Stability selection for lasso, ridge and elastic net implemented with AFT models

The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying...

Full description

Saved in:
Bibliographic Details
Published inStatistical applications in genetics and molecular biology Vol. 18; no. 5
Main Authors Khan, Md Hasinur Rahaman, Bhadra, Anamika, Howlader, Tamanna
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 01.10.2019
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN1544-6115
2194-6302
1544-6115
DOI10.1515/sagmb-2017-0001

Cover

Abstract The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying a selection procedure to sub-samples of the data where the observations are subject to right censoring. The accelerated failure time (AFT) models have proved useful in many contexts including the heavy censoring (as for example in cancer survival) and the high dimensionality (as for example in micro-array data). We implement the stability selection approach using three variable selection techniques—Lasso, ridge regression, and elastic net applied to censored data using AFT models. We compare the performances of these regularized techniques with and without stability selection approaches with simulation studies and two real data examples–a breast cancer data and a diffuse large B-cell lymphoma data. The results suggest that stability selection gives always stable scenario about the selection of variables and that as the dimension of data increases the performance of methods with stability selection also improves compared to methods without stability selection irrespective of the collinearity between the covariates.
AbstractList The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying a selection procedure to sub-samples of the data where the observations are subject to right censoring. The accelerated failure time (AFT) models have proved useful in many contexts including the heavy censoring (as for example in cancer survival) and the high dimensionality (as for example in micro-array data). We implement the stability selection approach using three variable selection techniques-Lasso, ridge regression, and elastic net applied to censored data using AFT models. We compare the performances of these regularized techniques with and without stability selection approaches with simulation studies and two real data examples-a breast cancer data and a diffuse large B-cell lymphoma data. The results suggest that stability selection gives always stable scenario about the selection of variables and that as the dimension of data increases the performance of methods with stability selection also improves compared to methods without stability selection irrespective of the collinearity between the covariates.The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying a selection procedure to sub-samples of the data where the observations are subject to right censoring. The accelerated failure time (AFT) models have proved useful in many contexts including the heavy censoring (as for example in cancer survival) and the high dimensionality (as for example in micro-array data). We implement the stability selection approach using three variable selection techniques-Lasso, ridge regression, and elastic net applied to censored data using AFT models. We compare the performances of these regularized techniques with and without stability selection approaches with simulation studies and two real data examples-a breast cancer data and a diffuse large B-cell lymphoma data. The results suggest that stability selection gives always stable scenario about the selection of variables and that as the dimension of data increases the performance of methods with stability selection also improves compared to methods without stability selection irrespective of the collinearity between the covariates.
The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying a selection procedure to sub-samples of the data where the observations are subject to right censoring. The accelerated failure time (AFT) models have proved useful in many contexts including the heavy censoring (as for example in cancer survival) and the high dimensionality (as for example in micro-array data). We implement the stability selection approach using three variable selection techniques—Lasso, ridge regression, and elastic net applied to censored data using AFT models. We compare the performances of these regularized techniques with and without stability selection approaches with simulation studies and two real data examples–a breast cancer data and a diffuse large B-cell lymphoma data. The results suggest that stability selection gives always stable scenario about the selection of variables and that as the dimension of data increases the performance of methods with stability selection also improves compared to methods without stability selection irrespective of the collinearity between the covariates.
Author Howlader, Tamanna
Khan, Md Hasinur Rahaman
Bhadra, Anamika
Author_xml – sequence: 1
  givenname: Md Hasinur Rahaman
  surname: Khan
  fullname: Khan, Md Hasinur Rahaman
  email: hasinur@isrt.ac.bd
  organization: Institute of Statistical Research and Training, University of Dhaka, Dhaka-1000, Bangladesh
– sequence: 2
  givenname: Anamika
  surname: Bhadra
  fullname: Bhadra, Anamika
  organization: Institute of Statistical Research and Training, University of Dhaka, Dhaka-1000, Bangladesh
– sequence: 3
  givenname: Tamanna
  surname: Howlader
  fullname: Howlader, Tamanna
  organization: Institute of Statistical Research and Training, University of Dhaka, Dhaka-1000, Bangladesh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31586968$$D View this record in MEDLINE/PubMed
BookMark eNp9kctLHTEUh4NY6qtrdyXQTRdOzWOSybgTqbYgtKCuhzzO3EYyk2uSQe5_35lerSK0qxzC9x3OOb8DtDvGERA6puQLFVScZr0aTMUIbSpCCN1B-1TUdSUpFbuv6j10kPM9IYwyTt6jPU6Fkq1U--jnTdHGB182OEMAW3wccR8TDjrneIKTdyvAenQY5p_iLR6hYD-sAwwwFnD40Zdf-PzyFg_RQchH6F2vQ4YPT-8hurv8envxrbr-cfX94vy6sryRpeKO2oY5aySrRW-MhKYXjKuakNZQ3nDZ9A6cVIIxx6BvwVHRyt42RpraGH6IPm_7rlN8mCCXbvDZQgh6hDjlbl6UKtU2rZzRT2_Q-zilcZ5uoZSiTNYL9fGJmswArlsnP-i06Z5vNQOnW8CmmHOC_i9CSbek0f1Jo1vS6JY0ZkO8MawvejlxSdqH_3hnW-9RhwLJwSpNm7l4mfsfJlWC_waOh6GV
CitedBy_id crossref_primary_10_3390_w13030310
crossref_primary_10_2217_epi_2021_0310
crossref_primary_10_1007_s10985_022_09549_5
crossref_primary_10_1080_03610918_2022_2092639
crossref_primary_10_1002_sam_11615
crossref_primary_10_1109_JBHI_2022_3202937
crossref_primary_10_21605_cukurovaummfd_792412
crossref_primary_10_1016_j_ecoenv_2025_118041
crossref_primary_10_1186_s12859_021_04443_7
crossref_primary_10_1007_s40808_023_01878_0
crossref_primary_10_3390_cancers14235804
Cites_doi 10.1016/j.mpdhp.2009.12.002
10.1006/jmva.1993.1028
10.1002/bimj.201600256
10.1214/009053606000001523
10.1002/sim.4780111409
10.2307/2533672
10.1093/biomet/asm037
10.1111/j.1541-0420.2007.00877.x
10.1007/s10985-009-9144-2
10.1080/00401706.1970.10488635
10.1111/j.1467-9868.2010.00740.x
10.1056/NEJMoa012914
10.1073/pnas.102102699
10.1007/s11222-015-9555-8
10.1093/bioinformatics/bti422
10.1177/0962280217739522
10.1111/j.2517-6161.1996.tb02080.x
10.2307/3316126
10.1002/sim.4780111607
10.1002/sim.6927
10.1093/biomet/asp013
10.1016/j.exger.2008.10.005
10.1111/j.1541-0420.2006.00562.x
10.1056/NEJMoa021967
10.1111/j.1467-9868.2005.00503.x
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
10.1038/415530a
10.1214/009053604000000067
ContentType Journal Article
Copyright 2019 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2019 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1515/sagmb-2017-0001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1544-6115
ExternalDocumentID 31586968
10_1515_sagmb_2017_0001
10_1515_sagmb_2017_0001185
Genre Journal Article
GroupedDBID ---
-~S
0R~
123
1WD
AAAEU
AAAVF
AACIX
AAFPC
AAGVJ
AAILP
AAKRG
AALGR
AAOWA
AAPJK
AAQCX
AASQH
AAWFC
AAXCG
AAXMT
ABABW
ABAOT
ABAQN
ABDRH
ABFKT
ABIQR
ABJNI
ABLVI
ABMIY
ABPLS
ABRDF
ABUVI
ABWLS
ABXMZ
ABYBW
ACDEB
ACEFL
ACGFO
ACGFS
ACHNZ
ACMKP
ACONX
ACPMA
ACUND
ACYCL
ACZBO
ADEQT
ADGQD
ADGYE
ADNPR
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AEXIE
AFBAA
AFBDD
AFBQV
AFCXV
AFQUK
AFYRI
AGBEV
AGQYU
AGWTP
AHCWZ
AHVWV
AHXUK
AIAGR
AIERV
AIKXB
AIWOI
AJATJ
AJPIC
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALWYM
ASYPN
BAKPI
BBCWN
BBDJO
BCIFA
CKPZI
CS3
DASCH
DSRVY
DU5
EBS
EMOBN
F5P
FSTRU
HZ~
IY9
J9A
K.~
KDIRW
MV1
NQBSW
O9-
P2P
QD8
SA.
SLJYH
T2Y
UK5
WTRAM
AAYXX
CITATION
ABVMU
CGR
CUY
CVF
DBYYV
ECM
EIF
NPM
7SC
7U5
8FD
AEKEB
EJD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c376t-3d1c72dcb6245fbb6e7f52384009b137367fded68522d2ef9ed1596fc7b6b4bb3
ISSN 1544-6115
2194-6302
IngestDate Thu Sep 04 18:56:02 EDT 2025
Sun Jun 29 16:57:41 EDT 2025
Wed Feb 19 02:31:21 EST 2025
Thu Apr 24 22:57:50 EDT 2025
Tue Jul 01 01:57:41 EDT 2025
Sat Sep 06 17:01:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Stability selection
Elastic net
AFT model
Lasso
Ridge
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-3d1c72dcb6245fbb6e7f52384009b137367fded68522d2ef9ed1596fc7b6b4bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31586968
PQID 2308812646
PQPubID 2045289
PageCount 14
ParticipantIDs proquest_miscellaneous_2301889796
proquest_journals_2308812646
pubmed_primary_31586968
crossref_primary_10_1515_sagmb_2017_0001
crossref_citationtrail_10_1515_sagmb_2017_0001
walterdegruyter_journals_10_1515_sagmb_2017_0001185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Statistical applications in genetics and molecular biology
PublicationTitleAlternate Stat Appl Genet Mol Biol
PublicationYear 2019
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Hoerl, A. E.; Kennard, R. W. (j_sagmb-2017-0001_ref_010) 1970; 12
Ibrahim, J. G.; Chen, M.-H; Maceachern, S. N. (j_sagmb-2017-0001_ref_014) 1999; 27
Stute, W. (j_sagmb-2017-0001_ref_026) 1993; 45
Tibshirani, R. (j_sagmb-2017-0001_ref_030) 1997; 16
Khan, M. H. R.; Shaw, J. E. H. (j_sagmb-2017-0001_ref_020) 2016; 26
Ambroise, C.; McLachlan, G. J. (j_sagmb-2017-0001_ref_001) 2002; 99
Candes, E.; Tao, T. (j_sagmb-2017-0001_ref_002) 2007; 35
Ternes, N.; Rotolo, F; Michielsa, S. (j_sagmb-2017-0001_ref_028) 2016; 35
G’Sell, M. G.; Hastie, T; Tibshirani, R. (j_sagmb-2017-0001_ref_007) 2013
Huang, J.; Ma, S; Xie, H. (j_sagmb-2017-0001_ref_013) 2006; 62
Khan, M. H. R.; Shaw, J. E. H. (j_sagmb-2017-0001_ref_021) 2019; 28
Efron, B.; Hastie, T.; Johnstone, I; Tibshirani, R. (j_sagmb-2017-0001_ref_003) 2004; 32
Gatter, K.; Pezzella, F. (j_sagmb-2017-0001_ref_006) 2010; 16
Van De Vijver, M. J.; He, Y. D.; van’t Veer, L. J.; Dai, H.; Hart, A. A.; Voskuil, D. W.; Schreiber, G. J.; Peterse, J. L.; Roberts, C.; Marton, M. J.; Parrish, M.; Atsma, D.; Witteveen, A.; Glas, A.; Delahaye, L.; van der Velde, T.; Bartelink, H.; Rodenhuis, S.; Rutgers, E. T.; Friend, S. H; Bernards, R. (j_sagmb-2017-0001_ref_031) 2002; 347
Zhang, H. H.; Lu, W. (j_sagmb-2017-0001_ref_037) 2007; 94
Wright, G.; Chan, W.; Connors, J.; Campo, E.; Fisher, R.; Gascoyne, R.; Muller-Hermelink, H.; Smeland, E.; Giltnane, J.; Hurt, E.; Zhao, H.; Averett, L.; Yang, L.; Wilson, W.; Jaffe, E.; Simon, R.; Klausner, R.; Powell, J.; Duffey, P.; Longo, D.; Greiner, T.; Weisenburger, D.; Sanger, W.; Dave, B.; Lynch, J.; Vose, J.; Armitage, J.; Montserrat, E.; Lopez-Guillermo, A.; Grogan, T.; Miller, T.; LeBlanc, M.; Ott, G.; Kvaloy, S.; Delabie, J.; Holte, H.; Krajci, P.; Stokke, T; Staudt, L. (j_sagmb-2017-0001_ref_036) 2002; 346
Huang, J.; Ma, S. (j_sagmb-2017-0001_ref_012) 2010b; 16
Tibshirani, R. (j_sagmb-2017-0001_ref_029) 1996; 58
Swindell, W. (j_sagmb-2017-0001_ref_027) 2009; 44
Meinshausen, N.; Bühlmann, P. (j_sagmb-2017-0001_ref_024) 2010; 72
Leng, C.; Lin, Y.; Wahba, G. (j_sagmb-2017-0001_ref_022) 2006; 16
Zou, H.; Hastie, T. (j_sagmb-2017-0001_ref_038) 2005; 67
Walschaerts, M.; Leconte, E; Besse, P. (j_sagmb-2017-0001_ref_033) 2012
Wei, L. (j_sagmb-2017-0001_ref_035) 1992; 11
Sauerbrei, W.; Schumacher, M. (j_sagmb-2017-0001_ref_025) 1992; 11
Fan, J.; Li, R. (j_sagmb-2017-0001_ref_004) 2002; 30
Faraggi, D.; Simon, R. (j_sagmb-2017-0001_ref_005) 1998; 54
van’t Veer, L. J.; Dai, H.; Van De Vijver, M. J.; He, Y. D.; Hart, A. A.; Mao, M.; Peterse, H. L.; van der Kooy, K.; Marton, M. J.; Witteveen, A. T.; Schreiber, G. J.; Kerkhoven, R. M.; Roberts, C.; Linsley, P. S.; Bernards, R; Friend, S. H. (j_sagmb-2017-0001_ref_032) 2002; 415
Li, H.; Luan, Y. (j_sagmb-2017-0001_ref_023) 2003; 8
Ioannidis, J. P. A. (j_sagmb-2017-0001_ref_015) 2005; 2
Khan, M. H. R. (j_sagmb-2017-0001_ref_019) 2018; 60
James, G. M.; Radchenko, P. (j_sagmb-2017-0001_ref_016) 2009; 96
Huang, J.; Ma, S. (j_sagmb-2017-0001_ref_011) 2010a; 16
Wang, S.; Nan, B.; Zhu, J; Beer, D. (j_sagmb-2017-0001_ref_034) 2008; 64
Gui, J.; Li, H. (j_sagmb-2017-0001_ref_008) 2005a; 21
Gui, J.; Li, H. (j_sagmb-2017-0001_ref_009) 2005b; 10
(ref551) 2013
(ref541) 2011
(ref701) 2012
(ref481) 2010a; 16
(ref471) 1970; 12
(ref711) 2008; 64
(ref301) 2002; 347
(ref411) 2002; 30
(ref321) 2012
(ref211) 2006; 16
(ref221) 2003; 8
(ref421) 1998; 54
(ref91) 1970; 12
(ref591) 2006; 16
(ref731) 2002; 346
(ref691) 2002; 415
(ref741) 2007; 94
(ref31) 2002; 30
(ref41) 1998; 54
(ref601) 2003; 8
(ref171) 2013
(ref161) 2011
(ref671) 1997; 16
(ref501) 2006; 62
(ref21) 2004; 32
(ref291) 1997; 16
(ref01) 2002; 99
(ref121) 2006; 62
(ref581) 2019; 28
(ref101) 2010a; 16
(ref431) 2010; 16
(ref611) 2010; 72
(ref51) 2010; 16
(ref11) 2007; 35
(ref681) 2002; 347
(ref381) 2002; 99
(ref351) 2002; 346
(ref641) 2009; 44
(ref141) 2005; 2
(ref111) 2010b; 16
(ref521) 2005; 2
(ref441) 2013
(ref281) 1996; 58
(ref251) 1993; 45
(ref241) 1992; 11
(ref341) 1992; 11
(ref81) 2005b; 10
(ref461) 2005b; 10
(ref361) 2007; 94
(ref391) 2007; 35
(ref231) 2010; 72
(ref201) 2019; 28
(ref401) 2004; 32
(ref531) 2009; 96
(ref651) 2016; 35
(ref751) 2005; 67
(ref61) 2013
(ref331) 2008; 64
(ref261) 2009; 44
(ref311) 2002; 415
(ref151) 2009; 96
(ref451) 2005a; 21
(ref71) 2005a; 21
(ref571) 2016; 26
(ref631) 1993; 45
(ref181) 2018; 60
(ref131) 1999; 27
(ref561) 2018; 60
(ref721) 1992; 11
(ref491) 2010b; 16
(ref511) 1999; 27
(ref271) 2016; 35
(ref661) 1996; 58
(ref371) 2005; 67
(ref191) 2016; 26
(ref621) 1992; 11
References_xml – volume: 64
  start-page: 132
  year: 2008
  end-page: 140
  ident: j_sagmb-2017-0001_ref_034
  article-title: Doubly penalized buckley-james method for survival data with high-dimensional covariates
  publication-title: Biometrics
– volume: 94
  start-page: 691
  year: 2007
  end-page: 703
  ident: j_sagmb-2017-0001_ref_037
  article-title: Adaptive lasso for Cox’s proportional hazards model
  publication-title: Biometrika
– volume: 346
  start-page: 1937
  year: 2002
  end-page: 1947
  ident: j_sagmb-2017-0001_ref_036
  article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
  publication-title: N. Engl. J. Med.
– volume: 54
  start-page: 1475
  year: 1998
  end-page: 85
  ident: j_sagmb-2017-0001_ref_005
  article-title: Bayesian variable selection method for censored survival data
  publication-title: Biometrics
– volume: 27
  start-page: 701
  year: 1999
  end-page: 717
  ident: j_sagmb-2017-0001_ref_014
  article-title: Bayesian variable selection for proportional hazards models
  publication-title: Can. J. Stat.
– volume: 35
  start-page: 2561
  year: 2016
  end-page: 2573
  ident: j_sagmb-2017-0001_ref_028
  article-title: Empirical extensions of the LASSO penalty to reduce the false discovery rate in high dimensional cox regression models
  publication-title: Stat. Med.
– volume: 21
  start-page: 3001
  year: 2005a
  end-page: 3008
  ident: j_sagmb-2017-0001_ref_008
  article-title: Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data
  publication-title: Bioinformatics
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: j_sagmb-2017-0001_ref_003
  article-title: Least angle regression
  publication-title: Ann. Stat.
– volume: 347
  start-page: 1999
  year: 2002
  end-page: 2009
  ident: j_sagmb-2017-0001_ref_031
  article-title: A gene-expression signature as a predictor of survival in breast cancer
  publication-title: N. Engl. J. Med.
– year: 2013
  ident: j_sagmb-2017-0001_ref_007
  article-title: False variable selection rates in regression
  publication-title: arXiv
– volume: 2
  start-page: e124
  year: 2005
  ident: j_sagmb-2017-0001_ref_015
  article-title: Selection bias in gene extraction on the basis of microarray gene-expression data
  publication-title: PLoS Med.
– volume: 72
  start-page: 417
  year: 2010
  end-page: 473
  ident: j_sagmb-2017-0001_ref_024
  article-title: Stability selection
  publication-title: J. R. Stat. Soc. B
– volume: 12
  start-page: 69
  year: 1970
  end-page: 82
  ident: j_sagmb-2017-0001_ref_010
  article-title: Ridge regression: applications to nonorthogonal problems
  publication-title: Technometrics
– volume: 60
  start-page: 687
  year: 2018
  end-page: 702
  ident: j_sagmb-2017-0001_ref_019
  article-title: On the performance of adaptive pre-processing technique in analysing high-dimensional censored data
  publication-title: Biom. J.
– volume: 35
  start-page: 2313
  year: 2007
  end-page: 2351
  ident: j_sagmb-2017-0001_ref_002
  article-title: The dantzig selector: Statistical estimation when p is much larger than n
  publication-title: Ann. Stat.
– volume: 10
  start-page: 272
  year: 2005b
  end-page: 283
  ident: j_sagmb-2017-0001_ref_009
  article-title: Threshold gradient descent method for censored data regression, with applications in pharmacogenomics
  publication-title: Pac. Symp. Biocomput.
– volume: 30
  start-page: 74
  year: 2002
  end-page: 99
  ident: j_sagmb-2017-0001_ref_004
  article-title: Variable selection for Cox’s proportional hazards model and frailty model
  publication-title: Ann. Stat.
– volume: 16
  start-page: 69
  year: 2010
  end-page: 81
  ident: j_sagmb-2017-0001_ref_006
  article-title: Diffuse large B-cell lymphoma
  publication-title: Diagn. Histopathol.
– volume: 28
  start-page: 937
  year: 2019
  end-page: 952
  ident: j_sagmb-2017-0001_ref_021
  article-title: Variable selection for accelerated lifetime models with synthesized estimation techniques
  publication-title: Stat. Methods Med. Res.
– volume: 96
  start-page: 323
  year: 2009
  end-page: 337
  ident: j_sagmb-2017-0001_ref_016
  article-title: A generalized dantzig selector with shrinkage tuning
  publication-title: Biometrika
– volume: 16
  start-page: 176
  year: 2010a
  end-page: 195
  ident: j_sagmb-2017-0001_ref_011
  article-title: Variable selection in the accelerated failure time model via the bridge method
  publication-title: Lifetime Data Anal.
– volume: 16
  start-page: 1273
  year: 2006
  end-page: 1284
  ident: j_sagmb-2017-0001_ref_022
  article-title: A note on the LASSO and related procedures in model selection
  publication-title: Stat. Sin.
– volume: 11
  start-page: 2093
  year: 1992
  end-page: 2109
  ident: j_sagmb-2017-0001_ref_025
  article-title: A bootstrap resampling procedure for model building: Application to the cox regression model
  publication-title: Stat. Med.
– volume: 26
  start-page: 725
  year: 2016
  end-page: 741
  ident: j_sagmb-2017-0001_ref_020
  article-title: Variable selection for survival data with a class of adaptive elastic net techniques
  publication-title: Stat. Comput.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: j_sagmb-2017-0001_ref_038
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. B
– volume: 415
  start-page: 530
  year: 2002
  end-page: 536
  ident: j_sagmb-2017-0001_ref_032
  article-title: Gene expression profiling predicts clinical outcome of breast cancer
  publication-title: Nature
– volume: 44
  start-page: 190
  year: 2009
  end-page: 200
  ident: j_sagmb-2017-0001_ref_027
  article-title: Accelerated failure time models provide a useful statistical framework for aging research
  publication-title: Exp. Gerontol.
– volume: 11
  start-page: 1871
  year: 1992
  end-page: 1879
  ident: j_sagmb-2017-0001_ref_035
  article-title: The accelerated failure time model: a useful alternative to the cox regression model in survival analysis
  publication-title: Stat. Med.
– volume: 16
  start-page: 176
  year: 2010b
  end-page: 195
  ident: j_sagmb-2017-0001_ref_012
  article-title: Variable selection in the accelerated failure time model via the bridge method
  publication-title: Lifetime Data Anal.
– volume: 8
  start-page: 65
  year: 2003
  end-page: 76
  ident: j_sagmb-2017-0001_ref_023
  article-title: Kernel Cox regression models for linking gene expression profiles to censored survival data
  publication-title: Pac. Symp. Biocomput.
– volume: 62
  start-page: 813
  year: 2006
  end-page: 820
  ident: j_sagmb-2017-0001_ref_013
  article-title: Regularized estimation in the accelerated failure time model with high-dimensional covariates
  publication-title: Biometrics
– volume: 99
  start-page: 6562
  year: 2002
  end-page: 6566
  ident: j_sagmb-2017-0001_ref_001
  article-title: Selection bias in gene extraction on the basis of microarray gene-expression data
  publication-title: PNAS
– volume: 45
  start-page: 89
  year: 1993
  end-page: 103
  ident: j_sagmb-2017-0001_ref_026
  article-title: Consistent estimation under random censorship when covariables are present
  publication-title: J. Multivariate Anal.
– volume: 16
  start-page: 385
  year: 1997
  end-page: 395
  ident: j_sagmb-2017-0001_ref_030
  article-title: The lasso method for variable selection in the cox model
  publication-title: Stat. Med.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: j_sagmb-2017-0001_ref_029
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. B
– year: 2012
  ident: j_sagmb-2017-0001_ref_033
  article-title: Stable variable selection for right censored data: comparison of methods
  publication-title: arXiv
– volume: 16
  start-page: 69
  year: 2010
  ident: ref431
  article-title: Diffuse large B-cell lymphoma
  publication-title: Diagn. Histopathol.
  doi: 10.1016/j.mpdhp.2009.12.002
– volume: 45
  start-page: 89
  year: 1993
  ident: ref631
  article-title: Consistent estimation under random censorship when covariables are present
  publication-title: J. Multivariate Anal.
  doi: 10.1006/jmva.1993.1028
– volume: 60
  start-page: 687
  year: 2018
  ident: ref561
  article-title: On the performance of adaptive pre-processing technique in analysing high-dimensional censored data
  publication-title: Biom. J.
  doi: 10.1002/bimj.201600256
– volume: 35
  start-page: 2313
  year: 2007
  ident: ref11
  article-title: The dantzig selector: Statistical estimation when p is much larger than n
  publication-title: Ann. Stat.
  doi: 10.1214/009053606000001523
– volume: 11
  start-page: 1871
  year: 1992
  ident: ref721
  article-title: The accelerated failure time model: a useful alternative to the cox regression model in survival analysis
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780111409
– volume: 54
  start-page: 1475
  year: 1998
  ident: ref421
  article-title: Bayesian variable selection method for censored survival data
  publication-title: Biometrics
  doi: 10.2307/2533672
– volume: 94
  start-page: 691
  year: 2007
  ident: ref741
  article-title: Adaptive lasso for Cox’s proportional hazards model
  publication-title: Biometrika
  doi: 10.1093/biomet/asm037
– volume: 64
  start-page: 132
  year: 2008
  ident: ref711
  article-title: Doubly penalized buckley-james method for survival data with high-dimensional covariates
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00877.x
– volume: 16
  start-page: 176
  year: 2010a
  ident: ref101
  article-title: Variable selection in the accelerated failure time model via the bridge method
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-009-9144-2
– volume: 10
  start-page: 272
  year: 2005b
  ident: ref81
  article-title: Threshold gradient descent method for censored data regression, with applications in pharmacogenomics
  publication-title: Pac. Symp. Biocomput.
– volume: 12
  start-page: 69
  year: 1970
  ident: ref91
  article-title: Ridge regression: applications to nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488635
– volume: 16
  start-page: 1273
  year: 2006
  ident: ref211
  article-title: A note on the LASSO and related procedures in model selection
  publication-title: Stat. Sin.
– volume: 35
  start-page: 2313
  year: 2007
  ident: ref391
  article-title: The dantzig selector: Statistical estimation when p is much larger than n
  publication-title: Ann. Stat.
  doi: 10.1214/009053606000001523
– volume: 16
  start-page: 176
  year: 2010b
  ident: ref111
  article-title: Variable selection in the accelerated failure time model via the bridge method
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-009-9144-2
– volume: 54
  start-page: 1475
  year: 1998
  ident: ref41
  article-title: Bayesian variable selection method for censored survival data
  publication-title: Biometrics
  doi: 10.2307/2533672
– volume: 72
  start-page: 417
  year: 2010
  ident: ref611
  article-title: Stability selection
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2010.00740.x
– volume: 346
  start-page: 1937
  year: 2002
  ident: ref351
  article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa012914
– year: 2012
  ident: ref321
  article-title: Stable variable selection for right censored data: comparison of methods
  publication-title: arXiv
– volume: 99
  start-page: 6562
  year: 2002
  ident: ref01
  article-title: Selection bias in gene extraction on the basis of microarray gene-expression data
  publication-title: PNAS
  doi: 10.1073/pnas.102102699
– volume: 8
  start-page: 65
  year: 2003
  ident: ref221
  article-title: Kernel Cox regression models for linking gene expression profiles to censored survival data
  publication-title: Pac. Symp. Biocomput.
– volume: 26
  start-page: 725
  year: 2016
  ident: ref191
  article-title: Variable selection for survival data with a class of adaptive elastic net techniques
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-015-9555-8
– volume-title: The statistical analysis of failure time data
  year: 2011
  ident: ref161
– volume: 21
  start-page: 3001
  year: 2005a
  ident: ref451
  article-title: Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti422
– volume: 28
  start-page: 937
  year: 2019
  ident: ref581
  article-title: Variable selection for accelerated lifetime models with synthesized estimation techniques
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280217739522
– volume: 94
  start-page: 691
  year: 2007
  ident: ref361
  article-title: Adaptive lasso for Cox’s proportional hazards model
  publication-title: Biometrika
  doi: 10.1093/biomet/asm037
– volume: 58
  start-page: 267
  year: 1996
  ident: ref661
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 16
  start-page: 69
  year: 2010
  ident: ref51
  article-title: Diffuse large B-cell lymphoma
  publication-title: Diagn. Histopathol.
  doi: 10.1016/j.mpdhp.2009.12.002
– volume: 27
  start-page: 701
  year: 1999
  ident: ref511
  article-title: Bayesian variable selection for proportional hazards models
  publication-title: Can. J. Stat.
  doi: 10.2307/3316126
– volume: 16
  start-page: 176
  year: 2010a
  ident: ref481
  article-title: Variable selection in the accelerated failure time model via the bridge method
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-009-9144-2
– volume: 16
  start-page: 176
  year: 2010b
  ident: ref491
  article-title: Variable selection in the accelerated failure time model via the bridge method
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-009-9144-2
– volume: 12
  start-page: 69
  year: 1970
  ident: ref471
  article-title: Ridge regression: applications to nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488635
– volume: 11
  start-page: 2093
  year: 1992
  ident: ref621
  article-title: A bootstrap resampling procedure for model building: Application to the cox regression model
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780111607
– volume: 11
  start-page: 2093
  year: 1992
  ident: ref241
  article-title: A bootstrap resampling procedure for model building: Application to the cox regression model
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780111607
– volume: 64
  start-page: 132
  year: 2008
  ident: ref331
  article-title: Doubly penalized buckley-james method for survival data with high-dimensional covariates
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00877.x
– volume: 58
  start-page: 267
  year: 1996
  ident: ref281
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 35
  start-page: 2561
  year: 2016
  ident: ref651
  article-title: Empirical extensions of the LASSO penalty to reduce the false discovery rate in high dimensional cox regression models
  publication-title: Stat. Med.
  doi: 10.1002/sim.6927
– volume: 30
  start-page: 74
  year: 2002
  ident: ref411
  article-title: Variable selection for Cox’s proportional hazards model and frailty model
  publication-title: Ann. Stat.
– volume: 2
  start-page: e124
  year: 2005
  ident: ref521
  article-title: Selection bias in gene extraction on the basis of microarray gene-expression data
  publication-title: PLoS Med.
– volume: 96
  start-page: 323
  year: 2009
  ident: ref531
  article-title: A generalized dantzig selector with shrinkage tuning
  publication-title: Biometrika
  doi: 10.1093/biomet/asp013
– year: 2012
  ident: ref701
  article-title: Stable variable selection for right censored data: comparison of methods
  publication-title: arXiv
– volume: 44
  start-page: 190
  year: 2009
  ident: ref261
  article-title: Accelerated failure time models provide a useful statistical framework for aging research
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2008.10.005
– volume-title: Variable selection and estimation procedures for high-dimensional survival data, Ph.D. Thesis
  year: 2013
  ident: ref171
– volume: 62
  start-page: 813
  year: 2006
  ident: ref121
  article-title: Regularized estimation in the accelerated failure time model with high-dimensional covariates
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00562.x
– volume: 347
  start-page: 1999
  year: 2002
  ident: ref301
  article-title: A gene-expression signature as a predictor of survival in breast cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa021967
– volume-title: The statistical analysis of failure time data
  year: 2011
  ident: ref541
– volume: 347
  start-page: 1999
  year: 2002
  ident: ref681
  article-title: A gene-expression signature as a predictor of survival in breast cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa021967
– volume: 2
  start-page: e124
  year: 2005
  ident: ref141
  article-title: Selection bias in gene extraction on the basis of microarray gene-expression data
  publication-title: PLoS Med.
– volume: 62
  start-page: 813
  year: 2006
  ident: ref501
  article-title: Regularized estimation in the accelerated failure time model with high-dimensional covariates
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00562.x
– volume: 67
  start-page: 301
  year: 2005
  ident: ref371
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 27
  start-page: 701
  year: 1999
  ident: ref131
  article-title: Bayesian variable selection for proportional hazards models
  publication-title: Can. J. Stat.
  doi: 10.2307/3316126
– volume-title: Variable selection and estimation procedures for high-dimensional survival data, Ph.D. Thesis
  year: 2013
  ident: ref551
– year: 2013
  ident: ref441
  article-title: False variable selection rates in regression
  publication-title: arXiv
– volume: 8
  start-page: 65
  year: 2003
  ident: ref601
  article-title: Kernel Cox regression models for linking gene expression profiles to censored survival data
  publication-title: Pac. Symp. Biocomput.
– volume: 10
  start-page: 272
  year: 2005b
  ident: ref461
  article-title: Threshold gradient descent method for censored data regression, with applications in pharmacogenomics
  publication-title: Pac. Symp. Biocomput.
– volume: 11
  start-page: 1871
  year: 1992
  ident: ref341
  article-title: The accelerated failure time model: a useful alternative to the cox regression model in survival analysis
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780111409
– volume: 72
  start-page: 417
  year: 2010
  ident: ref231
  article-title: Stability selection
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2010.00740.x
– volume: 16
  start-page: 385
  year: 1997
  ident: ref671
  article-title: The lasso method for variable selection in the cox model
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– volume: 16
  start-page: 1273
  year: 2006
  ident: ref591
  article-title: A note on the LASSO and related procedures in model selection
  publication-title: Stat. Sin.
– volume: 67
  start-page: 301
  year: 2005
  ident: ref751
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 28
  start-page: 937
  year: 2019
  ident: ref201
  article-title: Variable selection for accelerated lifetime models with synthesized estimation techniques
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280217739522
– volume: 26
  start-page: 725
  year: 2016
  ident: ref571
  article-title: Variable selection for survival data with a class of adaptive elastic net techniques
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-015-9555-8
– volume: 99
  start-page: 6562
  year: 2002
  ident: ref381
  article-title: Selection bias in gene extraction on the basis of microarray gene-expression data
  publication-title: PNAS
  doi: 10.1073/pnas.102102699
– volume: 415
  start-page: 530
  year: 2002
  ident: ref691
  article-title: Gene expression profiling predicts clinical outcome of breast cancer
  publication-title: Nature
  doi: 10.1038/415530a
– volume: 32
  start-page: 407
  year: 2004
  ident: ref21
  article-title: Least angle regression
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– volume: 60
  start-page: 687
  year: 2018
  ident: ref181
  article-title: On the performance of adaptive pre-processing technique in analysing high-dimensional censored data
  publication-title: Biom. J.
  doi: 10.1002/bimj.201600256
– volume: 44
  start-page: 190
  year: 2009
  ident: ref641
  article-title: Accelerated failure time models provide a useful statistical framework for aging research
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2008.10.005
– volume: 45
  start-page: 89
  year: 1993
  ident: ref251
  article-title: Consistent estimation under random censorship when covariables are present
  publication-title: J. Multivariate Anal.
  doi: 10.1006/jmva.1993.1028
– volume: 346
  start-page: 1937
  year: 2002
  ident: ref731
  article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa012914
– volume: 30
  start-page: 74
  year: 2002
  ident: ref31
  article-title: Variable selection for Cox’s proportional hazards model and frailty model
  publication-title: Ann. Stat.
– year: 2013
  ident: ref61
  article-title: False variable selection rates in regression
  publication-title: arXiv
– volume: 35
  start-page: 2561
  year: 2016
  ident: ref271
  article-title: Empirical extensions of the LASSO penalty to reduce the false discovery rate in high dimensional cox regression models
  publication-title: Stat. Med.
  doi: 10.1002/sim.6927
– volume: 415
  start-page: 530
  year: 2002
  ident: ref311
  article-title: Gene expression profiling predicts clinical outcome of breast cancer
  publication-title: Nature
  doi: 10.1038/415530a
– volume: 32
  start-page: 407
  year: 2004
  ident: ref401
  article-title: Least angle regression
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– volume: 21
  start-page: 3001
  year: 2005a
  ident: ref71
  article-title: Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti422
– volume: 96
  start-page: 323
  year: 2009
  ident: ref151
  article-title: A generalized dantzig selector with shrinkage tuning
  publication-title: Biometrika
  doi: 10.1093/biomet/asp013
– volume: 16
  start-page: 385
  year: 1997
  ident: ref291
  article-title: The lasso method for variable selection in the cox model
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
SSID ssj0021230
Score 2.3011403
Snippet The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is...
SourceID proquest
pubmed
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms AFT model
Algorithms
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Breast Neoplasms - mortality
Breast Neoplasms - pathology
Collinearity
Computer Simulation
Elastic net
Failure times
Female
Humans
Lasso
Linear Models
Lymphoma, B-Cell - genetics
Lymphoma, B-Cell - metabolism
Lymphoma, B-Cell - mortality
Neoplasm Metastasis
Probability
Ridge
Stability
Stability selection
Title Stability selection for lasso, ridge and elastic net implemented with AFT models
URI https://www.degruyter.com/doi/10.1515/sagmb-2017-0001
https://www.ncbi.nlm.nih.gov/pubmed/31586968
https://www.proquest.com/docview/2308812646
https://www.proquest.com/docview/2301889796
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZy2B7KLsvWzc02MMgcxrHsmU_pqNdGHSMkY6-GcuS27LGKbFNyX79zpEsJU0a6PZigizJIt8nnSPpXAj5KIsil-gck4c88ZiKEy-WSnoDgdHo_DwbSHRwPvkejU_Zt7PwrNNZtVpqatHP_9zpV_I_qEIZ4Ipesv-ArOsUCuA34AtPQBie98IYNEVt27roVTqdjTUbRI1YH4Eabyw8G1dQhrFZS1WjZ6QxGrem56PjiUmJU63qqqiH6jDOGE7g-rbhOQxJuQDPU5tit9eGdHKr-IU5Xj2RvXFWXZbNvPcTHbOXjDy8yOTcHO2W2fTytxMS49nNVSZbPmELk-XbHlAA7NbUza2pjMEO1Xht9tUdZRsLsb3q3ljfQx0Ko8rOpwKYAAIWddSlKLPX92sSztkd4o4Hukh1Byl2oC_fH5DdIed4y787-np49Mvt2EGsa49aO9o2NhR0cbA2httqzcZe5THZu9HmD1Kdz5tFba_btRYzeUL22u0HHRkuPSUdVT4jD01C0sVz8sMxijpGUWAU1Yz6TDWfKGBOWz5RoAFd4RNFPlHgEzV8ekFOj48mX8Zem3PDy0HU1F4g_ZwPZS6iIQsLISLFixDUOljqE-EHPIh4AXM5ikFvl0NVJEqCQowOYyISTIjgJdkpZ6V6TagULOCKgVDIJeOCZ2zAiihMGLQMoF2X9O1fluZtQHrMi3KVboGpSz65BtcmFsv2qvsWg7SdsFUKYMagz0Ys6pIP7jUsp3hHlpVq1ug6fhwnPIE6rwx27luBH8YYS6pLgjUwl9_YMh7Qit_cf_RvyaPlRNonO_W8Ue9A963F-5ahfwE5Z7GP
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-Cogk4wDbG6IDNkzjssLRJ49jJsSC6bivVDu3UWxR_pJvWphNNhMpfv-ckDVDohV1jv8Txe7Z_z-8L4EzFsVQmOEZ6PLCo9gPLV1pZtjDZ6BwZ2coEOF_1WXdIv4280QZcLGNhjFul0uPrbJEWGVKbaiYzc1FW5RrAE7g5j8ZTgRzGLdaglOavdDrZhC1jQ6M12Gp_Ob_8WelduDnbZVafJ2gfHkiPUOYu7N3khutqVPfOn84-qOXIC7eTP40sFQ15u5LU8T9_7SXslfiUtAuBegUbOnkNL4qKlYsD-IHgNHenXZB5XkEH2UoQ9xIDwmefSR7-RaJEEY1P8B0k0Sn5PS291LUi5uKXtDsDktfgmb-BYedycNG1yqIMlsS9KLVc5UjeUlKwFvViIZjmMSqzqCfagXBc7jIeI7OZj8BOtXQcaIWIyUQUCSaoEO4h1JJZoo-AKEFdrinuGlJRLnhEbRozL6BI6SJdHRpLzoSyzFhuCmdMQqO54FyF-VyFZq5yI3odPlUEf4tkHeu7nixZHZardh6inPgIeBhldfhYNeN6M0aUKNGzLO_j-H7AA-zzthCR6luu4_km2VAd3BWZufvGmvEgbHr3LKoPsN0dXPXC3tf-92PYwaag8DU8gVp6nelTxEypeF-uiX8zhhV4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT4QwFH5xiUYP7su41sSDB5mBobRwHJdxNx7UeCN0wRiVMQ7EjL_eV2Bwv-iV9kF577X9XvsWgE0Vx1KZ4Bjp8cCi2g8sX2ll2cJko3NkZCsT4Hx2zg6v6PGNd_MhFsa4VSp9-5z10iJDakN1ZGYOyqpcA7gDN7rR7aNACeMSa1BK40nFgzCMxoqPBthw62Bn_7oyu3BttsukPj-Qft6PvoHMcZh4ye-tq0F92H7akyD7Ay-8Tu7rWSrq8vVLTsf__dkUTJTolLQKdZqGAZ3MwEhRr7I3CxcITXNn2h7p5vVzUKgEUS8xELyzTfLgLxIlimh8gu8giU7J3WPpo64VMce-pNW-JHkFnu4cXLX3L3cPrbIkgyVxJUotVzmSN5UUrEm9WAimeYymLDLeDoTjcpfxGEXNfIR1qqnjQCvESyaeSDBBhXDnYSjpJHoRiBLU5ZrimiEV5YJH1KYx8wKKlC7S1aDeF0woy3zlpmzGQ2jsFmRVmLMqNKzKr9BrsFURPBWpOn7vutKXdFjO2W6IauIj3GGU1WCjasbZZq5QokR3sryP4_sBD7DPQqEh1bdcx_NNqqEauF9U5v0bv4wHQdPSn6jWYfRirx2eHp2fLMMYtgSFo-EKDKXPmV5FwJSKtXJGvAH-1hQo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+selection+for+lasso%2C+ridge+and+elastic+net+implemented+with+AFT+models&rft.jtitle=Statistical+applications+in+genetics+and+molecular+biology&rft.au=Khan%2C+Md+Hasinur+Rahaman&rft.au=Bhadra%2C+Anamika&rft.au=Howlader%2C+Tamanna&rft.date=2019-10-01&rft.issn=1544-6115&rft.eissn=1544-6115&rft.volume=18&rft.issue=5&rft_id=info:doi/10.1515%2Fsagmb-2017-0001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_sagmb_2017_0001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1544-6115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1544-6115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1544-6115&client=summon