Printing Parameter Optimization of Additive Manufactured PLA Using Taguchi Design of Experiment
Three-dimensional printing (3DP), known as additive layer manufacturing (ALM), is a manufacturing process in which a three-dimensional structure is constructed by successive addition of deposited layers. Fused Deposition Modeling (FDM) has evolved as the most frequently utilized ALM process because...
Saved in:
Published in | Polymers Vol. 15; no. 22; p. 4370 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-4360 2073-4360 |
DOI | 10.3390/polym15224370 |
Cover
Loading…
Abstract | Three-dimensional printing (3DP), known as additive layer manufacturing (ALM), is a manufacturing process in which a three-dimensional structure is constructed by successive addition of deposited layers. Fused Deposition Modeling (FDM) has evolved as the most frequently utilized ALM process because of its cost-effectiveness and ease of operation. Nevertheless, layer adhesion, delamination, and quality of the finished product remain issues associated with the FDM process parameters. These issues need to be addressed in order to satisfy the requirements commonly imposed by the conventional manufacturing industry. This work is focused on the optimization of the FDM process and post-process parameters for Polylactic acid (PLA) samples in an effort to maximize their tensile strength. Infill density and pattern type, layer height, and print temperature are the process parameters, while annealing temperature is the post-process parameter considered for the investigation. Analysis based on the Taguchi L18 orthogonal array shows that the gyroid infill pattern and annealing cycle at 90 °C results in a maximum ultimate tensile strength (UTM) of 37.15 MPa. Furthermore, the regression model developed for the five variables under study was able to predict the UTS with an accuracy of more than 96%. |
---|---|
AbstractList | Three-dimensional printing (3DP), known as additive layer manufacturing (ALM), is a manufacturing process in which a three-dimensional structure is constructed by successive addition of deposited layers. Fused Deposition Modeling (FDM) has evolved as the most frequently utilized ALM process because of its cost-effectiveness and ease of operation. Nevertheless, layer adhesion, delamination, and quality of the finished product remain issues associated with the FDM process parameters. These issues need to be addressed in order to satisfy the requirements commonly imposed by the conventional manufacturing industry. This work is focused on the optimization of the FDM process and post-process parameters for Polylactic acid (PLA) samples in an effort to maximize their tensile strength. Infill density and pattern type, layer height, and print temperature are the process parameters, while annealing temperature is the post-process parameter considered for the investigation. Analysis based on the Taguchi L18 orthogonal array shows that the gyroid infill pattern and annealing cycle at 90 °C results in a maximum ultimate tensile strength (UTM) of 37.15 MPa. Furthermore, the regression model developed for the five variables under study was able to predict the UTS with an accuracy of more than 96%. Three-dimensional printing (3DP), known as additive layer manufacturing (ALM), is a manufacturing process in which a three-dimensional structure is constructed by successive addition of deposited layers. Fused Deposition Modeling (FDM) has evolved as the most frequently utilized ALM process because of its cost-effectiveness and ease of operation. Nevertheless, layer adhesion, delamination, and quality of the finished product remain issues associated with the FDM process parameters. These issues need to be addressed in order to satisfy the requirements commonly imposed by the conventional manufacturing industry. This work is focused on the optimization of the FDM process and post-process parameters for Polylactic acid (PLA) samples in an effort to maximize their tensile strength. Infill density and pattern type, layer height, and print temperature are the process parameters, while annealing temperature is the post-process parameter considered for the investigation. Analysis based on the Taguchi L18 orthogonal array shows that the gyroid infill pattern and annealing cycle at 90 °C results in a maximum ultimate tensile strength (UTM) of 37.15 MPa. Furthermore, the regression model developed for the five variables under study was able to predict the UTS with an accuracy of more than 96%.Three-dimensional printing (3DP), known as additive layer manufacturing (ALM), is a manufacturing process in which a three-dimensional structure is constructed by successive addition of deposited layers. Fused Deposition Modeling (FDM) has evolved as the most frequently utilized ALM process because of its cost-effectiveness and ease of operation. Nevertheless, layer adhesion, delamination, and quality of the finished product remain issues associated with the FDM process parameters. These issues need to be addressed in order to satisfy the requirements commonly imposed by the conventional manufacturing industry. This work is focused on the optimization of the FDM process and post-process parameters for Polylactic acid (PLA) samples in an effort to maximize their tensile strength. Infill density and pattern type, layer height, and print temperature are the process parameters, while annealing temperature is the post-process parameter considered for the investigation. Analysis based on the Taguchi L18 orthogonal array shows that the gyroid infill pattern and annealing cycle at 90 °C results in a maximum ultimate tensile strength (UTM) of 37.15 MPa. Furthermore, the regression model developed for the five variables under study was able to predict the UTS with an accuracy of more than 96%. |
Audience | Academic |
Author | Ahmed, Bilal Anjum Hakeem, Abbas Saeed Nadeem, Uzair Younas, Muhammad Saeed, Hasan Aftab Ul-Hamid, Anwar Khan, Mohd Yusuf |
Author_xml | – sequence: 1 givenname: Bilal Anjum orcidid: 0000-0001-7972-9248 surname: Ahmed fullname: Ahmed, Bilal Anjum – sequence: 2 givenname: Uzair surname: Nadeem fullname: Nadeem, Uzair – sequence: 3 givenname: Abbas Saeed orcidid: 0000-0003-1422-442X surname: Hakeem fullname: Hakeem, Abbas Saeed – sequence: 4 givenname: Anwar orcidid: 0000-0002-0259-301X surname: Ul-Hamid fullname: Ul-Hamid, Anwar – sequence: 5 givenname: Mohd Yusuf orcidid: 0000-0002-1199-6232 surname: Khan fullname: Khan, Mohd Yusuf – sequence: 6 givenname: Muhammad orcidid: 0000-0001-5368-3341 surname: Younas fullname: Younas, Muhammad – sequence: 7 givenname: Hasan Aftab orcidid: 0000-0002-4676-0019 surname: Saeed fullname: Saeed, Hasan Aftab |
BookMark | eNp1kU1P3DAQhq0KJOjCkXukXnoJOPFXclxRSistYg9wjhx7vDVK7NR2Kra_Hu8uB0DCc7A1ep6R9c5XdOS8A4QuKnxJSIuvJj9sx4rVNSUCf0GnNRakpITjozfvE3Qe4xPOhzLOK3GKunWwLlm3KdYyyBEShOJ-Sna0_2Wy3hXeFEutbbL_oLiTbjZSpTmALtarZfEYd-aD3Mzqjy1-QLSbvXHzPEGwI7h0ho6NHCKcv94L9Pjz5uH6V7m6v_19vVyVigieSqZZTzjHrAEm6l7gVktMlMY9ayk3uCXMVH3fK2g0Zco0jWSV4ZJJyqmWDVmg74e5U_B_Z4ipG21UMAzSgZ9jVzctaShlVGT02wf0yc_B5d_tKVIz3tBMXR6ojRygs874FKTKpWG0KmdvbO4vhaBZ2AW8QOQgqOBjDGA6ZdM-wyzaoatwt1tU925R2So_WFMOTobtJ_wLFkqXNg |
CitedBy_id | crossref_primary_10_1515_polyeng_2024_0196 crossref_primary_10_1007_s42114_024_01035_w crossref_primary_10_3390_ma17235951 crossref_primary_10_3390_polym17050651 |
Cites_doi | 10.1016/j.promfg.2019.02.047 10.1016/j.jmrt.2019.06.034 10.1016/j.matpr.2022.11.145 10.1016/j.dental.2015.09.018 10.1002/adma.201401804 10.1016/j.ceramint.2022.07.117 10.1016/j.compstruct.2017.08.088 10.1093/icc/dtaa060 10.1016/j.mtcomm.2022.104912 10.1016/j.matpr.2022.03.700 10.1051/matecconf/201929800016 10.1016/j.jmapro.2018.09.025 10.1016/j.rineng.2021.100264 10.1007/s00170-015-7576-2 10.1007/s00170-011-3878-1 10.1016/j.matpr.2022.03.444 10.1016/j.matdes.2017.03.065 10.1016/j.jmapro.2021.05.074 10.1016/j.engfailanal.2021.105932 10.1016/j.mtcomm.2022.104774 10.1016/j.matdes.2019.108089 10.1016/j.compositesa.2015.05.014 10.1088/1757-899X/114/1/012109 10.1016/j.jmapro.2023.01.065 10.3390/polym12092091 10.1016/j.promfg.2017.07.148 10.1039/C8TC01092G 10.1016/j.matpr.2022.11.208 10.1016/j.cirp.2016.05.004 10.1142/S0219877020500054 10.1016/j.mtcomm.2022.105171 10.3390/polym11071172 10.1007/s00158-015-1274-4 10.1016/j.mtadv.2021.100157 10.1016/j.jmbbm.2019.103611 10.1016/j.matpr.2019.06.009 10.1016/j.compositesb.2018.02.012 10.1016/j.compositesb.2016.11.034 10.1016/j.matpr.2021.11.054 10.1016/j.matpr.2022.05.422 10.1007/s00170-015-7871-y 10.1016/j.matpr.2023.03.217 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.3390/polym15224370 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database (ProQuest) Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4360 |
ExternalDocumentID | A774325207 10_3390_polym15224370 |
GeographicLocations | Saudi Arabia |
GeographicLocations_xml | – name: Saudi Arabia |
GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RNS RPM TR2 TUS PMFND 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c376t-5d5b366058e572b709da03cd0b5946f0935f1bbbce8d45cf88a51f6a5a464da83 |
IEDL.DBID | BENPR |
ISSN | 2073-4360 |
IngestDate | Thu Jul 10 23:18:09 EDT 2025 Fri Jul 25 11:59:18 EDT 2025 Tue Jun 10 20:57:53 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Tue Jul 01 03:21:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-5d5b366058e572b709da03cd0b5946f0935f1bbbce8d45cf88a51f6a5a464da83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7972-9248 0000-0002-1199-6232 0000-0002-4676-0019 0000-0002-0259-301X 0000-0003-1422-442X 0000-0001-5368-3341 |
OpenAccessLink | https://www.proquest.com/docview/2893325684?pq-origsite=%requestingapplication% |
PQID | 2893325684 |
PQPubID | 2032345 |
ParticipantIDs | proquest_miscellaneous_2893844547 proquest_journals_2893325684 gale_infotracacademiconefile_A774325207 crossref_citationtrail_10_3390_polym15224370 crossref_primary_10_3390_polym15224370 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Polymers |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Dilberoglu (ref_8) 2017; 11 Gebisa (ref_20) 2019; 30 Zerankeshi (ref_36) 2022; 48 Steenhuis (ref_9) 2020; 17 Lokesh (ref_28) 2022; 52 (ref_37) 2022; 33 Sajjad (ref_40) 2023; 89 Wu (ref_15) 2018; 6 Tandon (ref_41) 2021; 68 Maurya (ref_32) 2022; 64 Romanova (ref_19) 2019; 298 Mai (ref_5) 2016; 84 ref_16 Liu (ref_30) 2019; 8 Zhao (ref_25) 2019; 181 Mata (ref_33) 2022; 33 Szust (ref_27) 2022; 132 Rao (ref_26) 2019; 18 Postiglione (ref_13) 2015; 76 Christiyan (ref_21) 2016; 114 Atzeni (ref_4) 2012; 62 Mani (ref_29) 2022; 66 Zegard (ref_3) 2016; 53 Stansbury (ref_18) 2016; 32 Bikas (ref_17) 2016; 83 ref_23 ref_44 ref_43 Wang (ref_11) 2017; 110 ref_42 Ngo (ref_2) 2018; 143 Hamat (ref_34) 2023; 74 Singh (ref_35) 2022; 63 ref_1 Vidakis (ref_38) 2023; 34 Thompson (ref_6) 2016; 65 Parandoush (ref_10) 2017; 182 Alafaghani (ref_39) 2018; 36 Martinelli (ref_7) 2021; 30 Hikmat (ref_24) 2021; 11 Wu (ref_14) 2021; 11 Sahoo (ref_31) 2023; 74 Caminero (ref_22) 2017; 124 Compton (ref_12) 2014; 26 |
References_xml | – volume: 30 start-page: 331 year: 2019 ident: ref_20 article-title: Influence of 3D Printing FDM Process Parameters on Tensile Property of ULTEM 9085 publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.02.047 – volume: 8 start-page: 3741 year: 2019 ident: ref_30 article-title: Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2019.06.034 – volume: 74 start-page: 457 year: 2023 ident: ref_34 article-title: Influence of filament fabrication parameter on tensile strength and filament size of 3D printing PLA-3D850 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.11.145 – volume: 32 start-page: 54 year: 2016 ident: ref_18 article-title: 3D printing with polymers: Challenges among expanding options and opportunities publication-title: Dent. Mater. doi: 10.1016/j.dental.2015.09.018 – volume: 26 start-page: 5930 year: 2014 ident: ref_12 article-title: 3D-printing of lightweight cellular composites publication-title: Adv. Mater. doi: 10.1002/adma.201401804 – volume: 48 start-page: 31850 year: 2022 ident: ref_36 article-title: Developing a novel technique for the fabrication of PLA-graphite composite filaments using FDM 3D printing process publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.07.117 – volume: 182 start-page: 36 year: 2017 ident: ref_10 article-title: A review on additive manufacturing of polymer-fiber composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.08.088 – volume: 30 start-page: 161 year: 2021 ident: ref_7 article-title: The enabling technologies of industry 4.0: Examining the seeds of the fourth industrial revolution publication-title: Ind. Corp. Chang. doi: 10.1093/icc/dtaa060 – volume: 33 start-page: 104912 year: 2022 ident: ref_37 article-title: Effect of infill pattern and ratio on the flexural and vibration damping characteristics of FDM printed PLA specimens publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104912 – volume: 64 start-page: 1217 year: 2022 ident: ref_32 article-title: Investigation of different parameters of cube printed using PLA by FDM 3D printer publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.03.700 – volume: 298 start-page: 00016 year: 2019 ident: ref_19 article-title: Thermal properties of products based on ABS/PC publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201929800016 – volume: 36 start-page: 164 year: 2018 ident: ref_39 article-title: Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method publication-title: J. Manuf. Process doi: 10.1016/j.jmapro.2018.09.025 – volume: 11 start-page: 100264 year: 2021 ident: ref_24 article-title: Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology publication-title: Results Eng. doi: 10.1016/j.rineng.2021.100264 – volume: 83 start-page: 389 year: 2016 ident: ref_17 article-title: Additive manufacturing methods and modeling approaches: A critical review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7576-2 – volume: 62 start-page: 1147 year: 2012 ident: ref_4 article-title: Economics of additive manufacturing for end-usable metal parts publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3878-1 – volume: 63 start-page: 433 year: 2022 ident: ref_35 article-title: Effect of filling percentage and raster style on tensile behavior of FDM produced PLA parts at different build orientation publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.03.444 – volume: 124 start-page: 143 year: 2017 ident: ref_22 article-title: Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.03.065 – volume: 68 start-page: 706 year: 2021 ident: ref_41 article-title: Experimental investigation on tensile properties of the polymer and composite specimens printed in a Triangular pattern publication-title: J. Manuf. Process doi: 10.1016/j.jmapro.2021.05.074 – volume: 132 start-page: 105932 year: 2022 ident: ref_27 article-title: Using thermal annealing and salt remelting to increase tensile properties of 3D FDM prints publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105932 – ident: ref_42 – ident: ref_1 – volume: 33 start-page: 104774 year: 2022 ident: ref_33 article-title: Mechanical properties optimization for PLA, ABS and Nylon + CF manufactured by 3D FDM printing publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104774 – volume: 181 start-page: 108089 year: 2019 ident: ref_25 article-title: Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: Experimental and theoretical analyses publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108089 – volume: 76 start-page: 110 year: 2015 ident: ref_13 article-title: Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling publication-title: Compos. Part. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.05.014 – volume: 114 start-page: 012109 year: 2016 ident: ref_21 article-title: A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/114/1/012109 – volume: 89 start-page: 105 year: 2023 ident: ref_40 article-title: Impact of multiple infill strategy on the structural strength of single build FDM printed parts publication-title: J. Manuf. Process doi: 10.1016/j.jmapro.2023.01.065 – ident: ref_43 doi: 10.3390/polym12092091 – volume: 11 start-page: 545 year: 2017 ident: ref_8 article-title: The Role of Additive Manufacturing in the Era of Industry 4.0 publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2017.07.148 – volume: 6 start-page: 6200 year: 2018 ident: ref_15 article-title: A self-healing, adaptive and conductive polymer composite ink for 3D printing of gas sensors publication-title: J. Mater. Chem. C Mater. doi: 10.1039/C8TC01092G – volume: 74 start-page: 843 year: 2023 ident: ref_31 article-title: Experimental investigation and optimization of the FDM process using PLA publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.11.208 – volume: 65 start-page: 737 year: 2016 ident: ref_6 article-title: Design for additive manufacturing: Trends, opportunities, considerations, and constraints publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/j.cirp.2016.05.004 – volume: 17 start-page: 2050005 year: 2020 ident: ref_9 article-title: Global Diffusion of Innovation during the Fourth Industrial Revolution: The Case of Additive Manufacturing or 3D Printing publication-title: Int. J. Innov. Technol. Manag. doi: 10.1142/S0219877020500054 – volume: 34 start-page: 105171 year: 2023 ident: ref_38 article-title: Optimization of key quality indicators in material extrusion 3D printing of acrylonitrile butadiene styrene: The impact of critical process control parameters on the surface roughness, dimensional accuracy, and porosity publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.105171 – ident: ref_44 doi: 10.3390/polym11071172 – volume: 53 start-page: 175 year: 2016 ident: ref_3 article-title: Bridging topology optimization and additive manufacturing publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1274-4 – volume: 11 start-page: 100157 year: 2021 ident: ref_14 article-title: Three-dimensional printing of graphene-based materials and the application in energy storage publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2021.100157 – ident: ref_16 doi: 10.1016/j.jmbbm.2019.103611 – volume: 18 start-page: 2012 year: 2019 ident: ref_26 article-title: Effect of fused deposition modelling (FDM) process parameters on tensile strength of carbon fibre PLA publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2019.06.009 – volume: 143 start-page: 172 year: 2018 ident: ref_2 article-title: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.02.012 – volume: 110 start-page: 442 year: 2017 ident: ref_11 article-title: 3D printing of polymer matrix composites: A review and prospective publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2016.11.034 – volume: 52 start-page: 1288 year: 2022 ident: ref_28 article-title: Evaluation on effect of printing process parameter through Taguchi approach on mechanical properties of 3D printed PLA specimens using FDM at constant printing temperature publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.11.054 – volume: 66 start-page: 1926 year: 2022 ident: ref_29 article-title: Optimization of FDM 3-D printer process parameters for surface roughness and mechanical properties using PLA material publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.05.422 – volume: 84 start-page: 71 year: 2016 ident: ref_5 article-title: Customized production based on distributed 3D printing services in cloud manufacturing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7871-y – ident: ref_23 doi: 10.1016/j.matpr.2023.03.217 |
SSID | ssj0000456617 |
Score | 2.3593338 |
Snippet | Three-dimensional printing (3DP), known as additive layer manufacturing (ALM), is a manufacturing process in which a three-dimensional structure is constructed... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 4370 |
SubjectTerms | 3-D printers 3D printing Accuracy Additive manufacturing Analysis Annealing Carbon fibers Design of experiments Fused deposition modeling Graphene Identification and classification Lactic acid Manufacturing Mechanical properties Optimization Orthogonal arrays Polylactic acid Polymers Process parameters Redevelopment Regression models Taguchi methods Tensile strength Three dimensional printing Ultimate tensile strength |
Title | Printing Parameter Optimization of Additive Manufactured PLA Using Taguchi Design of Experiment |
URI | https://www.proquest.com/docview/2893325684 https://www.proquest.com/docview/2893844547 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60PehFfGK1lhVELwaTZjfdnqRqH4jVIhV6C5PdRARNah8H_70zybZSUI8hmyXM7s5rZ76PsTMpwNN5VaNA901o6TtK1hPHN0kEBKGVCGpO7j8GvRdxP5Ijm3Cb2rLKhU7MFbXJNOXIr-rEC4_2WYnr8adDrFF0u2opNNZZGVWwwuCrfNN-HDwvsyzksKCNLsA1fYzvr8bZ-9cHGi0C4nNXjNHvKjm3M51ttmUdRN4qVnSHrcXpLtu4XfCy7bFwMHnL6R34AKiyCgXDn_Dgf9iOSp4lvGVMXhPE-5DOqXdhPokNHzy0eF4iwIfwSiQo_C6v36Av2kuk_3320mkPb3uOpUlwNGqHmSONjPyArjdj2ahHDbdpwPW1cSPZFEFCN52JF0WRjpURUidKgfSSACSIQBhQ_gErpVkaHzJO-GLggWiC1xQi9oByxm4DMKrytAkaFXa5kFeoLYY4UVm8hxhLkHjDFfFW2Ply-LgAz_hr4AUJP6RDhfNpsL0B-FcETxW20EnFxa-7-AfVxfqE9rRNw5-9UWGny9e4LHT5AWmczYsxShB82dH_UxyzTaKUL_oNq6w0m8zjE3Q8ZlGNratOt2b3GD51R943pvra1Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ReqCXqpRWTUvBlQq9dMU-7M3uAaEISAMkNIcgcXNnbW9VCXbTkKjiT_U3MrOPICTaG-f1WtY8PGN75vsAPiuJgamqGiWlb9KoyEtUmHuRzTNkCK1ccnPy6DweXMjTS3W5An_bXhguq2z3xGqjtqXhO_K9kHnhKT4n8mD622PWKH5dbSk0arM4c7d_6Mh2s39yRPrdCcP-8eRw4DWsAp4hZ5p7yqosivk10KlumHX91KIfGetnKpVxzg-DeZBlmXGJlcrkSYIqyGNUKGNpMYlo3mfwXEZRyh6V9L8t73Q4PaKMoIbypO_-3rS8ur2mEMmwf_6D0Pd4AKiiWv8VvGzSUdGr7WcdVlzxGtYOWxa4DdDj2a-KTEKMkeu4SA3iO20z103_pihz0bO2qkASIywW3CmxmDkrxsOeqAoSxAR_MuWKOKqqRfiP4yWvwBu4eBLxvYXVoizcOxCMZoYByhSDVEoXIN9Q-12kM1xgbNztwNdWXto0iOVMnHGl6eTC4tUPxNuB3eXwaQ3V8a-BX1j4ml2Y5jPYdCLQqhgMS_coJSZTC31awWarH9349o2-t8QOfFp-JrXwUwsWrlzUYxLJYGnv_z_FNqwNJqOhHp6cn32AF0xmX3c6bsLqfLZwHynlmWdblZ0J-PHUhn0H1gUUww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuCEoRgQKuVOiFVfZh7-OAUGgS9ZmuqlbqzXj9QEjtbkgTof41fh0z-wiqBNx6Xq9lzYw9M_bM9wHsCK4CXVc1cgzfuBaRl4rQeZFxhSIILcepOflkGu9f8MNLcbkGv7peGCqr7M7E-qA2laY78kFIvPDon1M-cG1ZRD6afJ798IhBil5aOzqNxkSO7O1PTN9uPh2MUNfvw3AyPt_b91qGAU_jxlp4wogiiull0IokLBI_M8qPtPELkfHY0SOhC4qi0DY1XGiXpkoELlZC8ZgblUY47wNYTzAr8nuw_mU8zc9WNzwULGF80AB7RlHmD2bV1e01OkwCAfTvOMK_u4Pax02ewpM2OGXDxpqewZotN-DRXscJ9xxkPv9eU0uwXFFVFyqFneKhc912c7LKsaExdT0SO1HlkvomlnNrWH48ZHV5AjtX34iAhY3q2hH6Y7xiGdiEi3sR4AvolVVpXwIjbDMVKJ6pIOPcBoruq_1EYUYXaBMnffjYyUvqFr-caDSuJOYxJF55R7x9-LAaPmuAO_41cJeEL2lD43xatX0JuCqCxpJDDJDR8EIfV7DV6Ue2O_1G_rHLPmyvPqNa6OFFlbZaNmNSTtBpr_4_xTt4iEYtjw-mR6_hMTHbN22PW9BbzJf2DcY_i-Jta2gMvt63bf8GHloaVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Printing+Parameter+Optimization+of+Additive+Manufactured+PLA+Using+Taguchi+Design+of+Experiment&rft.jtitle=Polymers&rft.au=Ahmed%2C+Bilal+Anjum&rft.au=Nadeem%2C+Uzair&rft.au=Hakeem%2C+Abbas+Saeed&rft.au=Ul-Hamid%2C+Anwar&rft.date=2023-11-01&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=15&rft.issue=22&rft_id=info:doi/10.3390%2Fpolym15224370&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |