Stability selection for lasso, ridge and elastic net implemented with AFT models
The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying...
Saved in:
Published in | Statistical applications in genetics and molecular biology Vol. 18; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
01.10.2019
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 1544-6115 2194-6302 1544-6115 |
DOI | 10.1515/sagmb-2017-0001 |
Cover
Abstract | The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying a selection procedure to sub-samples of the data where the observations are subject to right censoring. The accelerated failure time (AFT) models have proved useful in many contexts including the heavy censoring (as for example in cancer survival) and the high dimensionality (as for example in micro-array data). We implement the stability selection approach using three variable selection techniques—Lasso, ridge regression, and elastic net applied to censored data using AFT models. We compare the performances of these regularized techniques with and without stability selection approaches with simulation studies and two real data examples–a breast cancer data and a diffuse large B-cell lymphoma data. The results suggest that stability selection gives always stable scenario about the selection of variables and that as the dimension of data increases the performance of methods with stability selection also improves compared to methods without stability selection irrespective of the collinearity between the covariates. |
---|---|
AbstractList | The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying a selection procedure to sub-samples of the data where the observations are subject to right censoring. The accelerated failure time (AFT) models have proved useful in many contexts including the heavy censoring (as for example in cancer survival) and the high dimensionality (as for example in micro-array data). We implement the stability selection approach using three variable selection techniques-Lasso, ridge regression, and elastic net applied to censored data using AFT models. We compare the performances of these regularized techniques with and without stability selection approaches with simulation studies and two real data examples-a breast cancer data and a diffuse large B-cell lymphoma data. The results suggest that stability selection gives always stable scenario about the selection of variables and that as the dimension of data increases the performance of methods with stability selection also improves compared to methods without stability selection irrespective of the collinearity between the covariates.The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying a selection procedure to sub-samples of the data where the observations are subject to right censoring. The accelerated failure time (AFT) models have proved useful in many contexts including the heavy censoring (as for example in cancer survival) and the high dimensionality (as for example in micro-array data). We implement the stability selection approach using three variable selection techniques-Lasso, ridge regression, and elastic net applied to censored data using AFT models. We compare the performances of these regularized techniques with and without stability selection approaches with simulation studies and two real data examples-a breast cancer data and a diffuse large B-cell lymphoma data. The results suggest that stability selection gives always stable scenario about the selection of variables and that as the dimension of data increases the performance of methods with stability selection also improves compared to methods without stability selection irrespective of the collinearity between the covariates. The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying a selection procedure to sub-samples of the data where the observations are subject to right censoring. The accelerated failure time (AFT) models have proved useful in many contexts including the heavy censoring (as for example in cancer survival) and the high dimensionality (as for example in micro-array data). We implement the stability selection approach using three variable selection techniques—Lasso, ridge regression, and elastic net applied to censored data using AFT models. We compare the performances of these regularized techniques with and without stability selection approaches with simulation studies and two real data examples–a breast cancer data and a diffuse large B-cell lymphoma data. The results suggest that stability selection gives always stable scenario about the selection of variables and that as the dimension of data increases the performance of methods with stability selection also improves compared to methods without stability selection irrespective of the collinearity between the covariates. |
Author | Howlader, Tamanna Khan, Md Hasinur Rahaman Bhadra, Anamika |
Author_xml | – sequence: 1 givenname: Md Hasinur Rahaman surname: Khan fullname: Khan, Md Hasinur Rahaman email: hasinur@isrt.ac.bd organization: Institute of Statistical Research and Training, University of Dhaka, Dhaka-1000, Bangladesh – sequence: 2 givenname: Anamika surname: Bhadra fullname: Bhadra, Anamika organization: Institute of Statistical Research and Training, University of Dhaka, Dhaka-1000, Bangladesh – sequence: 3 givenname: Tamanna surname: Howlader fullname: Howlader, Tamanna organization: Institute of Statistical Research and Training, University of Dhaka, Dhaka-1000, Bangladesh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31586968$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctLHTEUh4NY6qtrdyXQTRdOzWOSybgTqbYgtKCuhzzO3EYyk2uSQe5_35lerSK0qxzC9x3OOb8DtDvGERA6puQLFVScZr0aTMUIbSpCCN1B-1TUdSUpFbuv6j10kPM9IYwyTt6jPU6Fkq1U--jnTdHGB182OEMAW3wccR8TDjrneIKTdyvAenQY5p_iLR6hYD-sAwwwFnD40Zdf-PzyFg_RQchH6F2vQ4YPT-8hurv8envxrbr-cfX94vy6sryRpeKO2oY5aySrRW-MhKYXjKuakNZQ3nDZ9A6cVIIxx6BvwVHRyt42RpraGH6IPm_7rlN8mCCXbvDZQgh6hDjlbl6UKtU2rZzRT2_Q-zilcZ5uoZSiTNYL9fGJmswArlsnP-i06Z5vNQOnW8CmmHOC_i9CSbek0f1Jo1vS6JY0ZkO8MawvejlxSdqH_3hnW-9RhwLJwSpNm7l4mfsfJlWC_waOh6GV |
CitedBy_id | crossref_primary_10_3390_w13030310 crossref_primary_10_2217_epi_2021_0310 crossref_primary_10_1007_s10985_022_09549_5 crossref_primary_10_1080_03610918_2022_2092639 crossref_primary_10_1002_sam_11615 crossref_primary_10_1109_JBHI_2022_3202937 crossref_primary_10_21605_cukurovaummfd_792412 crossref_primary_10_1016_j_ecoenv_2025_118041 crossref_primary_10_1186_s12859_021_04443_7 crossref_primary_10_1007_s40808_023_01878_0 crossref_primary_10_3390_cancers14235804 |
Cites_doi | 10.1016/j.mpdhp.2009.12.002 10.1006/jmva.1993.1028 10.1002/bimj.201600256 10.1214/009053606000001523 10.1002/sim.4780111409 10.2307/2533672 10.1093/biomet/asm037 10.1111/j.1541-0420.2007.00877.x 10.1007/s10985-009-9144-2 10.1080/00401706.1970.10488635 10.1111/j.1467-9868.2010.00740.x 10.1056/NEJMoa012914 10.1073/pnas.102102699 10.1007/s11222-015-9555-8 10.1093/bioinformatics/bti422 10.1177/0962280217739522 10.1111/j.2517-6161.1996.tb02080.x 10.2307/3316126 10.1002/sim.4780111607 10.1002/sim.6927 10.1093/biomet/asp013 10.1016/j.exger.2008.10.005 10.1111/j.1541-0420.2006.00562.x 10.1056/NEJMoa021967 10.1111/j.1467-9868.2005.00503.x 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 10.1038/415530a 10.1214/009053604000000067 |
ContentType | Journal Article |
Copyright | 2019 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2019 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7U5 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1515/sagmb-2017-0001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1544-6115 |
ExternalDocumentID | 31586968 10_1515_sagmb_2017_0001 10_1515_sagmb_2017_0001185 |
Genre | Journal Article |
GroupedDBID | --- -~S 0R~ 123 1WD AAAEU AAAVF AACIX AAFPC AAGVJ AAILP AAKRG AALGR AAOWA AAPJK AAQCX AASQH AAWFC AAXCG AAXMT ABABW ABAOT ABAQN ABDRH ABFKT ABIQR ABJNI ABLVI ABMIY ABPLS ABRDF ABUVI ABWLS ABXMZ ABYBW ACDEB ACEFL ACGFO ACGFS ACHNZ ACMKP ACONX ACPMA ACUND ACYCL ACZBO ADEQT ADGQD ADGYE ADNPR ADOZN AECWL AEDGQ AEGVQ AEICA AEJQW AEMOE AENEX AEQDQ AEQLX AERZL AEXIE AFBAA AFBDD AFBQV AFCXV AFQUK AFYRI AGBEV AGQYU AGWTP AHCWZ AHVWV AHXUK AIAGR AIERV AIKXB AIWOI AJATJ AJPIC AKXKS ALMA_UNASSIGNED_HOLDINGS ALWYM ASYPN BAKPI BBCWN BBDJO BCIFA CKPZI CS3 DASCH DSRVY DU5 EBS EMOBN F5P FSTRU HZ~ IY9 J9A K.~ KDIRW MV1 NQBSW O9- P2P QD8 SA. SLJYH T2Y UK5 WTRAM AAYXX CITATION ABVMU CGR CUY CVF DBYYV ECM EIF NPM 7SC 7U5 8FD AEKEB EJD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c376t-3d1c72dcb6245fbb6e7f52384009b137367fded68522d2ef9ed1596fc7b6b4bb3 |
ISSN | 1544-6115 2194-6302 |
IngestDate | Thu Sep 04 18:56:02 EDT 2025 Sun Jun 29 16:57:41 EDT 2025 Wed Feb 19 02:31:21 EST 2025 Thu Apr 24 22:57:50 EDT 2025 Tue Jul 01 01:57:41 EDT 2025 Sat Sep 06 17:01:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Stability selection Elastic net AFT model Lasso Ridge |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c376t-3d1c72dcb6245fbb6e7f52384009b137367fded68522d2ef9ed1596fc7b6b4bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31586968 |
PQID | 2308812646 |
PQPubID | 2045289 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2301889796 proquest_journals_2308812646 pubmed_primary_31586968 crossref_primary_10_1515_sagmb_2017_0001 crossref_citationtrail_10_1515_sagmb_2017_0001 walterdegruyter_journals_10_1515_sagmb_2017_0001185 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Statistical applications in genetics and molecular biology |
PublicationTitleAlternate | Stat Appl Genet Mol Biol |
PublicationYear | 2019 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | Hoerl, A. E.; Kennard, R. W. (j_sagmb-2017-0001_ref_010) 1970; 12 Ibrahim, J. G.; Chen, M.-H; Maceachern, S. N. (j_sagmb-2017-0001_ref_014) 1999; 27 Stute, W. (j_sagmb-2017-0001_ref_026) 1993; 45 Tibshirani, R. (j_sagmb-2017-0001_ref_030) 1997; 16 Khan, M. H. R.; Shaw, J. E. H. (j_sagmb-2017-0001_ref_020) 2016; 26 Ambroise, C.; McLachlan, G. J. (j_sagmb-2017-0001_ref_001) 2002; 99 Candes, E.; Tao, T. (j_sagmb-2017-0001_ref_002) 2007; 35 Ternes, N.; Rotolo, F; Michielsa, S. (j_sagmb-2017-0001_ref_028) 2016; 35 G’Sell, M. G.; Hastie, T; Tibshirani, R. (j_sagmb-2017-0001_ref_007) 2013 Huang, J.; Ma, S; Xie, H. (j_sagmb-2017-0001_ref_013) 2006; 62 Khan, M. H. R.; Shaw, J. E. H. (j_sagmb-2017-0001_ref_021) 2019; 28 Efron, B.; Hastie, T.; Johnstone, I; Tibshirani, R. (j_sagmb-2017-0001_ref_003) 2004; 32 Gatter, K.; Pezzella, F. (j_sagmb-2017-0001_ref_006) 2010; 16 Van De Vijver, M. J.; He, Y. D.; van’t Veer, L. J.; Dai, H.; Hart, A. A.; Voskuil, D. W.; Schreiber, G. J.; Peterse, J. L.; Roberts, C.; Marton, M. J.; Parrish, M.; Atsma, D.; Witteveen, A.; Glas, A.; Delahaye, L.; van der Velde, T.; Bartelink, H.; Rodenhuis, S.; Rutgers, E. T.; Friend, S. H; Bernards, R. (j_sagmb-2017-0001_ref_031) 2002; 347 Zhang, H. H.; Lu, W. (j_sagmb-2017-0001_ref_037) 2007; 94 Wright, G.; Chan, W.; Connors, J.; Campo, E.; Fisher, R.; Gascoyne, R.; Muller-Hermelink, H.; Smeland, E.; Giltnane, J.; Hurt, E.; Zhao, H.; Averett, L.; Yang, L.; Wilson, W.; Jaffe, E.; Simon, R.; Klausner, R.; Powell, J.; Duffey, P.; Longo, D.; Greiner, T.; Weisenburger, D.; Sanger, W.; Dave, B.; Lynch, J.; Vose, J.; Armitage, J.; Montserrat, E.; Lopez-Guillermo, A.; Grogan, T.; Miller, T.; LeBlanc, M.; Ott, G.; Kvaloy, S.; Delabie, J.; Holte, H.; Krajci, P.; Stokke, T; Staudt, L. (j_sagmb-2017-0001_ref_036) 2002; 346 Huang, J.; Ma, S. (j_sagmb-2017-0001_ref_012) 2010b; 16 Tibshirani, R. (j_sagmb-2017-0001_ref_029) 1996; 58 Swindell, W. (j_sagmb-2017-0001_ref_027) 2009; 44 Meinshausen, N.; Bühlmann, P. (j_sagmb-2017-0001_ref_024) 2010; 72 Leng, C.; Lin, Y.; Wahba, G. (j_sagmb-2017-0001_ref_022) 2006; 16 Zou, H.; Hastie, T. (j_sagmb-2017-0001_ref_038) 2005; 67 Walschaerts, M.; Leconte, E; Besse, P. (j_sagmb-2017-0001_ref_033) 2012 Wei, L. (j_sagmb-2017-0001_ref_035) 1992; 11 Sauerbrei, W.; Schumacher, M. (j_sagmb-2017-0001_ref_025) 1992; 11 Fan, J.; Li, R. (j_sagmb-2017-0001_ref_004) 2002; 30 Faraggi, D.; Simon, R. (j_sagmb-2017-0001_ref_005) 1998; 54 van’t Veer, L. J.; Dai, H.; Van De Vijver, M. J.; He, Y. D.; Hart, A. A.; Mao, M.; Peterse, H. L.; van der Kooy, K.; Marton, M. J.; Witteveen, A. T.; Schreiber, G. J.; Kerkhoven, R. M.; Roberts, C.; Linsley, P. S.; Bernards, R; Friend, S. H. (j_sagmb-2017-0001_ref_032) 2002; 415 Li, H.; Luan, Y. (j_sagmb-2017-0001_ref_023) 2003; 8 Ioannidis, J. P. A. (j_sagmb-2017-0001_ref_015) 2005; 2 Khan, M. H. R. (j_sagmb-2017-0001_ref_019) 2018; 60 James, G. M.; Radchenko, P. (j_sagmb-2017-0001_ref_016) 2009; 96 Huang, J.; Ma, S. (j_sagmb-2017-0001_ref_011) 2010a; 16 Wang, S.; Nan, B.; Zhu, J; Beer, D. (j_sagmb-2017-0001_ref_034) 2008; 64 Gui, J.; Li, H. (j_sagmb-2017-0001_ref_008) 2005a; 21 Gui, J.; Li, H. (j_sagmb-2017-0001_ref_009) 2005b; 10 (ref551) 2013 (ref541) 2011 (ref701) 2012 (ref481) 2010a; 16 (ref471) 1970; 12 (ref711) 2008; 64 (ref301) 2002; 347 (ref411) 2002; 30 (ref321) 2012 (ref211) 2006; 16 (ref221) 2003; 8 (ref421) 1998; 54 (ref91) 1970; 12 (ref591) 2006; 16 (ref731) 2002; 346 (ref691) 2002; 415 (ref741) 2007; 94 (ref31) 2002; 30 (ref41) 1998; 54 (ref601) 2003; 8 (ref171) 2013 (ref161) 2011 (ref671) 1997; 16 (ref501) 2006; 62 (ref21) 2004; 32 (ref291) 1997; 16 (ref01) 2002; 99 (ref121) 2006; 62 (ref581) 2019; 28 (ref101) 2010a; 16 (ref431) 2010; 16 (ref611) 2010; 72 (ref51) 2010; 16 (ref11) 2007; 35 (ref681) 2002; 347 (ref381) 2002; 99 (ref351) 2002; 346 (ref641) 2009; 44 (ref141) 2005; 2 (ref111) 2010b; 16 (ref521) 2005; 2 (ref441) 2013 (ref281) 1996; 58 (ref251) 1993; 45 (ref241) 1992; 11 (ref341) 1992; 11 (ref81) 2005b; 10 (ref461) 2005b; 10 (ref361) 2007; 94 (ref391) 2007; 35 (ref231) 2010; 72 (ref201) 2019; 28 (ref401) 2004; 32 (ref531) 2009; 96 (ref651) 2016; 35 (ref751) 2005; 67 (ref61) 2013 (ref331) 2008; 64 (ref261) 2009; 44 (ref311) 2002; 415 (ref151) 2009; 96 (ref451) 2005a; 21 (ref71) 2005a; 21 (ref571) 2016; 26 (ref631) 1993; 45 (ref181) 2018; 60 (ref131) 1999; 27 (ref561) 2018; 60 (ref721) 1992; 11 (ref491) 2010b; 16 (ref511) 1999; 27 (ref271) 2016; 35 (ref661) 1996; 58 (ref371) 2005; 67 (ref191) 2016; 26 (ref621) 1992; 11 |
References_xml | – volume: 64 start-page: 132 year: 2008 end-page: 140 ident: j_sagmb-2017-0001_ref_034 article-title: Doubly penalized buckley-james method for survival data with high-dimensional covariates publication-title: Biometrics – volume: 94 start-page: 691 year: 2007 end-page: 703 ident: j_sagmb-2017-0001_ref_037 article-title: Adaptive lasso for Cox’s proportional hazards model publication-title: Biometrika – volume: 346 start-page: 1937 year: 2002 end-page: 1947 ident: j_sagmb-2017-0001_ref_036 article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma publication-title: N. Engl. J. Med. – volume: 54 start-page: 1475 year: 1998 end-page: 85 ident: j_sagmb-2017-0001_ref_005 article-title: Bayesian variable selection method for censored survival data publication-title: Biometrics – volume: 27 start-page: 701 year: 1999 end-page: 717 ident: j_sagmb-2017-0001_ref_014 article-title: Bayesian variable selection for proportional hazards models publication-title: Can. J. Stat. – volume: 35 start-page: 2561 year: 2016 end-page: 2573 ident: j_sagmb-2017-0001_ref_028 article-title: Empirical extensions of the LASSO penalty to reduce the false discovery rate in high dimensional cox regression models publication-title: Stat. Med. – volume: 21 start-page: 3001 year: 2005a end-page: 3008 ident: j_sagmb-2017-0001_ref_008 article-title: Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data publication-title: Bioinformatics – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: j_sagmb-2017-0001_ref_003 article-title: Least angle regression publication-title: Ann. Stat. – volume: 347 start-page: 1999 year: 2002 end-page: 2009 ident: j_sagmb-2017-0001_ref_031 article-title: A gene-expression signature as a predictor of survival in breast cancer publication-title: N. Engl. J. Med. – year: 2013 ident: j_sagmb-2017-0001_ref_007 article-title: False variable selection rates in regression publication-title: arXiv – volume: 2 start-page: e124 year: 2005 ident: j_sagmb-2017-0001_ref_015 article-title: Selection bias in gene extraction on the basis of microarray gene-expression data publication-title: PLoS Med. – volume: 72 start-page: 417 year: 2010 end-page: 473 ident: j_sagmb-2017-0001_ref_024 article-title: Stability selection publication-title: J. R. Stat. Soc. B – volume: 12 start-page: 69 year: 1970 end-page: 82 ident: j_sagmb-2017-0001_ref_010 article-title: Ridge regression: applications to nonorthogonal problems publication-title: Technometrics – volume: 60 start-page: 687 year: 2018 end-page: 702 ident: j_sagmb-2017-0001_ref_019 article-title: On the performance of adaptive pre-processing technique in analysing high-dimensional censored data publication-title: Biom. J. – volume: 35 start-page: 2313 year: 2007 end-page: 2351 ident: j_sagmb-2017-0001_ref_002 article-title: The dantzig selector: Statistical estimation when p is much larger than n publication-title: Ann. Stat. – volume: 10 start-page: 272 year: 2005b end-page: 283 ident: j_sagmb-2017-0001_ref_009 article-title: Threshold gradient descent method for censored data regression, with applications in pharmacogenomics publication-title: Pac. Symp. Biocomput. – volume: 30 start-page: 74 year: 2002 end-page: 99 ident: j_sagmb-2017-0001_ref_004 article-title: Variable selection for Cox’s proportional hazards model and frailty model publication-title: Ann. Stat. – volume: 16 start-page: 69 year: 2010 end-page: 81 ident: j_sagmb-2017-0001_ref_006 article-title: Diffuse large B-cell lymphoma publication-title: Diagn. Histopathol. – volume: 28 start-page: 937 year: 2019 end-page: 952 ident: j_sagmb-2017-0001_ref_021 article-title: Variable selection for accelerated lifetime models with synthesized estimation techniques publication-title: Stat. Methods Med. Res. – volume: 96 start-page: 323 year: 2009 end-page: 337 ident: j_sagmb-2017-0001_ref_016 article-title: A generalized dantzig selector with shrinkage tuning publication-title: Biometrika – volume: 16 start-page: 176 year: 2010a end-page: 195 ident: j_sagmb-2017-0001_ref_011 article-title: Variable selection in the accelerated failure time model via the bridge method publication-title: Lifetime Data Anal. – volume: 16 start-page: 1273 year: 2006 end-page: 1284 ident: j_sagmb-2017-0001_ref_022 article-title: A note on the LASSO and related procedures in model selection publication-title: Stat. Sin. – volume: 11 start-page: 2093 year: 1992 end-page: 2109 ident: j_sagmb-2017-0001_ref_025 article-title: A bootstrap resampling procedure for model building: Application to the cox regression model publication-title: Stat. Med. – volume: 26 start-page: 725 year: 2016 end-page: 741 ident: j_sagmb-2017-0001_ref_020 article-title: Variable selection for survival data with a class of adaptive elastic net techniques publication-title: Stat. Comput. – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: j_sagmb-2017-0001_ref_038 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. B – volume: 415 start-page: 530 year: 2002 end-page: 536 ident: j_sagmb-2017-0001_ref_032 article-title: Gene expression profiling predicts clinical outcome of breast cancer publication-title: Nature – volume: 44 start-page: 190 year: 2009 end-page: 200 ident: j_sagmb-2017-0001_ref_027 article-title: Accelerated failure time models provide a useful statistical framework for aging research publication-title: Exp. Gerontol. – volume: 11 start-page: 1871 year: 1992 end-page: 1879 ident: j_sagmb-2017-0001_ref_035 article-title: The accelerated failure time model: a useful alternative to the cox regression model in survival analysis publication-title: Stat. Med. – volume: 16 start-page: 176 year: 2010b end-page: 195 ident: j_sagmb-2017-0001_ref_012 article-title: Variable selection in the accelerated failure time model via the bridge method publication-title: Lifetime Data Anal. – volume: 8 start-page: 65 year: 2003 end-page: 76 ident: j_sagmb-2017-0001_ref_023 article-title: Kernel Cox regression models for linking gene expression profiles to censored survival data publication-title: Pac. Symp. Biocomput. – volume: 62 start-page: 813 year: 2006 end-page: 820 ident: j_sagmb-2017-0001_ref_013 article-title: Regularized estimation in the accelerated failure time model with high-dimensional covariates publication-title: Biometrics – volume: 99 start-page: 6562 year: 2002 end-page: 6566 ident: j_sagmb-2017-0001_ref_001 article-title: Selection bias in gene extraction on the basis of microarray gene-expression data publication-title: PNAS – volume: 45 start-page: 89 year: 1993 end-page: 103 ident: j_sagmb-2017-0001_ref_026 article-title: Consistent estimation under random censorship when covariables are present publication-title: J. Multivariate Anal. – volume: 16 start-page: 385 year: 1997 end-page: 395 ident: j_sagmb-2017-0001_ref_030 article-title: The lasso method for variable selection in the cox model publication-title: Stat. Med. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: j_sagmb-2017-0001_ref_029 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B – year: 2012 ident: j_sagmb-2017-0001_ref_033 article-title: Stable variable selection for right censored data: comparison of methods publication-title: arXiv – volume: 16 start-page: 69 year: 2010 ident: ref431 article-title: Diffuse large B-cell lymphoma publication-title: Diagn. Histopathol. doi: 10.1016/j.mpdhp.2009.12.002 – volume: 45 start-page: 89 year: 1993 ident: ref631 article-title: Consistent estimation under random censorship when covariables are present publication-title: J. Multivariate Anal. doi: 10.1006/jmva.1993.1028 – volume: 60 start-page: 687 year: 2018 ident: ref561 article-title: On the performance of adaptive pre-processing technique in analysing high-dimensional censored data publication-title: Biom. J. doi: 10.1002/bimj.201600256 – volume: 35 start-page: 2313 year: 2007 ident: ref11 article-title: The dantzig selector: Statistical estimation when p is much larger than n publication-title: Ann. Stat. doi: 10.1214/009053606000001523 – volume: 11 start-page: 1871 year: 1992 ident: ref721 article-title: The accelerated failure time model: a useful alternative to the cox regression model in survival analysis publication-title: Stat. Med. doi: 10.1002/sim.4780111409 – volume: 54 start-page: 1475 year: 1998 ident: ref421 article-title: Bayesian variable selection method for censored survival data publication-title: Biometrics doi: 10.2307/2533672 – volume: 94 start-page: 691 year: 2007 ident: ref741 article-title: Adaptive lasso for Cox’s proportional hazards model publication-title: Biometrika doi: 10.1093/biomet/asm037 – volume: 64 start-page: 132 year: 2008 ident: ref711 article-title: Doubly penalized buckley-james method for survival data with high-dimensional covariates publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00877.x – volume: 16 start-page: 176 year: 2010a ident: ref101 article-title: Variable selection in the accelerated failure time model via the bridge method publication-title: Lifetime Data Anal. doi: 10.1007/s10985-009-9144-2 – volume: 10 start-page: 272 year: 2005b ident: ref81 article-title: Threshold gradient descent method for censored data regression, with applications in pharmacogenomics publication-title: Pac. Symp. Biocomput. – volume: 12 start-page: 69 year: 1970 ident: ref91 article-title: Ridge regression: applications to nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488635 – volume: 16 start-page: 1273 year: 2006 ident: ref211 article-title: A note on the LASSO and related procedures in model selection publication-title: Stat. Sin. – volume: 35 start-page: 2313 year: 2007 ident: ref391 article-title: The dantzig selector: Statistical estimation when p is much larger than n publication-title: Ann. Stat. doi: 10.1214/009053606000001523 – volume: 16 start-page: 176 year: 2010b ident: ref111 article-title: Variable selection in the accelerated failure time model via the bridge method publication-title: Lifetime Data Anal. doi: 10.1007/s10985-009-9144-2 – volume: 54 start-page: 1475 year: 1998 ident: ref41 article-title: Bayesian variable selection method for censored survival data publication-title: Biometrics doi: 10.2307/2533672 – volume: 72 start-page: 417 year: 2010 ident: ref611 article-title: Stability selection publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2010.00740.x – volume: 346 start-page: 1937 year: 2002 ident: ref351 article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa012914 – year: 2012 ident: ref321 article-title: Stable variable selection for right censored data: comparison of methods publication-title: arXiv – volume: 99 start-page: 6562 year: 2002 ident: ref01 article-title: Selection bias in gene extraction on the basis of microarray gene-expression data publication-title: PNAS doi: 10.1073/pnas.102102699 – volume: 8 start-page: 65 year: 2003 ident: ref221 article-title: Kernel Cox regression models for linking gene expression profiles to censored survival data publication-title: Pac. Symp. Biocomput. – volume: 26 start-page: 725 year: 2016 ident: ref191 article-title: Variable selection for survival data with a class of adaptive elastic net techniques publication-title: Stat. Comput. doi: 10.1007/s11222-015-9555-8 – volume-title: The statistical analysis of failure time data year: 2011 ident: ref161 – volume: 21 start-page: 3001 year: 2005a ident: ref451 article-title: Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti422 – volume: 28 start-page: 937 year: 2019 ident: ref581 article-title: Variable selection for accelerated lifetime models with synthesized estimation techniques publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280217739522 – volume: 94 start-page: 691 year: 2007 ident: ref361 article-title: Adaptive lasso for Cox’s proportional hazards model publication-title: Biometrika doi: 10.1093/biomet/asm037 – volume: 58 start-page: 267 year: 1996 ident: ref661 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 16 start-page: 69 year: 2010 ident: ref51 article-title: Diffuse large B-cell lymphoma publication-title: Diagn. Histopathol. doi: 10.1016/j.mpdhp.2009.12.002 – volume: 27 start-page: 701 year: 1999 ident: ref511 article-title: Bayesian variable selection for proportional hazards models publication-title: Can. J. Stat. doi: 10.2307/3316126 – volume: 16 start-page: 176 year: 2010a ident: ref481 article-title: Variable selection in the accelerated failure time model via the bridge method publication-title: Lifetime Data Anal. doi: 10.1007/s10985-009-9144-2 – volume: 16 start-page: 176 year: 2010b ident: ref491 article-title: Variable selection in the accelerated failure time model via the bridge method publication-title: Lifetime Data Anal. doi: 10.1007/s10985-009-9144-2 – volume: 12 start-page: 69 year: 1970 ident: ref471 article-title: Ridge regression: applications to nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488635 – volume: 11 start-page: 2093 year: 1992 ident: ref621 article-title: A bootstrap resampling procedure for model building: Application to the cox regression model publication-title: Stat. Med. doi: 10.1002/sim.4780111607 – volume: 11 start-page: 2093 year: 1992 ident: ref241 article-title: A bootstrap resampling procedure for model building: Application to the cox regression model publication-title: Stat. Med. doi: 10.1002/sim.4780111607 – volume: 64 start-page: 132 year: 2008 ident: ref331 article-title: Doubly penalized buckley-james method for survival data with high-dimensional covariates publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00877.x – volume: 58 start-page: 267 year: 1996 ident: ref281 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 35 start-page: 2561 year: 2016 ident: ref651 article-title: Empirical extensions of the LASSO penalty to reduce the false discovery rate in high dimensional cox regression models publication-title: Stat. Med. doi: 10.1002/sim.6927 – volume: 30 start-page: 74 year: 2002 ident: ref411 article-title: Variable selection for Cox’s proportional hazards model and frailty model publication-title: Ann. Stat. – volume: 2 start-page: e124 year: 2005 ident: ref521 article-title: Selection bias in gene extraction on the basis of microarray gene-expression data publication-title: PLoS Med. – volume: 96 start-page: 323 year: 2009 ident: ref531 article-title: A generalized dantzig selector with shrinkage tuning publication-title: Biometrika doi: 10.1093/biomet/asp013 – year: 2012 ident: ref701 article-title: Stable variable selection for right censored data: comparison of methods publication-title: arXiv – volume: 44 start-page: 190 year: 2009 ident: ref261 article-title: Accelerated failure time models provide a useful statistical framework for aging research publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2008.10.005 – volume-title: Variable selection and estimation procedures for high-dimensional survival data, Ph.D. Thesis year: 2013 ident: ref171 – volume: 62 start-page: 813 year: 2006 ident: ref121 article-title: Regularized estimation in the accelerated failure time model with high-dimensional covariates publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00562.x – volume: 347 start-page: 1999 year: 2002 ident: ref301 article-title: A gene-expression signature as a predictor of survival in breast cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa021967 – volume-title: The statistical analysis of failure time data year: 2011 ident: ref541 – volume: 347 start-page: 1999 year: 2002 ident: ref681 article-title: A gene-expression signature as a predictor of survival in breast cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa021967 – volume: 2 start-page: e124 year: 2005 ident: ref141 article-title: Selection bias in gene extraction on the basis of microarray gene-expression data publication-title: PLoS Med. – volume: 62 start-page: 813 year: 2006 ident: ref501 article-title: Regularized estimation in the accelerated failure time model with high-dimensional covariates publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00562.x – volume: 67 start-page: 301 year: 2005 ident: ref371 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 27 start-page: 701 year: 1999 ident: ref131 article-title: Bayesian variable selection for proportional hazards models publication-title: Can. J. Stat. doi: 10.2307/3316126 – volume-title: Variable selection and estimation procedures for high-dimensional survival data, Ph.D. Thesis year: 2013 ident: ref551 – year: 2013 ident: ref441 article-title: False variable selection rates in regression publication-title: arXiv – volume: 8 start-page: 65 year: 2003 ident: ref601 article-title: Kernel Cox regression models for linking gene expression profiles to censored survival data publication-title: Pac. Symp. Biocomput. – volume: 10 start-page: 272 year: 2005b ident: ref461 article-title: Threshold gradient descent method for censored data regression, with applications in pharmacogenomics publication-title: Pac. Symp. Biocomput. – volume: 11 start-page: 1871 year: 1992 ident: ref341 article-title: The accelerated failure time model: a useful alternative to the cox regression model in survival analysis publication-title: Stat. Med. doi: 10.1002/sim.4780111409 – volume: 72 start-page: 417 year: 2010 ident: ref231 article-title: Stability selection publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2010.00740.x – volume: 16 start-page: 385 year: 1997 ident: ref671 article-title: The lasso method for variable selection in the cox model publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 – volume: 16 start-page: 1273 year: 2006 ident: ref591 article-title: A note on the LASSO and related procedures in model selection publication-title: Stat. Sin. – volume: 67 start-page: 301 year: 2005 ident: ref751 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 28 start-page: 937 year: 2019 ident: ref201 article-title: Variable selection for accelerated lifetime models with synthesized estimation techniques publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280217739522 – volume: 26 start-page: 725 year: 2016 ident: ref571 article-title: Variable selection for survival data with a class of adaptive elastic net techniques publication-title: Stat. Comput. doi: 10.1007/s11222-015-9555-8 – volume: 99 start-page: 6562 year: 2002 ident: ref381 article-title: Selection bias in gene extraction on the basis of microarray gene-expression data publication-title: PNAS doi: 10.1073/pnas.102102699 – volume: 415 start-page: 530 year: 2002 ident: ref691 article-title: Gene expression profiling predicts clinical outcome of breast cancer publication-title: Nature doi: 10.1038/415530a – volume: 32 start-page: 407 year: 2004 ident: ref21 article-title: Least angle regression publication-title: Ann. Stat. doi: 10.1214/009053604000000067 – volume: 60 start-page: 687 year: 2018 ident: ref181 article-title: On the performance of adaptive pre-processing technique in analysing high-dimensional censored data publication-title: Biom. J. doi: 10.1002/bimj.201600256 – volume: 44 start-page: 190 year: 2009 ident: ref641 article-title: Accelerated failure time models provide a useful statistical framework for aging research publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2008.10.005 – volume: 45 start-page: 89 year: 1993 ident: ref251 article-title: Consistent estimation under random censorship when covariables are present publication-title: J. Multivariate Anal. doi: 10.1006/jmva.1993.1028 – volume: 346 start-page: 1937 year: 2002 ident: ref731 article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa012914 – volume: 30 start-page: 74 year: 2002 ident: ref31 article-title: Variable selection for Cox’s proportional hazards model and frailty model publication-title: Ann. Stat. – year: 2013 ident: ref61 article-title: False variable selection rates in regression publication-title: arXiv – volume: 35 start-page: 2561 year: 2016 ident: ref271 article-title: Empirical extensions of the LASSO penalty to reduce the false discovery rate in high dimensional cox regression models publication-title: Stat. Med. doi: 10.1002/sim.6927 – volume: 415 start-page: 530 year: 2002 ident: ref311 article-title: Gene expression profiling predicts clinical outcome of breast cancer publication-title: Nature doi: 10.1038/415530a – volume: 32 start-page: 407 year: 2004 ident: ref401 article-title: Least angle regression publication-title: Ann. Stat. doi: 10.1214/009053604000000067 – volume: 21 start-page: 3001 year: 2005a ident: ref71 article-title: Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti422 – volume: 96 start-page: 323 year: 2009 ident: ref151 article-title: A generalized dantzig selector with shrinkage tuning publication-title: Biometrika doi: 10.1093/biomet/asp013 – volume: 16 start-page: 385 year: 1997 ident: ref291 article-title: The lasso method for variable selection in the cox model publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 |
SSID | ssj0021230 |
Score | 2.3011403 |
Snippet | The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is... |
SourceID | proquest pubmed crossref walterdegruyter |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | AFT model Algorithms Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - mortality Breast Neoplasms - pathology Collinearity Computer Simulation Elastic net Failure times Female Humans Lasso Linear Models Lymphoma, B-Cell - genetics Lymphoma, B-Cell - metabolism Lymphoma, B-Cell - mortality Neoplasm Metastasis Probability Ridge Stability Stability selection |
Title | Stability selection for lasso, ridge and elastic net implemented with AFT models |
URI | https://www.degruyter.com/doi/10.1515/sagmb-2017-0001 https://www.ncbi.nlm.nih.gov/pubmed/31586968 https://www.proquest.com/docview/2308812646 https://www.proquest.com/docview/2301889796 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZy2B7KLsvWzc02MMgcxrHsmU_pqNdGHSMkY6-GcuS27LGKbFNyX79zpEsJU0a6PZigizJIt8nnSPpXAj5KIsil-gck4c88ZiKEy-WSnoDgdHo_DwbSHRwPvkejU_Zt7PwrNNZtVpqatHP_9zpV_I_qEIZ4Ipesv-ArOsUCuA34AtPQBie98IYNEVt27roVTqdjTUbRI1YH4Eabyw8G1dQhrFZS1WjZ6QxGrem56PjiUmJU63qqqiH6jDOGE7g-rbhOQxJuQDPU5tit9eGdHKr-IU5Xj2RvXFWXZbNvPcTHbOXjDy8yOTcHO2W2fTytxMS49nNVSZbPmELk-XbHlAA7NbUza2pjMEO1Xht9tUdZRsLsb3q3ljfQx0Ko8rOpwKYAAIWddSlKLPX92sSztkd4o4Hukh1Byl2oC_fH5DdIed4y787-np49Mvt2EGsa49aO9o2NhR0cbA2httqzcZe5THZu9HmD1Kdz5tFba_btRYzeUL22u0HHRkuPSUdVT4jD01C0sVz8sMxijpGUWAU1Yz6TDWfKGBOWz5RoAFd4RNFPlHgEzV8ekFOj48mX8Zem3PDy0HU1F4g_ZwPZS6iIQsLISLFixDUOljqE-EHPIh4AXM5ikFvl0NVJEqCQowOYyISTIjgJdkpZ6V6TagULOCKgVDIJeOCZ2zAiihMGLQMoF2X9O1fluZtQHrMi3KVboGpSz65BtcmFsv2qvsWg7SdsFUKYMagz0Ys6pIP7jUsp3hHlpVq1ug6fhwnPIE6rwx27luBH8YYS6pLgjUwl9_YMh7Qit_cf_RvyaPlRNonO_W8Ue9A963F-5ahfwE5Z7GP |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-Cogk4wDbG6IDNkzjssLRJ49jJsSC6bivVDu3UWxR_pJvWphNNhMpfv-ckDVDohV1jv8Txe7Z_z-8L4EzFsVQmOEZ6PLCo9gPLV1pZtjDZ6BwZ2coEOF_1WXdIv4280QZcLGNhjFul0uPrbJEWGVKbaiYzc1FW5RrAE7g5j8ZTgRzGLdaglOavdDrZhC1jQ6M12Gp_Ob_8WelduDnbZVafJ2gfHkiPUOYu7N3khutqVPfOn84-qOXIC7eTP40sFQ15u5LU8T9_7SXslfiUtAuBegUbOnkNL4qKlYsD-IHgNHenXZB5XkEH2UoQ9xIDwmefSR7-RaJEEY1P8B0k0Sn5PS291LUi5uKXtDsDktfgmb-BYedycNG1yqIMlsS9KLVc5UjeUlKwFvViIZjmMSqzqCfagXBc7jIeI7OZj8BOtXQcaIWIyUQUCSaoEO4h1JJZoo-AKEFdrinuGlJRLnhEbRozL6BI6SJdHRpLzoSyzFhuCmdMQqO54FyF-VyFZq5yI3odPlUEf4tkHeu7nixZHZardh6inPgIeBhldfhYNeN6M0aUKNGzLO_j-H7AA-zzthCR6luu4_km2VAd3BWZufvGmvEgbHr3LKoPsN0dXPXC3tf-92PYwaag8DU8gVp6nelTxEypeF-uiX8zhhV4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT4QwFH5xiUYP7su41sSDB5mBobRwHJdxNx7UeCN0wRiVMQ7EjL_eV2Bwv-iV9kF577X9XvsWgE0Vx1KZ4Bjp8cCi2g8sX2ll2cJko3NkZCsT4Hx2zg6v6PGNd_MhFsa4VSp9-5z10iJDakN1ZGYOyqpcA7gDN7rR7aNACeMSa1BK40nFgzCMxoqPBthw62Bn_7oyu3BttsukPj-Qft6PvoHMcZh4ye-tq0F92H7akyD7Ay-8Tu7rWSrq8vVLTsf__dkUTJTolLQKdZqGAZ3MwEhRr7I3CxcITXNn2h7p5vVzUKgEUS8xELyzTfLgLxIlimh8gu8giU7J3WPpo64VMce-pNW-JHkFnu4cXLX3L3cPrbIkgyVxJUotVzmSN5UUrEm9WAimeYymLDLeDoTjcpfxGEXNfIR1qqnjQCvESyaeSDBBhXDnYSjpJHoRiBLU5ZrimiEV5YJH1KYx8wKKlC7S1aDeF0woy3zlpmzGQ2jsFmRVmLMqNKzKr9BrsFURPBWpOn7vutKXdFjO2W6IauIj3GGU1WCjasbZZq5QokR3sryP4_sBD7DPQqEh1bdcx_NNqqEauF9U5v0bv4wHQdPSn6jWYfRirx2eHp2fLMMYtgSFo-EKDKXPmV5FwJSKtXJGvAH-1hQo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+selection+for+lasso%2C+ridge+and+elastic+net+implemented+with+AFT+models&rft.jtitle=Statistical+applications+in+genetics+and+molecular+biology&rft.au=Khan%2C+Md+Hasinur+Rahaman&rft.au=Bhadra%2C+Anamika&rft.au=Howlader%2C+Tamanna&rft.date=2019-10-01&rft.issn=1544-6115&rft.eissn=1544-6115&rft.volume=18&rft.issue=5&rft_id=info:doi/10.1515%2Fsagmb-2017-0001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_sagmb_2017_0001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1544-6115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1544-6115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1544-6115&client=summon |