Hyperelastic meniscal material characterization via inverse parameter identification for knee arthroscopic simulations
Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. I...
Saved in:
Published in | Journal of biomechanics Vol. 183; p. 112627 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.04.2025
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2025.112627 |
Cover
Loading…
Abstract | Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force–displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (p<0.05 except for the mid-body of the medial meniscus). |
---|---|
AbstractList | Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force-displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (p<0.05 except for the mid-body of the medial meniscus). Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force-displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (p<0.05 except for the mid-body of the medial meniscus).Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force-displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (p<0.05 except for the mid-body of the medial meniscus). |
ArticleNumber | 112627 |
Author | Rasheed, Bismi Schaathun, Hans Georg Bjelland, Øystein Dalen, Andreas F. |
Author_xml | – sequence: 1 givenname: Bismi orcidid: 0000-0002-8897-5130 surname: Rasheed fullname: Rasheed, Bismi email: bismi.rasheed@ntnu.no organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway – sequence: 2 givenname: Øystein surname: Bjelland fullname: Bjelland, Øystein organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway – sequence: 3 givenname: Andreas F. surname: Dalen fullname: Dalen, Andreas F. organization: Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway – sequence: 4 givenname: Hans Georg surname: Schaathun fullname: Schaathun, Hans Georg organization: Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40117873$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQhi1URLeFV6giceGSZewkdnxBoApapEpc4Gw5zkTrNLGDnay0fXoc0vbQC5xsa7755Jn_gpw575CQKwp7CpR_7Pd9Y_2I5rBnwKo9pYwz8YrsaC2KnBU1nJEdAKO5ZBLOyUWMPQCIUsg35LwESkUCd-R4e5ow4KDjbE02orPR6CEb9YzBpos56KDN-njQs_UuO1qdWXfEEDGbUm3EVMxsi262nTUb1PmQ3TvETIf5EHw0fkr2aMdl-AvEt-R1p4eI7x7PS_Lr29ef17f53Y-b79df7nJTCD7nZVk1WhrDKhBa8EoyrEzTAE_j1txIpk0DbclAgxDQMFbV0HLOO1ZiZxpRXJIPm3cK_veCcVZjGhCHQTv0S1QFrYFKyQuZ0Pcv0N4vwaXfrRQDSaFehVeP1NKM2Kop2FGHk3raaAL4Bpg0dwzYPSMU1Bqd6tVTdGqNTm3RpcbPWyOmfRwtBhWNRWewtQHNrFpv_6349EJhButSKMM9nv5H8Acnlrts |
Cites_doi | 10.1016/j.joca.2022.01.001 10.1371/journal.pone.0280616 10.1186/s12891-023-06153-y 10.1115/1.3148471 10.1016/j.jbiomech.2015.02.042 10.1016/j.jbiomech.2015.03.014 10.1007/s40430-024-04877-z 10.1016/j.jbiomech.2015.03.002 10.1016/j.jbiomech.2015.02.028 10.1016/j.jbiomech.2016.10.025 10.1007/s00167-008-0616-9 10.1016/j.jmbbm.2013.05.027 10.1109/TOH.2011.41 10.1007/s00167-010-1251-9 10.3390/app9142851 10.1109/ACCESS.2019.2943689 10.1016/j.jmbbm.2017.09.023 10.1114/B:ABME.0000049040.70767.5c 10.1109/ACCESS.2022.3170108 10.1115/1.4032354 10.1016/j.jmbbm.2008.09.003 10.1080/10255842.2012.670854 10.1002/jmri.24461 10.1002/nme.2579 10.1177/1941738111429419 10.1007/s10237-021-01440-w 10.1016/j.jbiomech.2015.02.044 10.1098/rsif.2005.0073 10.1016/j.medengphy.2010.12.001 10.1007/s00366-023-01877-w 10.1016/j.cmpb.2024.108269 10.1109/IEMBS.2006.259378 10.1002/jor.25495 10.2147/IJN.S261298 10.1016/j.jmbbm.2022.105073 10.1016/j.jbiomech.2010.10.001 10.1023/A:1010835316564 10.1016/j.clinbiomech.2005.01.009 10.1016/j.jbiomech.2021.110343 10.1007/8415_2012_125 10.1016/S0968-0160(02)00106-0 10.1016/j.cmpb.2020.105794 10.1007/s10439-008-9515-y 10.1098/rsif.2015.0188 10.1016/j.jbiomech.2015.01.048 10.1016/S0021-9290(02)00305-6 10.1016/j.jbiomech.2020.110126 10.1038/s41598-017-06271-3 10.1016/j.jmbbm.2011.06.022 10.1145/3180491 10.1016/j.clinbiomech.2019.07.016 10.1080/10255842.2022.2163587 10.3389/fmed.2022.907066 10.1016/j.cmpb.2020.105319 10.3389/fbioe.2023.1167427 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. 2025. The Authors |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2025. The Authors |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2025.112627 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 40117873 10_1016_j_jbiomech_2025_112627 S0021929025001381 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- 6I. AAFTH AFCTW AGRNS ALIPV RIG AAYXX CITATION AFFDN CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c376t-445ba9cc2507a76592e5cbb0611286c92acb0d420a0770b22580d666f24efcb73 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 05:02:05 EDT 2025 Wed Aug 13 06:51:01 EDT 2025 Fri May 16 02:46:29 EDT 2025 Thu Jul 03 08:37:11 EDT 2025 Sat Jul 05 17:12:48 EDT 2025 Tue Aug 26 16:32:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Indentation testing Arthroscopic meniscus examination Finite element model Inverse parameter identification Hyperelasticity |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-445ba9cc2507a76592e5cbb0611286c92acb0d420a0770b22580d666f24efcb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8897-5130 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0021929025001381 |
PMID | 40117873 |
PQID | 3182091087 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_3180199639 proquest_journals_3182091087 pubmed_primary_40117873 crossref_primary_10_1016_j_jbiomech_2025_112627 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2025_112627 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2025_112627 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Toniolo, Salmaso, Bruno, De Stefani, Stefanini, Gracco, Carniel (b53) 2020; 189 Łuczkiewicz, Daszkiewicz, Witkowski, Chróścielewski, Zarzycki (b26) 2015; 48 Faure, Duriez, Delingette, Allard, Gilles, Marchesseau, Talbot, Courtecuisse, Bousquet, Peterlik (b10) 2012 Zhu, Chern, van C (b58) 1994; 306 Schwartz, Morejon, Gracia, Best, Jackson, Travascio (b42) 2023; 41 Holzapfel, Niestrawska, Ogden, Reinisch, Schriefl (b21) 2015; 12 Pena, Calvo, Martinez, Palanca, Doblaré (b36) 2005; 20 Abraham, Moyer, Villegas, Odegard, Haut Donahue (b3) 2011; 44 Freutel, Seitz, Galbusera, Bornstedt, Rasche, Tate, Ignatius, Düurselen (b15) 2014; 40 Peterlik, Nouicer, Duriez, Cotin, Kheddar (b37) 2011; 4 Simkheada, Orozco, Korhonen, Tanska, Mononen (b48) 2023; 26 Seyfi, Fatouraee, Imeni (b44) 2018; 77 Freutel, Galbusera, Ignatius, Dürselen (b14) 2015; 48 Orton, Batchelor, Ziebarth, Best, Travascio, Jackson (b33) 2023; 18 Gupta, Lin, Ashby, Pruitt (b19) 2009; 2 Shriram, Yamako, Chosa, Subburaj (b46) 2019; 7 Rasheed, Bjelland, Dalen, Schaarschmidt, Schaathun, Pedersen, Steinert, Bye (b41) 2024 Abdelgaied, Stanley, Galfe, Berry, Ingham, Fisher (b1) 2015; 48 Seitz, Galbusera, Krais, Ignatius, Dürselen (b43) 2013; 26 Fischenich, Lewis, Kindsfater, Bailey, Haut Donahue (b11) 2015; 48 Morejon, Mantero, Best, Jackson, Travascio (b30) 2022; 30 Masouros, McDermott, Amis, Bull (b27) 2008; 16 Abraham, Edwards, Odegard, Donahue (b2) 2011; 4 Kulseng, Nainamalai, Grøvik, Geitung, Årøen, Gjesdal (b25) 2023; 24 Pierce, Ricken, Holzapfel (b38) 2013; 16 Klets, Mononen, Tanska, Nieminen, Korhonen, Saarakkala (b24) 2016; 49 De Rosa, Filippone, Best, Jackson, Travascio (b7) 2022; 126 Holzapfel, Gasser, Ogden (b20) 2000; 61 Pawar, Yadav, Kalyanasundaram (b34) 2024; 46 Alekya, Rao, Pandya (b4) 2019; 69 Mazier, El Hadramy, Brunet, Hale, Cotin, Bordas (b28) 2024; 40 Bjelland, Rasheed, Schaathun, Pedersen, Steinert, Hellevik, Bye (b5) 2022; 10 Peloquin, Santare, Elliott (b35) 2016; 138 Delingette, Ayache (b8) 2004; 12 Gu, Li (b18) 2011; 33 Pierce, Trobin, Trattnig, Bischof, Holzapfel (b39) 2009; 131 Sizeland, Wells, Kirby, Hawley, Mudie, Ryan, Haverkamp (b49) 2020 Smith, Goes, Kim (b50) 2018; 37 Geuzaine, Remacle (b17) 2009; 79 Donahue, Hull, Rashid, Jacobs (b9) 2003; 36 Vadher, Nayeb-Hashemi, Canavan, Warner (b55) 2006 Vaziri, Nayeb-Hashemi, Singh, Tafti (b56) 2008; 36 Tuijthof, Horeman, Schafroth, Blankevoort, Kerkhoffs (b54) 2011; 19 Shriram, Yamako, Kumar, Chosa, Cui, Subburaj (b47) 2021; 20 Huh, Lee, You, Song, Lee, Ryu (b22) 2019; 9 Nesbitt, Siegel, Nelson, Lujan (b31) 2021; 115 Rasheed, Ayyalasomayajula, Schaarschmidt, Vagstad, Schaathun (b40) 2023; 11 Wheatley, Fischenich, Button, Haut, Haut Donahue (b57) 2015; 48 Danso, Mäkelä, Tanska, Mononen, Honkanen, Jurvelin, Töyräs, Julkunen, Korhonen (b6) 2015; 48 Fithian, Kelly, Mow (b12) 1990 Sun, He, Song, Shu, Li (b51) 2022; 9 Sweigart, Zhu, Burt, Deholl, Agrawal, Clanton, Athanasiou (b52) 2004; 32 Fox, Bedi, Rodeo (b13) 2012; 4 Shriram, Praveen Kumar, Cui, Lee, Subburaj (b45) 2017; 7 Karimi, Grytz, Rahmati, Girkin, Downs (b23) 2021; 198 Gasser, Ogden, Holzapfel (b16) 2005; 3 Meakin, Shrive, Frank, Hart (b29) 2003; 10 Norberg, Filippone, Andreopoulos, Best, Baraga, Jackson, Travascio (b32) 2021; 120 Masouros (10.1016/j.jbiomech.2025.112627_b27) 2008; 16 Simkheada (10.1016/j.jbiomech.2025.112627_b48) 2023; 26 Seitz (10.1016/j.jbiomech.2025.112627_b43) 2013; 26 Łuczkiewicz (10.1016/j.jbiomech.2025.112627_b26) 2015; 48 Bjelland (10.1016/j.jbiomech.2025.112627_b5) 2022; 10 Geuzaine (10.1016/j.jbiomech.2025.112627_b17) 2009; 79 Morejon (10.1016/j.jbiomech.2025.112627_b30) 2022; 30 Delingette (10.1016/j.jbiomech.2025.112627_b8) 2004; 12 Holzapfel (10.1016/j.jbiomech.2025.112627_b21) 2015; 12 Pena (10.1016/j.jbiomech.2025.112627_b36) 2005; 20 Faure (10.1016/j.jbiomech.2025.112627_b10) 2012 Holzapfel (10.1016/j.jbiomech.2025.112627_b20) 2000; 61 Fithian (10.1016/j.jbiomech.2025.112627_b12) 1990 Shriram (10.1016/j.jbiomech.2025.112627_b45) 2017; 7 Seyfi (10.1016/j.jbiomech.2025.112627_b44) 2018; 77 Abraham (10.1016/j.jbiomech.2025.112627_b3) 2011; 44 Fischenich (10.1016/j.jbiomech.2025.112627_b11) 2015; 48 Wheatley (10.1016/j.jbiomech.2025.112627_b57) 2015; 48 Schwartz (10.1016/j.jbiomech.2025.112627_b42) 2023; 41 Sweigart (10.1016/j.jbiomech.2025.112627_b52) 2004; 32 Huh (10.1016/j.jbiomech.2025.112627_b22) 2019; 9 Peterlik (10.1016/j.jbiomech.2025.112627_b37) 2011; 4 Gasser (10.1016/j.jbiomech.2025.112627_b16) 2005; 3 Donahue (10.1016/j.jbiomech.2025.112627_b9) 2003; 36 Sun (10.1016/j.jbiomech.2025.112627_b51) 2022; 9 Abraham (10.1016/j.jbiomech.2025.112627_b2) 2011; 4 Karimi (10.1016/j.jbiomech.2025.112627_b23) 2021; 198 Danso (10.1016/j.jbiomech.2025.112627_b6) 2015; 48 Rasheed (10.1016/j.jbiomech.2025.112627_b41) 2024 Alekya (10.1016/j.jbiomech.2025.112627_b4) 2019; 69 Gupta (10.1016/j.jbiomech.2025.112627_b19) 2009; 2 Tuijthof (10.1016/j.jbiomech.2025.112627_b54) 2011; 19 Abdelgaied (10.1016/j.jbiomech.2025.112627_b1) 2015; 48 Orton (10.1016/j.jbiomech.2025.112627_b33) 2023; 18 Peloquin (10.1016/j.jbiomech.2025.112627_b35) 2016; 138 Gu (10.1016/j.jbiomech.2025.112627_b18) 2011; 33 Shriram (10.1016/j.jbiomech.2025.112627_b47) 2021; 20 Zhu (10.1016/j.jbiomech.2025.112627_b58) 1994; 306 Pawar (10.1016/j.jbiomech.2025.112627_b34) 2024; 46 De Rosa (10.1016/j.jbiomech.2025.112627_b7) 2022; 126 Freutel (10.1016/j.jbiomech.2025.112627_b14) 2015; 48 Rasheed (10.1016/j.jbiomech.2025.112627_b40) 2023; 11 Fox (10.1016/j.jbiomech.2025.112627_b13) 2012; 4 Sizeland (10.1016/j.jbiomech.2025.112627_b49) 2020 Vaziri (10.1016/j.jbiomech.2025.112627_b56) 2008; 36 Mazier (10.1016/j.jbiomech.2025.112627_b28) 2024; 40 Meakin (10.1016/j.jbiomech.2025.112627_b29) 2003; 10 Klets (10.1016/j.jbiomech.2025.112627_b24) 2016; 49 Freutel (10.1016/j.jbiomech.2025.112627_b15) 2014; 40 Kulseng (10.1016/j.jbiomech.2025.112627_b25) 2023; 24 Norberg (10.1016/j.jbiomech.2025.112627_b32) 2021; 120 Smith (10.1016/j.jbiomech.2025.112627_b50) 2018; 37 Toniolo (10.1016/j.jbiomech.2025.112627_b53) 2020; 189 Pierce (10.1016/j.jbiomech.2025.112627_b38) 2013; 16 Pierce (10.1016/j.jbiomech.2025.112627_b39) 2009; 131 Shriram (10.1016/j.jbiomech.2025.112627_b46) 2019; 7 Vadher (10.1016/j.jbiomech.2025.112627_b55) 2006 Nesbitt (10.1016/j.jbiomech.2025.112627_b31) 2021; 115 |
References_xml | – volume: 48 start-page: 1389 year: 2015 end-page: 1396 ident: b1 article-title: Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus publication-title: J. Biomech. – volume: 16 start-page: 1121 year: 2008 end-page: 1132 ident: b27 article-title: Biomechanics of the meniscus-meniscal ligament construct of the knee publication-title: Knee Surg. Sport. Traumatol. Arthrosc. – volume: 20 start-page: 498 year: 2005 end-page: 507 ident: b36 article-title: Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics publication-title: Clin. Biomech. – volume: 48 start-page: 1407 year: 2015 end-page: 1411 ident: b11 article-title: Effects of degeneration on the compressive and tensile properties of human meniscus publication-title: J. Biomech. – volume: 40 start-page: 1181 year: 2014 end-page: 1188 ident: b15 article-title: Medial meniscal displacement and strain in three dimensions under compressive loads: MR assessment publication-title: J. Magn. Reson. Imag. : JMRI – volume: 16 start-page: 1344 year: 2013 end-page: 1361 ident: b38 article-title: A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: Continuum basis, computational aspects and applications publication-title: Comput. Methods Biomech. Biomed. Eng. – start-page: 5289 year: 2020 end-page: 5298 ident: b49 article-title: Bovine meniscus middle zone tissue: Measurement of collagen fibril behavior during compression publication-title: Int. J. Nanomedicine – volume: 48 start-page: 1356 year: 2015 end-page: 1363 ident: b26 article-title: Influence of meniscus shape in the cross sectional plane on the knee contact mechanics publication-title: J. Biomech. – volume: 198 year: 2021 ident: b23 article-title: Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole publication-title: Comput. Methods Programs Biomed. – volume: 10 start-page: 33 year: 2003 end-page: 41 ident: b29 article-title: Finite element analysis of the meniscus: The influence of geometry and material properties on its behaviour publication-title: Knee – volume: 126 year: 2022 ident: b7 article-title: Mechanical properties of meniscal circumferential fibers using an inverse finite element analysis approach publication-title: J. Mech. Behav. Biomed. Mater. – volume: 120 year: 2021 ident: b32 article-title: Viscoelastic and equilibrium shear properties of human meniscus: Relationships with tissue structure and composition publication-title: J. Biomech. – volume: 46 start-page: 1 year: 2024 end-page: 14 ident: b34 article-title: Evaluation of the stresses on the knee meniscus tissue under various loading conditions and correlation with resulting meniscal tears observed clinically: A finite element study publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 69 start-page: 127 year: 2019 end-page: 140 ident: b4 article-title: Engineering approaches for characterizing soft tissue mechanical properties: A review publication-title: Clin. Biomech. – volume: 61 start-page: 1 year: 2000 end-page: 48 ident: b20 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J. Elasticity – volume: 37 start-page: 12:1 year: 2018 end-page: 12:15 ident: b50 article-title: Stable Neo-Hookean flesh simulation publication-title: ACM Trans. Graph. – volume: 4 start-page: 175 year: 2011 end-page: 187 ident: b37 article-title: Constraint-based haptic rendering of multirate compliant mechanisms publication-title: IEEE Trans. Haptics – volume: 4 start-page: 340 year: 2012 end-page: 351 ident: b13 article-title: The basic science of human knee menisci: Structure, composition, and function publication-title: Sport. Heal. – volume: 2 start-page: 326 year: 2009 end-page: 338 ident: b19 article-title: A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: A combined experimental and finite element approach publication-title: J. Mech. Behav. Biomed. Mater. – volume: 18 year: 2023 ident: b33 article-title: Biomechanical properties of porcine meniscus as determined via AFM: Effect of region, compartment and anisotropy publication-title: PLoS One – volume: 306 start-page: 34 year: 1994 end-page: 45 ident: b58 article-title: Anisotropic viscoelastic shear properties of bovine meniscus publication-title: Clin. Orthop. Relat. Res.® – volume: 115 year: 2021 ident: b31 article-title: Effect of age on the failure properties of human meniscus: High-speed strain mapping of tissue tears publication-title: J. Biomech. – year: 2024 ident: b41 article-title: Intraoperative identification of patient-specific elastic modulus of the meniscus during arthroscopy publication-title: Comput. Methods Programs Biomed. – volume: 26 start-page: 68 year: 2013 end-page: 80 ident: b43 article-title: Stress-relaxation response of human menisci under confined compression conditions publication-title: J. Mech. Behav. Biomed. Mater. – volume: 48 start-page: 1499 year: 2015 end-page: 1507 ident: b6 article-title: Characterization of site-specific biomechanical properties of human meniscus-importance of collagen and fluid on mechanical nonlinearities publication-title: J. Biomech. – volume: 9 year: 2022 ident: b51 article-title: The digital twin in medicine: A key to the future of healthcare? publication-title: Front. Med. – volume: 44 start-page: 413 year: 2011 end-page: 418 ident: b3 article-title: Hyperelastic properties of human meniscal attachments publication-title: J. Biomech. – volume: 12 start-page: 453 year: 2004 end-page: 550 ident: b8 article-title: Soft tissue modeling for surgery simulation publication-title: Handb. Numer. Anal. – start-page: 2098 year: 2006 end-page: 2101 ident: b55 article-title: Finite element modeling following partial meniscectomy: Effect of various size of resection publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Proc. – start-page: 19 year: 1990 end-page: 31 ident: b12 article-title: Material properties and structure-function relationships in the menisci publication-title: Clin. Orthop. Relat. Res. – volume: 189 year: 2020 ident: b53 article-title: Anisotropic computational modelling of bony structures from CT data: An almost automatic procedure publication-title: Comput. Methods Programs Biomed. – volume: 138 year: 2016 ident: b35 article-title: Advances in quantification of meniscus tensile mechanics including nonlinearity, yield, and failure publication-title: J. Biomech. Eng. – volume: 30 start-page: 605 year: 2022 end-page: 612 ident: b30 article-title: Mechanisms of energy dissipation and relationship with tissue composition in human meniscus publication-title: Osteoarthr. Cartil. – volume: 26 start-page: 2008 year: 2023 end-page: 2021 ident: b48 article-title: Comparison of constitutive models for meniscus and their effect on the knee joint biomechanics during gait publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 11 year: 2023 ident: b40 article-title: Region-and layer-specific investigations of the human menisci using SHG imaging and biaxial testing publication-title: Front. Bioeng. Biotechnol. – volume: 77 start-page: 337 year: 2018 end-page: 346 ident: b44 article-title: Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method publication-title: J. Mech. Behav. Biomed. Mater. – volume: 32 start-page: 1569 year: 2004 end-page: 1579 ident: b52 article-title: Intraspecies and interspecies comparison of the compressive properties of the medial meniscus publication-title: Ann. Biomed. Eng. – volume: 19 start-page: 248 year: 2011 end-page: 254 ident: b54 article-title: Probing forces of menisci: What levels are safe for arthroscopic surgery publication-title: Knee Surg. Sport. Traumatol. Arthrosc. – volume: 79 start-page: 1309 year: 2009 end-page: 1331 ident: b17 article-title: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities publication-title: Internat. J. Numer. Methods Engrg. – volume: 7 start-page: 140084 year: 2019 end-page: 140101 ident: b46 article-title: Biomechanical evaluation of isotropic and shell-core composite meniscal implants for total meniscus replacement: A nonlinear finite element study publication-title: Ieee Access – volume: 48 start-page: 1454 year: 2015 end-page: 1460 ident: b57 article-title: An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading publication-title: J. Biomech. – volume: 48 start-page: 1343 year: 2015 end-page: 1349 ident: b14 article-title: Material properties of individual menisci and their attachments obtained through inverse FE-analysis publication-title: J. Biomech. – volume: 20 start-page: 1167 year: 2021 end-page: 1185 ident: b47 article-title: Non-anatomical placement adversely affects the functional performance of the meniscal implant: A finite element study publication-title: Biomech. Model. Mechanobiol. – volume: 10 start-page: 45029 year: 2022 end-page: 45052 ident: b5 article-title: Toward a digital twin for arthroscopic knee surgery: A systematic review publication-title: IEEE Access – volume: 9 start-page: 2851 year: 2019 ident: b22 article-title: Determination of the material parameters in the holzapfel-gasser-ogden constitutive model for simulation of age-dependent material nonlinear behavior for aortic wall tissue under uniaxial tension publication-title: Appl. Sci. – volume: 3 start-page: 15 year: 2005 end-page: 35 ident: b16 article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations publication-title: J. R. Soc. Interface – volume: 36 start-page: 19 year: 2003 end-page: 34 ident: b9 article-title: How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint publication-title: J. Biomech. – volume: 24 year: 2023 ident: b25 article-title: Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol publication-title: BMC Musculoskelet. Disord. – start-page: 283 year: 2012 end-page: 321 ident: b10 article-title: Sofa: A multi-model framework for interactive physical simulation publication-title: Soft Tissue Biomech. Model. Comput. Assist. Surg. – volume: 36 start-page: 1335 year: 2008 end-page: 1344 ident: b56 article-title: Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint publication-title: Ann. Biomed. Eng. – volume: 131 year: 2009 ident: b39 article-title: A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking publication-title: J. Biomech. Eng. – volume: 41 start-page: 1607 year: 2023 end-page: 1617 ident: b42 article-title: Heterogeneity of dynamic shear properties of the meniscus: A comparison between tissue core and surface layers publication-title: J. Orthop. Res.® – volume: 49 start-page: 3891 year: 2016 end-page: 3900 ident: b24 article-title: Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the osteoarthritis initiative (OAI) publication-title: J. Biomech. – volume: 4 start-page: 2024 year: 2011 end-page: 2030 ident: b2 article-title: Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus publication-title: J. Mech. Behav. Biomed. Mater. – volume: 7 start-page: 6011 year: 2017 ident: b45 article-title: Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis publication-title: Sci. Rep. – volume: 12 year: 2015 ident: b21 article-title: Modelling non-symmetric collagen fibre dispersion in arterial walls publication-title: J. R. Soc. Interface – volume: 33 start-page: 497 year: 2011 end-page: 503 ident: b18 article-title: A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci publication-title: Med. Eng. Phys. – volume: 40 start-page: 1857 year: 2024 end-page: 1876 ident: b28 article-title: SOniCS: Develop intuition on biomechanical systems through interactive error controlled simulations publication-title: Eng. Comput. – volume: 30 start-page: 605 issue: 4 year: 2022 ident: 10.1016/j.jbiomech.2025.112627_b30 article-title: Mechanisms of energy dissipation and relationship with tissue composition in human meniscus publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2022.01.001 – volume: 18 issue: 1 year: 2023 ident: 10.1016/j.jbiomech.2025.112627_b33 article-title: Biomechanical properties of porcine meniscus as determined via AFM: Effect of region, compartment and anisotropy publication-title: PLoS One doi: 10.1371/journal.pone.0280616 – volume: 24 issue: 1 year: 2023 ident: 10.1016/j.jbiomech.2025.112627_b25 article-title: Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol publication-title: BMC Musculoskelet. Disord. doi: 10.1186/s12891-023-06153-y – volume: 131 issue: 9 year: 2009 ident: 10.1016/j.jbiomech.2025.112627_b39 article-title: A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking publication-title: J. Biomech. Eng. doi: 10.1115/1.3148471 – volume: 48 start-page: 1407 issue: 8 year: 2015 ident: 10.1016/j.jbiomech.2025.112627_b11 article-title: Effects of degeneration on the compressive and tensile properties of human meniscus publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.02.042 – volume: 48 start-page: 1343 issue: 8 year: 2015 ident: 10.1016/j.jbiomech.2025.112627_b14 article-title: Material properties of individual menisci and their attachments obtained through inverse FE-analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.03.014 – volume: 12 start-page: 453 year: 2004 ident: 10.1016/j.jbiomech.2025.112627_b8 article-title: Soft tissue modeling for surgery simulation publication-title: Handb. Numer. Anal. – volume: 46 start-page: 1 issue: 5 year: 2024 ident: 10.1016/j.jbiomech.2025.112627_b34 article-title: Evaluation of the stresses on the knee meniscus tissue under various loading conditions and correlation with resulting meniscal tears observed clinically: A finite element study publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-024-04877-z – volume: 48 start-page: 1356 issue: 8 year: 2015 ident: 10.1016/j.jbiomech.2025.112627_b26 article-title: Influence of meniscus shape in the cross sectional plane on the knee contact mechanics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.03.002 – volume: 48 start-page: 1454 issue: 8 year: 2015 ident: 10.1016/j.jbiomech.2025.112627_b57 article-title: An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.02.028 – volume: 49 start-page: 3891 issue: 16 year: 2016 ident: 10.1016/j.jbiomech.2025.112627_b24 article-title: Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the osteoarthritis initiative (OAI) publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.10.025 – volume: 16 start-page: 1121 year: 2008 ident: 10.1016/j.jbiomech.2025.112627_b27 article-title: Biomechanics of the meniscus-meniscal ligament construct of the knee publication-title: Knee Surg. Sport. Traumatol. Arthrosc. doi: 10.1007/s00167-008-0616-9 – volume: 26 start-page: 68 year: 2013 ident: 10.1016/j.jbiomech.2025.112627_b43 article-title: Stress-relaxation response of human menisci under confined compression conditions publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2013.05.027 – volume: 4 start-page: 175 issue: 3 year: 2011 ident: 10.1016/j.jbiomech.2025.112627_b37 article-title: Constraint-based haptic rendering of multirate compliant mechanisms publication-title: IEEE Trans. Haptics doi: 10.1109/TOH.2011.41 – volume: 19 start-page: 248 year: 2011 ident: 10.1016/j.jbiomech.2025.112627_b54 article-title: Probing forces of menisci: What levels are safe for arthroscopic surgery publication-title: Knee Surg. Sport. Traumatol. Arthrosc. doi: 10.1007/s00167-010-1251-9 – volume: 9 start-page: 2851 issue: 14 year: 2019 ident: 10.1016/j.jbiomech.2025.112627_b22 article-title: Determination of the material parameters in the holzapfel-gasser-ogden constitutive model for simulation of age-dependent material nonlinear behavior for aortic wall tissue under uniaxial tension publication-title: Appl. Sci. doi: 10.3390/app9142851 – volume: 7 start-page: 140084 year: 2019 ident: 10.1016/j.jbiomech.2025.112627_b46 article-title: Biomechanical evaluation of isotropic and shell-core composite meniscal implants for total meniscus replacement: A nonlinear finite element study publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2943689 – volume: 77 start-page: 337 year: 2018 ident: 10.1016/j.jbiomech.2025.112627_b44 article-title: Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.09.023 – volume: 32 start-page: 1569 issue: 11 year: 2004 ident: 10.1016/j.jbiomech.2025.112627_b52 article-title: Intraspecies and interspecies comparison of the compressive properties of the medial meniscus publication-title: Ann. Biomed. Eng. doi: 10.1114/B:ABME.0000049040.70767.5c – volume: 10 start-page: 45029 year: 2022 ident: 10.1016/j.jbiomech.2025.112627_b5 article-title: Toward a digital twin for arthroscopic knee surgery: A systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3170108 – volume: 138 issue: 2 year: 2016 ident: 10.1016/j.jbiomech.2025.112627_b35 article-title: Advances in quantification of meniscus tensile mechanics including nonlinearity, yield, and failure publication-title: J. Biomech. Eng. doi: 10.1115/1.4032354 – volume: 2 start-page: 326 issue: 4 year: 2009 ident: 10.1016/j.jbiomech.2025.112627_b19 article-title: A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: A combined experimental and finite element approach publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2008.09.003 – volume: 16 start-page: 1344 issue: 12 year: 2013 ident: 10.1016/j.jbiomech.2025.112627_b38 article-title: A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: Continuum basis, computational aspects and applications publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2012.670854 – volume: 40 start-page: 1181 issue: 5 year: 2014 ident: 10.1016/j.jbiomech.2025.112627_b15 article-title: Medial meniscal displacement and strain in three dimensions under compressive loads: MR assessment publication-title: J. Magn. Reson. Imag. : JMRI doi: 10.1002/jmri.24461 – volume: 79 start-page: 1309 issue: 11 year: 2009 ident: 10.1016/j.jbiomech.2025.112627_b17 article-title: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2579 – volume: 4 start-page: 340 issue: 4 year: 2012 ident: 10.1016/j.jbiomech.2025.112627_b13 article-title: The basic science of human knee menisci: Structure, composition, and function publication-title: Sport. Heal. doi: 10.1177/1941738111429419 – volume: 20 start-page: 1167 year: 2021 ident: 10.1016/j.jbiomech.2025.112627_b47 article-title: Non-anatomical placement adversely affects the functional performance of the meniscal implant: A finite element study publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-021-01440-w – volume: 48 start-page: 1389 issue: 8 year: 2015 ident: 10.1016/j.jbiomech.2025.112627_b1 article-title: Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.02.044 – volume: 3 start-page: 15 issue: 6 year: 2005 ident: 10.1016/j.jbiomech.2025.112627_b16 article-title: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2005.0073 – volume: 33 start-page: 497 issue: 4 year: 2011 ident: 10.1016/j.jbiomech.2025.112627_b18 article-title: A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.12.001 – volume: 40 start-page: 1857 issue: 3 year: 2024 ident: 10.1016/j.jbiomech.2025.112627_b28 article-title: SOniCS: Develop intuition on biomechanical systems through interactive error controlled simulations publication-title: Eng. Comput. doi: 10.1007/s00366-023-01877-w – year: 2024 ident: 10.1016/j.jbiomech.2025.112627_b41 article-title: Intraoperative identification of patient-specific elastic modulus of the meniscus during arthroscopy publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2024.108269 – start-page: 2098 year: 2006 ident: 10.1016/j.jbiomech.2025.112627_b55 article-title: Finite element modeling following partial meniscectomy: Effect of various size of resection publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Proc. doi: 10.1109/IEMBS.2006.259378 – volume: 306 start-page: 34 year: 1994 ident: 10.1016/j.jbiomech.2025.112627_b58 article-title: Anisotropic viscoelastic shear properties of bovine meniscus publication-title: Clin. Orthop. Relat. Res.® – start-page: 19 issue: 252 year: 1990 ident: 10.1016/j.jbiomech.2025.112627_b12 article-title: Material properties and structure-function relationships in the menisci publication-title: Clin. Orthop. Relat. Res. – volume: 41 start-page: 1607 issue: 7 year: 2023 ident: 10.1016/j.jbiomech.2025.112627_b42 article-title: Heterogeneity of dynamic shear properties of the meniscus: A comparison between tissue core and surface layers publication-title: J. Orthop. Res.® doi: 10.1002/jor.25495 – start-page: 5289 year: 2020 ident: 10.1016/j.jbiomech.2025.112627_b49 article-title: Bovine meniscus middle zone tissue: Measurement of collagen fibril behavior during compression publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S261298 – volume: 126 year: 2022 ident: 10.1016/j.jbiomech.2025.112627_b7 article-title: Mechanical properties of meniscal circumferential fibers using an inverse finite element analysis approach publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2022.105073 – volume: 44 start-page: 413 issue: 3 year: 2011 ident: 10.1016/j.jbiomech.2025.112627_b3 article-title: Hyperelastic properties of human meniscal attachments publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.10.001 – volume: 61 start-page: 1 year: 2000 ident: 10.1016/j.jbiomech.2025.112627_b20 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J. Elasticity doi: 10.1023/A:1010835316564 – volume: 20 start-page: 498 issue: 5 year: 2005 ident: 10.1016/j.jbiomech.2025.112627_b36 article-title: Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2005.01.009 – volume: 120 year: 2021 ident: 10.1016/j.jbiomech.2025.112627_b32 article-title: Viscoelastic and equilibrium shear properties of human meniscus: Relationships with tissue structure and composition publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110343 – start-page: 283 year: 2012 ident: 10.1016/j.jbiomech.2025.112627_b10 article-title: Sofa: A multi-model framework for interactive physical simulation publication-title: Soft Tissue Biomech. Model. Comput. Assist. Surg. doi: 10.1007/8415_2012_125 – volume: 10 start-page: 33 issue: 1 year: 2003 ident: 10.1016/j.jbiomech.2025.112627_b29 article-title: Finite element analysis of the meniscus: The influence of geometry and material properties on its behaviour publication-title: Knee doi: 10.1016/S0968-0160(02)00106-0 – volume: 198 year: 2021 ident: 10.1016/j.jbiomech.2025.112627_b23 article-title: Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105794 – volume: 36 start-page: 1335 year: 2008 ident: 10.1016/j.jbiomech.2025.112627_b56 article-title: Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-008-9515-y – volume: 12 issue: 106 year: 2015 ident: 10.1016/j.jbiomech.2025.112627_b21 article-title: Modelling non-symmetric collagen fibre dispersion in arterial walls publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2015.0188 – volume: 48 start-page: 1499 issue: 8 year: 2015 ident: 10.1016/j.jbiomech.2025.112627_b6 article-title: Characterization of site-specific biomechanical properties of human meniscus-importance of collagen and fluid on mechanical nonlinearities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.01.048 – volume: 36 start-page: 19 issue: 1 year: 2003 ident: 10.1016/j.jbiomech.2025.112627_b9 article-title: How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00305-6 – volume: 115 year: 2021 ident: 10.1016/j.jbiomech.2025.112627_b31 article-title: Effect of age on the failure properties of human meniscus: High-speed strain mapping of tissue tears publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.110126 – volume: 7 start-page: 6011 issue: 1 year: 2017 ident: 10.1016/j.jbiomech.2025.112627_b45 article-title: Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis publication-title: Sci. Rep. doi: 10.1038/s41598-017-06271-3 – volume: 4 start-page: 2024 issue: 8 year: 2011 ident: 10.1016/j.jbiomech.2025.112627_b2 article-title: Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.06.022 – volume: 37 start-page: 12:1 issue: 2 year: 2018 ident: 10.1016/j.jbiomech.2025.112627_b50 article-title: Stable Neo-Hookean flesh simulation publication-title: ACM Trans. Graph. doi: 10.1145/3180491 – volume: 69 start-page: 127 year: 2019 ident: 10.1016/j.jbiomech.2025.112627_b4 article-title: Engineering approaches for characterizing soft tissue mechanical properties: A review publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2019.07.016 – volume: 26 start-page: 2008 issue: 16 year: 2023 ident: 10.1016/j.jbiomech.2025.112627_b48 article-title: Comparison of constitutive models for meniscus and their effect on the knee joint biomechanics during gait publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2022.2163587 – volume: 9 year: 2022 ident: 10.1016/j.jbiomech.2025.112627_b51 article-title: The digital twin in medicine: A key to the future of healthcare? publication-title: Front. Med. doi: 10.3389/fmed.2022.907066 – volume: 189 year: 2020 ident: 10.1016/j.jbiomech.2025.112627_b53 article-title: Anisotropic computational modelling of bony structures from CT data: An almost automatic procedure publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105319 – volume: 11 year: 2023 ident: 10.1016/j.jbiomech.2025.112627_b40 article-title: Region-and layer-specific investigations of the human menisci using SHG imaging and biaxial testing publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2023.1167427 |
SSID | ssj0007479 |
Score | 2.4658108 |
Snippet | Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 112627 |
SubjectTerms | Adult Algorithms Arthroscopic meniscus examination Arthroscopy Biomechanical Phenomena Computer Simulation Decision making Degeneration Elasticity Fiber orientation Finite Element Analysis Finite element model Humans Hyperelasticity Indentation Indentation testing Inverse parameter identification Joints Knee Knee Joint - surgery Male Materials elasticity Mathematical models Mechanical tests Menisci, Tibial - physiology Meniscus Models, Biological Parameter identification Particle swarm optimization Real time Shear modulus Simulation Sports medicine Stress, Mechanical Surgical techniques |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6xIqHxgEYLo1AmIyHezLw6qZMnVE1U1aTxxKS-WbbjiBQ1LaSbxL_nznFCH4DtpS-JkyZ3ufvOd_cdwHtHoLYUGZ95WfDEKc8ztJC8zDEEktKg16VG4esvs-VNcrVKV3HDrYlllZ1NDIa62DraIz-XxDSOvi1Tn3Y_OE2NouxqHKFxBI-JuoyCL7XqAy7iho8lHhccYYA46BBef1yH_vaQkJimoZOGJsv83Tn9C3wGJ7Q4gWcRPbJ5K-7n8MjXQxjNa4ycN7_YBxbqOcNG-RCeHlANDuHJdUyij-BuibEn9bAQRTPb-LpqUFAMoWvQRuZ6Due2RZPdVYZVNdVveEZU4RsqoWFVEQuN2pMQ_LLveDuGuviNKDK3O7x6U23ifLDmBdwsPn-9XPI4foE7tDp7niSpNblzKC5lFKVffeqsRQCAPm3m8qlxVhTJVBihlLBoGDJRYDRUThNfOqvkSxjU29q_Aiao416WhbU-Qwco8Ke88AZVw5SpzMUYzrv3rncty4buys_WupOUJknpVlJjUJ14dNdDilZPoyO4d2Xer4woo0UPD1o76TRBx2-90X80cwzv-sP4lVLqxdR-exvOEVTvLfMxnLYa1D9oQrR8mZKv_3_xN3BM_6StGprAYP_z1r9FQLS3Z0HrfwM2Bwp5 priority: 102 providerName: ProQuest |
Title | Hyperelastic meniscal material characterization via inverse parameter identification for knee arthroscopic simulations |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929025001381 https://dx.doi.org/10.1016/j.jbiomech.2025.112627 https://www.ncbi.nlm.nih.gov/pubmed/40117873 https://www.proquest.com/docview/3182091087 https://www.proquest.com/docview/3180199639 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KB6N9GGv6sawfqDD25ka17Mh-TEtLttJQxgp5E5IsU6fECUta2Mv-9t7JctrCxgZ7cUgsObbudHfy_X4ngE-WgtqSZ1HfiSJKrHRRhhYyKnNcAgmh0esSUfh61B_eJl_H6XgNzlsuDMEqg-1vbLq31uGXXhjN3ryqiOOLsy2mNJlPt3kGeyIJ1nfy6xnmgeFygHmcRtT6BUt4cjLxHHeflIhTz6ah3WV-76D-FIB6R3T5Ht6FCJINmpvcgjVXd2B7UOPqefqTfWYe0-lflndg80W5wQ68vQ6J9G14HOL6k3gsVKaZTV1dLVBYDMNXr5HMruo4NzRN9lhpVtWE4XCMyoVPCUbDqiKAjZpGGACze_w7hiN4R2UyZ3O8-qKahj3CFjtwe3nx_XwYhS0YIouWZxklSWp0bi2OsdSSUrAutcZgEIB-rW_zWFvDiyTmmkvJDRqHjBe4IirjxJXWSLEL6_Wsdh-AcWLdi7IwxmXoBDkeylOnUT10mYqcd6HXjruaN5U2VAtBm6hWUookpRpJdUG24lEtjxQtn0Jn8Nee-arnK237p74HrSaoMN8XSlAdfIy8Mjx9vDqNM5XSL7p2swffhhPmW-Rd2Gs0aPWgCZXmy6T4-B83tg8b9K2BFR3A-vLHgzvEiGlpjvyUwKMcyyN4M_hyNRzh59nF6ObbE3NoGM0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjUMGWx0IBIwE3UzdONskBodKHtrS7QqiVejOO44gs2uxCtkX9U_2NzCR26IHXpZdcEjuPGc98znwzA_DSEKgtRMKHVuY8NLHlCVpIXqS4BZJSo9elROHxZDg6CT-cRqcrcOlzYYhW6W1iY6jzuaF_5JuSKo2jb0vid4tvnLpGUXTVt9Bo1eLQXvzALVv99mAX5fsqCPb3jndG3HUV4AYX05KHYZTp1Bh8iljHFFW0kcky9GtoqocmDbTJRB4GQos4FhnqeyJyBPlFENrCZLHEeW_AaigRKvRg9f3e5OOnzvYjOHekki2OwENcyUmevpk2GfVNCCSImtwd6mXze3f4J7jbuL39u7Dm8CrbbhXsHqzYqg_r2xXu1WcX7DVrGKTNr_k-3LlS3LAPN8cubL8O5yPc7VLWDBWFZjNblTWqBkOw3Og_M13V6DYplJ2XmpUVMUYso-LkMyLtsDJ31Kb2IoTb7CvejqH2f6GinPMFzl6XM9eRrL4PJ9cimgfQq-aVfQRMUI6_LPIsswm6XIGHYstqVEZdRDIVA9j0310t2roeyhPepspLSpGkVCupAcRePMpnraKdVeh6_jky7UY6XNPilf8au-E1QTnrUqtfa2EAL7rTaBco2KMrOz9rrhHEMJfpAB62GtS9aEiFAJNYPv775M_h1uh4fKSODiaHT-A2PVXLWdqA3vL7mX2KcGyZPXNrgMHn6152PwFxh0eW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVwQJBCCRRYJOC2ZOu1s_YBoYoSpZRWHKiU2-Jdr4WD4gScFvWv8euY2bVND7wuveQS78bOvL7xfjMD8MwSqC1FysdOFjy2yvEUPSQvM0yBpMwx6lKh8PHJeHoav5slsw340dXCEK2y84neURdLS-_IR5I6jWNsS9WobGkRHw4mr1dfOU2QopPWbpxGUJEjd_Ed07fm1eEByvp5FE3efnwz5e2EAW7RsNY8jhOTZ9biHalc0QmjS6wxGOPQbY9tFuXWiCKORC6UEgZ1PxUFAv4yil1pjZK47zW4riSGTbQlNeuTPepL39JL9jhCEHGpOnn-cu5r6_1hSJT4Kh6aavP7wPgn4OsD4OQ23GqRK9sPqnYHNlw9gO39GrP2xQV7wTyX1L-kH8DNS20OB7B13B7gb8P5FPNeqp-h9tBs4eqqQSVhCJu9JTDb948O5aHsvMpZVRN3xDFqU74g-g6ripbkFC5C4M2-4M8xtIPP1J5zucLdm2rRziZr7sLplQjmHmzWy9rdByao2l-WhTEuxeAr8KPcczmqZV4mMhNDGHX_u16FDh-6o77NdScpTZLSQVJDUJ14dFe_ih5XYxD658qsX9kinIBc_mvtbqcJuvUzjf5lFUN42n-NHoKOffLaLc_8NYK45jIbwk7QoP5BY2oJmCr54O-bP4EtNDb9_vDk6CHcoJsK5KVd2Fx_O3OPEJetzWNvAAw-XbXF_QQM-kpm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperelastic+meniscal+material+characterization+via+inverse+parameter+identification+for+knee+arthroscopic+simulations&rft.jtitle=Journal+of+biomechanics&rft.au=Rasheed%2C+Bismi&rft.au=Bjelland%2C+%C3%98ystein&rft.au=Dalen%2C+Andreas+F.&rft.au=Schaathun%2C+Hans+Georg&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=183&rft_id=info:doi/10.1016%2Fj.jbiomech.2025.112627&rft.externalDocID=S0021929025001381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |