Hyperelastic meniscal material characterization via inverse parameter identification for knee arthroscopic simulations

Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. I...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 183; p. 112627
Main Authors Rasheed, Bismi, Bjelland, Øystein, Dalen, Andreas F., Schaathun, Hans Georg
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.04.2025
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2025.112627

Cover

Loading…
Abstract Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force–displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (p<0.05 except for the mid-body of the medial meniscus).
AbstractList Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force-displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (p<0.05 except for the mid-body of the medial meniscus).
Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force-displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (p<0.05 except for the mid-body of the medial meniscus).Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force-displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (p<0.05 except for the mid-body of the medial meniscus).
ArticleNumber 112627
Author Rasheed, Bismi
Schaathun, Hans Georg
Bjelland, Øystein
Dalen, Andreas F.
Author_xml – sequence: 1
  givenname: Bismi
  orcidid: 0000-0002-8897-5130
  surname: Rasheed
  fullname: Rasheed, Bismi
  email: bismi.rasheed@ntnu.no
  organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway
– sequence: 2
  givenname: Øystein
  surname: Bjelland
  fullname: Bjelland, Øystein
  organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway
– sequence: 3
  givenname: Andreas F.
  surname: Dalen
  fullname: Dalen, Andreas F.
  organization: Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway
– sequence: 4
  givenname: Hans Georg
  surname: Schaathun
  fullname: Schaathun, Hans Georg
  organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40117873$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLeFV6giceGSZewkdnxBoApapEpc4Gw5zkTrNLGDnay0fXoc0vbQC5xsa7755Jn_gpw575CQKwp7CpR_7Pd9Y_2I5rBnwKo9pYwz8YrsaC2KnBU1nJEdAKO5ZBLOyUWMPQCIUsg35LwESkUCd-R4e5ow4KDjbE02orPR6CEb9YzBpos56KDN-njQs_UuO1qdWXfEEDGbUm3EVMxsi262nTUb1PmQ3TvETIf5EHw0fkr2aMdl-AvEt-R1p4eI7x7PS_Lr29ef17f53Y-b79df7nJTCD7nZVk1WhrDKhBa8EoyrEzTAE_j1txIpk0DbclAgxDQMFbV0HLOO1ZiZxpRXJIPm3cK_veCcVZjGhCHQTv0S1QFrYFKyQuZ0Pcv0N4vwaXfrRQDSaFehVeP1NKM2Kop2FGHk3raaAL4Bpg0dwzYPSMU1Bqd6tVTdGqNTm3RpcbPWyOmfRwtBhWNRWewtQHNrFpv_6349EJhButSKMM9nv5H8Acnlrts
Cites_doi 10.1016/j.joca.2022.01.001
10.1371/journal.pone.0280616
10.1186/s12891-023-06153-y
10.1115/1.3148471
10.1016/j.jbiomech.2015.02.042
10.1016/j.jbiomech.2015.03.014
10.1007/s40430-024-04877-z
10.1016/j.jbiomech.2015.03.002
10.1016/j.jbiomech.2015.02.028
10.1016/j.jbiomech.2016.10.025
10.1007/s00167-008-0616-9
10.1016/j.jmbbm.2013.05.027
10.1109/TOH.2011.41
10.1007/s00167-010-1251-9
10.3390/app9142851
10.1109/ACCESS.2019.2943689
10.1016/j.jmbbm.2017.09.023
10.1114/B:ABME.0000049040.70767.5c
10.1109/ACCESS.2022.3170108
10.1115/1.4032354
10.1016/j.jmbbm.2008.09.003
10.1080/10255842.2012.670854
10.1002/jmri.24461
10.1002/nme.2579
10.1177/1941738111429419
10.1007/s10237-021-01440-w
10.1016/j.jbiomech.2015.02.044
10.1098/rsif.2005.0073
10.1016/j.medengphy.2010.12.001
10.1007/s00366-023-01877-w
10.1016/j.cmpb.2024.108269
10.1109/IEMBS.2006.259378
10.1002/jor.25495
10.2147/IJN.S261298
10.1016/j.jmbbm.2022.105073
10.1016/j.jbiomech.2010.10.001
10.1023/A:1010835316564
10.1016/j.clinbiomech.2005.01.009
10.1016/j.jbiomech.2021.110343
10.1007/8415_2012_125
10.1016/S0968-0160(02)00106-0
10.1016/j.cmpb.2020.105794
10.1007/s10439-008-9515-y
10.1098/rsif.2015.0188
10.1016/j.jbiomech.2015.01.048
10.1016/S0021-9290(02)00305-6
10.1016/j.jbiomech.2020.110126
10.1038/s41598-017-06271-3
10.1016/j.jmbbm.2011.06.022
10.1145/3180491
10.1016/j.clinbiomech.2019.07.016
10.1080/10255842.2022.2163587
10.3389/fmed.2022.907066
10.1016/j.cmpb.2020.105319
10.3389/fbioe.2023.1167427
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
2025. The Authors
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: 2025. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2025.112627
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID 40117873
10_1016_j_jbiomech_2025_112627
S0021929025001381
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YQT
Z5R
ZGI
ZMT
~G-
6I.
AAFTH
AFCTW
AGRNS
ALIPV
RIG
AAYXX
CITATION
AFFDN
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c376t-445ba9cc2507a76592e5cbb0611286c92acb0d420a0770b22580d666f24efcb73
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 05:02:05 EDT 2025
Wed Aug 13 06:51:01 EDT 2025
Fri May 16 02:46:29 EDT 2025
Thu Jul 03 08:37:11 EDT 2025
Sat Jul 05 17:12:48 EDT 2025
Tue Aug 26 16:32:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Indentation testing
Arthroscopic meniscus examination
Finite element model
Inverse parameter identification
Hyperelasticity
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-445ba9cc2507a76592e5cbb0611286c92acb0d420a0770b22580d666f24efcb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8897-5130
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0021929025001381
PMID 40117873
PQID 3182091087
PQPubID 1226346
ParticipantIDs proquest_miscellaneous_3180199639
proquest_journals_3182091087
pubmed_primary_40117873
crossref_primary_10_1016_j_jbiomech_2025_112627
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2025_112627
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2025_112627
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Toniolo, Salmaso, Bruno, De Stefani, Stefanini, Gracco, Carniel (b53) 2020; 189
Łuczkiewicz, Daszkiewicz, Witkowski, Chróścielewski, Zarzycki (b26) 2015; 48
Faure, Duriez, Delingette, Allard, Gilles, Marchesseau, Talbot, Courtecuisse, Bousquet, Peterlik (b10) 2012
Zhu, Chern, van C (b58) 1994; 306
Schwartz, Morejon, Gracia, Best, Jackson, Travascio (b42) 2023; 41
Holzapfel, Niestrawska, Ogden, Reinisch, Schriefl (b21) 2015; 12
Pena, Calvo, Martinez, Palanca, Doblaré (b36) 2005; 20
Abraham, Moyer, Villegas, Odegard, Haut Donahue (b3) 2011; 44
Freutel, Seitz, Galbusera, Bornstedt, Rasche, Tate, Ignatius, Düurselen (b15) 2014; 40
Peterlik, Nouicer, Duriez, Cotin, Kheddar (b37) 2011; 4
Simkheada, Orozco, Korhonen, Tanska, Mononen (b48) 2023; 26
Seyfi, Fatouraee, Imeni (b44) 2018; 77
Freutel, Galbusera, Ignatius, Dürselen (b14) 2015; 48
Orton, Batchelor, Ziebarth, Best, Travascio, Jackson (b33) 2023; 18
Gupta, Lin, Ashby, Pruitt (b19) 2009; 2
Shriram, Yamako, Chosa, Subburaj (b46) 2019; 7
Rasheed, Bjelland, Dalen, Schaarschmidt, Schaathun, Pedersen, Steinert, Bye (b41) 2024
Abdelgaied, Stanley, Galfe, Berry, Ingham, Fisher (b1) 2015; 48
Seitz, Galbusera, Krais, Ignatius, Dürselen (b43) 2013; 26
Fischenich, Lewis, Kindsfater, Bailey, Haut Donahue (b11) 2015; 48
Morejon, Mantero, Best, Jackson, Travascio (b30) 2022; 30
Masouros, McDermott, Amis, Bull (b27) 2008; 16
Abraham, Edwards, Odegard, Donahue (b2) 2011; 4
Kulseng, Nainamalai, Grøvik, Geitung, Årøen, Gjesdal (b25) 2023; 24
Pierce, Ricken, Holzapfel (b38) 2013; 16
Klets, Mononen, Tanska, Nieminen, Korhonen, Saarakkala (b24) 2016; 49
De Rosa, Filippone, Best, Jackson, Travascio (b7) 2022; 126
Holzapfel, Gasser, Ogden (b20) 2000; 61
Pawar, Yadav, Kalyanasundaram (b34) 2024; 46
Alekya, Rao, Pandya (b4) 2019; 69
Mazier, El Hadramy, Brunet, Hale, Cotin, Bordas (b28) 2024; 40
Bjelland, Rasheed, Schaathun, Pedersen, Steinert, Hellevik, Bye (b5) 2022; 10
Peloquin, Santare, Elliott (b35) 2016; 138
Delingette, Ayache (b8) 2004; 12
Gu, Li (b18) 2011; 33
Pierce, Trobin, Trattnig, Bischof, Holzapfel (b39) 2009; 131
Sizeland, Wells, Kirby, Hawley, Mudie, Ryan, Haverkamp (b49) 2020
Smith, Goes, Kim (b50) 2018; 37
Geuzaine, Remacle (b17) 2009; 79
Donahue, Hull, Rashid, Jacobs (b9) 2003; 36
Vadher, Nayeb-Hashemi, Canavan, Warner (b55) 2006
Vaziri, Nayeb-Hashemi, Singh, Tafti (b56) 2008; 36
Tuijthof, Horeman, Schafroth, Blankevoort, Kerkhoffs (b54) 2011; 19
Shriram, Yamako, Kumar, Chosa, Cui, Subburaj (b47) 2021; 20
Huh, Lee, You, Song, Lee, Ryu (b22) 2019; 9
Nesbitt, Siegel, Nelson, Lujan (b31) 2021; 115
Rasheed, Ayyalasomayajula, Schaarschmidt, Vagstad, Schaathun (b40) 2023; 11
Wheatley, Fischenich, Button, Haut, Haut Donahue (b57) 2015; 48
Danso, Mäkelä, Tanska, Mononen, Honkanen, Jurvelin, Töyräs, Julkunen, Korhonen (b6) 2015; 48
Fithian, Kelly, Mow (b12) 1990
Sun, He, Song, Shu, Li (b51) 2022; 9
Sweigart, Zhu, Burt, Deholl, Agrawal, Clanton, Athanasiou (b52) 2004; 32
Fox, Bedi, Rodeo (b13) 2012; 4
Shriram, Praveen Kumar, Cui, Lee, Subburaj (b45) 2017; 7
Karimi, Grytz, Rahmati, Girkin, Downs (b23) 2021; 198
Gasser, Ogden, Holzapfel (b16) 2005; 3
Meakin, Shrive, Frank, Hart (b29) 2003; 10
Norberg, Filippone, Andreopoulos, Best, Baraga, Jackson, Travascio (b32) 2021; 120
Masouros (10.1016/j.jbiomech.2025.112627_b27) 2008; 16
Simkheada (10.1016/j.jbiomech.2025.112627_b48) 2023; 26
Seitz (10.1016/j.jbiomech.2025.112627_b43) 2013; 26
Łuczkiewicz (10.1016/j.jbiomech.2025.112627_b26) 2015; 48
Bjelland (10.1016/j.jbiomech.2025.112627_b5) 2022; 10
Geuzaine (10.1016/j.jbiomech.2025.112627_b17) 2009; 79
Morejon (10.1016/j.jbiomech.2025.112627_b30) 2022; 30
Delingette (10.1016/j.jbiomech.2025.112627_b8) 2004; 12
Holzapfel (10.1016/j.jbiomech.2025.112627_b21) 2015; 12
Pena (10.1016/j.jbiomech.2025.112627_b36) 2005; 20
Faure (10.1016/j.jbiomech.2025.112627_b10) 2012
Holzapfel (10.1016/j.jbiomech.2025.112627_b20) 2000; 61
Fithian (10.1016/j.jbiomech.2025.112627_b12) 1990
Shriram (10.1016/j.jbiomech.2025.112627_b45) 2017; 7
Seyfi (10.1016/j.jbiomech.2025.112627_b44) 2018; 77
Abraham (10.1016/j.jbiomech.2025.112627_b3) 2011; 44
Fischenich (10.1016/j.jbiomech.2025.112627_b11) 2015; 48
Wheatley (10.1016/j.jbiomech.2025.112627_b57) 2015; 48
Schwartz (10.1016/j.jbiomech.2025.112627_b42) 2023; 41
Sweigart (10.1016/j.jbiomech.2025.112627_b52) 2004; 32
Huh (10.1016/j.jbiomech.2025.112627_b22) 2019; 9
Peterlik (10.1016/j.jbiomech.2025.112627_b37) 2011; 4
Gasser (10.1016/j.jbiomech.2025.112627_b16) 2005; 3
Donahue (10.1016/j.jbiomech.2025.112627_b9) 2003; 36
Sun (10.1016/j.jbiomech.2025.112627_b51) 2022; 9
Abraham (10.1016/j.jbiomech.2025.112627_b2) 2011; 4
Karimi (10.1016/j.jbiomech.2025.112627_b23) 2021; 198
Danso (10.1016/j.jbiomech.2025.112627_b6) 2015; 48
Rasheed (10.1016/j.jbiomech.2025.112627_b41) 2024
Alekya (10.1016/j.jbiomech.2025.112627_b4) 2019; 69
Gupta (10.1016/j.jbiomech.2025.112627_b19) 2009; 2
Tuijthof (10.1016/j.jbiomech.2025.112627_b54) 2011; 19
Abdelgaied (10.1016/j.jbiomech.2025.112627_b1) 2015; 48
Orton (10.1016/j.jbiomech.2025.112627_b33) 2023; 18
Peloquin (10.1016/j.jbiomech.2025.112627_b35) 2016; 138
Gu (10.1016/j.jbiomech.2025.112627_b18) 2011; 33
Shriram (10.1016/j.jbiomech.2025.112627_b47) 2021; 20
Zhu (10.1016/j.jbiomech.2025.112627_b58) 1994; 306
Pawar (10.1016/j.jbiomech.2025.112627_b34) 2024; 46
De Rosa (10.1016/j.jbiomech.2025.112627_b7) 2022; 126
Freutel (10.1016/j.jbiomech.2025.112627_b14) 2015; 48
Rasheed (10.1016/j.jbiomech.2025.112627_b40) 2023; 11
Fox (10.1016/j.jbiomech.2025.112627_b13) 2012; 4
Sizeland (10.1016/j.jbiomech.2025.112627_b49) 2020
Vaziri (10.1016/j.jbiomech.2025.112627_b56) 2008; 36
Mazier (10.1016/j.jbiomech.2025.112627_b28) 2024; 40
Meakin (10.1016/j.jbiomech.2025.112627_b29) 2003; 10
Klets (10.1016/j.jbiomech.2025.112627_b24) 2016; 49
Freutel (10.1016/j.jbiomech.2025.112627_b15) 2014; 40
Kulseng (10.1016/j.jbiomech.2025.112627_b25) 2023; 24
Norberg (10.1016/j.jbiomech.2025.112627_b32) 2021; 120
Smith (10.1016/j.jbiomech.2025.112627_b50) 2018; 37
Toniolo (10.1016/j.jbiomech.2025.112627_b53) 2020; 189
Pierce (10.1016/j.jbiomech.2025.112627_b38) 2013; 16
Pierce (10.1016/j.jbiomech.2025.112627_b39) 2009; 131
Shriram (10.1016/j.jbiomech.2025.112627_b46) 2019; 7
Vadher (10.1016/j.jbiomech.2025.112627_b55) 2006
Nesbitt (10.1016/j.jbiomech.2025.112627_b31) 2021; 115
References_xml – volume: 48
  start-page: 1389
  year: 2015
  end-page: 1396
  ident: b1
  article-title: Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus
  publication-title: J. Biomech.
– volume: 16
  start-page: 1121
  year: 2008
  end-page: 1132
  ident: b27
  article-title: Biomechanics of the meniscus-meniscal ligament construct of the knee
  publication-title: Knee Surg. Sport. Traumatol. Arthrosc.
– volume: 20
  start-page: 498
  year: 2005
  end-page: 507
  ident: b36
  article-title: Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics
  publication-title: Clin. Biomech.
– volume: 48
  start-page: 1407
  year: 2015
  end-page: 1411
  ident: b11
  article-title: Effects of degeneration on the compressive and tensile properties of human meniscus
  publication-title: J. Biomech.
– volume: 40
  start-page: 1181
  year: 2014
  end-page: 1188
  ident: b15
  article-title: Medial meniscal displacement and strain in three dimensions under compressive loads: MR assessment
  publication-title: J. Magn. Reson. Imag. : JMRI
– volume: 16
  start-page: 1344
  year: 2013
  end-page: 1361
  ident: b38
  article-title: A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: Continuum basis, computational aspects and applications
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– start-page: 5289
  year: 2020
  end-page: 5298
  ident: b49
  article-title: Bovine meniscus middle zone tissue: Measurement of collagen fibril behavior during compression
  publication-title: Int. J. Nanomedicine
– volume: 48
  start-page: 1356
  year: 2015
  end-page: 1363
  ident: b26
  article-title: Influence of meniscus shape in the cross sectional plane on the knee contact mechanics
  publication-title: J. Biomech.
– volume: 198
  year: 2021
  ident: b23
  article-title: Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole
  publication-title: Comput. Methods Programs Biomed.
– volume: 10
  start-page: 33
  year: 2003
  end-page: 41
  ident: b29
  article-title: Finite element analysis of the meniscus: The influence of geometry and material properties on its behaviour
  publication-title: Knee
– volume: 126
  year: 2022
  ident: b7
  article-title: Mechanical properties of meniscal circumferential fibers using an inverse finite element analysis approach
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 120
  year: 2021
  ident: b32
  article-title: Viscoelastic and equilibrium shear properties of human meniscus: Relationships with tissue structure and composition
  publication-title: J. Biomech.
– volume: 46
  start-page: 1
  year: 2024
  end-page: 14
  ident: b34
  article-title: Evaluation of the stresses on the knee meniscus tissue under various loading conditions and correlation with resulting meniscal tears observed clinically: A finite element study
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 69
  start-page: 127
  year: 2019
  end-page: 140
  ident: b4
  article-title: Engineering approaches for characterizing soft tissue mechanical properties: A review
  publication-title: Clin. Biomech.
– volume: 61
  start-page: 1
  year: 2000
  end-page: 48
  ident: b20
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J. Elasticity
– volume: 37
  start-page: 12:1
  year: 2018
  end-page: 12:15
  ident: b50
  article-title: Stable Neo-Hookean flesh simulation
  publication-title: ACM Trans. Graph.
– volume: 4
  start-page: 175
  year: 2011
  end-page: 187
  ident: b37
  article-title: Constraint-based haptic rendering of multirate compliant mechanisms
  publication-title: IEEE Trans. Haptics
– volume: 4
  start-page: 340
  year: 2012
  end-page: 351
  ident: b13
  article-title: The basic science of human knee menisci: Structure, composition, and function
  publication-title: Sport. Heal.
– volume: 2
  start-page: 326
  year: 2009
  end-page: 338
  ident: b19
  article-title: A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: A combined experimental and finite element approach
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 18
  year: 2023
  ident: b33
  article-title: Biomechanical properties of porcine meniscus as determined via AFM: Effect of region, compartment and anisotropy
  publication-title: PLoS One
– volume: 306
  start-page: 34
  year: 1994
  end-page: 45
  ident: b58
  article-title: Anisotropic viscoelastic shear properties of bovine meniscus
  publication-title: Clin. Orthop. Relat. Res.®
– volume: 115
  year: 2021
  ident: b31
  article-title: Effect of age on the failure properties of human meniscus: High-speed strain mapping of tissue tears
  publication-title: J. Biomech.
– year: 2024
  ident: b41
  article-title: Intraoperative identification of patient-specific elastic modulus of the meniscus during arthroscopy
  publication-title: Comput. Methods Programs Biomed.
– volume: 26
  start-page: 68
  year: 2013
  end-page: 80
  ident: b43
  article-title: Stress-relaxation response of human menisci under confined compression conditions
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 48
  start-page: 1499
  year: 2015
  end-page: 1507
  ident: b6
  article-title: Characterization of site-specific biomechanical properties of human meniscus-importance of collagen and fluid on mechanical nonlinearities
  publication-title: J. Biomech.
– volume: 9
  year: 2022
  ident: b51
  article-title: The digital twin in medicine: A key to the future of healthcare?
  publication-title: Front. Med.
– volume: 44
  start-page: 413
  year: 2011
  end-page: 418
  ident: b3
  article-title: Hyperelastic properties of human meniscal attachments
  publication-title: J. Biomech.
– volume: 12
  start-page: 453
  year: 2004
  end-page: 550
  ident: b8
  article-title: Soft tissue modeling for surgery simulation
  publication-title: Handb. Numer. Anal.
– start-page: 2098
  year: 2006
  end-page: 2101
  ident: b55
  article-title: Finite element modeling following partial meniscectomy: Effect of various size of resection
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Proc.
– start-page: 19
  year: 1990
  end-page: 31
  ident: b12
  article-title: Material properties and structure-function relationships in the menisci
  publication-title: Clin. Orthop. Relat. Res.
– volume: 189
  year: 2020
  ident: b53
  article-title: Anisotropic computational modelling of bony structures from CT data: An almost automatic procedure
  publication-title: Comput. Methods Programs Biomed.
– volume: 138
  year: 2016
  ident: b35
  article-title: Advances in quantification of meniscus tensile mechanics including nonlinearity, yield, and failure
  publication-title: J. Biomech. Eng.
– volume: 30
  start-page: 605
  year: 2022
  end-page: 612
  ident: b30
  article-title: Mechanisms of energy dissipation and relationship with tissue composition in human meniscus
  publication-title: Osteoarthr. Cartil.
– volume: 26
  start-page: 2008
  year: 2023
  end-page: 2021
  ident: b48
  article-title: Comparison of constitutive models for meniscus and their effect on the knee joint biomechanics during gait
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 11
  year: 2023
  ident: b40
  article-title: Region-and layer-specific investigations of the human menisci using SHG imaging and biaxial testing
  publication-title: Front. Bioeng. Biotechnol.
– volume: 77
  start-page: 337
  year: 2018
  end-page: 346
  ident: b44
  article-title: Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 32
  start-page: 1569
  year: 2004
  end-page: 1579
  ident: b52
  article-title: Intraspecies and interspecies comparison of the compressive properties of the medial meniscus
  publication-title: Ann. Biomed. Eng.
– volume: 19
  start-page: 248
  year: 2011
  end-page: 254
  ident: b54
  article-title: Probing forces of menisci: What levels are safe for arthroscopic surgery
  publication-title: Knee Surg. Sport. Traumatol. Arthrosc.
– volume: 79
  start-page: 1309
  year: 2009
  end-page: 1331
  ident: b17
  article-title: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 7
  start-page: 140084
  year: 2019
  end-page: 140101
  ident: b46
  article-title: Biomechanical evaluation of isotropic and shell-core composite meniscal implants for total meniscus replacement: A nonlinear finite element study
  publication-title: Ieee Access
– volume: 48
  start-page: 1454
  year: 2015
  end-page: 1460
  ident: b57
  article-title: An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading
  publication-title: J. Biomech.
– volume: 48
  start-page: 1343
  year: 2015
  end-page: 1349
  ident: b14
  article-title: Material properties of individual menisci and their attachments obtained through inverse FE-analysis
  publication-title: J. Biomech.
– volume: 20
  start-page: 1167
  year: 2021
  end-page: 1185
  ident: b47
  article-title: Non-anatomical placement adversely affects the functional performance of the meniscal implant: A finite element study
  publication-title: Biomech. Model. Mechanobiol.
– volume: 10
  start-page: 45029
  year: 2022
  end-page: 45052
  ident: b5
  article-title: Toward a digital twin for arthroscopic knee surgery: A systematic review
  publication-title: IEEE Access
– volume: 9
  start-page: 2851
  year: 2019
  ident: b22
  article-title: Determination of the material parameters in the holzapfel-gasser-ogden constitutive model for simulation of age-dependent material nonlinear behavior for aortic wall tissue under uniaxial tension
  publication-title: Appl. Sci.
– volume: 3
  start-page: 15
  year: 2005
  end-page: 35
  ident: b16
  article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
  publication-title: J. R. Soc. Interface
– volume: 36
  start-page: 19
  year: 2003
  end-page: 34
  ident: b9
  article-title: How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint
  publication-title: J. Biomech.
– volume: 24
  year: 2023
  ident: b25
  article-title: Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol
  publication-title: BMC Musculoskelet. Disord.
– start-page: 283
  year: 2012
  end-page: 321
  ident: b10
  article-title: Sofa: A multi-model framework for interactive physical simulation
  publication-title: Soft Tissue Biomech. Model. Comput. Assist. Surg.
– volume: 36
  start-page: 1335
  year: 2008
  end-page: 1344
  ident: b56
  article-title: Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint
  publication-title: Ann. Biomed. Eng.
– volume: 131
  year: 2009
  ident: b39
  article-title: A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking
  publication-title: J. Biomech. Eng.
– volume: 41
  start-page: 1607
  year: 2023
  end-page: 1617
  ident: b42
  article-title: Heterogeneity of dynamic shear properties of the meniscus: A comparison between tissue core and surface layers
  publication-title: J. Orthop. Res.®
– volume: 49
  start-page: 3891
  year: 2016
  end-page: 3900
  ident: b24
  article-title: Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the osteoarthritis initiative (OAI)
  publication-title: J. Biomech.
– volume: 4
  start-page: 2024
  year: 2011
  end-page: 2030
  ident: b2
  article-title: Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 7
  start-page: 6011
  year: 2017
  ident: b45
  article-title: Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis
  publication-title: Sci. Rep.
– volume: 12
  year: 2015
  ident: b21
  article-title: Modelling non-symmetric collagen fibre dispersion in arterial walls
  publication-title: J. R. Soc. Interface
– volume: 33
  start-page: 497
  year: 2011
  end-page: 503
  ident: b18
  article-title: A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci
  publication-title: Med. Eng. Phys.
– volume: 40
  start-page: 1857
  year: 2024
  end-page: 1876
  ident: b28
  article-title: SOniCS: Develop intuition on biomechanical systems through interactive error controlled simulations
  publication-title: Eng. Comput.
– volume: 30
  start-page: 605
  issue: 4
  year: 2022
  ident: 10.1016/j.jbiomech.2025.112627_b30
  article-title: Mechanisms of energy dissipation and relationship with tissue composition in human meniscus
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2022.01.001
– volume: 18
  issue: 1
  year: 2023
  ident: 10.1016/j.jbiomech.2025.112627_b33
  article-title: Biomechanical properties of porcine meniscus as determined via AFM: Effect of region, compartment and anisotropy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0280616
– volume: 24
  issue: 1
  year: 2023
  ident: 10.1016/j.jbiomech.2025.112627_b25
  article-title: Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/s12891-023-06153-y
– volume: 131
  issue: 9
  year: 2009
  ident: 10.1016/j.jbiomech.2025.112627_b39
  article-title: A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3148471
– volume: 48
  start-page: 1407
  issue: 8
  year: 2015
  ident: 10.1016/j.jbiomech.2025.112627_b11
  article-title: Effects of degeneration on the compressive and tensile properties of human meniscus
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.02.042
– volume: 48
  start-page: 1343
  issue: 8
  year: 2015
  ident: 10.1016/j.jbiomech.2025.112627_b14
  article-title: Material properties of individual menisci and their attachments obtained through inverse FE-analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.03.014
– volume: 12
  start-page: 453
  year: 2004
  ident: 10.1016/j.jbiomech.2025.112627_b8
  article-title: Soft tissue modeling for surgery simulation
  publication-title: Handb. Numer. Anal.
– volume: 46
  start-page: 1
  issue: 5
  year: 2024
  ident: 10.1016/j.jbiomech.2025.112627_b34
  article-title: Evaluation of the stresses on the knee meniscus tissue under various loading conditions and correlation with resulting meniscal tears observed clinically: A finite element study
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-024-04877-z
– volume: 48
  start-page: 1356
  issue: 8
  year: 2015
  ident: 10.1016/j.jbiomech.2025.112627_b26
  article-title: Influence of meniscus shape in the cross sectional plane on the knee contact mechanics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.03.002
– volume: 48
  start-page: 1454
  issue: 8
  year: 2015
  ident: 10.1016/j.jbiomech.2025.112627_b57
  article-title: An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.02.028
– volume: 49
  start-page: 3891
  issue: 16
  year: 2016
  ident: 10.1016/j.jbiomech.2025.112627_b24
  article-title: Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the osteoarthritis initiative (OAI)
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.10.025
– volume: 16
  start-page: 1121
  year: 2008
  ident: 10.1016/j.jbiomech.2025.112627_b27
  article-title: Biomechanics of the meniscus-meniscal ligament construct of the knee
  publication-title: Knee Surg. Sport. Traumatol. Arthrosc.
  doi: 10.1007/s00167-008-0616-9
– volume: 26
  start-page: 68
  year: 2013
  ident: 10.1016/j.jbiomech.2025.112627_b43
  article-title: Stress-relaxation response of human menisci under confined compression conditions
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2013.05.027
– volume: 4
  start-page: 175
  issue: 3
  year: 2011
  ident: 10.1016/j.jbiomech.2025.112627_b37
  article-title: Constraint-based haptic rendering of multirate compliant mechanisms
  publication-title: IEEE Trans. Haptics
  doi: 10.1109/TOH.2011.41
– volume: 19
  start-page: 248
  year: 2011
  ident: 10.1016/j.jbiomech.2025.112627_b54
  article-title: Probing forces of menisci: What levels are safe for arthroscopic surgery
  publication-title: Knee Surg. Sport. Traumatol. Arthrosc.
  doi: 10.1007/s00167-010-1251-9
– volume: 9
  start-page: 2851
  issue: 14
  year: 2019
  ident: 10.1016/j.jbiomech.2025.112627_b22
  article-title: Determination of the material parameters in the holzapfel-gasser-ogden constitutive model for simulation of age-dependent material nonlinear behavior for aortic wall tissue under uniaxial tension
  publication-title: Appl. Sci.
  doi: 10.3390/app9142851
– volume: 7
  start-page: 140084
  year: 2019
  ident: 10.1016/j.jbiomech.2025.112627_b46
  article-title: Biomechanical evaluation of isotropic and shell-core composite meniscal implants for total meniscus replacement: A nonlinear finite element study
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2943689
– volume: 77
  start-page: 337
  year: 2018
  ident: 10.1016/j.jbiomech.2025.112627_b44
  article-title: Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.09.023
– volume: 32
  start-page: 1569
  issue: 11
  year: 2004
  ident: 10.1016/j.jbiomech.2025.112627_b52
  article-title: Intraspecies and interspecies comparison of the compressive properties of the medial meniscus
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/B:ABME.0000049040.70767.5c
– volume: 10
  start-page: 45029
  year: 2022
  ident: 10.1016/j.jbiomech.2025.112627_b5
  article-title: Toward a digital twin for arthroscopic knee surgery: A systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3170108
– volume: 138
  issue: 2
  year: 2016
  ident: 10.1016/j.jbiomech.2025.112627_b35
  article-title: Advances in quantification of meniscus tensile mechanics including nonlinearity, yield, and failure
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4032354
– volume: 2
  start-page: 326
  issue: 4
  year: 2009
  ident: 10.1016/j.jbiomech.2025.112627_b19
  article-title: A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: A combined experimental and finite element approach
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2008.09.003
– volume: 16
  start-page: 1344
  issue: 12
  year: 2013
  ident: 10.1016/j.jbiomech.2025.112627_b38
  article-title: A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: Continuum basis, computational aspects and applications
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2012.670854
– volume: 40
  start-page: 1181
  issue: 5
  year: 2014
  ident: 10.1016/j.jbiomech.2025.112627_b15
  article-title: Medial meniscal displacement and strain in three dimensions under compressive loads: MR assessment
  publication-title: J. Magn. Reson. Imag. : JMRI
  doi: 10.1002/jmri.24461
– volume: 79
  start-page: 1309
  issue: 11
  year: 2009
  ident: 10.1016/j.jbiomech.2025.112627_b17
  article-title: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2579
– volume: 4
  start-page: 340
  issue: 4
  year: 2012
  ident: 10.1016/j.jbiomech.2025.112627_b13
  article-title: The basic science of human knee menisci: Structure, composition, and function
  publication-title: Sport. Heal.
  doi: 10.1177/1941738111429419
– volume: 20
  start-page: 1167
  year: 2021
  ident: 10.1016/j.jbiomech.2025.112627_b47
  article-title: Non-anatomical placement adversely affects the functional performance of the meniscal implant: A finite element study
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-021-01440-w
– volume: 48
  start-page: 1389
  issue: 8
  year: 2015
  ident: 10.1016/j.jbiomech.2025.112627_b1
  article-title: Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.02.044
– volume: 3
  start-page: 15
  issue: 6
  year: 2005
  ident: 10.1016/j.jbiomech.2025.112627_b16
  article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2005.0073
– volume: 33
  start-page: 497
  issue: 4
  year: 2011
  ident: 10.1016/j.jbiomech.2025.112627_b18
  article-title: A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.12.001
– volume: 40
  start-page: 1857
  issue: 3
  year: 2024
  ident: 10.1016/j.jbiomech.2025.112627_b28
  article-title: SOniCS: Develop intuition on biomechanical systems through interactive error controlled simulations
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-023-01877-w
– year: 2024
  ident: 10.1016/j.jbiomech.2025.112627_b41
  article-title: Intraoperative identification of patient-specific elastic modulus of the meniscus during arthroscopy
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2024.108269
– start-page: 2098
  year: 2006
  ident: 10.1016/j.jbiomech.2025.112627_b55
  article-title: Finite element modeling following partial meniscectomy: Effect of various size of resection
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Proc.
  doi: 10.1109/IEMBS.2006.259378
– volume: 306
  start-page: 34
  year: 1994
  ident: 10.1016/j.jbiomech.2025.112627_b58
  article-title: Anisotropic viscoelastic shear properties of bovine meniscus
  publication-title: Clin. Orthop. Relat. Res.®
– start-page: 19
  issue: 252
  year: 1990
  ident: 10.1016/j.jbiomech.2025.112627_b12
  article-title: Material properties and structure-function relationships in the menisci
  publication-title: Clin. Orthop. Relat. Res.
– volume: 41
  start-page: 1607
  issue: 7
  year: 2023
  ident: 10.1016/j.jbiomech.2025.112627_b42
  article-title: Heterogeneity of dynamic shear properties of the meniscus: A comparison between tissue core and surface layers
  publication-title: J. Orthop. Res.®
  doi: 10.1002/jor.25495
– start-page: 5289
  year: 2020
  ident: 10.1016/j.jbiomech.2025.112627_b49
  article-title: Bovine meniscus middle zone tissue: Measurement of collagen fibril behavior during compression
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S261298
– volume: 126
  year: 2022
  ident: 10.1016/j.jbiomech.2025.112627_b7
  article-title: Mechanical properties of meniscal circumferential fibers using an inverse finite element analysis approach
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2022.105073
– volume: 44
  start-page: 413
  issue: 3
  year: 2011
  ident: 10.1016/j.jbiomech.2025.112627_b3
  article-title: Hyperelastic properties of human meniscal attachments
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.10.001
– volume: 61
  start-page: 1
  year: 2000
  ident: 10.1016/j.jbiomech.2025.112627_b20
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J. Elasticity
  doi: 10.1023/A:1010835316564
– volume: 20
  start-page: 498
  issue: 5
  year: 2005
  ident: 10.1016/j.jbiomech.2025.112627_b36
  article-title: Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2005.01.009
– volume: 120
  year: 2021
  ident: 10.1016/j.jbiomech.2025.112627_b32
  article-title: Viscoelastic and equilibrium shear properties of human meniscus: Relationships with tissue structure and composition
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110343
– start-page: 283
  year: 2012
  ident: 10.1016/j.jbiomech.2025.112627_b10
  article-title: Sofa: A multi-model framework for interactive physical simulation
  publication-title: Soft Tissue Biomech. Model. Comput. Assist. Surg.
  doi: 10.1007/8415_2012_125
– volume: 10
  start-page: 33
  issue: 1
  year: 2003
  ident: 10.1016/j.jbiomech.2025.112627_b29
  article-title: Finite element analysis of the meniscus: The influence of geometry and material properties on its behaviour
  publication-title: Knee
  doi: 10.1016/S0968-0160(02)00106-0
– volume: 198
  year: 2021
  ident: 10.1016/j.jbiomech.2025.112627_b23
  article-title: Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105794
– volume: 36
  start-page: 1335
  year: 2008
  ident: 10.1016/j.jbiomech.2025.112627_b56
  article-title: Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-008-9515-y
– volume: 12
  issue: 106
  year: 2015
  ident: 10.1016/j.jbiomech.2025.112627_b21
  article-title: Modelling non-symmetric collagen fibre dispersion in arterial walls
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2015.0188
– volume: 48
  start-page: 1499
  issue: 8
  year: 2015
  ident: 10.1016/j.jbiomech.2025.112627_b6
  article-title: Characterization of site-specific biomechanical properties of human meniscus-importance of collagen and fluid on mechanical nonlinearities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.01.048
– volume: 36
  start-page: 19
  issue: 1
  year: 2003
  ident: 10.1016/j.jbiomech.2025.112627_b9
  article-title: How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00305-6
– volume: 115
  year: 2021
  ident: 10.1016/j.jbiomech.2025.112627_b31
  article-title: Effect of age on the failure properties of human meniscus: High-speed strain mapping of tissue tears
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.110126
– volume: 7
  start-page: 6011
  issue: 1
  year: 2017
  ident: 10.1016/j.jbiomech.2025.112627_b45
  article-title: Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06271-3
– volume: 4
  start-page: 2024
  issue: 8
  year: 2011
  ident: 10.1016/j.jbiomech.2025.112627_b2
  article-title: Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.06.022
– volume: 37
  start-page: 12:1
  issue: 2
  year: 2018
  ident: 10.1016/j.jbiomech.2025.112627_b50
  article-title: Stable Neo-Hookean flesh simulation
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3180491
– volume: 69
  start-page: 127
  year: 2019
  ident: 10.1016/j.jbiomech.2025.112627_b4
  article-title: Engineering approaches for characterizing soft tissue mechanical properties: A review
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2019.07.016
– volume: 26
  start-page: 2008
  issue: 16
  year: 2023
  ident: 10.1016/j.jbiomech.2025.112627_b48
  article-title: Comparison of constitutive models for meniscus and their effect on the knee joint biomechanics during gait
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2022.2163587
– volume: 9
  year: 2022
  ident: 10.1016/j.jbiomech.2025.112627_b51
  article-title: The digital twin in medicine: A key to the future of healthcare?
  publication-title: Front. Med.
  doi: 10.3389/fmed.2022.907066
– volume: 189
  year: 2020
  ident: 10.1016/j.jbiomech.2025.112627_b53
  article-title: Anisotropic computational modelling of bony structures from CT data: An almost automatic procedure
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105319
– volume: 11
  year: 2023
  ident: 10.1016/j.jbiomech.2025.112627_b40
  article-title: Region-and layer-specific investigations of the human menisci using SHG imaging and biaxial testing
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2023.1167427
SSID ssj0007479
Score 2.4658108
Snippet Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 112627
SubjectTerms Adult
Algorithms
Arthroscopic meniscus examination
Arthroscopy
Biomechanical Phenomena
Computer Simulation
Decision making
Degeneration
Elasticity
Fiber orientation
Finite Element Analysis
Finite element model
Humans
Hyperelasticity
Indentation
Indentation testing
Inverse parameter identification
Joints
Knee
Knee Joint - surgery
Male
Materials elasticity
Mathematical models
Mechanical tests
Menisci, Tibial - physiology
Meniscus
Models, Biological
Parameter identification
Particle swarm optimization
Real time
Shear modulus
Simulation
Sports medicine
Stress, Mechanical
Surgical techniques
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6xIqHxgEYLo1AmIyHezLw6qZMnVE1U1aTxxKS-WbbjiBQ1LaSbxL_nznFCH4DtpS-JkyZ3ufvOd_cdwHtHoLYUGZ95WfDEKc8ztJC8zDEEktKg16VG4esvs-VNcrVKV3HDrYlllZ1NDIa62DraIz-XxDSOvi1Tn3Y_OE2NouxqHKFxBI-JuoyCL7XqAy7iho8lHhccYYA46BBef1yH_vaQkJimoZOGJsv83Tn9C3wGJ7Q4gWcRPbJ5K-7n8MjXQxjNa4ycN7_YBxbqOcNG-RCeHlANDuHJdUyij-BuibEn9bAQRTPb-LpqUFAMoWvQRuZ6Due2RZPdVYZVNdVveEZU4RsqoWFVEQuN2pMQ_LLveDuGuviNKDK3O7x6U23ifLDmBdwsPn-9XPI4foE7tDp7niSpNblzKC5lFKVffeqsRQCAPm3m8qlxVhTJVBihlLBoGDJRYDRUThNfOqvkSxjU29q_Aiao416WhbU-Qwco8Ke88AZVw5SpzMUYzrv3rncty4buys_WupOUJknpVlJjUJ14dNdDilZPoyO4d2Xer4woo0UPD1o76TRBx2-90X80cwzv-sP4lVLqxdR-exvOEVTvLfMxnLYa1D9oQrR8mZKv_3_xN3BM_6StGprAYP_z1r9FQLS3Z0HrfwM2Bwp5
  priority: 102
  providerName: ProQuest
Title Hyperelastic meniscal material characterization via inverse parameter identification for knee arthroscopic simulations
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929025001381
https://dx.doi.org/10.1016/j.jbiomech.2025.112627
https://www.ncbi.nlm.nih.gov/pubmed/40117873
https://www.proquest.com/docview/3182091087
https://www.proquest.com/docview/3180199639
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KB6N9GGv6sawfqDD25ka17Mh-TEtLttJQxgp5E5IsU6fECUta2Mv-9t7JctrCxgZ7cUgsObbudHfy_X4ngE-WgtqSZ1HfiSJKrHRRhhYyKnNcAgmh0esSUfh61B_eJl_H6XgNzlsuDMEqg-1vbLq31uGXXhjN3ryqiOOLsy2mNJlPt3kGeyIJ1nfy6xnmgeFygHmcRtT6BUt4cjLxHHeflIhTz6ah3WV-76D-FIB6R3T5Ht6FCJINmpvcgjVXd2B7UOPqefqTfWYe0-lflndg80W5wQ68vQ6J9G14HOL6k3gsVKaZTV1dLVBYDMNXr5HMruo4NzRN9lhpVtWE4XCMyoVPCUbDqiKAjZpGGACze_w7hiN4R2UyZ3O8-qKahj3CFjtwe3nx_XwYhS0YIouWZxklSWp0bi2OsdSSUrAutcZgEIB-rW_zWFvDiyTmmkvJDRqHjBe4IirjxJXWSLEL6_Wsdh-AcWLdi7IwxmXoBDkeylOnUT10mYqcd6HXjruaN5U2VAtBm6hWUookpRpJdUG24lEtjxQtn0Jn8Nee-arnK237p74HrSaoMN8XSlAdfIy8Mjx9vDqNM5XSL7p2swffhhPmW-Rd2Gs0aPWgCZXmy6T4-B83tg8b9K2BFR3A-vLHgzvEiGlpjvyUwKMcyyN4M_hyNRzh59nF6ObbE3NoGM0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjUMGWx0IBIwE3UzdONskBodKHtrS7QqiVejOO44gs2uxCtkX9U_2NzCR26IHXpZdcEjuPGc98znwzA_DSEKgtRMKHVuY8NLHlCVpIXqS4BZJSo9elROHxZDg6CT-cRqcrcOlzYYhW6W1iY6jzuaF_5JuSKo2jb0vid4tvnLpGUXTVt9Bo1eLQXvzALVv99mAX5fsqCPb3jndG3HUV4AYX05KHYZTp1Bh8iljHFFW0kcky9GtoqocmDbTJRB4GQos4FhnqeyJyBPlFENrCZLHEeW_AaigRKvRg9f3e5OOnzvYjOHekki2OwENcyUmevpk2GfVNCCSImtwd6mXze3f4J7jbuL39u7Dm8CrbbhXsHqzYqg_r2xXu1WcX7DVrGKTNr_k-3LlS3LAPN8cubL8O5yPc7VLWDBWFZjNblTWqBkOw3Og_M13V6DYplJ2XmpUVMUYso-LkMyLtsDJ31Kb2IoTb7CvejqH2f6GinPMFzl6XM9eRrL4PJ9cimgfQq-aVfQRMUI6_LPIsswm6XIGHYstqVEZdRDIVA9j0310t2roeyhPepspLSpGkVCupAcRePMpnraKdVeh6_jky7UY6XNPilf8au-E1QTnrUqtfa2EAL7rTaBco2KMrOz9rrhHEMJfpAB62GtS9aEiFAJNYPv775M_h1uh4fKSODiaHT-A2PVXLWdqA3vL7mX2KcGyZPXNrgMHn6152PwFxh0eW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVwQJBCCRRYJOC2ZOu1s_YBoYoSpZRWHKiU2-Jdr4WD4gScFvWv8euY2bVND7wuveQS78bOvL7xfjMD8MwSqC1FysdOFjy2yvEUPSQvM0yBpMwx6lKh8PHJeHoav5slsw340dXCEK2y84neURdLS-_IR5I6jWNsS9WobGkRHw4mr1dfOU2QopPWbpxGUJEjd_Ed07fm1eEByvp5FE3efnwz5e2EAW7RsNY8jhOTZ9biHalc0QmjS6wxGOPQbY9tFuXWiCKORC6UEgZ1PxUFAv4yil1pjZK47zW4riSGTbQlNeuTPepL39JL9jhCEHGpOnn-cu5r6_1hSJT4Kh6aavP7wPgn4OsD4OQ23GqRK9sPqnYHNlw9gO39GrP2xQV7wTyX1L-kH8DNS20OB7B13B7gb8P5FPNeqp-h9tBs4eqqQSVhCJu9JTDb948O5aHsvMpZVRN3xDFqU74g-g6ripbkFC5C4M2-4M8xtIPP1J5zucLdm2rRziZr7sLplQjmHmzWy9rdByao2l-WhTEuxeAr8KPcczmqZV4mMhNDGHX_u16FDh-6o77NdScpTZLSQVJDUJ14dFe_ih5XYxD658qsX9kinIBc_mvtbqcJuvUzjf5lFUN42n-NHoKOffLaLc_8NYK45jIbwk7QoP5BY2oJmCr54O-bP4EtNDb9_vDk6CHcoJsK5KVd2Fx_O3OPEJetzWNvAAw-XbXF_QQM-kpm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperelastic+meniscal+material+characterization+via+inverse+parameter+identification+for+knee+arthroscopic+simulations&rft.jtitle=Journal+of+biomechanics&rft.au=Rasheed%2C+Bismi&rft.au=Bjelland%2C+%C3%98ystein&rft.au=Dalen%2C+Andreas+F.&rft.au=Schaathun%2C+Hans+Georg&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=183&rft_id=info:doi/10.1016%2Fj.jbiomech.2025.112627&rft.externalDocID=S0021929025001381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon