Design and analysis of strut-based lattice structures for vibration isolation

•The paper presents design and analysis of six additively manufactured lattice structures focusing on vibration isolation.•An experimental methodology is presented to verify the lattices’ natural frequency and stiffness.•Design parameters, which are correlated to lattices’ natural frequency and stif...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 52; pp. 494 - 506
Main Authors Syam, Wahyudin P., Jianwei, Wu, Zhao, Bo, Maskery, Ian, Elmadih, Waiel, Leach, Richard
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The paper presents design and analysis of six additively manufactured lattice structures focusing on vibration isolation.•An experimental methodology is presented to verify the lattices’ natural frequency and stiffness.•Design parameters, which are correlated to lattices’ natural frequency and stiffness, are proposed.•The proposed design parameters are useful to be used to compare various lattice designs (at fixed volume and from one material), since the parameters are fast and easy to compute, compared to finite element analysis or experimental test. This paper presents the design, analysis and experimental verification of strut-based lattice structures to enhance the mechanical vibration isolation properties of a machine frame, whilst also conserving its structural integrity. In addition, design parameters that correlate lattices, with fixed volume and similar material, to natural frequency and structural integrity are also presented. To achieve high efficiency of vibration isolation and to conserve the structural integrity, a trade-off needs to be made between the frame’s natural frequency and its compressive strength. The total area moment of inertia and the mass (at fixed volume and with similar material) are proposed design parameters to compare and select the lattice structures; these parameters are computationally efficient and straight-forward to compute, as opposed to the use of finite element modelling to estimate both natural frequency and compressive strength. However, to validate the design parameters, finite element modelling has been used to determine the theoretical static and dynamic mechanical properties of the lattice structures. The lattices have been fabricated by laser powder bed fusion and experimentally tested to compare their static and dynamic properties to the theoretical model. Correlations between the proposed design parameters, and the natural frequency and strength of the lattices are presented.
AbstractList •The paper presents design and analysis of six additively manufactured lattice structures focusing on vibration isolation.•An experimental methodology is presented to verify the lattices’ natural frequency and stiffness.•Design parameters, which are correlated to lattices’ natural frequency and stiffness, are proposed.•The proposed design parameters are useful to be used to compare various lattice designs (at fixed volume and from one material), since the parameters are fast and easy to compute, compared to finite element analysis or experimental test. This paper presents the design, analysis and experimental verification of strut-based lattice structures to enhance the mechanical vibration isolation properties of a machine frame, whilst also conserving its structural integrity. In addition, design parameters that correlate lattices, with fixed volume and similar material, to natural frequency and structural integrity are also presented. To achieve high efficiency of vibration isolation and to conserve the structural integrity, a trade-off needs to be made between the frame’s natural frequency and its compressive strength. The total area moment of inertia and the mass (at fixed volume and with similar material) are proposed design parameters to compare and select the lattice structures; these parameters are computationally efficient and straight-forward to compute, as opposed to the use of finite element modelling to estimate both natural frequency and compressive strength. However, to validate the design parameters, finite element modelling has been used to determine the theoretical static and dynamic mechanical properties of the lattice structures. The lattices have been fabricated by laser powder bed fusion and experimentally tested to compare their static and dynamic properties to the theoretical model. Correlations between the proposed design parameters, and the natural frequency and strength of the lattices are presented.
Author Elmadih, Waiel
Syam, Wahyudin P.
Maskery, Ian
Jianwei, Wu
Zhao, Bo
Leach, Richard
Author_xml – sequence: 1
  givenname: Wahyudin P.
  surname: Syam
  fullname: Syam, Wahyudin P.
  email: wahyudin.syam@nottingham.ac.uk
  organization: Manufacturing Metrology Team, Faculty of Engineering, University of Nottingham, NG7 2RD, UK
– sequence: 2
  givenname: Wu
  surname: Jianwei
  fullname: Jianwei, Wu
  email: wujianwei@hit.edu.cn
  organization: Ultra-Precision Optoelectronic Instrumentation Engineering Center, Harbin Institute of Technology, 150001, China
– sequence: 3
  givenname: Bo
  surname: Zhao
  fullname: Zhao, Bo
  organization: Ultra-Precision Optoelectronic Instrumentation Engineering Center, Harbin Institute of Technology, 150001, China
– sequence: 4
  givenname: Ian
  surname: Maskery
  fullname: Maskery, Ian
  organization: Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, NG7 2RD, UK
– sequence: 5
  givenname: Waiel
  surname: Elmadih
  fullname: Elmadih, Waiel
  organization: Manufacturing Metrology Team, Faculty of Engineering, University of Nottingham, NG7 2RD, UK
– sequence: 6
  givenname: Richard
  surname: Leach
  fullname: Leach, Richard
  organization: Manufacturing Metrology Team, Faculty of Engineering, University of Nottingham, NG7 2RD, UK
BookMark eNqNkE9PwzAMxSM0JLbBd6i4tzhN2qScQBv_pCEucI7S1J0ylXZKskn79mQdB8RpB8uWpffz85uRST_0SMgthYwCLe822dahsd7Gdb_OcqAigyoDChdkSqVgac5EPiFToJymJSuqKzLzfgMAQgKfkvclervuE903sXR38NYnQ5v44HYhrbXHJul0CNbguDNh59An7eCSva2dDvFyYv3QjdM1uWx15_Hmt8_J1_PT5-I1XX28vC0eV6lhogxpwZgUmhoOeVMZVmreYiM50zIX0acwpi6wbmpNJQJwVmuOdVmCLAuKEnM2J_cnrnGD9w5btXX2W7uDoqCOwaiN-huMOgajoFIxmCh--Cc2Noz2g9O2Ow-xPCEwPrm36JQ3FnuDjY2SoJrBnoP5ATKZjRg
CitedBy_id crossref_primary_10_1016_j_prostr_2021_10_079
crossref_primary_10_1080_15376494_2022_2139027
crossref_primary_10_21062_ujep_337_2019_a_1213_2489_MT_19_4_579
crossref_primary_10_1007_s42235_023_00373_7
crossref_primary_10_1016_j_mtcomm_2022_103286
crossref_primary_10_1080_17452759_2021_1917039
crossref_primary_10_1007_s11340_022_00898_8
crossref_primary_10_1007_s42452_019_1167_z
crossref_primary_10_21062_mft_2020_008
crossref_primary_10_57062_ijpem_st_2023_0059
crossref_primary_10_1007_s00170_021_06817_w
crossref_primary_10_1016_j_jmapro_2021_05_033
crossref_primary_10_1016_j_paerosci_2023_100898
crossref_primary_10_1016_j_addma_2022_103385
crossref_primary_10_1016_j_matdes_2023_112023
crossref_primary_10_1080_00401706_2021_1961870
crossref_primary_10_1177_16878132241297489
crossref_primary_10_1016_j_addma_2021_101885
crossref_primary_10_1016_j_addma_2020_101222
crossref_primary_10_1016_j_jsv_2019_115027
crossref_primary_10_1016_j_mser_2021_100648
crossref_primary_10_1016_j_compstruc_2024_107371
crossref_primary_10_1088_1361_665X_ab78b8
crossref_primary_10_1007_s12541_023_00848_x
crossref_primary_10_1007_s11012_024_01818_x
crossref_primary_10_1016_j_optlaseng_2019_04_015
crossref_primary_10_1016_j_jallcom_2022_168099
crossref_primary_10_1177_10775463221138898
crossref_primary_10_1007_s12540_024_01707_8
crossref_primary_10_1016_j_heliyon_2024_e26001
crossref_primary_10_3390_ma17061314
crossref_primary_10_1089_3dp_2019_0079
crossref_primary_10_3390_jmmp7050156
crossref_primary_10_1016_j_mtcomm_2023_107352
crossref_primary_10_1007_s00366_024_02077_w
crossref_primary_10_3390_jcs6050133
crossref_primary_10_1038_s41598_020_78239_9
crossref_primary_10_1016_j_matdes_2021_110130
crossref_primary_10_1016_j_matpr_2019_08_158
crossref_primary_10_1016_j_ijmecsci_2019_105153
crossref_primary_10_1177_16878132221082872
crossref_primary_10_1016_j_addma_2020_101613
crossref_primary_10_1002_adem_202201074
crossref_primary_10_1016_j_cja_2022_07_022
crossref_primary_10_1115_1_4062832
crossref_primary_10_1016_j_ijmecsci_2020_106216
crossref_primary_10_1016_j_measurement_2021_110311
crossref_primary_10_1088_1757_899X_788_1_012008
crossref_primary_10_3390_app122412788
crossref_primary_10_3390_coatings12060726
crossref_primary_10_1007_s00170_020_05767_z
crossref_primary_10_1016_j_dt_2021_05_012
crossref_primary_10_1177_10775463221090325
crossref_primary_10_1007_s40430_024_05002_w
crossref_primary_10_1016_j_compstruc_2022_106938
crossref_primary_10_1016_j_tws_2023_111539
crossref_primary_10_1007_s40964_022_00365_9
crossref_primary_10_1089_3dp_2020_0286
crossref_primary_10_3390_app112311449
crossref_primary_10_1177_1687814019859789
crossref_primary_10_3390_ma15155137
crossref_primary_10_3390_met12020340
crossref_primary_10_1007_s40964_025_00950_8
crossref_primary_10_21062_ujep_367_2019_a_1213_2489_MT_19_5_753
crossref_primary_10_1080_02670836_2023_2230417
crossref_primary_10_1016_j_ijengsci_2020_103318
crossref_primary_10_1016_j_mtcomm_2024_108247
crossref_primary_10_28948_ngumuh_911834
crossref_primary_10_1016_j_mtcomm_2023_107370
crossref_primary_10_1016_j_addma_2022_103274
crossref_primary_10_1016_j_jallcom_2025_178883
crossref_primary_10_1115_1_4054675
crossref_primary_10_1142_S0219455422501437
crossref_primary_10_3390_app11093845
crossref_primary_10_2139_ssrn_4176329
crossref_primary_10_3390_app15073522
crossref_primary_10_1016_j_applthermaleng_2023_120356
crossref_primary_10_1103_PhysRevApplied_19_034079
crossref_primary_10_2139_ssrn_4196455
crossref_primary_10_1016_j_precisioneng_2021_02_010
crossref_primary_10_1016_j_marstruc_2018_09_004
crossref_primary_10_1016_j_compstruct_2021_115113
crossref_primary_10_1016_j_compstruct_2020_113292
crossref_primary_10_1115_1_4048792
crossref_primary_10_1177_14644207221138003
crossref_primary_10_3390_su12197936
crossref_primary_10_1016_j_ijmecsci_2024_109283
crossref_primary_10_1016_j_ijmecsci_2020_105460
crossref_primary_10_1080_15376494_2021_1985196
crossref_primary_10_21062_mft_2021_089
crossref_primary_10_3390_polym15193858
crossref_primary_10_1016_j_addma_2025_104714
crossref_primary_10_1177_03093247241312704
crossref_primary_10_3390_aerospace8080207
crossref_primary_10_1088_1757_899X_688_5_055049
crossref_primary_10_1115_1_4040131
crossref_primary_10_1177_14644207221075895
crossref_primary_10_1016_j_dt_2025_01_003
crossref_primary_10_1016_j_precisioneng_2024_10_013
crossref_primary_10_21062_ujep_401_2019_a_1213_2489_MT_19_6_947
crossref_primary_10_1002_pc_27201
crossref_primary_10_1177_14644207241241774
crossref_primary_10_1177_1464420720958015
crossref_primary_10_1115_1_4051419
crossref_primary_10_3390_jmse9040382
crossref_primary_10_1016_j_ijsolstr_2024_112724
crossref_primary_10_1007_s40964_023_00504_w
crossref_primary_10_1016_j_compositesb_2018_07_012
crossref_primary_10_1016_j_cad_2020_102912
crossref_primary_10_1016_j_matdes_2025_113778
crossref_primary_10_1016_j_ijmecsci_2024_109220
crossref_primary_10_1007_s41230_023_2143_1
crossref_primary_10_1016_j_matdes_2022_110852
crossref_primary_10_1108_RPJ_05_2023_0161
crossref_primary_10_21062_ujep_301_2019_a_1213_2489_MT_19_3_385
crossref_primary_10_1002_pamm_202200094
crossref_primary_10_1016_j_compstruct_2019_111815
crossref_primary_10_1016_j_paerosci_2024_101021
crossref_primary_10_3390_polym14214595
crossref_primary_10_3390_app10186374
crossref_primary_10_1088_2631_8695_acd3d3
crossref_primary_10_1007_s42417_020_00244_z
crossref_primary_10_1002_adem_202000611
crossref_primary_10_3390_ma12081301
crossref_primary_10_1115_1_4041170
crossref_primary_10_1016_j_matdes_2018_107550
crossref_primary_10_1177_16878132221091661
crossref_primary_10_1177_10775463211070069
crossref_primary_10_3390_ma12111878
crossref_primary_10_1016_j_precisioneng_2021_11_008
crossref_primary_10_1016_j_ijmecsci_2022_107133
Cites_doi 10.1177/1687814015584541
10.1016/j.ijsolstr.2008.09.031
10.1016/j.cirp.2016.05.004
10.1080/17452759.2014.951530
10.1007/s12045-014-0091-1
10.1007/s12541-013-0144-5
10.1016/j.matdes.2016.01.146
10.1016/j.msea.2016.06.013
10.1016/S1359-6454(00)00379-7
10.3390/ma8041871
10.1177/0021955X16639035
ContentType Journal Article
Copyright 2017 The Authors
Copyright_xml – notice: 2017 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.precisioneng.2017.09.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2372
EndPage 506
ExternalDocumentID 10_1016_j_precisioneng_2017_09_010
S0141635917302726
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c376t-53387a1c402d9c36a4fed843a8271417ccb5ebdba18e0043ba4eb6608651e8e23
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Thu Apr 24 23:00:25 EDT 2025
Tue Jul 01 02:12:58 EDT 2025
Fri Feb 23 02:45:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Design
Natural frequency
Lattice structures
Additive manufacturing
Vibration isolation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-53387a1c402d9c36a4fed843a8271417ccb5ebdba18e0043ba4eb6608651e8e23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0141635917302726
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_precisioneng_2017_09_010
crossref_citationtrail_10_1016_j_precisioneng_2017_09_010
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2017_09_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Precision engineering
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Thompson, Moroni, Vanekar, Fadel, Campbell, Gibson (bib0005) 2016; 65
Gere, Timoshenko (bib0050) 1991
Maskery, Aboulkhair, Aremu, Tuck, Ashcroft, Wildman (bib0020) 2016; 670
Ahmadi S, Yavari S, Wauthle, Pouran, Schrooten, Weinans (bib0065) 2015; 8
Zhang, Long, Cai, Fang (bib0070) 2015; 7
Rashed, Ashraf, Mines, Hazell (bib0040) 2016; 95
BIPM JCGM 100 2008 Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM).
Gibson, Rosen, Stucker (bib0015) 2010
Montgomery, Runger (bib0085) 2003
Hibbeler (bib0055) 2012
Rosen (bib0010) 2014; 9
Schmitz, Smith (bib0025) 2012
Nguyen, Park, Rosen (bib0045) 2013; 14
Deshpande, Ashby, Fleck (bib0035) 2001; 49
Geethamma, Asaletha, Kalarikkal, Thomas (bib0090) 2014; 9
Ngim, Liu, Soar (bib0060) 2009; 46
Bower, Vlahovska, Xu (bib0075) 2016
Maskery, Hussey, Panesar, Aremu, Tuck, Ashcroft (bib0030) 2017; 53
Montgomery (10.1016/j.precisioneng.2017.09.010_bib0085) 2003
Gibson (10.1016/j.precisioneng.2017.09.010_bib0015) 2010
Bower (10.1016/j.precisioneng.2017.09.010_bib0075) 2016
Deshpande (10.1016/j.precisioneng.2017.09.010_bib0035) 2001; 49
Ngim (10.1016/j.precisioneng.2017.09.010_bib0060) 2009; 46
Ahmadi S (10.1016/j.precisioneng.2017.09.010_bib0065) 2015; 8
Hibbeler (10.1016/j.precisioneng.2017.09.010_bib0055) 2012
Schmitz (10.1016/j.precisioneng.2017.09.010_bib0025) 2012
Rosen (10.1016/j.precisioneng.2017.09.010_bib0010) 2014; 9
Rashed (10.1016/j.precisioneng.2017.09.010_bib0040) 2016; 95
Zhang (10.1016/j.precisioneng.2017.09.010_bib0070) 2015; 7
Gere (10.1016/j.precisioneng.2017.09.010_bib0050) 1991
Maskery (10.1016/j.precisioneng.2017.09.010_bib0030) 2017; 53
10.1016/j.precisioneng.2017.09.010_bib0080
Thompson (10.1016/j.precisioneng.2017.09.010_bib0005) 2016; 65
Nguyen (10.1016/j.precisioneng.2017.09.010_bib0045) 2013; 14
Geethamma (10.1016/j.precisioneng.2017.09.010_bib0090) 2014; 9
Maskery (10.1016/j.precisioneng.2017.09.010_bib0020) 2016; 670
References_xml – volume: 9
  start-page: 225
  year: 2014
  end-page: 232
  ident: bib0010
  article-title: Research supporting principles for design for additive manufacturing
  publication-title: Virtual Phys Prototyp
– year: 2010
  ident: bib0015
  article-title: Additive manufacturing technologies: rapid prototyping to direct digital manufacturing
– volume: 9
  start-page: 821
  year: 2014
  end-page: 833
  ident: bib0090
  article-title: Vibration and sound damping in polymers
  publication-title: Resonance
– start-page: 225
  year: 2003
  ident: bib0085
  article-title: Applied statistics and probability for engineers
– volume: 46
  start-page: 726
  year: 2009
  end-page: 740
  ident: bib0060
  article-title: Design optimisation of consolidated granular-solid polymer prismatic beam using metamorphic development
  publication-title: Int J Sol Struc
– volume: 65
  start-page: 737
  year: 2016
  end-page: 760
  ident: bib0005
  article-title: Design for additive manufacturing: trends, opportunities, considerations and constraints
  publication-title: Ann CIRP
– start-page: 87
  year: 2012
  ident: bib0025
  article-title: Mechanical vibrations: modelling and measurement
– volume: 49
  start-page: 1035
  year: 2001
  end-page: 1040
  ident: bib0035
  article-title: Foam topology bending versus stretching dominated architectures
  publication-title: Acta Mater
– volume: 14
  start-page: 1071
  year: 2013
  end-page: 1078
  ident: bib0045
  article-title: Heuristic optimization method for cellular structure design of light weight components
  publication-title: Int J Precis Eng Manuf
– volume: 8
  start-page: 1871
  year: 2015
  end-page: 1896
  ident: bib0065
  article-title: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties
  publication-title: Materials
– volume: 670
  start-page: 264
  year: 2016
  end-page: 274
  ident: bib0020
  article-title: A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser sintering
  publication-title: Mater Sci Eng A-Struct
– reference: BIPM JCGM 100 2008 Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM).
– volume: 95
  start-page: 518
  year: 2016
  end-page: 533
  ident: bib0040
  article-title: Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications
  publication-title: Mater Design
– start-page: 250
  year: 1991
  ident: bib0050
  article-title: Mechanic of material
– year: 2016
  ident: bib0075
  article-title: Introduction to dynamics and vibration
– volume: 53
  start-page: 151
  year: 2017
  end-page: 165
  ident: bib0030
  article-title: An investigation into reinforced and functionally graded lattice structures
  publication-title: J Cell Plast
– start-page: 539
  year: 2012
  ident: bib0055
  article-title: Structural analysis
– volume: 7
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib0070
  article-title: Design of a linear macro-micro actuation stage considering vibration isolation
  publication-title: Adv Mech Eng
– volume: 7
  start-page: 1
  year: 2015
  ident: 10.1016/j.precisioneng.2017.09.010_bib0070
  article-title: Design of a linear macro-micro actuation stage considering vibration isolation
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814015584541
– start-page: 87
  year: 2012
  ident: 10.1016/j.precisioneng.2017.09.010_bib0025
– volume: 46
  start-page: 726
  year: 2009
  ident: 10.1016/j.precisioneng.2017.09.010_bib0060
  article-title: Design optimisation of consolidated granular-solid polymer prismatic beam using metamorphic development
  publication-title: Int J Sol Struc
  doi: 10.1016/j.ijsolstr.2008.09.031
– year: 2016
  ident: 10.1016/j.precisioneng.2017.09.010_bib0075
– volume: 65
  start-page: 737
  year: 2016
  ident: 10.1016/j.precisioneng.2017.09.010_bib0005
  article-title: Design for additive manufacturing: trends, opportunities, considerations and constraints
  publication-title: Ann CIRP
  doi: 10.1016/j.cirp.2016.05.004
– ident: 10.1016/j.precisioneng.2017.09.010_bib0080
– volume: 9
  start-page: 225
  year: 2014
  ident: 10.1016/j.precisioneng.2017.09.010_bib0010
  article-title: Research supporting principles for design for additive manufacturing
  publication-title: Virtual Phys Prototyp
  doi: 10.1080/17452759.2014.951530
– volume: 9
  start-page: 821
  year: 2014
  ident: 10.1016/j.precisioneng.2017.09.010_bib0090
  article-title: Vibration and sound damping in polymers
  publication-title: Resonance
  doi: 10.1007/s12045-014-0091-1
– volume: 14
  start-page: 1071
  year: 2013
  ident: 10.1016/j.precisioneng.2017.09.010_bib0045
  article-title: Heuristic optimization method for cellular structure design of light weight components
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-013-0144-5
– volume: 95
  start-page: 518
  year: 2016
  ident: 10.1016/j.precisioneng.2017.09.010_bib0040
  article-title: Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications
  publication-title: Mater Design
  doi: 10.1016/j.matdes.2016.01.146
– volume: 670
  start-page: 264
  year: 2016
  ident: 10.1016/j.precisioneng.2017.09.010_bib0020
  article-title: A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser sintering
  publication-title: Mater Sci Eng A-Struct
  doi: 10.1016/j.msea.2016.06.013
– volume: 49
  start-page: 1035
  year: 2001
  ident: 10.1016/j.precisioneng.2017.09.010_bib0035
  article-title: Foam topology bending versus stretching dominated architectures
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(00)00379-7
– volume: 8
  start-page: 1871
  year: 2015
  ident: 10.1016/j.precisioneng.2017.09.010_bib0065
  article-title: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties
  publication-title: Materials
  doi: 10.3390/ma8041871
– year: 2010
  ident: 10.1016/j.precisioneng.2017.09.010_bib0015
– start-page: 225
  year: 2003
  ident: 10.1016/j.precisioneng.2017.09.010_bib0085
– volume: 53
  start-page: 151
  year: 2017
  ident: 10.1016/j.precisioneng.2017.09.010_bib0030
  article-title: An investigation into reinforced and functionally graded lattice structures
  publication-title: J Cell Plast
  doi: 10.1177/0021955X16639035
– start-page: 250
  year: 1991
  ident: 10.1016/j.precisioneng.2017.09.010_bib0050
– start-page: 539
  year: 2012
  ident: 10.1016/j.precisioneng.2017.09.010_bib0055
SSID ssj0007804
Score 2.541446
Snippet •The paper presents design and analysis of six additively manufactured lattice structures focusing on vibration isolation.•An experimental methodology is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 494
SubjectTerms Additive manufacturing
Design
Lattice structures
Natural frequency
Vibration isolation
Title Design and analysis of strut-based lattice structures for vibration isolation
URI https://dx.doi.org/10.1016/j.precisioneng.2017.09.010
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KvehBfGJ9lD14XZs0m2xy8FCqpSrtyUJvy-5mVyqlFoke_e3O5KEVPAgeFpKQgeTbYXaG_fYbgEstQ-Mza3mc-JxTS2Ouk9hx7XSmBQ5Z9jqcTJPxTNzP43kLhs1ZGKJV1rG_iulltK6f9Go0e-vFoke0JEwmYqw3aO-tT7LbQkjy8quPb5oHCexUNMaQ09uN8GjJ8Vq_No1sVk9E85Kl5imdpv1tkdpYeEZ7sFtnjGxQfdQ-tNzqAHY2dAQPYXJT8jCYXuU4KpUR9uIZicMWnBaqnC11QTw3VgnGvmGVzTBfZe9ULtPksAV6YXl1BLPR7eNwzOs-CdxieCg4Zmyp1KHFUjDPbJRo4V2eikinfYm_La01sTO50WHqaOfPaOFMkmAxE4cudf3oGNorxOAEmAm9D7zNEhsJ2h82UgbSm0BSIid82oGsAUbZWkScelksVcMWe1aboCoCVQWZQlA7EH3ZrispjT9ZXTf4qx-OoTDm_8H-9J_2Z7CNd2lF1jmHNk6Su8A8pDDd0tG6sDW4exhPPwE1NuDs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qe1AP4hPrMwevod3uI7sHD6VaWvs4tdBbSLKJVMpapPr7ndmHVPBQ8BBYNgzsfhkmM-TLNwAPSnjaJcbwMHIpp5bGXEWh5cqqRAU4RN7rcDKNBvPgZREuatCr7sIQrbKM_UVMz6N1-aZVotlaL5ctoiVhMhFivUFnb51oDxqkThXWodEdjgbTn4BMGjsFk9HjZFBpj-Y0r_VH1csmeyWml8hlT-lC7V_71Nbe0z-GozJpZN3iu06gZrNTONySEjyDyVNOxWAqS3EUQiPs3THSh91w2qtStlIborqxQjP2Ewtthikr-6KKmdaHLdER86dzmPefZ70BL1slcIMRYsMxaYuF8gxWg2li_EgFzqZx4Ku4I_C3hTE6tDrVyostHf5pFVgdRVjPhJ6Nbce_gHqGGFwC055zbWeSyPgBHRFrIdrC6bagXC5wcROSChhpSh1xamexkhVh7E1ugyoJVNlOJILaBP_Hdl2oaexk9VjhL3_5hsSwv4P91T_t72F_MJuM5Xg4HV3DAc7EBXfnBuq4YPYW05KNvivd7hvrq-Od
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+analysis+of+strut-based+lattice+structures+for+vibration+isolation&rft.jtitle=Precision+engineering&rft.au=Syam%2C+Wahyudin+P.&rft.au=Jianwei%2C+Wu&rft.au=Zhao%2C+Bo&rft.au=Maskery%2C+Ian&rft.date=2018-04-01&rft.issn=0141-6359&rft.volume=52&rft.spage=494&rft.epage=506&rft_id=info:doi/10.1016%2Fj.precisioneng.2017.09.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2017_09_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon