Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece
Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without in...
Saved in:
Published in | Precision engineering Vol. 66; pp. 21 - 30 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without increasing machine tool costs. The modelling approach uses transfer functions to deal with this issue; it is an established dynamic method with a physical basis, and its modelling and calculation speed are suitable for real-time applications. This research presents compensation for the main internal and external heat sources affecting the 5-axis machine tool structure including spindle rotation, three linear axes movements, rotary C axis and time-varying environmental temperature influence, save for the cutting process. A mathematical model using transfer functions is implemented directly into the control system of a milling centre to compensate for thermal errors in real time using Python programming language. The inputs of the compensation algorithm are indigenous temperature sensors used primarily for diagnostic purposes in the machine. Therefore, no additional temperature sensors are necessary. This achieved a significant reduction in thermal errors in three machine directions X, Y and Z during verification testing lasting over 60 h. Moreover, a thermal test piece was machined to verify the industrial applicability of the introduced approach. The results of the transfer function model compared with the machine tool's multiple linear regression compensation model are discussed.
•A model using transfer functions is capable of partial linearisation of thethermomechanical issue of the machine tool (MT).•Spindle speed and all linear axis movement and table rotation impact on MT accuracy are considered in the model structure.•The model is implemented directly into a MT control system without any additional devices.•Only internal temperature signals are used as model inputs.•Model efficiency is verified by thermal test piece machining and results are compared with indigenous software compensation. |
---|---|
AbstractList | Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without increasing machine tool costs. The modelling approach uses transfer functions to deal with this issue; it is an established dynamic method with a physical basis, and its modelling and calculation speed are suitable for real-time applications. This research presents compensation for the main internal and external heat sources affecting the 5-axis machine tool structure including spindle rotation, three linear axes movements, rotary C axis and time-varying environmental temperature influence, save for the cutting process. A mathematical model using transfer functions is implemented directly into the control system of a milling centre to compensate for thermal errors in real time using Python programming language. The inputs of the compensation algorithm are indigenous temperature sensors used primarily for diagnostic purposes in the machine. Therefore, no additional temperature sensors are necessary. This achieved a significant reduction in thermal errors in three machine directions X, Y and Z during verification testing lasting over 60 h. Moreover, a thermal test piece was machined to verify the industrial applicability of the introduced approach. The results of the transfer function model compared with the machine tool's multiple linear regression compensation model are discussed.
•A model using transfer functions is capable of partial linearisation of thethermomechanical issue of the machine tool (MT).•Spindle speed and all linear axis movement and table rotation impact on MT accuracy are considered in the model structure.•The model is implemented directly into a MT control system without any additional devices.•Only internal temperature signals are used as model inputs.•Model efficiency is verified by thermal test piece machining and results are compared with indigenous software compensation. |
Author | Mareš, Martin Havlík, Lukáš Horejš, Otakar |
Author_xml | – sequence: 1 givenname: Martin surname: Mareš fullname: Mareš, Martin email: m.mares@rcmt.cvut.cz organization: Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Production Machines and Equipment, RCMT, Horská 3, 128 00, Prague, Czech Republic – sequence: 2 givenname: Otakar surname: Horejš fullname: Horejš, Otakar organization: Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Production Machines and Equipment, RCMT, Horská 3, 128 00, Prague, Czech Republic – sequence: 3 givenname: Lukáš surname: Havlík fullname: Havlík, Lukáš organization: KOVOSVIT MAS Machine Tools, a.s, náměstí T.Bati 419, 391 02, Sezimovo Ústí, Czech Republic |
BookMark | eNqNkM1uWyEQRlGVSnXSvAPq_t4O9xd31cptk0hRkoWzRhgGe6xrsACnzbv0YUucLKKsIhaID74z4pyyEx88MvZFQC1ADF-39T6ioUQl9uu6gQZqGGoQ8IHNhBzbqmnH5oTNQHSiGtp-_omdprQFgFFCN2P_lhuMOz1xjDFEbsJujz7pXIA8OK55X-m_lPhOmw155DmEiR8S-TUnb2mNPhwSz1hqUedDRJ5KP8TEtbd8cbMozzKuyx1afveYN4VrgkX-oCeyx_QP5U0Z9DLBFljKfE9o8DP76PSU8PxlP2P3v38tF5fV9e3F1eLHdWXacchVpwFkM9eyX40OZC8FOKO7ebear5wph7EfupWVZTlo0cnODmNJRye0kaJvz9j3Z66JIaWIThnKRwc5apqUAPVkW23Va9vqybaCQRXbBfHtDWIfaafj4_vKP5_LWD75QBhVMoTeoKVSycoGeg_mP1o-qbM |
CitedBy_id | crossref_primary_10_1016_j_measurement_2022_111153 crossref_primary_10_3390_machines11020248 crossref_primary_10_3390_app112210813 crossref_primary_10_1016_j_precisioneng_2021_10_007 crossref_primary_10_3390_machines10050288 crossref_primary_10_1109_ACCESS_2022_3197797 crossref_primary_10_1016_j_ymssp_2021_108488 crossref_primary_10_1007_s12206_022_0829_8 crossref_primary_10_1016_j_micpro_2024_105085 crossref_primary_10_1016_j_csite_2024_104239 crossref_primary_10_1016_j_measurement_2021_110694 crossref_primary_10_3390_s23073600 crossref_primary_10_1016_j_jmsy_2025_03_003 crossref_primary_10_3390_lubricants10060122 crossref_primary_10_1088_1742_6596_2094_4_042022 crossref_primary_10_1016_j_procir_2022_05_032 crossref_primary_10_3390_machines10121201 crossref_primary_10_3390_s24196196 crossref_primary_10_1007_s00170_023_12038_0 crossref_primary_10_1007_s00170_024_13192_9 crossref_primary_10_62943_rig_v3n2_2024_102 crossref_primary_10_1007_s10845_025_02565_w crossref_primary_10_21595_jve_2023_23205 crossref_primary_10_3390_app13052833 crossref_primary_10_3390_app14010381 crossref_primary_10_1080_14484846_2023_2195149 crossref_primary_10_2478_amns_2024_3246 crossref_primary_10_1016_j_cirp_2021_04_029 crossref_primary_10_1016_j_measurement_2024_114183 crossref_primary_10_3390_machines10020132 crossref_primary_10_1007_s00170_023_12778_z crossref_primary_10_1016_j_jmsy_2024_02_012 crossref_primary_10_1016_j_cirpj_2023_07_005 crossref_primary_10_1007_s00170_023_12421_x crossref_primary_10_3233_JCM_237027 crossref_primary_10_1007_s10845_023_02283_1 crossref_primary_10_1016_j_precisioneng_2024_08_014 crossref_primary_10_1016_j_mfglet_2024_09_025 crossref_primary_10_1007_s00170_023_10988_z crossref_primary_10_1115_1_4052388 crossref_primary_10_1016_j_precisioneng_2025_01_021 crossref_primary_10_29130_dubited_842244 crossref_primary_10_54684_ijmmt_2022_14_2_30 crossref_primary_10_1016_j_ijmachtools_2023_104003 crossref_primary_10_1016_j_precisioneng_2022_05_008 crossref_primary_10_3390_machines12080509 crossref_primary_10_1007_s00170_023_12276_2 crossref_primary_10_1007_s00170_024_14424_8 crossref_primary_10_1007_s00170_021_06779_z crossref_primary_10_1007_s40430_023_04019_x crossref_primary_10_1016_j_eswa_2023_122065 crossref_primary_10_3390_s21020360 crossref_primary_10_1051_epjconf_202124804020 crossref_primary_10_1007_s00170_023_12721_2 crossref_primary_10_1016_j_precisioneng_2025_02_024 crossref_primary_10_1016_j_measurement_2021_110629 crossref_primary_10_1177_16878132241288006 crossref_primary_10_1016_j_jmsy_2022_04_015 crossref_primary_10_1007_s12541_025_01230_9 crossref_primary_10_1016_j_precisioneng_2022_02_009 crossref_primary_10_3390_machines12050352 crossref_primary_10_1007_s00170_025_15021_z crossref_primary_10_1007_s40430_022_03812_4 crossref_primary_10_1109_JSEN_2023_3315302 crossref_primary_10_1080_10407782_2024_2311764 crossref_primary_10_1007_s00170_023_12810_2 crossref_primary_10_1016_j_csite_2025_106009 crossref_primary_10_1115_1_4055047 crossref_primary_10_1139_tcsme_2022_0116 |
Cites_doi | 10.3788/OPE.20182606.1415 10.1016/j.jmsy.2017.04.011 10.1115/1.2830167 10.1016/j.cirp.2018.04.080 10.1016/j.procir.2017.03.208 10.1016/S0007-8506(07)60702-1 10.1016/j.ijmachtools.2015.04.008 10.1016/S0007-8506(07)60506-X 10.1016/S0141-6359(00)00044-1 10.1007/s11740-017-0750-7 10.1016/j.precisioneng.2018.01.017 10.1016/S0890-6955(00)00010-9 10.1016/j.precisioneng.2016.08.008 10.1016/j.precisioneng.2019.07.011 10.1016/j.cirp.2014.03.029 10.1016/j.precisioneng.2011.07.013 10.1016/j.procir.2017.03.253 10.1177/0954406214545661 10.20965/ijat.2012.p0137 10.1016/j.precisioneng.2015.03.012 10.1016/j.cirp.2012.05.008 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2020.06.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2372 |
EndPage | 30 |
ExternalDocumentID | 10_1016_j_precisioneng_2020_06_010 S0141635920301653 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c376t-4a00829a85b7f085810fca494b9bfc10f7564bd8d8df03ef84d670f77f1ac8153 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Tue Jul 01 02:13:01 EDT 2025 Thu Apr 24 23:01:15 EDT 2025 Sun Apr 21 12:55:40 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal error Accuracy Machine tool Compensation Implementation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-4a00829a85b7f085810fca494b9bfc10f7564bd8d8df03ef84d670f77f1ac8153 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141635920301653 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_precisioneng_2020_06_010 crossref_primary_10_1016_j_precisioneng_2020_06_010 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2020_06_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationTitle | Precision engineering |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Mize, Ziegert (bib16) 2000; 24 Deng, Lin, Wang, Xie, Fu (bib3) 2018; 6 Mayr, Ess, Weikert, Wegener (bib11) 2009 ISO 230-3 (bib25) 2007 Mareš, Horejš, Hornych, Smolík (bib26) 2013; 13 Tachiya, Hirata, Ueno, Kaneko, Nakagaki, Ishino (bib27) 2012; 6 Horejš, Mareš, Hornych (bib24) 2013 Ramesh, Mannan, Poo (bib6) 2000; 40 Fraser, Attia, Osman (bib15) 1998; 120 Bitar-Nehme, Mayer (bib21) 2018; 67 Gebhardt, Mayr, Furrer, Widmer, Weikert, Knapp (bib18) 2014; 63 Brecher, Wissmann, Klein (bib7) 2010 Oetinger, Arnold, Sawodny (bib12) 2017; 11 Ljung (bib28) 1988 Horejš, Mareš, Kohút, Bárta, Hornych (bib23) 2010 Zhang, Gao, Li (bib19) 2017; 47 Morishima, van Ostayen, van Eijk, Schmidt (bib5) 2015; 42 Weck, McKeown, Bonse, Herbst (bib2) 1995; 44 Mareš, Horejš (bib31) 2017; 58 Mayr, Jedrzejewski, Uhlmann, Alkan Donmez, Knapp, Härtig, Wendt, Moriwaki, Shore, Schmitt, Brecher, Würz, Wegener (bib1) 2012; 61 Meo, Merlo, Rodriguez, Brunner, Fleck, Lu, Mai, Srikantha Phani, Woodhouse (bib8) 1st-14th July 2008 Blaser, Pavliček, Mori, Mayr, Weikert, Wegener (bib20) 2017; 44 Srinivas, Ashvarya, Ramesh, Subramanian (bib14) 2017; 58 Zhu, Xiang, Yang (bib22) 2014; 229 Morávek, Bureš, Horejš (bib30) 2015 Hellmich, Glänzel, Pierer (bib4) 2018 Zapłata, Pajor (bib10) 2019; 60 Wiessner, Blaser, Böhl, Mayr, Knapp, Wegener (bib29) 2018; 52 Brecher, Hirsch, Weck (bib17) 2004; 53 Vyroubal (bib13) 2012; 36 Li, Zhao, Lan, Ni, Wu, Lu (bib9) 2015; 95 Li (10.1016/j.precisioneng.2020.06.010_bib9) 2015; 95 Gebhardt (10.1016/j.precisioneng.2020.06.010_bib18) 2014; 63 Mayr (10.1016/j.precisioneng.2020.06.010_bib1) 2012; 61 Meo (10.1016/j.precisioneng.2020.06.010_bib8) 2008 Srinivas (10.1016/j.precisioneng.2020.06.010_bib14) 2017; 58 Oetinger (10.1016/j.precisioneng.2020.06.010_bib12) 2017; 11 Zhu (10.1016/j.precisioneng.2020.06.010_bib22) 2014; 229 Zapłata (10.1016/j.precisioneng.2020.06.010_bib10) 2019; 60 Mareš (10.1016/j.precisioneng.2020.06.010_bib26) 2013; 13 Ljung (10.1016/j.precisioneng.2020.06.010_bib28) Vyroubal (10.1016/j.precisioneng.2020.06.010_bib13) 2012; 36 Zhang (10.1016/j.precisioneng.2020.06.010_bib19) 2017; 47 Blaser (10.1016/j.precisioneng.2020.06.010_bib20) 2017; 44 Horejš (10.1016/j.precisioneng.2020.06.010_bib23) 2010 ISO 230-3 (10.1016/j.precisioneng.2020.06.010_bib25) 2007 Morávek (10.1016/j.precisioneng.2020.06.010_bib30) 2015 Morishima (10.1016/j.precisioneng.2020.06.010_bib5) 2015; 42 Mareš (10.1016/j.precisioneng.2020.06.010_bib31) 2017; 58 Mize (10.1016/j.precisioneng.2020.06.010_bib16) 2000; 24 Weck (10.1016/j.precisioneng.2020.06.010_bib2) 1995; 44 Mayr (10.1016/j.precisioneng.2020.06.010_bib11) 2009 Bitar-Nehme (10.1016/j.precisioneng.2020.06.010_bib21) 2018; 67 Hellmich (10.1016/j.precisioneng.2020.06.010_bib4) 2018 Deng (10.1016/j.precisioneng.2020.06.010_bib3) 2018; 6 Ramesh (10.1016/j.precisioneng.2020.06.010_bib6) 2000; 40 Brecher (10.1016/j.precisioneng.2020.06.010_bib7) 2010 Brecher (10.1016/j.precisioneng.2020.06.010_bib17) 2004; 53 Horejš (10.1016/j.precisioneng.2020.06.010_bib24) 2013 Fraser (10.1016/j.precisioneng.2020.06.010_bib15) 1998; 120 Tachiya (10.1016/j.precisioneng.2020.06.010_bib27) 2012; 6 Wiessner (10.1016/j.precisioneng.2020.06.010_bib29) 2018; 52 |
References_xml | – year: 2010 ident: bib7 article-title: “Compensation of thermo-dependent machine tool deformations due to spindle load based on reduced experimental procedure and modeling effort – synthesis between direct and indirect compensation publication-title: 8th international conference on high speed machining – year: 1988 ident: bib28 article-title: “System identification Toolbox™ 7,” – year: 2015 ident: bib30 article-title: Volumetric measurement of machine tool thermal deformation using an MT-Check probe publication-title: Laser metrology and machine performance XI – volume: 24 start-page: 338 year: 2000 end-page: 346 ident: bib16 article-title: Neural network thermal error compensation of a machining center publication-title: Precis Eng – volume: 61 start-page: 771 year: 2012 end-page: 791 ident: bib1 article-title: Thermal issues in machine tools publication-title: CIRP Ann - Manuf Technol – volume: 44 start-page: 302 year: 2017 end-page: 309 ident: bib20 article-title: Adaptive learning control for thermal error compensation of 5-axis machine tools publication-title: J Manuf Syst – volume: 120 start-page: 623 year: 1998 end-page: 631 ident: bib15 article-title: Modelling, identification and control of thermal deformation of machine tool structures, Part 1: concept of generalized modelling publication-title: J.Manuf.Sci.Eng.Trans.ASME – volume: 36 start-page: 121 year: 2012 end-page: 127 ident: bib13 article-title: Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method publication-title: Precis Eng – volume: 58 start-page: 152 year: 2017 end-page: 157 ident: bib31 article-title: Modelling of cutting process impact on machine tool thermal behaviour based on experimental data publication-title: Procedia CIRP – year: 2009 ident: bib11 article-title: Compensation of thermal effects on machine tools using a FDEM simulation approach publication-title: 9th international conference and exhibition on laser metrology, machine tool, CMM and robotic performance – volume: 52 start-page: 407 year: 2018 end-page: 417 ident: bib29 article-title: Thermal test piece for 5-axis machine tools publication-title: Precis Eng – start-page: 162 year: 2010 end-page: 165 ident: bib23 article-title: Compensation of machine tool thermal errors based on transfer functions publication-title: MM Science Journal – year: 1st-14th July 2008 ident: bib8 article-title: Advanced hybrid mechatronic materials for ultra precise and high performance machining system design publication-title: Innovative Production Machines and Systems - Fourth I*PROMS Virtual Conference – volume: 42 start-page: 66 year: 2015 end-page: 72 ident: bib5 article-title: Thermal displacement error compensation in temperature domain publication-title: Precis Eng – volume: 6 start-page: 1415 year: 2018 end-page: 1429 ident: bib3 article-title: Review on thermal design of machine tool spindles publication-title: Optic Precis Eng – volume: 47 start-page: 231 year: 2017 end-page: 238 ident: bib19 article-title: Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature publication-title: Precis Eng – year: 2018 ident: bib4 article-title: Analyzing and optimizing the fluidic tempering of machine tool frames publication-title: Proceedings of the conference on thermal issues in machine tools – volume: 53 start-page: 299 year: 2004 end-page: 304 ident: bib17 article-title: Compensation of thermo-elastic machine tool deformation based on control internal data publication-title: CIRP Ann - Manuf Technol – volume: 44 start-page: 589 year: 1995 end-page: 598 ident: bib2 article-title: Reduction and compensation of thermal errors in machine tools publication-title: CIRP Ann - Manuf Technol – volume: 95 start-page: 20 year: 2015 end-page: 38 ident: bib9 article-title: A review on spindle thermal error compensation in machine tools publication-title: Int J Mach Tool Manufact – volume: 67 start-page: 547 year: 2018 end-page: 550 ident: bib21 article-title: “Modelling and compensation of dominant thermally induced geometric errors using rotary axes' power consumption publication-title: CIRP Ann - Manuf Technol – year: 2013 ident: bib24 article-title: Complex verification of thermal error compensation model of a portal milling centre publication-title: Proceedings of the international conference on advanced manufacturing engineering and technologies, Stockholm – volume: 40 start-page: 1257 year: 2000 end-page: 1284 ident: bib6 article-title: Error compensation in machine tools - a review: Part II: thermal errors publication-title: Int.J.Mach.Tools Manuf. – start-page: 44 year: 2007 ident: bib25 article-title: Test code for machine tools - Part 3: determination of thermal effects – volume: 60 start-page: 160 year: 2019 end-page: 166 ident: bib10 article-title: Piecewise compensation of thermal errors of a ball screw driven CNC axis publication-title: Precis Eng – volume: 13 start-page: 24 year: 2013 end-page: 36 ident: bib26 article-title: Robustness and portability of machine tool thermal error compensation model based on control of participating thermal sources publication-title: Journal of Machine Engineering – volume: 229 start-page: 1500 year: 2014 end-page: 1508 ident: bib22 article-title: Novel thermal error modeling method for machining centers publication-title: J Mech Eng Sci – volume: 58 start-page: 457 year: 2017 end-page: 462 ident: bib14 article-title: Optimization of high speed machine tool spindle to minimize thermal distortion publication-title: Procedia CIRP – volume: 63 start-page: 509 year: 2014 end-page: 512 ident: bib18 article-title: High precision grey-box model for compensation of thermal errors on five-axis machines publication-title: CIRP Ann - Manuf Technol – volume: 6 start-page: 137 year: 2012 end-page: 146 ident: bib27 article-title: Evaluation of and compensation for thermal deformation in a compact CNC lathe publication-title: Int J Autom Technol – volume: 11 start-page: 601 year: 2017 end-page: 611 ident: bib12 article-title: Model based controller design for the compensation of thermally induced deformations publication-title: J Inst Eng Prod – volume: 6 start-page: 1415 year: 2018 ident: 10.1016/j.precisioneng.2020.06.010_bib3 article-title: Review on thermal design of machine tool spindles publication-title: Optic Precis Eng doi: 10.3788/OPE.20182606.1415 – volume: 44 start-page: 302 issue: 2 year: 2017 ident: 10.1016/j.precisioneng.2020.06.010_bib20 article-title: Adaptive learning control for thermal error compensation of 5-axis machine tools publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2017.04.011 – volume: 120 start-page: 623 issue: 3 year: 1998 ident: 10.1016/j.precisioneng.2020.06.010_bib15 article-title: Modelling, identification and control of thermal deformation of machine tool structures, Part 1: concept of generalized modelling publication-title: J.Manuf.Sci.Eng.Trans.ASME doi: 10.1115/1.2830167 – volume: 67 start-page: 547 year: 2018 ident: 10.1016/j.precisioneng.2020.06.010_bib21 article-title: “Modelling and compensation of dominant thermally induced geometric errors using rotary axes' power consumption publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2018.04.080 – start-page: 44 year: 2007 ident: 10.1016/j.precisioneng.2020.06.010_bib25 – volume: 58 start-page: 152 year: 2017 ident: 10.1016/j.precisioneng.2020.06.010_bib31 article-title: Modelling of cutting process impact on machine tool thermal behaviour based on experimental data publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.03.208 – volume: 53 start-page: 299 issue: 1 year: 2004 ident: 10.1016/j.precisioneng.2020.06.010_bib17 article-title: Compensation of thermo-elastic machine tool deformation based on control internal data publication-title: CIRP Ann - Manuf Technol doi: 10.1016/S0007-8506(07)60702-1 – ident: 10.1016/j.precisioneng.2020.06.010_bib28 – volume: 95 start-page: 20 issue: 1 year: 2015 ident: 10.1016/j.precisioneng.2020.06.010_bib9 article-title: A review on spindle thermal error compensation in machine tools publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2015.04.008 – year: 2013 ident: 10.1016/j.precisioneng.2020.06.010_bib24 article-title: Complex verification of thermal error compensation model of a portal milling centre – volume: 44 start-page: 589 issue: 2 year: 1995 ident: 10.1016/j.precisioneng.2020.06.010_bib2 article-title: Reduction and compensation of thermal errors in machine tools publication-title: CIRP Ann - Manuf Technol doi: 10.1016/S0007-8506(07)60506-X – year: 2008 ident: 10.1016/j.precisioneng.2020.06.010_bib8 article-title: Advanced hybrid mechatronic materials for ultra precise and high performance machining system design – volume: 24 start-page: 338 issue: 4 year: 2000 ident: 10.1016/j.precisioneng.2020.06.010_bib16 article-title: Neural network thermal error compensation of a machining center publication-title: Precis Eng doi: 10.1016/S0141-6359(00)00044-1 – year: 2018 ident: 10.1016/j.precisioneng.2020.06.010_bib4 article-title: Analyzing and optimizing the fluidic tempering of machine tool frames – volume: 11 start-page: 601 issue: 4-5 year: 2017 ident: 10.1016/j.precisioneng.2020.06.010_bib12 article-title: Model based controller design for the compensation of thermally induced deformations publication-title: J Inst Eng Prod doi: 10.1007/s11740-017-0750-7 – volume: 52 start-page: 407 issue: April year: 2018 ident: 10.1016/j.precisioneng.2020.06.010_bib29 article-title: Thermal test piece for 5-axis machine tools publication-title: Precis Eng doi: 10.1016/j.precisioneng.2018.01.017 – volume: 40 start-page: 1257 issue: 9 year: 2000 ident: 10.1016/j.precisioneng.2020.06.010_bib6 article-title: Error compensation in machine tools - a review: Part II: thermal errors publication-title: Int.J.Mach.Tools Manuf. doi: 10.1016/S0890-6955(00)00010-9 – year: 2009 ident: 10.1016/j.precisioneng.2020.06.010_bib11 article-title: Compensation of thermal effects on machine tools using a FDEM simulation approach – volume: 47 start-page: 231 year: 2017 ident: 10.1016/j.precisioneng.2020.06.010_bib19 article-title: Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature publication-title: Precis Eng doi: 10.1016/j.precisioneng.2016.08.008 – volume: 60 start-page: 160 year: 2019 ident: 10.1016/j.precisioneng.2020.06.010_bib10 article-title: Piecewise compensation of thermal errors of a ball screw driven CNC axis publication-title: Precis Eng doi: 10.1016/j.precisioneng.2019.07.011 – volume: 63 start-page: 509 year: 2014 ident: 10.1016/j.precisioneng.2020.06.010_bib18 article-title: High precision grey-box model for compensation of thermal errors on five-axis machines publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2014.03.029 – volume: 36 start-page: 121 year: 2012 ident: 10.1016/j.precisioneng.2020.06.010_bib13 article-title: Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method publication-title: Precis Eng doi: 10.1016/j.precisioneng.2011.07.013 – volume: 58 start-page: 457 year: 2017 ident: 10.1016/j.precisioneng.2020.06.010_bib14 article-title: Optimization of high speed machine tool spindle to minimize thermal distortion publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.03.253 – year: 2015 ident: 10.1016/j.precisioneng.2020.06.010_bib30 article-title: Volumetric measurement of machine tool thermal deformation using an MT-Check probe – volume: 229 start-page: 1500 issue: 8 year: 2014 ident: 10.1016/j.precisioneng.2020.06.010_bib22 article-title: Novel thermal error modeling method for machining centers publication-title: J Mech Eng Sci doi: 10.1177/0954406214545661 – volume: 13 start-page: 24 issue: 1 year: 2013 ident: 10.1016/j.precisioneng.2020.06.010_bib26 article-title: Robustness and portability of machine tool thermal error compensation model based on control of participating thermal sources publication-title: Journal of Machine Engineering – volume: 6 start-page: 137 issue: 2 year: 2012 ident: 10.1016/j.precisioneng.2020.06.010_bib27 article-title: Evaluation of and compensation for thermal deformation in a compact CNC lathe publication-title: Int J Autom Technol doi: 10.20965/ijat.2012.p0137 – volume: 42 start-page: 66 year: 2015 ident: 10.1016/j.precisioneng.2020.06.010_bib5 article-title: Thermal displacement error compensation in temperature domain publication-title: Precis Eng doi: 10.1016/j.precisioneng.2015.03.012 – volume: 61 start-page: 771 issue: 2 year: 2012 ident: 10.1016/j.precisioneng.2020.06.010_bib1 article-title: Thermal issues in machine tools publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2012.05.008 – start-page: 162 issue: 1 year: 2010 ident: 10.1016/j.precisioneng.2020.06.010_bib23 article-title: Compensation of machine tool thermal errors based on transfer functions publication-title: MM Science Journal – year: 2010 ident: 10.1016/j.precisioneng.2020.06.010_bib7 article-title: “Compensation of thermo-dependent machine tool deformations due to spindle load based on reduced experimental procedure and modeling effort – synthesis between direct and indirect compensation |
SSID | ssj0007804 |
Score | 2.543015 |
Snippet | Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 21 |
SubjectTerms | Accuracy Compensation Implementation Machine tool Thermal error |
Title | Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece |
URI | https://dx.doi.org/10.1016/j.precisioneng.2020.06.010 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5McmkOpUkbmpeZQ65by9GuVjr0EEyC0xDTQwO5iX0GFdcysgLJpb-kPzYzejgO5BAoOu2i0YqZYXZ2-eYbxk6ljG3sk8CdUTEXIYp5ltqE6zRkxgTtvKaD4s0smd6KH3fybsAmfS0MwSq72N_G9CZadzOjTpujZVGMCJaEyYTMziirTyQxfgqhyMu__X2BeRDBTgtjHHN6uycebTBey6pvZLO4x7PiWdRweVI17Vub1MbGc_mJfewyRjhvf2qXDfxij-1s8Ah-Zv_Q2Bhg5-CrqqyAYOJ4Om10DmUADZLrx2IFfxrkpIe6LOdAiPd7KNY8rUAsVR3FMqxQvqxWoBcOJrMJrFklHPx8IroBoFp4QDctXDNL97m4ULeCw4-talgW3vov7Pby4tdkyru2C9xitKm50E3BrU6lUQEzsnQcBatFJkxmgsWBkokwLsUHTetDKlyicFaFsbYpRtB9trVAlX5lEIUkS711DpMYobwyVjsZEuWcCSHocMCyXs-57TjJqTXGPO_BZ7_zTRvlZKOckHjj6IDFa9lly8zxLqnvvTnzV36W4xbyDvnD_5Q_Yh9o1FYzHrOtunrwJ5jW1GbY-O2QbZ9fXU9nz0D-_10 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF6lcCgcENAiKK859LrEwbt-HDigqChAiHoAiZu1T-QqjSPHldoLv4Qfy4wfaSpxQKp88trjtWbWszPWN98w9lXK0IQu8tzqOOTCByFPExNxlfhUa6-sU5Qo3k2i0YO4eZSPPTbsamEIVtn6_san1966Hem32uzP87xPsCQMJmR6TlF9JMMPbF3g50ttDM6e_-I8iGGnwTEOON3eMY_WIK952XWymT1hsnge1GSeVE771i61svNcbbOtNmSEy-atdljPzXbZ5gqR4Cf2gtZGDzsFV5ZFCYQTx_S0VjoUHhRIrn7nC_hZQycdVEUxBYK8P0G-JGoFoqlqOZZhgfJFuQA1szCcDGFJK2Hh-x_iGwAqhgdcp7mtR-mHLk7UzmDxYYsK5rkz7jN7uPp2Pxzxtu8CN-huKi5UXXGrEqljjyFZMgi8USIVOtXe4EksI6Ftggfa1vlE2CjG0dgPlEnQhe6xtRmqdJ9B4KM0ccZajGJE7GJtlJU-iq3V3nvlD1ja6TkzLSk59caYZh367Ee2aqOMbJQRFG8QHLBwKTtvqDneJXXRmTP7Z6FluIe8Q_7Lf8qfso-j-7txNr6e3B6yDbrSlDYesbWq_OWOMcap9Em9hl8BBOgA-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+error+compensation+of+a+5-axis+machine+tool+using+indigenous+temperature+sensors+and+CNC+integrated+Python+code+validated+with+a+machined+test+piece&rft.jtitle=Precision+engineering&rft.au=Mare%C5%A1%2C+Martin&rft.au=Horej%C5%A1%2C+Otakar&rft.au=Havl%C3%ADk%2C+Luk%C3%A1%C5%A1&rft.date=2020-11-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.eissn=1873-2372&rft.volume=66&rft.spage=21&rft.epage=30&rft_id=info:doi/10.1016%2Fj.precisioneng.2020.06.010&rft.externalDocID=S0141635920301653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |