Design and analysis of strut-based lattice structures for vibration isolation
•The paper presents design and analysis of six additively manufactured lattice structures focusing on vibration isolation.•An experimental methodology is presented to verify the lattices’ natural frequency and stiffness.•Design parameters, which are correlated to lattices’ natural frequency and stif...
Saved in:
Published in | Precision engineering Vol. 52; pp. 494 - 506 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The paper presents design and analysis of six additively manufactured lattice structures focusing on vibration isolation.•An experimental methodology is presented to verify the lattices’ natural frequency and stiffness.•Design parameters, which are correlated to lattices’ natural frequency and stiffness, are proposed.•The proposed design parameters are useful to be used to compare various lattice designs (at fixed volume and from one material), since the parameters are fast and easy to compute, compared to finite element analysis or experimental test.
This paper presents the design, analysis and experimental verification of strut-based lattice structures to enhance the mechanical vibration isolation properties of a machine frame, whilst also conserving its structural integrity. In addition, design parameters that correlate lattices, with fixed volume and similar material, to natural frequency and structural integrity are also presented. To achieve high efficiency of vibration isolation and to conserve the structural integrity, a trade-off needs to be made between the frame’s natural frequency and its compressive strength. The total area moment of inertia and the mass (at fixed volume and with similar material) are proposed design parameters to compare and select the lattice structures; these parameters are computationally efficient and straight-forward to compute, as opposed to the use of finite element modelling to estimate both natural frequency and compressive strength. However, to validate the design parameters, finite element modelling has been used to determine the theoretical static and dynamic mechanical properties of the lattice structures. The lattices have been fabricated by laser powder bed fusion and experimentally tested to compare their static and dynamic properties to the theoretical model. Correlations between the proposed design parameters, and the natural frequency and strength of the lattices are presented. |
---|---|
AbstractList | •The paper presents design and analysis of six additively manufactured lattice structures focusing on vibration isolation.•An experimental methodology is presented to verify the lattices’ natural frequency and stiffness.•Design parameters, which are correlated to lattices’ natural frequency and stiffness, are proposed.•The proposed design parameters are useful to be used to compare various lattice designs (at fixed volume and from one material), since the parameters are fast and easy to compute, compared to finite element analysis or experimental test.
This paper presents the design, analysis and experimental verification of strut-based lattice structures to enhance the mechanical vibration isolation properties of a machine frame, whilst also conserving its structural integrity. In addition, design parameters that correlate lattices, with fixed volume and similar material, to natural frequency and structural integrity are also presented. To achieve high efficiency of vibration isolation and to conserve the structural integrity, a trade-off needs to be made between the frame’s natural frequency and its compressive strength. The total area moment of inertia and the mass (at fixed volume and with similar material) are proposed design parameters to compare and select the lattice structures; these parameters are computationally efficient and straight-forward to compute, as opposed to the use of finite element modelling to estimate both natural frequency and compressive strength. However, to validate the design parameters, finite element modelling has been used to determine the theoretical static and dynamic mechanical properties of the lattice structures. The lattices have been fabricated by laser powder bed fusion and experimentally tested to compare their static and dynamic properties to the theoretical model. Correlations between the proposed design parameters, and the natural frequency and strength of the lattices are presented. |
Author | Elmadih, Waiel Syam, Wahyudin P. Maskery, Ian Jianwei, Wu Zhao, Bo Leach, Richard |
Author_xml | – sequence: 1 givenname: Wahyudin P. surname: Syam fullname: Syam, Wahyudin P. email: wahyudin.syam@nottingham.ac.uk organization: Manufacturing Metrology Team, Faculty of Engineering, University of Nottingham, NG7 2RD, UK – sequence: 2 givenname: Wu surname: Jianwei fullname: Jianwei, Wu email: wujianwei@hit.edu.cn organization: Ultra-Precision Optoelectronic Instrumentation Engineering Center, Harbin Institute of Technology, 150001, China – sequence: 3 givenname: Bo surname: Zhao fullname: Zhao, Bo organization: Ultra-Precision Optoelectronic Instrumentation Engineering Center, Harbin Institute of Technology, 150001, China – sequence: 4 givenname: Ian surname: Maskery fullname: Maskery, Ian organization: Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, NG7 2RD, UK – sequence: 5 givenname: Waiel surname: Elmadih fullname: Elmadih, Waiel organization: Manufacturing Metrology Team, Faculty of Engineering, University of Nottingham, NG7 2RD, UK – sequence: 6 givenname: Richard surname: Leach fullname: Leach, Richard organization: Manufacturing Metrology Team, Faculty of Engineering, University of Nottingham, NG7 2RD, UK |
BookMark | eNqNkE9PwzAMxSM0JLbBd6i4tzhN2qScQBv_pCEucI7S1J0ylXZKskn79mQdB8RpB8uWpffz85uRST_0SMgthYwCLe822dahsd7Gdb_OcqAigyoDChdkSqVgac5EPiFToJymJSuqKzLzfgMAQgKfkvclervuE903sXR38NYnQ5v44HYhrbXHJul0CNbguDNh59An7eCSva2dDvFyYv3QjdM1uWx15_Hmt8_J1_PT5-I1XX28vC0eV6lhogxpwZgUmhoOeVMZVmreYiM50zIX0acwpi6wbmpNJQJwVmuOdVmCLAuKEnM2J_cnrnGD9w5btXX2W7uDoqCOwaiN-huMOgajoFIxmCh--Cc2Noz2g9O2Ow-xPCEwPrm36JQ3FnuDjY2SoJrBnoP5ATKZjRg |
CitedBy_id | crossref_primary_10_1016_j_prostr_2021_10_079 crossref_primary_10_1080_15376494_2022_2139027 crossref_primary_10_21062_ujep_337_2019_a_1213_2489_MT_19_4_579 crossref_primary_10_1007_s42235_023_00373_7 crossref_primary_10_1016_j_mtcomm_2022_103286 crossref_primary_10_1080_17452759_2021_1917039 crossref_primary_10_1007_s11340_022_00898_8 crossref_primary_10_1007_s42452_019_1167_z crossref_primary_10_21062_mft_2020_008 crossref_primary_10_57062_ijpem_st_2023_0059 crossref_primary_10_1007_s00170_021_06817_w crossref_primary_10_1016_j_jmapro_2021_05_033 crossref_primary_10_1016_j_paerosci_2023_100898 crossref_primary_10_1016_j_addma_2022_103385 crossref_primary_10_1016_j_matdes_2023_112023 crossref_primary_10_1080_00401706_2021_1961870 crossref_primary_10_1177_16878132241297489 crossref_primary_10_1016_j_addma_2021_101885 crossref_primary_10_1016_j_addma_2020_101222 crossref_primary_10_1016_j_jsv_2019_115027 crossref_primary_10_1016_j_mser_2021_100648 crossref_primary_10_1016_j_compstruc_2024_107371 crossref_primary_10_1088_1361_665X_ab78b8 crossref_primary_10_1007_s12541_023_00848_x crossref_primary_10_1007_s11012_024_01818_x crossref_primary_10_1016_j_optlaseng_2019_04_015 crossref_primary_10_1016_j_jallcom_2022_168099 crossref_primary_10_1177_10775463221138898 crossref_primary_10_1007_s12540_024_01707_8 crossref_primary_10_1016_j_heliyon_2024_e26001 crossref_primary_10_3390_ma17061314 crossref_primary_10_1089_3dp_2019_0079 crossref_primary_10_3390_jmmp7050156 crossref_primary_10_1016_j_mtcomm_2023_107352 crossref_primary_10_1007_s00366_024_02077_w crossref_primary_10_3390_jcs6050133 crossref_primary_10_1038_s41598_020_78239_9 crossref_primary_10_1016_j_matdes_2021_110130 crossref_primary_10_1016_j_matpr_2019_08_158 crossref_primary_10_1016_j_ijmecsci_2019_105153 crossref_primary_10_1177_16878132221082872 crossref_primary_10_1016_j_addma_2020_101613 crossref_primary_10_1002_adem_202201074 crossref_primary_10_1016_j_cja_2022_07_022 crossref_primary_10_1115_1_4062832 crossref_primary_10_1016_j_ijmecsci_2020_106216 crossref_primary_10_1016_j_measurement_2021_110311 crossref_primary_10_1088_1757_899X_788_1_012008 crossref_primary_10_3390_app122412788 crossref_primary_10_3390_coatings12060726 crossref_primary_10_1007_s00170_020_05767_z crossref_primary_10_1016_j_dt_2021_05_012 crossref_primary_10_1177_10775463221090325 crossref_primary_10_1007_s40430_024_05002_w crossref_primary_10_1016_j_compstruc_2022_106938 crossref_primary_10_1016_j_tws_2023_111539 crossref_primary_10_1007_s40964_022_00365_9 crossref_primary_10_1089_3dp_2020_0286 crossref_primary_10_3390_app112311449 crossref_primary_10_1177_1687814019859789 crossref_primary_10_3390_ma15155137 crossref_primary_10_3390_met12020340 crossref_primary_10_1007_s40964_025_00950_8 crossref_primary_10_21062_ujep_367_2019_a_1213_2489_MT_19_5_753 crossref_primary_10_1080_02670836_2023_2230417 crossref_primary_10_1016_j_ijengsci_2020_103318 crossref_primary_10_1016_j_mtcomm_2024_108247 crossref_primary_10_28948_ngumuh_911834 crossref_primary_10_1016_j_mtcomm_2023_107370 crossref_primary_10_1016_j_addma_2022_103274 crossref_primary_10_1016_j_jallcom_2025_178883 crossref_primary_10_1115_1_4054675 crossref_primary_10_1142_S0219455422501437 crossref_primary_10_3390_app11093845 crossref_primary_10_2139_ssrn_4176329 crossref_primary_10_3390_app15073522 crossref_primary_10_1016_j_applthermaleng_2023_120356 crossref_primary_10_1103_PhysRevApplied_19_034079 crossref_primary_10_2139_ssrn_4196455 crossref_primary_10_1016_j_precisioneng_2021_02_010 crossref_primary_10_1016_j_marstruc_2018_09_004 crossref_primary_10_1016_j_compstruct_2021_115113 crossref_primary_10_1016_j_compstruct_2020_113292 crossref_primary_10_1115_1_4048792 crossref_primary_10_1177_14644207221138003 crossref_primary_10_3390_su12197936 crossref_primary_10_1016_j_ijmecsci_2024_109283 crossref_primary_10_1016_j_ijmecsci_2020_105460 crossref_primary_10_1080_15376494_2021_1985196 crossref_primary_10_21062_mft_2021_089 crossref_primary_10_3390_polym15193858 crossref_primary_10_1016_j_addma_2025_104714 crossref_primary_10_1177_03093247241312704 crossref_primary_10_3390_aerospace8080207 crossref_primary_10_1088_1757_899X_688_5_055049 crossref_primary_10_1115_1_4040131 crossref_primary_10_1177_14644207221075895 crossref_primary_10_1016_j_dt_2025_01_003 crossref_primary_10_1016_j_precisioneng_2024_10_013 crossref_primary_10_21062_ujep_401_2019_a_1213_2489_MT_19_6_947 crossref_primary_10_1002_pc_27201 crossref_primary_10_1177_14644207241241774 crossref_primary_10_1177_1464420720958015 crossref_primary_10_1115_1_4051419 crossref_primary_10_3390_jmse9040382 crossref_primary_10_1016_j_ijsolstr_2024_112724 crossref_primary_10_1007_s40964_023_00504_w crossref_primary_10_1016_j_compositesb_2018_07_012 crossref_primary_10_1016_j_cad_2020_102912 crossref_primary_10_1016_j_matdes_2025_113778 crossref_primary_10_1016_j_ijmecsci_2024_109220 crossref_primary_10_1007_s41230_023_2143_1 crossref_primary_10_1016_j_matdes_2022_110852 crossref_primary_10_1108_RPJ_05_2023_0161 crossref_primary_10_21062_ujep_301_2019_a_1213_2489_MT_19_3_385 crossref_primary_10_1002_pamm_202200094 crossref_primary_10_1016_j_compstruct_2019_111815 crossref_primary_10_1016_j_paerosci_2024_101021 crossref_primary_10_3390_polym14214595 crossref_primary_10_3390_app10186374 crossref_primary_10_1088_2631_8695_acd3d3 crossref_primary_10_1007_s42417_020_00244_z crossref_primary_10_1002_adem_202000611 crossref_primary_10_3390_ma12081301 crossref_primary_10_1115_1_4041170 crossref_primary_10_1016_j_matdes_2018_107550 crossref_primary_10_1177_16878132221091661 crossref_primary_10_1177_10775463211070069 crossref_primary_10_3390_ma12111878 crossref_primary_10_1016_j_precisioneng_2021_11_008 crossref_primary_10_1016_j_ijmecsci_2022_107133 |
Cites_doi | 10.1177/1687814015584541 10.1016/j.ijsolstr.2008.09.031 10.1016/j.cirp.2016.05.004 10.1080/17452759.2014.951530 10.1007/s12045-014-0091-1 10.1007/s12541-013-0144-5 10.1016/j.matdes.2016.01.146 10.1016/j.msea.2016.06.013 10.1016/S1359-6454(00)00379-7 10.3390/ma8041871 10.1177/0021955X16639035 |
ContentType | Journal Article |
Copyright | 2017 The Authors |
Copyright_xml | – notice: 2017 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2017.09.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2372 |
EndPage | 506 |
ExternalDocumentID | 10_1016_j_precisioneng_2017_09_010 S0141635917302726 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c376t-53387a1c402d9c36a4fed843a8271417ccb5ebdba18e0043ba4eb6608651e8e23 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Thu Apr 24 23:00:25 EDT 2025 Tue Jul 01 02:12:58 EDT 2025 Fri Feb 23 02:45:09 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Design Natural frequency Lattice structures Additive manufacturing Vibration isolation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-53387a1c402d9c36a4fed843a8271417ccb5ebdba18e0043ba4eb6608651e8e23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141635917302726 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_precisioneng_2017_09_010 crossref_citationtrail_10_1016_j_precisioneng_2017_09_010 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2017_09_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2018 2018-04-00 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
PublicationDecade | 2010 |
PublicationTitle | Precision engineering |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Thompson, Moroni, Vanekar, Fadel, Campbell, Gibson (bib0005) 2016; 65 Gere, Timoshenko (bib0050) 1991 Maskery, Aboulkhair, Aremu, Tuck, Ashcroft, Wildman (bib0020) 2016; 670 Ahmadi S, Yavari S, Wauthle, Pouran, Schrooten, Weinans (bib0065) 2015; 8 Zhang, Long, Cai, Fang (bib0070) 2015; 7 Rashed, Ashraf, Mines, Hazell (bib0040) 2016; 95 BIPM JCGM 100 2008 Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM). Gibson, Rosen, Stucker (bib0015) 2010 Montgomery, Runger (bib0085) 2003 Hibbeler (bib0055) 2012 Rosen (bib0010) 2014; 9 Schmitz, Smith (bib0025) 2012 Nguyen, Park, Rosen (bib0045) 2013; 14 Deshpande, Ashby, Fleck (bib0035) 2001; 49 Geethamma, Asaletha, Kalarikkal, Thomas (bib0090) 2014; 9 Ngim, Liu, Soar (bib0060) 2009; 46 Bower, Vlahovska, Xu (bib0075) 2016 Maskery, Hussey, Panesar, Aremu, Tuck, Ashcroft (bib0030) 2017; 53 Montgomery (10.1016/j.precisioneng.2017.09.010_bib0085) 2003 Gibson (10.1016/j.precisioneng.2017.09.010_bib0015) 2010 Bower (10.1016/j.precisioneng.2017.09.010_bib0075) 2016 Deshpande (10.1016/j.precisioneng.2017.09.010_bib0035) 2001; 49 Ngim (10.1016/j.precisioneng.2017.09.010_bib0060) 2009; 46 Ahmadi S (10.1016/j.precisioneng.2017.09.010_bib0065) 2015; 8 Hibbeler (10.1016/j.precisioneng.2017.09.010_bib0055) 2012 Schmitz (10.1016/j.precisioneng.2017.09.010_bib0025) 2012 Rosen (10.1016/j.precisioneng.2017.09.010_bib0010) 2014; 9 Rashed (10.1016/j.precisioneng.2017.09.010_bib0040) 2016; 95 Zhang (10.1016/j.precisioneng.2017.09.010_bib0070) 2015; 7 Gere (10.1016/j.precisioneng.2017.09.010_bib0050) 1991 Maskery (10.1016/j.precisioneng.2017.09.010_bib0030) 2017; 53 10.1016/j.precisioneng.2017.09.010_bib0080 Thompson (10.1016/j.precisioneng.2017.09.010_bib0005) 2016; 65 Nguyen (10.1016/j.precisioneng.2017.09.010_bib0045) 2013; 14 Geethamma (10.1016/j.precisioneng.2017.09.010_bib0090) 2014; 9 Maskery (10.1016/j.precisioneng.2017.09.010_bib0020) 2016; 670 |
References_xml | – volume: 9 start-page: 225 year: 2014 end-page: 232 ident: bib0010 article-title: Research supporting principles for design for additive manufacturing publication-title: Virtual Phys Prototyp – year: 2010 ident: bib0015 article-title: Additive manufacturing technologies: rapid prototyping to direct digital manufacturing – volume: 9 start-page: 821 year: 2014 end-page: 833 ident: bib0090 article-title: Vibration and sound damping in polymers publication-title: Resonance – start-page: 225 year: 2003 ident: bib0085 article-title: Applied statistics and probability for engineers – volume: 46 start-page: 726 year: 2009 end-page: 740 ident: bib0060 article-title: Design optimisation of consolidated granular-solid polymer prismatic beam using metamorphic development publication-title: Int J Sol Struc – volume: 65 start-page: 737 year: 2016 end-page: 760 ident: bib0005 article-title: Design for additive manufacturing: trends, opportunities, considerations and constraints publication-title: Ann CIRP – start-page: 87 year: 2012 ident: bib0025 article-title: Mechanical vibrations: modelling and measurement – volume: 49 start-page: 1035 year: 2001 end-page: 1040 ident: bib0035 article-title: Foam topology bending versus stretching dominated architectures publication-title: Acta Mater – volume: 14 start-page: 1071 year: 2013 end-page: 1078 ident: bib0045 article-title: Heuristic optimization method for cellular structure design of light weight components publication-title: Int J Precis Eng Manuf – volume: 8 start-page: 1871 year: 2015 end-page: 1896 ident: bib0065 article-title: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties publication-title: Materials – volume: 670 start-page: 264 year: 2016 end-page: 274 ident: bib0020 article-title: A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser sintering publication-title: Mater Sci Eng A-Struct – reference: BIPM JCGM 100 2008 Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM). – volume: 95 start-page: 518 year: 2016 end-page: 533 ident: bib0040 article-title: Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications publication-title: Mater Design – start-page: 250 year: 1991 ident: bib0050 article-title: Mechanic of material – year: 2016 ident: bib0075 article-title: Introduction to dynamics and vibration – volume: 53 start-page: 151 year: 2017 end-page: 165 ident: bib0030 article-title: An investigation into reinforced and functionally graded lattice structures publication-title: J Cell Plast – start-page: 539 year: 2012 ident: bib0055 article-title: Structural analysis – volume: 7 start-page: 1 year: 2015 end-page: 13 ident: bib0070 article-title: Design of a linear macro-micro actuation stage considering vibration isolation publication-title: Adv Mech Eng – volume: 7 start-page: 1 year: 2015 ident: 10.1016/j.precisioneng.2017.09.010_bib0070 article-title: Design of a linear macro-micro actuation stage considering vibration isolation publication-title: Adv Mech Eng doi: 10.1177/1687814015584541 – start-page: 87 year: 2012 ident: 10.1016/j.precisioneng.2017.09.010_bib0025 – volume: 46 start-page: 726 year: 2009 ident: 10.1016/j.precisioneng.2017.09.010_bib0060 article-title: Design optimisation of consolidated granular-solid polymer prismatic beam using metamorphic development publication-title: Int J Sol Struc doi: 10.1016/j.ijsolstr.2008.09.031 – year: 2016 ident: 10.1016/j.precisioneng.2017.09.010_bib0075 – volume: 65 start-page: 737 year: 2016 ident: 10.1016/j.precisioneng.2017.09.010_bib0005 article-title: Design for additive manufacturing: trends, opportunities, considerations and constraints publication-title: Ann CIRP doi: 10.1016/j.cirp.2016.05.004 – ident: 10.1016/j.precisioneng.2017.09.010_bib0080 – volume: 9 start-page: 225 year: 2014 ident: 10.1016/j.precisioneng.2017.09.010_bib0010 article-title: Research supporting principles for design for additive manufacturing publication-title: Virtual Phys Prototyp doi: 10.1080/17452759.2014.951530 – volume: 9 start-page: 821 year: 2014 ident: 10.1016/j.precisioneng.2017.09.010_bib0090 article-title: Vibration and sound damping in polymers publication-title: Resonance doi: 10.1007/s12045-014-0091-1 – volume: 14 start-page: 1071 year: 2013 ident: 10.1016/j.precisioneng.2017.09.010_bib0045 article-title: Heuristic optimization method for cellular structure design of light weight components publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-013-0144-5 – volume: 95 start-page: 518 year: 2016 ident: 10.1016/j.precisioneng.2017.09.010_bib0040 article-title: Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications publication-title: Mater Design doi: 10.1016/j.matdes.2016.01.146 – volume: 670 start-page: 264 year: 2016 ident: 10.1016/j.precisioneng.2017.09.010_bib0020 article-title: A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser sintering publication-title: Mater Sci Eng A-Struct doi: 10.1016/j.msea.2016.06.013 – volume: 49 start-page: 1035 year: 2001 ident: 10.1016/j.precisioneng.2017.09.010_bib0035 article-title: Foam topology bending versus stretching dominated architectures publication-title: Acta Mater doi: 10.1016/S1359-6454(00)00379-7 – volume: 8 start-page: 1871 year: 2015 ident: 10.1016/j.precisioneng.2017.09.010_bib0065 article-title: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties publication-title: Materials doi: 10.3390/ma8041871 – year: 2010 ident: 10.1016/j.precisioneng.2017.09.010_bib0015 – start-page: 225 year: 2003 ident: 10.1016/j.precisioneng.2017.09.010_bib0085 – volume: 53 start-page: 151 year: 2017 ident: 10.1016/j.precisioneng.2017.09.010_bib0030 article-title: An investigation into reinforced and functionally graded lattice structures publication-title: J Cell Plast doi: 10.1177/0021955X16639035 – start-page: 250 year: 1991 ident: 10.1016/j.precisioneng.2017.09.010_bib0050 – start-page: 539 year: 2012 ident: 10.1016/j.precisioneng.2017.09.010_bib0055 |
SSID | ssj0007804 |
Score | 2.541446 |
Snippet | •The paper presents design and analysis of six additively manufactured lattice structures focusing on vibration isolation.•An experimental methodology is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 494 |
SubjectTerms | Additive manufacturing Design Lattice structures Natural frequency Vibration isolation |
Title | Design and analysis of strut-based lattice structures for vibration isolation |
URI | https://dx.doi.org/10.1016/j.precisioneng.2017.09.010 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KvehBfGJ9lD14XZs0m2xy8FCqpSrtyUJvy-5mVyqlFoke_e3O5KEVPAgeFpKQgeTbYXaG_fYbgEstQ-Mza3mc-JxTS2Ouk9hx7XSmBQ5Z9jqcTJPxTNzP43kLhs1ZGKJV1rG_iulltK6f9Go0e-vFoke0JEwmYqw3aO-tT7LbQkjy8quPb5oHCexUNMaQ09uN8GjJ8Vq_No1sVk9E85Kl5imdpv1tkdpYeEZ7sFtnjGxQfdQ-tNzqAHY2dAQPYXJT8jCYXuU4KpUR9uIZicMWnBaqnC11QTw3VgnGvmGVzTBfZe9ULtPksAV6YXl1BLPR7eNwzOs-CdxieCg4Zmyp1KHFUjDPbJRo4V2eikinfYm_La01sTO50WHqaOfPaOFMkmAxE4cudf3oGNorxOAEmAm9D7zNEhsJ2h82UgbSm0BSIid82oGsAUbZWkScelksVcMWe1aboCoCVQWZQlA7EH3ZrispjT9ZXTf4qx-OoTDm_8H-9J_2Z7CNd2lF1jmHNk6Su8A8pDDd0tG6sDW4exhPPwE1NuDs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qe1AP4hPrMwevod3uI7sHD6VaWvs4tdBbSLKJVMpapPr7ndmHVPBQ8BBYNgzsfhkmM-TLNwAPSnjaJcbwMHIpp5bGXEWh5cqqRAU4RN7rcDKNBvPgZREuatCr7sIQrbKM_UVMz6N1-aZVotlaL5ctoiVhMhFivUFnb51oDxqkThXWodEdjgbTn4BMGjsFk9HjZFBpj-Y0r_VH1csmeyWml8hlT-lC7V_71Nbe0z-GozJpZN3iu06gZrNTONySEjyDyVNOxWAqS3EUQiPs3THSh91w2qtStlIborqxQjP2Ewtthikr-6KKmdaHLdER86dzmPefZ70BL1slcIMRYsMxaYuF8gxWg2li_EgFzqZx4Ku4I_C3hTE6tDrVyostHf5pFVgdRVjPhJ6Nbce_gHqGGFwC055zbWeSyPgBHRFrIdrC6bagXC5wcROSChhpSh1xamexkhVh7E1ugyoJVNlOJILaBP_Hdl2oaexk9VjhL3_5hsSwv4P91T_t72F_MJuM5Xg4HV3DAc7EBXfnBuq4YPYW05KNvivd7hvrq-Od |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+analysis+of+strut-based+lattice+structures+for+vibration+isolation&rft.jtitle=Precision+engineering&rft.au=Syam%2C+Wahyudin+P.&rft.au=Jianwei%2C+Wu&rft.au=Zhao%2C+Bo&rft.au=Maskery%2C+Ian&rft.date=2018-04-01&rft.issn=0141-6359&rft.volume=52&rft.spage=494&rft.epage=506&rft_id=info:doi/10.1016%2Fj.precisioneng.2017.09.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2017_09_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |