossref_primary_10_1016_j_bbi_2021_08_220
crossref_primary_10_1016_j_cellsig_2022_110449
crossref_primary_10_1155_2016_3160486
crossref_primary_10_1093_biolre_ioy085
crossref_primary_10_1007_s00281_020_00819_8
crossref_primary_10_1002_cti2_1469
crossref_primary_10_3389_fimmu_2014_00117
crossref_primary_10_1016_j_phrs_2019_104293
crossref_primary_10_1182_blood_2009_08_240077
crossref_primary_10_1016_j_ygcen_2011_12_006
crossref_primary_10_1016_j_imbio_2012_11_002
crossref_primary_10_1111_apha_12476
crossref_primary_10_1111_j_1399_3038_2007_00578_x
crossref_primary_10_1182_blood_2006_01_028423
crossref_primary_10_1159_000530765
crossref_primary_10_1177_1756286418774225
crossref_primary_10_1016_j_ajog_2012_08_009
crossref_primary_10_1007_s11481_018_9825_2
crossref_primary_10_3390_cells11223536
crossref_primary_10_1007_s11481_019_09851_4
crossref_primary_10_3389_fimmu_2020_01869
crossref_primary_10_1158_0008_5472_CAN_21_4084
crossref_primary_10_1007_s11481_013_9443_y
crossref_primary_10_1016_j_scib_2024_04_002
crossref_primary_10_1016_j_semcancer_2007_12_007
crossref_primary_10_1111_ejn_12598
crossref_primary_10_1111_febs_12549
crossref_primary_10_4049_jimmunol_1401114
crossref_primary_10_1126_sciadv_adi6799
crossref_primary_10_1016_j_psyneuen_2018_06_023
crossref_primary_10_1016_j_bbi_2009_10_015
crossref_primary_10_4049_jimmunol_1103096
crossref_primary_10_1371_journal_pone_0065860
crossref_primary_10_1016_j_ejphar_2019_172826
crossref_primary_10_1016_j_bbrc_2008_06_012
crossref_primary_10_1136_lupus_2023_000943
crossref_primary_10_1146_annurev_biophys_052118_115534
crossref_primary_10_1155_2013_705232
crossref_primary_10_4049_jimmunol_1502420
crossref_primary_10_1016_j_bbi_2018_03_020
crossref_primary_10_1007_s00702_016_1640_4
crossref_primary_10_1016_j_it_2007_07_005
crossref_primary_10_1111_imm_13109
crossref_primary_10_1007_s00702_014_1242_y
crossref_primary_10_1016_j_bone_2013_04_019
crossref_primary_10_1186_s13041_022_00902_1
crossref_primary_10_3389_fmicb_2024_1345684
crossref_primary_10_4049_jimmunol_1002475
crossref_primary_10_1155_2015_496759
crossref_primary_10_1155_2015_103969
Cites_doi 10.1016/0165-5728(95)00004-L
10.1006/bbrc.1993.1829
10.1016/S0165-5728(96)00148-8
10.1016/S0065-2776(01)78002-9
10.1084/jem.193.9.1105
10.1016/0165-5728(94)90057-4
10.1016/S0165-5728(96)00127-0
10.1002/ijc.20288
10.1084/jem.191.1.77
10.1016/S0165-5728(99)00176-9
10.1084/jem.191.1.61
10.4049/jimmunol.173.3.2078
10.1034/j.1600-065X.2003.00067.x
10.1073/pnas.91.26.12912
10.1016/S0960-5428(96)00018-6
10.1146/annurev.iy.12.040194.003113
10.1016/S0074-7742(08)60573-5
10.1016/S0014-5793(99)01114-X
10.1016/S0006-2952(98)00153-1
10.1016/S0165-5728(99)00042-9
10.1016/0014-5793(92)81452-R
10.1016/0165-5728(93)90170-4
10.1146/annurev.immunol.18.1.593
10.1002/1521-4141(200112)31:12<3504::AID-IMMU3504>3.0.CO;2-F
10.4049/jimmunol.168.12.6173
10.1016/S1567-5769(03)00100-0
10.1210/edrv-4-3-291
10.1002/elps.1150181009
10.1084/jem.186.9.1407
10.1126/science.272.5258.60
10.1016/S1471-4906(03)00176-5
10.1073/pnas.93.5.1945
10.3109/00207459108985446
10.1097/01.fbp.0000137857.26150.ab
10.1016/S0165-5728(02)00280-1
10.1152/physrev.1998.78.1.189
10.1097/00041552-200201000-00013
10.1002/eji.1830250640
10.4049/jimmunol.163.10.5535
10.1016/S0165-5728(98)00207-0
10.1182/blood.V82.1.182.bloodjournal821182
10.1126/science.286.5447.2098
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.4049/jimmunol.176.2.848
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 856
ExternalDocumentID 10_4049_jimmunol_176_2_848
16393968
www176_2_848
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
79B
85S
8RP
AALRV
AARDX
ABEFU
ABFLS
ABOCM
ABPPZ
ABPTK
ACGFS
ACIWK
ACNCT
ACPRK
ADACO
ADBBV
ADKFC
AENEX
AETEA
AFFNX
AFRAH
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
G8K
GJ
GX1
H13
IH2
J5H
K-O
K78
KQ8
L7B
MVM
MYA
NEJ
O0-
OK1
P0W
P2P
PQEST
PQQKQ
R.V
RHF
RHI
RZQ
SJN
TWZ
WH7
WOQ
X
X7M
XJT
ZA5
ZE2
ZGI
---
-~X
.55
.GJ
18M
ABCQX
ABJNI
ACGFO
ADNWM
AFHIN
AFOSN
AHWXS
AIZAD
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
TR2
W8F
XSW
XTH
YHG
AAYXX
CITATION
ID FETCH-LOGICAL-c376t-60ab89b3d6751645663b048396413fefb7ca93fedc31a16ef861bd48a5de21d3
ISSN 0022-1767
IngestDate Thu Sep 26 18:30:05 EDT 2024
Sat Sep 28 08:38:41 EDT 2024
Tue Nov 10 19:50:45 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-60ab89b3d6751645663b048396413fefb7ca93fedc31a16ef861bd48a5de21d3
OpenAccessLink https://journals.aai.org/jimmunol/article-pdf/176/2/848/1214521/848.pdf
PMID 16393968
PageCount 9
ParticipantIDs crossref_primary_10_4049_jimmunol_176_2_848
pubmed_primary_16393968
highwire_smallpub1_www176_2_848
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 20060115
2006-Jan-15
2006-01-15
PublicationDateYYYYMMDD 2006-01-15
PublicationDate_xml – month: 01
  year: 2006
  text: 20060115
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2006
Publisher Am Assoc Immnol
Publisher_xml – name: Am Assoc Immnol
References 2023010121012072500_R22
2023010121012072500_R44
2023010121012072500_R23
2023010121012072500_R20
2023010121012072500_R42
2023010121012072500_R21
2023010121012072500_R43
2023010121012072500_R40
2023010121012072500_R41
2023010121012072500_R28
2023010121012072500_R29
2023010121012072500_R26
2023010121012072500_R27
2023010121012072500_R24
2023010121012072500_R25
2023010121012072500_R11
2023010121012072500_R33
2023010121012072500_R12
2023010121012072500_R34
2023010121012072500_R31
2023010121012072500_R10
2023010121012072500_R32
2023010121012072500_R30
2023010121012072500_R19
2023010121012072500_R17
2023010121012072500_R39
2023010121012072500_R18
2023010121012072500_R7
2023010121012072500_R15
2023010121012072500_R37
2023010121012072500_R6
2023010121012072500_R16
2023010121012072500_R38
2023010121012072500_R9
2023010121012072500_R13
2023010121012072500_R35
2023010121012072500_R8
2023010121012072500_R14
2023010121012072500_R36
2023010121012072500_R3
2023010121012072500_R2
2023010121012072500_R5
2023010121012072500_R4
2023010121012072500_R1
References_xml – ident: 2023010121012072500_R15
  doi: 10.1016/0165-5728(95)00004-L
– ident: 2023010121012072500_R10
  doi: 10.1006/bbrc.1993.1829
– ident: 2023010121012072500_R11
  doi: 10.1016/S0165-5728(96)00148-8
– ident: 2023010121012072500_R21
  doi: 10.1016/S0065-2776(01)78002-9
– ident: 2023010121012072500_R41
  doi: 10.1084/jem.193.9.1105
– ident: 2023010121012072500_R14
  doi: 10.1016/0165-5728(94)90057-4
– ident: 2023010121012072500_R16
  doi: 10.1016/S0165-5728(96)00127-0
– ident: 2023010121012072500_R30
  doi: 10.1002/ijc.20288
– ident: 2023010121012072500_R40
  doi: 10.1084/jem.191.1.77
– ident: 2023010121012072500_R24
  doi: 10.1016/S0165-5728(99)00176-9
– ident: 2023010121012072500_R39
  doi: 10.1084/jem.191.1.61
– ident: 2023010121012072500_R28
  doi: 10.4049/jimmunol.173.3.2078
– ident: 2023010121012072500_R38
  doi: 10.1034/j.1600-065X.2003.00067.x
– ident: 2023010121012072500_R8
  doi: 10.1073/pnas.91.26.12912
– ident: 2023010121012072500_R5
  doi: 10.1016/S0960-5428(96)00018-6
– ident: 2023010121012072500_R20
– ident: 2023010121012072500_R33
  doi: 10.1146/annurev.iy.12.040194.003113
– ident: 2023010121012072500_R4
  doi: 10.1016/S0074-7742(08)60573-5
– ident: 2023010121012072500_R27
  doi: 10.1016/S0014-5793(99)01114-X
– ident: 2023010121012072500_R6
  doi: 10.1016/S0006-2952(98)00153-1
– ident: 2023010121012072500_R18
  doi: 10.1016/S0165-5728(99)00042-9
– ident: 2023010121012072500_R9
  doi: 10.1016/0014-5793(92)81452-R
– ident: 2023010121012072500_R13
  doi: 10.1016/0165-5728(93)90170-4
– ident: 2023010121012072500_R22
  doi: 10.1146/annurev.immunol.18.1.593
– ident: 2023010121012072500_R25
  doi: 10.1002/1521-4141(200112)31:12<3504::AID-IMMU3504>3.0.CO;2-F
– ident: 2023010121012072500_R32
  doi: 10.4049/jimmunol.168.12.6173
– ident: 2023010121012072500_R12
  doi: 10.1016/S1567-5769(03)00100-0
– ident: 2023010121012072500_R2
  doi: 10.1210/edrv-4-3-291
– ident: 2023010121012072500_R23
  doi: 10.1002/elps.1150181009
– ident: 2023010121012072500_R31
  doi: 10.1084/jem.186.9.1407
– ident: 2023010121012072500_R36
  doi: 10.1126/science.272.5258.60
– ident: 2023010121012072500_R43
  doi: 10.1016/S1471-4906(03)00176-5
– ident: 2023010121012072500_R44
  doi: 10.1073/pnas.93.5.1945
– ident: 2023010121012072500_R7
  doi: 10.3109/00207459108985446
– ident: 2023010121012072500_R29
  doi: 10.1097/01.fbp.0000137857.26150.ab
– ident: 2023010121012072500_R19
  doi: 10.1016/S0165-5728(02)00280-1
– ident: 2023010121012072500_R1
  doi: 10.1152/physrev.1998.78.1.189
– ident: 2023010121012072500_R3
  doi: 10.1097/00041552-200201000-00013
– ident: 2023010121012072500_R34
  doi: 10.1002/eji.1830250640
– ident: 2023010121012072500_R35
  doi: 10.4049/jimmunol.163.10.5535
– ident: 2023010121012072500_R17
  doi: 10.1016/S0165-5728(98)00207-0
– ident: 2023010121012072500_R26
  doi: 10.1182/blood.V82.1.182.bloodjournal821182
– ident: 2023010121012072500_R42
– ident: 2023010121012072500_R37
  doi: 10.1126/science.286.5447.2098
SSID ssj0006024
Score 2.2447917
Snippet The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different...
Abstract The nervous systems affect immune functions by releasing neurohormones and neurotransmitters. A neurotransmitter dopamine signals via five different...
SourceID crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Publisher
StartPage 848
SubjectTerms Animals
Base Sequence
Calcium Signaling - drug effects
CD4-Positive T-Lymphocytes - metabolism
CD8-Positive T-Lymphocytes - drug effects
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - physiology
Cell Adhesion - drug effects
Cell Movement - drug effects
Chemokines - pharmacology
Chemotaxis, Leukocyte - drug effects
Chemotaxis, Leukocyte - physiology
DNA, Complementary - genetics
Dopamine - pharmacology
Drug Synergism
Female
Fibronectins - metabolism
Gene Expression
Humans
Integrins - metabolism
Intercellular Adhesion Molecule-1 - metabolism
Mice
Mice, Inbred C57BL
Receptors, Dopamine D3 - genetics
Receptors, Dopamine D3 - physiology
Title Dopamine Selectively Induces Migration and Homing of Naive CD8+ T Cells via Dopamine Receptor D3
URI http://www.jimmunol.org/cgi/content/abstract/176/2/848
https://www.ncbi.nlm.nih.gov/pubmed/16393968
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIhCXFSywLE8f2FOU0jiJ4x6hBSpQ90IQ5RTs2NmNmjYr2mxVfhS_kXGcVwtILJfITZpJ6vk0r84DoZeBFEOeEGkTGsfgoHDf5q7ybRXLQIJ9JHmi4x3TMzr57H2Y-bNe72cna6lYi3784491Jf_DVTgHfNVVstfgbEMUTsAa-AtH4DAc_4nHY_B4F9pM_FROswHBlW0tPYxDp1lN0_OKuzo2PskXVX7zGdfJQqMxOyVvrNAaqSxbWVcptxpqYEqqS_DFrbHbtV3bKjLTaEJXlpgOTqfl_2SDTlThCwejk4syWvo1X12k87wJO_M53_JFabSGsIaL7aVzPi9EbpLt01Uxb2EHHv1Fau76WCxN9thuuMIUbHbKB5zAzODoq0rq-uDD0gHdEctmLkyFP9IRssz05qz1tWlMvq8KPHB9tCqoNqMP5Pqk39za7bu9pw-bLEXwjzSVqKYRAY2IREDjBrpJQLBpifp-1qYU0QHx6u70-ieaIi1N49Xv77FrCNXNqfe8m9LKCe-iw4q9-LXB2j3UU8sjdMsMLN0eodvTKhXjPvpWwwV3wIcr8OEGfBjAhw34cJ7gEnwYwGfhEJfQwwA93NCqoYfH7gMUvnsbjiZ2Na7DjkFLrW064IINhSvBBwUnHPwEV-iBBUMKhlKiEhHEfAgLGbsOd6hKGHWE9Bj3pSKOdB-ig2W-VI8Q9pkqK7pBGyVe4BHOpK9ijzNG4VMiTpBVb110aZqyRH9n1gl6Ue9utFrwLIMNdqLNZtP5xrHZ9JYaGO7w4uzxtZ70BN1pIf8UHay_F-oZ2Kxr8bwEyi9M-5ax
link.rule.ids 315,783,787,27936,27937
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopamine+Selectively+Induces+Migration+and+Homing+of+Naive+CD8%2B+T+Cells+via+Dopamine+Receptor+D3&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Watanabe%2C+Yoshiko&rft.au=Nakayama%2C+Takashi&rft.au=Nagakubo%2C+Daisuke&rft.au=Hieshima%2C+Kunio&rft.date=2006-01-15&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=176&rft.issue=2&rft.spage=848&rft.epage=856&rft_id=info:doi/10.4049%2Fjimmunol.176.2.848&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_176_2_848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon