Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece

Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without in...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 66; pp. 21 - 30
Main Authors Mareš, Martin, Horejš, Otakar, Havlík, Lukáš
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without increasing machine tool costs. The modelling approach uses transfer functions to deal with this issue; it is an established dynamic method with a physical basis, and its modelling and calculation speed are suitable for real-time applications. This research presents compensation for the main internal and external heat sources affecting the 5-axis machine tool structure including spindle rotation, three linear axes movements, rotary C axis and time-varying environmental temperature influence, save for the cutting process. A mathematical model using transfer functions is implemented directly into the control system of a milling centre to compensate for thermal errors in real time using Python programming language. The inputs of the compensation algorithm are indigenous temperature sensors used primarily for diagnostic purposes in the machine. Therefore, no additional temperature sensors are necessary. This achieved a significant reduction in thermal errors in three machine directions X, Y and Z during verification testing lasting over 60 h. Moreover, a thermal test piece was machined to verify the industrial applicability of the introduced approach. The results of the transfer function model compared with the machine tool's multiple linear regression compensation model are discussed. •A model using transfer functions is capable of partial linearisation of thethermomechanical issue of the machine tool (MT).•Spindle speed and all linear axis movement and table rotation impact on MT accuracy are considered in the model structure.•The model is implemented directly into a MT control system without any additional devices.•Only internal temperature signals are used as model inputs.•Model efficiency is verified by thermal test piece machining and results are compared with indigenous software compensation.
AbstractList Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without increasing machine tool costs. The modelling approach uses transfer functions to deal with this issue; it is an established dynamic method with a physical basis, and its modelling and calculation speed are suitable for real-time applications. This research presents compensation for the main internal and external heat sources affecting the 5-axis machine tool structure including spindle rotation, three linear axes movements, rotary C axis and time-varying environmental temperature influence, save for the cutting process. A mathematical model using transfer functions is implemented directly into the control system of a milling centre to compensate for thermal errors in real time using Python programming language. The inputs of the compensation algorithm are indigenous temperature sensors used primarily for diagnostic purposes in the machine. Therefore, no additional temperature sensors are necessary. This achieved a significant reduction in thermal errors in three machine directions X, Y and Z during verification testing lasting over 60 h. Moreover, a thermal test piece was machined to verify the industrial applicability of the introduced approach. The results of the transfer function model compared with the machine tool's multiple linear regression compensation model are discussed. •A model using transfer functions is capable of partial linearisation of thethermomechanical issue of the machine tool (MT).•Spindle speed and all linear axis movement and table rotation impact on MT accuracy are considered in the model structure.•The model is implemented directly into a MT control system without any additional devices.•Only internal temperature signals are used as model inputs.•Model efficiency is verified by thermal test piece machining and results are compared with indigenous software compensation.
Author Mareš, Martin
Havlík, Lukáš
Horejš, Otakar
Author_xml – sequence: 1
  givenname: Martin
  surname: Mareš
  fullname: Mareš, Martin
  email: m.mares@rcmt.cvut.cz
  organization: Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Production Machines and Equipment, RCMT, Horská 3, 128 00, Prague, Czech Republic
– sequence: 2
  givenname: Otakar
  surname: Horejš
  fullname: Horejš, Otakar
  organization: Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Production Machines and Equipment, RCMT, Horská 3, 128 00, Prague, Czech Republic
– sequence: 3
  givenname: Lukáš
  surname: Havlík
  fullname: Havlík, Lukáš
  organization: KOVOSVIT MAS Machine Tools, a.s, náměstí T.Bati 419, 391 02, Sezimovo Ústí, Czech Republic
BookMark eNqNkM1uWyEQRlGVSnXSvAPq_t4O9xd31cptk0hRkoWzRhgGe6xrsACnzbv0YUucLKKsIhaID74z4pyyEx88MvZFQC1ADF-39T6ioUQl9uu6gQZqGGoQ8IHNhBzbqmnH5oTNQHSiGtp-_omdprQFgFFCN2P_lhuMOz1xjDFEbsJujz7pXIA8OK55X-m_lPhOmw155DmEiR8S-TUnb2mNPhwSz1hqUedDRJ5KP8TEtbd8cbMozzKuyx1afveYN4VrgkX-oCeyx_QP5U0Z9DLBFljKfE9o8DP76PSU8PxlP2P3v38tF5fV9e3F1eLHdWXacchVpwFkM9eyX40OZC8FOKO7ebear5wph7EfupWVZTlo0cnODmNJRye0kaJvz9j3Z66JIaWIThnKRwc5apqUAPVkW23Va9vqybaCQRXbBfHtDWIfaafj4_vKP5_LWD75QBhVMoTeoKVSycoGeg_mP1o-qbM
CitedBy_id crossref_primary_10_1016_j_measurement_2022_111153
crossref_primary_10_3390_machines11020248
crossref_primary_10_3390_app112210813
crossref_primary_10_1016_j_precisioneng_2021_10_007
crossref_primary_10_3390_machines10050288
crossref_primary_10_1109_ACCESS_2022_3197797
crossref_primary_10_1016_j_ymssp_2021_108488
crossref_primary_10_1007_s12206_022_0829_8
crossref_primary_10_1016_j_micpro_2024_105085
crossref_primary_10_1016_j_csite_2024_104239
crossref_primary_10_1016_j_measurement_2021_110694
crossref_primary_10_3390_s23073600
crossref_primary_10_1016_j_jmsy_2025_03_003
crossref_primary_10_3390_lubricants10060122
crossref_primary_10_1088_1742_6596_2094_4_042022
crossref_primary_10_1016_j_procir_2022_05_032
crossref_primary_10_3390_machines10121201
crossref_primary_10_3390_s24196196
crossref_primary_10_1007_s00170_023_12038_0
crossref_primary_10_1007_s00170_024_13192_9
crossref_primary_10_62943_rig_v3n2_2024_102
crossref_primary_10_1007_s10845_025_02565_w
crossref_primary_10_21595_jve_2023_23205
crossref_primary_10_3390_app13052833
crossref_primary_10_3390_app14010381
crossref_primary_10_1080_14484846_2023_2195149
crossref_primary_10_2478_amns_2024_3246
crossref_primary_10_1016_j_cirp_2021_04_029
crossref_primary_10_1016_j_measurement_2024_114183
crossref_primary_10_3390_machines10020132
crossref_primary_10_1007_s00170_023_12778_z
crossref_primary_10_1016_j_jmsy_2024_02_012
crossref_primary_10_1016_j_cirpj_2023_07_005
crossref_primary_10_1007_s00170_023_12421_x
crossref_primary_10_3233_JCM_237027
crossref_primary_10_1007_s10845_023_02283_1
crossref_primary_10_1016_j_precisioneng_2024_08_014
crossref_primary_10_1016_j_mfglet_2024_09_025
crossref_primary_10_1007_s00170_023_10988_z
crossref_primary_10_1115_1_4052388
crossref_primary_10_1016_j_precisioneng_2025_01_021
crossref_primary_10_29130_dubited_842244
crossref_primary_10_54684_ijmmt_2022_14_2_30
crossref_primary_10_1016_j_ijmachtools_2023_104003
crossref_primary_10_1016_j_precisioneng_2022_05_008
crossref_primary_10_3390_machines12080509
crossref_primary_10_1007_s00170_023_12276_2
crossref_primary_10_1007_s00170_024_14424_8
crossref_primary_10_1007_s00170_021_06779_z
crossref_primary_10_1007_s40430_023_04019_x
crossref_primary_10_1016_j_eswa_2023_122065
crossref_primary_10_3390_s21020360
crossref_primary_10_1051_epjconf_202124804020
crossref_primary_10_1007_s00170_023_12721_2
crossref_primary_10_1016_j_precisioneng_2025_02_024
crossref_primary_10_1016_j_measurement_2021_110629
crossref_primary_10_1177_16878132241288006
crossref_primary_10_1016_j_jmsy_2022_04_015
crossref_primary_10_1007_s12541_025_01230_9
crossref_primary_10_1016_j_precisioneng_2022_02_009
crossref_primary_10_3390_machines12050352
crossref_primary_10_1007_s00170_025_15021_z
crossref_primary_10_1007_s40430_022_03812_4
crossref_primary_10_1109_JSEN_2023_3315302
crossref_primary_10_1080_10407782_2024_2311764
crossref_primary_10_1007_s00170_023_12810_2
crossref_primary_10_1016_j_csite_2025_106009
crossref_primary_10_1115_1_4055047
crossref_primary_10_1139_tcsme_2022_0116
Cites_doi 10.3788/OPE.20182606.1415
10.1016/j.jmsy.2017.04.011
10.1115/1.2830167
10.1016/j.cirp.2018.04.080
10.1016/j.procir.2017.03.208
10.1016/S0007-8506(07)60702-1
10.1016/j.ijmachtools.2015.04.008
10.1016/S0007-8506(07)60506-X
10.1016/S0141-6359(00)00044-1
10.1007/s11740-017-0750-7
10.1016/j.precisioneng.2018.01.017
10.1016/S0890-6955(00)00010-9
10.1016/j.precisioneng.2016.08.008
10.1016/j.precisioneng.2019.07.011
10.1016/j.cirp.2014.03.029
10.1016/j.precisioneng.2011.07.013
10.1016/j.procir.2017.03.253
10.1177/0954406214545661
10.20965/ijat.2012.p0137
10.1016/j.precisioneng.2015.03.012
10.1016/j.cirp.2012.05.008
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.precisioneng.2020.06.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2372
EndPage 30
ExternalDocumentID 10_1016_j_precisioneng_2020_06_010
S0141635920301653
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c376t-4a00829a85b7f085810fca494b9bfc10f7564bd8d8df03ef84d670f77f1ac8153
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Tue Jul 01 02:13:01 EDT 2025
Thu Apr 24 23:01:15 EDT 2025
Sun Apr 21 12:55:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thermal error
Accuracy
Machine tool
Compensation
Implementation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-4a00829a85b7f085810fca494b9bfc10f7564bd8d8df03ef84d670f77f1ac8153
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0141635920301653
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_precisioneng_2020_06_010
crossref_primary_10_1016_j_precisioneng_2020_06_010
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2020_06_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Precision engineering
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mize, Ziegert (bib16) 2000; 24
Deng, Lin, Wang, Xie, Fu (bib3) 2018; 6
Mayr, Ess, Weikert, Wegener (bib11) 2009
ISO 230-3 (bib25) 2007
Mareš, Horejš, Hornych, Smolík (bib26) 2013; 13
Tachiya, Hirata, Ueno, Kaneko, Nakagaki, Ishino (bib27) 2012; 6
Horejš, Mareš, Hornych (bib24) 2013
Ramesh, Mannan, Poo (bib6) 2000; 40
Fraser, Attia, Osman (bib15) 1998; 120
Bitar-Nehme, Mayer (bib21) 2018; 67
Gebhardt, Mayr, Furrer, Widmer, Weikert, Knapp (bib18) 2014; 63
Brecher, Wissmann, Klein (bib7) 2010
Oetinger, Arnold, Sawodny (bib12) 2017; 11
Ljung (bib28) 1988
Horejš, Mareš, Kohút, Bárta, Hornych (bib23) 2010
Zhang, Gao, Li (bib19) 2017; 47
Morishima, van Ostayen, van Eijk, Schmidt (bib5) 2015; 42
Weck, McKeown, Bonse, Herbst (bib2) 1995; 44
Mareš, Horejš (bib31) 2017; 58
Mayr, Jedrzejewski, Uhlmann, Alkan Donmez, Knapp, Härtig, Wendt, Moriwaki, Shore, Schmitt, Brecher, Würz, Wegener (bib1) 2012; 61
Meo, Merlo, Rodriguez, Brunner, Fleck, Lu, Mai, Srikantha Phani, Woodhouse (bib8) 1st-14th July 2008
Blaser, Pavliček, Mori, Mayr, Weikert, Wegener (bib20) 2017; 44
Srinivas, Ashvarya, Ramesh, Subramanian (bib14) 2017; 58
Zhu, Xiang, Yang (bib22) 2014; 229
Morávek, Bureš, Horejš (bib30) 2015
Hellmich, Glänzel, Pierer (bib4) 2018
Zapłata, Pajor (bib10) 2019; 60
Wiessner, Blaser, Böhl, Mayr, Knapp, Wegener (bib29) 2018; 52
Brecher, Hirsch, Weck (bib17) 2004; 53
Vyroubal (bib13) 2012; 36
Li, Zhao, Lan, Ni, Wu, Lu (bib9) 2015; 95
Li (10.1016/j.precisioneng.2020.06.010_bib9) 2015; 95
Gebhardt (10.1016/j.precisioneng.2020.06.010_bib18) 2014; 63
Mayr (10.1016/j.precisioneng.2020.06.010_bib1) 2012; 61
Meo (10.1016/j.precisioneng.2020.06.010_bib8) 2008
Srinivas (10.1016/j.precisioneng.2020.06.010_bib14) 2017; 58
Oetinger (10.1016/j.precisioneng.2020.06.010_bib12) 2017; 11
Zhu (10.1016/j.precisioneng.2020.06.010_bib22) 2014; 229
Zapłata (10.1016/j.precisioneng.2020.06.010_bib10) 2019; 60
Mareš (10.1016/j.precisioneng.2020.06.010_bib26) 2013; 13
Ljung (10.1016/j.precisioneng.2020.06.010_bib28)
Vyroubal (10.1016/j.precisioneng.2020.06.010_bib13) 2012; 36
Zhang (10.1016/j.precisioneng.2020.06.010_bib19) 2017; 47
Blaser (10.1016/j.precisioneng.2020.06.010_bib20) 2017; 44
Horejš (10.1016/j.precisioneng.2020.06.010_bib23) 2010
ISO 230-3 (10.1016/j.precisioneng.2020.06.010_bib25) 2007
Morávek (10.1016/j.precisioneng.2020.06.010_bib30) 2015
Morishima (10.1016/j.precisioneng.2020.06.010_bib5) 2015; 42
Mareš (10.1016/j.precisioneng.2020.06.010_bib31) 2017; 58
Mize (10.1016/j.precisioneng.2020.06.010_bib16) 2000; 24
Weck (10.1016/j.precisioneng.2020.06.010_bib2) 1995; 44
Mayr (10.1016/j.precisioneng.2020.06.010_bib11) 2009
Bitar-Nehme (10.1016/j.precisioneng.2020.06.010_bib21) 2018; 67
Hellmich (10.1016/j.precisioneng.2020.06.010_bib4) 2018
Deng (10.1016/j.precisioneng.2020.06.010_bib3) 2018; 6
Ramesh (10.1016/j.precisioneng.2020.06.010_bib6) 2000; 40
Brecher (10.1016/j.precisioneng.2020.06.010_bib7) 2010
Brecher (10.1016/j.precisioneng.2020.06.010_bib17) 2004; 53
Horejš (10.1016/j.precisioneng.2020.06.010_bib24) 2013
Fraser (10.1016/j.precisioneng.2020.06.010_bib15) 1998; 120
Tachiya (10.1016/j.precisioneng.2020.06.010_bib27) 2012; 6
Wiessner (10.1016/j.precisioneng.2020.06.010_bib29) 2018; 52
References_xml – year: 2010
  ident: bib7
  article-title: “Compensation of thermo-dependent machine tool deformations due to spindle load based on reduced experimental procedure and modeling effort – synthesis between direct and indirect compensation
  publication-title: 8th international conference on high speed machining
– year: 1988
  ident: bib28
  article-title: “System identification Toolbox™ 7,”
– year: 2015
  ident: bib30
  article-title: Volumetric measurement of machine tool thermal deformation using an MT-Check probe
  publication-title: Laser metrology and machine performance XI
– volume: 24
  start-page: 338
  year: 2000
  end-page: 346
  ident: bib16
  article-title: Neural network thermal error compensation of a machining center
  publication-title: Precis Eng
– volume: 61
  start-page: 771
  year: 2012
  end-page: 791
  ident: bib1
  article-title: Thermal issues in machine tools
  publication-title: CIRP Ann - Manuf Technol
– volume: 44
  start-page: 302
  year: 2017
  end-page: 309
  ident: bib20
  article-title: Adaptive learning control for thermal error compensation of 5-axis machine tools
  publication-title: J Manuf Syst
– volume: 120
  start-page: 623
  year: 1998
  end-page: 631
  ident: bib15
  article-title: Modelling, identification and control of thermal deformation of machine tool structures, Part 1: concept of generalized modelling
  publication-title: J.Manuf.Sci.Eng.Trans.ASME
– volume: 36
  start-page: 121
  year: 2012
  end-page: 127
  ident: bib13
  article-title: Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method
  publication-title: Precis Eng
– volume: 58
  start-page: 152
  year: 2017
  end-page: 157
  ident: bib31
  article-title: Modelling of cutting process impact on machine tool thermal behaviour based on experimental data
  publication-title: Procedia CIRP
– year: 2009
  ident: bib11
  article-title: Compensation of thermal effects on machine tools using a FDEM simulation approach
  publication-title: 9th international conference and exhibition on laser metrology, machine tool, CMM and robotic performance
– volume: 52
  start-page: 407
  year: 2018
  end-page: 417
  ident: bib29
  article-title: Thermal test piece for 5-axis machine tools
  publication-title: Precis Eng
– start-page: 162
  year: 2010
  end-page: 165
  ident: bib23
  article-title: Compensation of machine tool thermal errors based on transfer functions
  publication-title: MM Science Journal
– year: 1st-14th July 2008
  ident: bib8
  article-title: Advanced hybrid mechatronic materials for ultra precise and high performance machining system design
  publication-title: Innovative Production Machines and Systems - Fourth I*PROMS Virtual Conference
– volume: 42
  start-page: 66
  year: 2015
  end-page: 72
  ident: bib5
  article-title: Thermal displacement error compensation in temperature domain
  publication-title: Precis Eng
– volume: 6
  start-page: 1415
  year: 2018
  end-page: 1429
  ident: bib3
  article-title: Review on thermal design of machine tool spindles
  publication-title: Optic Precis Eng
– volume: 47
  start-page: 231
  year: 2017
  end-page: 238
  ident: bib19
  article-title: Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature
  publication-title: Precis Eng
– year: 2018
  ident: bib4
  article-title: Analyzing and optimizing the fluidic tempering of machine tool frames
  publication-title: Proceedings of the conference on thermal issues in machine tools
– volume: 53
  start-page: 299
  year: 2004
  end-page: 304
  ident: bib17
  article-title: Compensation of thermo-elastic machine tool deformation based on control internal data
  publication-title: CIRP Ann - Manuf Technol
– volume: 44
  start-page: 589
  year: 1995
  end-page: 598
  ident: bib2
  article-title: Reduction and compensation of thermal errors in machine tools
  publication-title: CIRP Ann - Manuf Technol
– volume: 95
  start-page: 20
  year: 2015
  end-page: 38
  ident: bib9
  article-title: A review on spindle thermal error compensation in machine tools
  publication-title: Int J Mach Tool Manufact
– volume: 67
  start-page: 547
  year: 2018
  end-page: 550
  ident: bib21
  article-title: “Modelling and compensation of dominant thermally induced geometric errors using rotary axes' power consumption
  publication-title: CIRP Ann - Manuf Technol
– year: 2013
  ident: bib24
  article-title: Complex verification of thermal error compensation model of a portal milling centre
  publication-title: Proceedings of the international conference on advanced manufacturing engineering and technologies, Stockholm
– volume: 40
  start-page: 1257
  year: 2000
  end-page: 1284
  ident: bib6
  article-title: Error compensation in machine tools - a review: Part II: thermal errors
  publication-title: Int.J.Mach.Tools Manuf.
– start-page: 44
  year: 2007
  ident: bib25
  article-title: Test code for machine tools - Part 3: determination of thermal effects
– volume: 60
  start-page: 160
  year: 2019
  end-page: 166
  ident: bib10
  article-title: Piecewise compensation of thermal errors of a ball screw driven CNC axis
  publication-title: Precis Eng
– volume: 13
  start-page: 24
  year: 2013
  end-page: 36
  ident: bib26
  article-title: Robustness and portability of machine tool thermal error compensation model based on control of participating thermal sources
  publication-title: Journal of Machine Engineering
– volume: 229
  start-page: 1500
  year: 2014
  end-page: 1508
  ident: bib22
  article-title: Novel thermal error modeling method for machining centers
  publication-title: J Mech Eng Sci
– volume: 58
  start-page: 457
  year: 2017
  end-page: 462
  ident: bib14
  article-title: Optimization of high speed machine tool spindle to minimize thermal distortion
  publication-title: Procedia CIRP
– volume: 63
  start-page: 509
  year: 2014
  end-page: 512
  ident: bib18
  article-title: High precision grey-box model for compensation of thermal errors on five-axis machines
  publication-title: CIRP Ann - Manuf Technol
– volume: 6
  start-page: 137
  year: 2012
  end-page: 146
  ident: bib27
  article-title: Evaluation of and compensation for thermal deformation in a compact CNC lathe
  publication-title: Int J Autom Technol
– volume: 11
  start-page: 601
  year: 2017
  end-page: 611
  ident: bib12
  article-title: Model based controller design for the compensation of thermally induced deformations
  publication-title: J Inst Eng Prod
– volume: 6
  start-page: 1415
  year: 2018
  ident: 10.1016/j.precisioneng.2020.06.010_bib3
  article-title: Review on thermal design of machine tool spindles
  publication-title: Optic Precis Eng
  doi: 10.3788/OPE.20182606.1415
– volume: 44
  start-page: 302
  issue: 2
  year: 2017
  ident: 10.1016/j.precisioneng.2020.06.010_bib20
  article-title: Adaptive learning control for thermal error compensation of 5-axis machine tools
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2017.04.011
– volume: 120
  start-page: 623
  issue: 3
  year: 1998
  ident: 10.1016/j.precisioneng.2020.06.010_bib15
  article-title: Modelling, identification and control of thermal deformation of machine tool structures, Part 1: concept of generalized modelling
  publication-title: J.Manuf.Sci.Eng.Trans.ASME
  doi: 10.1115/1.2830167
– volume: 67
  start-page: 547
  year: 2018
  ident: 10.1016/j.precisioneng.2020.06.010_bib21
  article-title: “Modelling and compensation of dominant thermally induced geometric errors using rotary axes' power consumption
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirp.2018.04.080
– start-page: 44
  year: 2007
  ident: 10.1016/j.precisioneng.2020.06.010_bib25
– volume: 58
  start-page: 152
  year: 2017
  ident: 10.1016/j.precisioneng.2020.06.010_bib31
  article-title: Modelling of cutting process impact on machine tool thermal behaviour based on experimental data
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.03.208
– volume: 53
  start-page: 299
  issue: 1
  year: 2004
  ident: 10.1016/j.precisioneng.2020.06.010_bib17
  article-title: Compensation of thermo-elastic machine tool deformation based on control internal data
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/S0007-8506(07)60702-1
– ident: 10.1016/j.precisioneng.2020.06.010_bib28
– volume: 95
  start-page: 20
  issue: 1
  year: 2015
  ident: 10.1016/j.precisioneng.2020.06.010_bib9
  article-title: A review on spindle thermal error compensation in machine tools
  publication-title: Int J Mach Tool Manufact
  doi: 10.1016/j.ijmachtools.2015.04.008
– year: 2013
  ident: 10.1016/j.precisioneng.2020.06.010_bib24
  article-title: Complex verification of thermal error compensation model of a portal milling centre
– volume: 44
  start-page: 589
  issue: 2
  year: 1995
  ident: 10.1016/j.precisioneng.2020.06.010_bib2
  article-title: Reduction and compensation of thermal errors in machine tools
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/S0007-8506(07)60506-X
– year: 2008
  ident: 10.1016/j.precisioneng.2020.06.010_bib8
  article-title: Advanced hybrid mechatronic materials for ultra precise and high performance machining system design
– volume: 24
  start-page: 338
  issue: 4
  year: 2000
  ident: 10.1016/j.precisioneng.2020.06.010_bib16
  article-title: Neural network thermal error compensation of a machining center
  publication-title: Precis Eng
  doi: 10.1016/S0141-6359(00)00044-1
– year: 2018
  ident: 10.1016/j.precisioneng.2020.06.010_bib4
  article-title: Analyzing and optimizing the fluidic tempering of machine tool frames
– volume: 11
  start-page: 601
  issue: 4-5
  year: 2017
  ident: 10.1016/j.precisioneng.2020.06.010_bib12
  article-title: Model based controller design for the compensation of thermally induced deformations
  publication-title: J Inst Eng Prod
  doi: 10.1007/s11740-017-0750-7
– volume: 52
  start-page: 407
  issue: April
  year: 2018
  ident: 10.1016/j.precisioneng.2020.06.010_bib29
  article-title: Thermal test piece for 5-axis machine tools
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2018.01.017
– volume: 40
  start-page: 1257
  issue: 9
  year: 2000
  ident: 10.1016/j.precisioneng.2020.06.010_bib6
  article-title: Error compensation in machine tools - a review: Part II: thermal errors
  publication-title: Int.J.Mach.Tools Manuf.
  doi: 10.1016/S0890-6955(00)00010-9
– year: 2009
  ident: 10.1016/j.precisioneng.2020.06.010_bib11
  article-title: Compensation of thermal effects on machine tools using a FDEM simulation approach
– volume: 47
  start-page: 231
  year: 2017
  ident: 10.1016/j.precisioneng.2020.06.010_bib19
  article-title: Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2016.08.008
– volume: 60
  start-page: 160
  year: 2019
  ident: 10.1016/j.precisioneng.2020.06.010_bib10
  article-title: Piecewise compensation of thermal errors of a ball screw driven CNC axis
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2019.07.011
– volume: 63
  start-page: 509
  year: 2014
  ident: 10.1016/j.precisioneng.2020.06.010_bib18
  article-title: High precision grey-box model for compensation of thermal errors on five-axis machines
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirp.2014.03.029
– volume: 36
  start-page: 121
  year: 2012
  ident: 10.1016/j.precisioneng.2020.06.010_bib13
  article-title: Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2011.07.013
– volume: 58
  start-page: 457
  year: 2017
  ident: 10.1016/j.precisioneng.2020.06.010_bib14
  article-title: Optimization of high speed machine tool spindle to minimize thermal distortion
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.03.253
– year: 2015
  ident: 10.1016/j.precisioneng.2020.06.010_bib30
  article-title: Volumetric measurement of machine tool thermal deformation using an MT-Check probe
– volume: 229
  start-page: 1500
  issue: 8
  year: 2014
  ident: 10.1016/j.precisioneng.2020.06.010_bib22
  article-title: Novel thermal error modeling method for machining centers
  publication-title: J Mech Eng Sci
  doi: 10.1177/0954406214545661
– volume: 13
  start-page: 24
  issue: 1
  year: 2013
  ident: 10.1016/j.precisioneng.2020.06.010_bib26
  article-title: Robustness and portability of machine tool thermal error compensation model based on control of participating thermal sources
  publication-title: Journal of Machine Engineering
– volume: 6
  start-page: 137
  issue: 2
  year: 2012
  ident: 10.1016/j.precisioneng.2020.06.010_bib27
  article-title: Evaluation of and compensation for thermal deformation in a compact CNC lathe
  publication-title: Int J Autom Technol
  doi: 10.20965/ijat.2012.p0137
– volume: 42
  start-page: 66
  year: 2015
  ident: 10.1016/j.precisioneng.2020.06.010_bib5
  article-title: Thermal displacement error compensation in temperature domain
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2015.03.012
– volume: 61
  start-page: 771
  issue: 2
  year: 2012
  ident: 10.1016/j.precisioneng.2020.06.010_bib1
  article-title: Thermal issues in machine tools
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirp.2012.05.008
– start-page: 162
  issue: 1
  year: 2010
  ident: 10.1016/j.precisioneng.2020.06.010_bib23
  article-title: Compensation of machine tool thermal errors based on transfer functions
  publication-title: MM Science Journal
– year: 2010
  ident: 10.1016/j.precisioneng.2020.06.010_bib7
  article-title: “Compensation of thermo-dependent machine tool deformations due to spindle load based on reduced experimental procedure and modeling effort – synthesis between direct and indirect compensation
SSID ssj0007804
Score 2.543015
Snippet Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 21
SubjectTerms Accuracy
Compensation
Implementation
Machine tool
Thermal error
Title Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece
URI https://dx.doi.org/10.1016/j.precisioneng.2020.06.010
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5McmkOpUkbmpeZQ65by9GuVjr0EEyC0xDTQwO5iX0GFdcysgLJpb-kPzYzejgO5BAoOu2i0YqZYXZ2-eYbxk6ljG3sk8CdUTEXIYp5ltqE6zRkxgTtvKaD4s0smd6KH3fybsAmfS0MwSq72N_G9CZadzOjTpujZVGMCJaEyYTMziirTyQxfgqhyMu__X2BeRDBTgtjHHN6uycebTBey6pvZLO4x7PiWdRweVI17Vub1MbGc_mJfewyRjhvf2qXDfxij-1s8Ah-Zv_Q2Bhg5-CrqqyAYOJ4Om10DmUADZLrx2IFfxrkpIe6LOdAiPd7KNY8rUAsVR3FMqxQvqxWoBcOJrMJrFklHPx8IroBoFp4QDctXDNL97m4ULeCw4-talgW3vov7Pby4tdkyru2C9xitKm50E3BrU6lUQEzsnQcBatFJkxmgsWBkokwLsUHTetDKlyicFaFsbYpRtB9trVAlX5lEIUkS711DpMYobwyVjsZEuWcCSHocMCyXs-57TjJqTXGPO_BZ7_zTRvlZKOckHjj6IDFa9lly8zxLqnvvTnzV36W4xbyDvnD_5Q_Yh9o1FYzHrOtunrwJ5jW1GbY-O2QbZ9fXU9nz0D-_10
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF6lcCgcENAiKK859LrEwbt-HDigqChAiHoAiZu1T-QqjSPHldoLv4Qfy4wfaSpxQKp88trjtWbWszPWN98w9lXK0IQu8tzqOOTCByFPExNxlfhUa6-sU5Qo3k2i0YO4eZSPPTbsamEIVtn6_san1966Hem32uzP87xPsCQMJmR6TlF9JMMPbF3g50ttDM6e_-I8iGGnwTEOON3eMY_WIK952XWymT1hsnge1GSeVE771i61svNcbbOtNmSEy-atdljPzXbZ5gqR4Cf2gtZGDzsFV5ZFCYQTx_S0VjoUHhRIrn7nC_hZQycdVEUxBYK8P0G-JGoFoqlqOZZhgfJFuQA1szCcDGFJK2Hh-x_iGwAqhgdcp7mtR-mHLk7UzmDxYYsK5rkz7jN7uPp2Pxzxtu8CN-huKi5UXXGrEqljjyFZMgi8USIVOtXe4EksI6Ftggfa1vlE2CjG0dgPlEnQhe6xtRmqdJ9B4KM0ccZajGJE7GJtlJU-iq3V3nvlD1ja6TkzLSk59caYZh367Ee2aqOMbJQRFG8QHLBwKTtvqDneJXXRmTP7Z6FluIe8Q_7Lf8qfso-j-7txNr6e3B6yDbrSlDYesbWq_OWOMcap9Em9hl8BBOgA-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+error+compensation+of+a+5-axis+machine+tool+using+indigenous+temperature+sensors+and+CNC+integrated+Python+code+validated+with+a+machined+test+piece&rft.jtitle=Precision+engineering&rft.au=Mare%C5%A1%2C+Martin&rft.au=Horej%C5%A1%2C+Otakar&rft.au=Havl%C3%ADk%2C+Luk%C3%A1%C5%A1&rft.date=2020-11-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.eissn=1873-2372&rft.volume=66&rft.spage=21&rft.epage=30&rft_id=info:doi/10.1016%2Fj.precisioneng.2020.06.010&rft.externalDocID=S0141635920301653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon