Matching formulation of the Staff Transfer Problem: meta-heuristic approaches

In this paper, the Staff Transfer Problem (STP) in Human Resource Management is addressed as a stable matching problem. Earlier, formulation of this problem was of scheduling/allocation type. Here, the stable matching formulation is completely a new and more practical approach to the problem. This n...

Full description

Saved in:
Bibliographic Details
Published inOpsearch Vol. 57; no. 3; pp. 629 - 668
Main Authors Acharyya, S., Datta, A. K.
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the Staff Transfer Problem (STP) in Human Resource Management is addressed as a stable matching problem. Earlier, formulation of this problem was of scheduling/allocation type. Here, the stable matching formulation is completely a new and more practical approach to the problem. This new formulation involves two preference lists: the first list contains the offices/locations preferred by the employees undergoing transfer and the second list contains the employees preferred by the employer of an office/location where those employees want to be transferred. The capacity of an office/location would act as a hard constraint. While matching these two lists, the objective is to maximize the number of transfers and at the same time to stabilize the matching, i.e., to minimize the number of blocking pairs. The resulting STP instance belongs to an instance of Maximum Size Minimum Blocking Pair Stable Matching with incomplete preference list (MAX SIZE MIN BP SMI) and has been proved in this paper to be NP-hard. As the problem is new in formulation, no previous work, method or result is available. There was no preference in selecting meta-heuristics. Among a large number of existing meta-heuristics, some most widely used meta-heuristics, namely, Simulated Annealing, Genetic Algorithms, Tabu Search and some variants of them have been chosen. Based on them four meta-heuristic approaches have been proposed, namely, btSA_match , gtSA_match , GA_match and TS_match . The variants btSA_match and gtSA_match are obtained from modifications made upon Simulated Annealing. EGA_match and TS_match are based on modified Genetic Algorithms and Tabu Search respectively. As there is no previous result in the existing literature, the performance has been compared among these four methods. It is observed that, variants of Simulated Annealing (SA) outperform others w.r.t. the performance metrics. The SA-variant with greedy nature, incorporated with a tabu list (gtSA_match) has shown that the best result on the basis of statistical analysis.
AbstractList In this paper, the Staff Transfer Problem (STP) in Human Resource Management is addressed as a stable matching problem. Earlier, formulation of this problem was of scheduling/allocation type. Here, the stable matching formulation is completely a new and more practical approach to the problem. This new formulation involves two preference lists: the first list contains the offices/locations preferred by the employees undergoing transfer and the second list contains the employees preferred by the employer of an office/location where those employees want to be transferred. The capacity of an office/location would act as a hard constraint. While matching these two lists, the objective is to maximize the number of transfers and at the same time to stabilize the matching, i.e., to minimize the number of blocking pairs. The resulting STP instance belongs to an instance of Maximum Size Minimum Blocking Pair Stable Matching with incomplete preference list (MAX SIZE MIN BP SMI) and has been proved in this paper to be NP-hard. As the problem is new in formulation, no previous work, method or result is available. There was no preference in selecting meta-heuristics. Among a large number of existing meta-heuristics, some most widely used meta-heuristics, namely, Simulated Annealing, Genetic Algorithms, Tabu Search and some variants of them have been chosen. Based on them four meta-heuristic approaches have been proposed, namely, btSA_match , gtSA_match , GA_match and TS_match . The variants btSA_match and gtSA_match are obtained from modifications made upon Simulated Annealing. EGA_match and TS_match are based on modified Genetic Algorithms and Tabu Search respectively. As there is no previous result in the existing literature, the performance has been compared among these four methods. It is observed that, variants of Simulated Annealing (SA) outperform others w.r.t. the performance metrics. The SA-variant with greedy nature, incorporated with a tabu list (gtSA_match) has shown that the best result on the basis of statistical analysis.
In this paper, the Staff Transfer Problem (STP) in Human Resource Management is addressed as a stable matching problem. Earlier, formulation of this problem was of scheduling/allocation type. Here, the stable matching formulation is completely a new and more practical approach to the problem. This new formulation involves two preference lists: the first list contains the offices/locations preferred by the employees undergoing transfer and the second list contains the employees preferred by the employer of an office/location where those employees want to be transferred. The capacity of an office/location would act as a hard constraint. While matching these two lists, the objective is to maximize the number of transfers and at the same time to stabilize the matching, i.e., to minimize the number of blocking pairs. The resulting STP instance belongs to an instance of Maximum Size Minimum Blocking Pair Stable Matching with incomplete preference list (MAX SIZE MIN BP SMI) and has been proved in this paper to be NP-hard. As the problem is new in formulation, no previous work, method or result is available. There was no preference in selecting meta-heuristics. Among a large number of existing meta-heuristics, some most widely used meta-heuristics, namely, Simulated Annealing, Genetic Algorithms, Tabu Search and some variants of them have been chosen. Based on them four meta-heuristic approaches have been proposed, namely, btSA_match, gtSA_match, GA_match and TS_match. The variants btSA_match and gtSA_match are obtained from modifications made upon Simulated Annealing. EGA_match and TS_match are based on modified Genetic Algorithms and Tabu Search respectively. As there is no previous result in the existing literature, the performance has been compared among these four methods. It is observed that, variants of Simulated Annealing (SA) outperform others w.r.t. the performance metrics. The SA-variant with greedy nature, incorporated with a tabu list (gtSA_match) has shown that the best result on the basis of statistical analysis.
Author Acharyya, S.
Datta, A. K.
Author_xml – sequence: 1
  givenname: S.
  surname: Acharyya
  fullname: Acharyya, S.
  email: srikalpa8@gmail.com
  organization: Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology
– sequence: 2
  givenname: A. K.
  surname: Datta
  fullname: Datta, A. K.
  organization: Department of Computer and System Sciences, Visva Bharati University
BookMark eNp9kM1KAzEYRYNUsK2-gKuA62j-ZjJxJ8U_aFGwrkOaSTpTOpOaZCi-vdER3Ln6vsW598KZgUnvewvAJcHXBGNxEwktpECYSIQxZxQdT8AUS1EgzCie5B8zjFhViTMwi3GHcclxxadgtdLJNG2_hc6Hbtjr1PoeegdTY-Fb0s7BddB9dDbA1-A3e9vdws4mjRo7hDam1kB9OASvTWPjOTh1eh_txe-dg_eH-_XiCS1fHp8Xd0tkmCgTYjXRwnJXS0FNwaqS1ZXmVW2Yc6UwlMiNI7jY1LaUGXKUMSocr5mlhJq6YnNwNfbm4Y_BxqR2fgh9nlSUU8EIl0Rmio6UCT7GYJ06hLbT4VMRrL61qVGbytrUjzZ1zCE2hmKG-60Nf9X_pL4AC0dy6Q
CitedBy_id crossref_primary_10_1007_s43681_023_00325_1
crossref_primary_10_1108_JEIM_11_2020_0436
Cites_doi 10.1016/j.ijpe.2018.07.021
10.1007/BF03398729
10.1007/s40092-015-0111-0
10.1016/j.ejor.2008.06.042
10.1109/CSAE.2011.5952515
10.1016/j.cie.2016.12.027
10.1016/j.ejor.2009.05.024
10.1007/s00500-017-2685-5
10.1016/j.cie.2017.05.023
10.1016/j.tcs.2010.02.003
10.1080/00207543.2018.1535724
10.1016/j.cor.2014.08.006
10.1109/CEC.2008.4630914
10.1162/evco.1999.7.1.1
10.1016/j.cie.2017.06.008
10.1007/s00500-018-3139-4
10.1109/TCBB.2017.2771360
10.1109/ICCITECHN.2008.4803070
10.1007/978-3-540-72397-4_12
10.1007/s00500-015-1912-1
10.1007/s00500-018-3098-9
10.1016/j.ejor.2009.03.034
10.1016/j.ejor.2007.05.059
10.1287/opre.39.3.378
10.1007/s12539-017-0276-x
10.1016/j.asoc.2018.09.027
10.1016/j.ejor.2004.09.010
10.1007/s00500-017-2792-3
ContentType Journal Article
Copyright Operational Research Society of India 2019
Operational Research Society of India 2019.
Copyright_xml – notice: Operational Research Society of India 2019
– notice: Operational Research Society of India 2019.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1007/s12597-019-00432-w
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Business
EISSN 0975-0320
EndPage 668
ExternalDocumentID 10_1007_s12597_019_00432_w
GroupedDBID -57
-5G
-BR
-EM
-~C
-~X
06D
0R~
0VY
1N0
203
29N
2JN
2KG
2LR
2VQ
30V
3V.
4.4
406
408
40D
40E
5VS
67Z
7WY
8FE
8FG
8FL
8TC
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFFNX
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
AYQZM
BA0
BAPOH
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IKXTQ
ITM
IWAJR
IXC
I~X
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
K8~
KOV
L6V
LLZTM
M0C
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
P9M
PQBIZ
PQQKQ
PROAC
PT4
PTHSS
Q2X
R9I
RSV
S1Z
S27
S3B
SBE
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7Z
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
ROL
SJYHP
7TB
8FD
AAYZH
FR3
ID FETCH-LOGICAL-c376t-3d1a7e4fd972c53863d8a48dc3ff67c219bf105bde69fd9f23327f4d3e212cd83
IEDL.DBID AGYKE
ISSN 0030-3887
IngestDate Mon Nov 04 11:21:23 EST 2024
Thu Sep 12 16:46:13 EDT 2024
Sat Dec 16 12:03:19 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Human resource planning
Staff transfer
Stable matching
Optimization
Meta-heuristics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-3d1a7e4fd972c53863d8a48dc3ff67c219bf105bde69fd9f23327f4d3e212cd83
PQID 2427314919
PQPubID 326266
PageCount 40
ParticipantIDs proquest_journals_2427314919
crossref_primary_10_1007_s12597_019_00432_w
springer_journals_10_1007_s12597_019_00432_w
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
PublicationTitle Opsearch
PublicationTitleAbbrev OPSEARCH
PublicationYear 2020
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References PeteghemVVVanhouckeMA genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problemEur. J. Oper. Res.2010201240941810.1016/j.ejor.2009.03.034
MaiyarLMThakkarJJA combined tactical and operational deterministic food grain transportation model: particle swarm based optimization approachComput. Ind. Eng.2017110304210.1016/j.cie.2017.05.023
BierwirthCMattfeldDCProduction scheduling and rescheduling with genetic algorithmsEvol. Comput.19997111710.1162/evco.1999.7.1.1
GuoZWangSYueXYangHGlobal harmony search with generalized opposition-based learningSoft. Comput.20172182129213710.1007/s00500-015-1912-1
Acharyya, S., Bagchi, A.: A SAT approach for solving the Staff Transfer Problem. In: Proceedings of the IMECS’08, Hong Kong, pp. 64–68 (2008)
JohnsonDSAragonCRMcGeochLASchevonCOptimization by simulated annealing: an experimental evaluation, part II, graph colouring and number partitioningOper. Res.19913937840610.1287/opre.39.3.378
BrandãoJA deterministic tabu search algorithm for the fleet size and mix vehicle routing problemEur. J. Oper. Res.2009195371672810.1016/j.ejor.2007.05.059
Acharyya, S., Bagchi, A.: Staff transfers in a large organization: a constraint satisfaction approach. In: Proceedings of the KBCS’98, Mumbai, pp. 51–63 (1998)
MacAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: Proceedings of the AAAI’97, pp. 321–326 (1997)
Acharyya, S.: WalkSAT approach in solving the staff transfer problem. In: Proceedings of the ICCIT’08, pp. 1132–1137. IEEE Xplore, Khulna (2008)
GoldbergDEGenetic Algorithms in Search, Optimization, and Machine Learning1989BostonAddison-Wesley Professional
CuiLLiGZhuZWenZLuNLuJA novel differential evolution algorithm with a self-adaptation parameter control method by differential evolutionSoft Comput.201822186171619010.1007/s00500-017-2685-5
GusfieldDIrvingRWThe Stable Marriage Problem—Structure and Algorithms1999CambridgeMIT Press
BeerMHuman Resource Management: A General Manager’s Perspective, Text and Cases1985New YorkThe Free Press
Domberger, R., Frey, L., Hanne, T.: Single and multiobjective optimization of the train staff planning problem using genetic algorithms. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 970–977. IEEE (2008)
KrajewskaMAKopferHTransportation planning in freight forwarding companies: tabu search algorithm for the integrated operational transportation planning problemEur. J. Oper. Res.2009197274175110.1016/j.ejor.2008.06.042
MeiriRZahaviJUsing simulated annealing to optimize the feature selection problem in marketing applicationsEur. J. Oper. Res.2006171384285810.1016/j.ejor.2004.09.010
JafariHSalmasiNMaximizing the nurses’ preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithmJ. Ind. Eng. Int.201511343945810.1007/s40092-015-0111-0
Acharyya, S: Simulated annealing variants in solving the staff transfer problem. In: Proceedings of the ICAEE’11, Dhaka, pp. 331–336 (2011)
HuangHLvLYeSHaoZParticle swarm optimization with convergence speed controller for large-scale numerical optimizationSoft Comput.201923124421443710.1007/s00500-018-3098-9
Manlove, D.F., O’Malley, G., Prosser, P., Unsworth C.A.: Constraint programming approach to the hospitals/residents problem. Technical Report TR-2007-236. Department of Computing Science, University of Glasgow (2007)
Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the AAAI’94, pp. 337–343 (1994)
García-VilloriaAPastorRSolving the response time variability problem by means of a genetic algorithmEur. J. Oper. Res.2010202232032710.1016/j.ejor.2009.05.024
BiswasSDuttaSAcharyyaSIdentification of disease critical genes using collective meta-heuristic approaches: an application to preeclampsiaInterdiscip Sci Comput Life Sci201911344445910.1007/s12539-017-0276-x
AcharyyaSBagchiAConstraint satisfaction methods for solving the staff transfer problemOpsearch200542317919810.1007/BF03398729
MogaleDGKumarSKMárquezFPGTiwariMKBulk wheat transportation and storage problem of public distribution systemComput. Ind. Eng.2017104809710.1016/j.cie.2016.12.027
JanaBMitraSAcharyyaSRepository and mutation based particle swarm optimization (RMPSO): a new PSO variant applied to reconstruction of gene regulatory networkAppl. Soft Comput.20197433035510.1016/j.asoc.2018.09.027
YadavNKRescheduling-based congestion management scheme using particle swarm optimization with distributed acceleration constantsSoft Comput.201923384785710.1007/s00500-017-2792-3
PengBLüZChengTCEA tabu search/path relinking algorithm to solve the job shop scheduling problemComput. Oper. Res.20155315416410.1016/j.cor.2014.08.006
BiswasSAcharyyaSA Bi-objective RNN model to reconstruct gene regulatory network: a modified multi-objective simulated annealing approachIEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)20181562053205910.1109/TCBB.2017.2771360
Fukunaga, A.S.: Variable selection heuristics in local search for SAT. In: Proceedings of the AAAI’97, pp. 275–280 (1997)
BiroPManloveDFMittal S: Size versus stability in the marriage probleTheor. Comput. Sci.201041116–181828184110.1016/j.tcs.2010.02.003
ReevesCRModern Heuristic Techniques for Combinatorial Problems1993HyderabadOrient Longman
MaiyarLMChoSTiwariMKThobenKDKiritsisDOptimising online review inspired product attribute classification using the self-learning particle swarm-based Bayesian learning approachInt. J. Prod. Res.201957103099312010.1080/00207543.2018.1535724
Acharyya, S., Bagchi, A.: SAT approaches for solving the staff transfer problem. In: Proceedings of the CSAE’11. IEEE Xplore: Shanghai, pp. 492–496 (2011)
GloverFLagunaMTabu Search1998DordrechtKluwer Academic
WangLHuHLiuRZhouXAn improved differential harmony search algorithm for function optimization problemsSoft Comput.201923134827485210.1007/s00500-018-3139-4
PapadimitriouCHSteiglitzKCombinatorial optimization: algorithms and complexity1982Upper Saddle RiverPrentice Hall
Hoos, H. H.: On the run-time behavior of stochastic local search algorithms for SAT. In: Proceedings of the AAAI’99, pp. 661–666 (1999)
MogaleDGDolguiAKandhwayRKumarSKTiwariMKA multi-period inventory transportation model for tactical planning of food grain supply chainComput. Ind. Eng.201711037939410.1016/j.cie.2017.06.008
DesslerGHuman Resource Management1997New DelhiPrentice Hall
MaiyarLMThakkarJJModelling and analysis of intermodal food grain transportation under hub disruption towards sustainabilityInt. J. Prod. Econ.201921728129710.1016/j.ijpe.2018.07.021
A García-Villoria (432_CR24) 2010; 202
CH Papadimitriou (432_CR42) 1982
NK Yadav (432_CR33) 2019; 23
432_CR18
VV Peteghem (432_CR25) 2010; 201
LM Maiyar (432_CR31) 2017; 110
D Gusfield (432_CR14) 1999
L Wang (432_CR39) 2019; 23
H Huang (432_CR34) 2019; 23
432_CR9
432_CR8
CR Reeves (432_CR5) 1993
432_CR7
P Biro (432_CR13) 2010; 411
S Biswas (432_CR20) 2018; 15
J Brandão (432_CR27) 2009; 195
432_CR6
H Jafari (432_CR19) 2015; 11
DG Mogale (432_CR41) 2017; 110
432_CR3
S Acharyya (432_CR4) 2005; 42
DS Johnson (432_CR16) 1991; 39
G Dessler (432_CR2) 1997
M Beer (432_CR1) 1985
R Meiri (432_CR17) 2006; 171
432_CR23
F Glover (432_CR26) 1998
DE Goldberg (432_CR21) 1989
B Peng (432_CR29) 2015; 53
LM Maiyar (432_CR35) 2019; 57
MA Krajewska (432_CR28) 2009; 197
S Biswas (432_CR38) 2019; 11
432_CR15
L Cui (432_CR40) 2018; 22
LM Maiyar (432_CR32) 2019; 217
432_CR12
432_CR11
Z Guo (432_CR37) 2017; 21
432_CR10
B Jana (432_CR36) 2019; 74
C Bierwirth (432_CR22) 1999; 7
DG Mogale (432_CR30) 2017; 104
References_xml – volume-title: The Stable Marriage Problem—Structure and Algorithms
  year: 1999
  ident: 432_CR14
  contributor:
    fullname: D Gusfield
– volume: 217
  start-page: 281
  year: 2019
  ident: 432_CR32
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2018.07.021
  contributor:
    fullname: LM Maiyar
– volume-title: Human Resource Management
  year: 1997
  ident: 432_CR2
  contributor:
    fullname: G Dessler
– volume: 42
  start-page: 179
  issue: 3
  year: 2005
  ident: 432_CR4
  publication-title: Opsearch
  doi: 10.1007/BF03398729
  contributor:
    fullname: S Acharyya
– volume: 11
  start-page: 439
  issue: 3
  year: 2015
  ident: 432_CR19
  publication-title: J. Ind. Eng. Int.
  doi: 10.1007/s40092-015-0111-0
  contributor:
    fullname: H Jafari
– volume: 197
  start-page: 741
  issue: 2
  year: 2009
  ident: 432_CR28
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2008.06.042
  contributor:
    fullname: MA Krajewska
– volume-title: Human Resource Management: A General Manager’s Perspective, Text and Cases
  year: 1985
  ident: 432_CR1
  contributor:
    fullname: M Beer
– ident: 432_CR12
  doi: 10.1109/CSAE.2011.5952515
– volume: 104
  start-page: 80
  year: 2017
  ident: 432_CR30
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.12.027
  contributor:
    fullname: DG Mogale
– volume: 202
  start-page: 320
  issue: 2
  year: 2010
  ident: 432_CR24
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.05.024
  contributor:
    fullname: A García-Villoria
– volume-title: Genetic Algorithms in Search, Optimization, and Machine Learning
  year: 1989
  ident: 432_CR21
  contributor:
    fullname: DE Goldberg
– volume: 22
  start-page: 6171
  issue: 18
  year: 2018
  ident: 432_CR40
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2685-5
  contributor:
    fullname: L Cui
– volume: 110
  start-page: 30
  year: 2017
  ident: 432_CR31
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.05.023
  contributor:
    fullname: LM Maiyar
– volume: 411
  start-page: 1828
  issue: 16–18
  year: 2010
  ident: 432_CR13
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2010.02.003
  contributor:
    fullname: P Biro
– volume: 57
  start-page: 3099
  issue: 10
  year: 2019
  ident: 432_CR35
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2018.1535724
  contributor:
    fullname: LM Maiyar
– ident: 432_CR6
– volume: 53
  start-page: 154
  year: 2015
  ident: 432_CR29
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2014.08.006
  contributor:
    fullname: B Peng
– ident: 432_CR23
  doi: 10.1109/CEC.2008.4630914
– ident: 432_CR8
– volume: 7
  start-page: 1
  issue: 1
  year: 1999
  ident: 432_CR22
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1999.7.1.1
  contributor:
    fullname: C Bierwirth
– volume: 110
  start-page: 379
  year: 2017
  ident: 432_CR41
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.06.008
  contributor:
    fullname: DG Mogale
– volume: 23
  start-page: 4827
  issue: 13
  year: 2019
  ident: 432_CR39
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3139-4
  contributor:
    fullname: L Wang
– volume-title: Modern Heuristic Techniques for Combinatorial Problems
  year: 1993
  ident: 432_CR5
  contributor:
    fullname: CR Reeves
– volume: 15
  start-page: 2053
  issue: 6
  year: 2018
  ident: 432_CR20
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)
  doi: 10.1109/TCBB.2017.2771360
  contributor:
    fullname: S Biswas
– ident: 432_CR11
  doi: 10.1109/ICCITECHN.2008.4803070
– ident: 432_CR18
– ident: 432_CR15
  doi: 10.1007/978-3-540-72397-4_12
– volume: 21
  start-page: 2129
  issue: 8
  year: 2017
  ident: 432_CR37
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-015-1912-1
  contributor:
    fullname: Z Guo
– volume: 23
  start-page: 4421
  issue: 12
  year: 2019
  ident: 432_CR34
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3098-9
  contributor:
    fullname: H Huang
– volume: 201
  start-page: 409
  issue: 2
  year: 2010
  ident: 432_CR25
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.03.034
  contributor:
    fullname: VV Peteghem
– ident: 432_CR3
– volume: 195
  start-page: 716
  issue: 3
  year: 2009
  ident: 432_CR27
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.05.059
  contributor:
    fullname: J Brandão
– volume: 39
  start-page: 378
  year: 1991
  ident: 432_CR16
  publication-title: Oper. Res.
  doi: 10.1287/opre.39.3.378
  contributor:
    fullname: DS Johnson
– volume: 11
  start-page: 444
  issue: 3
  year: 2019
  ident: 432_CR38
  publication-title: Interdiscip Sci Comput Life Sci
  doi: 10.1007/s12539-017-0276-x
  contributor:
    fullname: S Biswas
– ident: 432_CR7
– ident: 432_CR10
– ident: 432_CR9
– volume-title: Tabu Search
  year: 1998
  ident: 432_CR26
  contributor:
    fullname: F Glover
– volume-title: Combinatorial optimization: algorithms and complexity
  year: 1982
  ident: 432_CR42
  contributor:
    fullname: CH Papadimitriou
– volume: 74
  start-page: 330
  year: 2019
  ident: 432_CR36
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.027
  contributor:
    fullname: B Jana
– volume: 171
  start-page: 842
  issue: 3
  year: 2006
  ident: 432_CR17
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2004.09.010
  contributor:
    fullname: R Meiri
– volume: 23
  start-page: 847
  issue: 3
  year: 2019
  ident: 432_CR33
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2792-3
  contributor:
    fullname: NK Yadav
SSID ssj0064084
Score 2.202536
Snippet In this paper, the Staff Transfer Problem (STP) in Human Resource Management is addressed as a stable matching problem. Earlier, formulation of this problem...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 629
SubjectTerms Application Article
Business and Management
Computer simulation
Employees
Genetic algorithms
Heuristic
Heuristic methods
Human resource management
Management
Matching
Mathematics
Operations research
Operations Research/Decision Theory
Performance measurement
Simulated annealing
Statistical analysis
Tabu search
Title Matching formulation of the Staff Transfer Problem: meta-heuristic approaches
URI https://link.springer.com/article/10.1007/s12597-019-00432-w
https://www.proquest.com/docview/2427314919
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60BdGDj6pYrWUP3jQlySabjbcirUWpeGihnkKyDwSxlTal4K93skmMz0NzW7JsyMzuzDfszDcAFyHT6FZtadmC-hig8IzyFmOeMA7QIwhfhoanYPjABmPvbuJPqjpuk-xe3kgaQ13VuiFQz7IkQ8vQyFmrTagXhaf17u3Tfa80wAy_mJMv04w6lgdFrczfq3z3RxXI_HEvatxNfw9GZdFOnmXy0lmmSUe8_-ZwXOdP9mG3gJ-km--XA9hQ0wZsldnvDdj5wk-Io-EnqeviEIY4MpmXJAO6RdsvMtME55CsDbAmxvNpNSePeZ-aa_Kq0th6VsucEJqUFOZqcQTjfm90M7CKbgyWQCOUWlQ6caA8LcPAFWgmGZU89rgUVGsWCLR8iUawlkjFQpykXUrdQHuSKlSSkJweQ206m6oTINKRwmF2HLtcefjEmmsEZtrh3LddxZpwWeokestJN6KKXjmTXoTSi4z0olUTWqXaouIALiJEHgHF6M8Jm3BVqqF6_f9qp-tNP4NtN4vATdZZC2rpfKnOEaakSbvYlm3YHLvdD14b3a8
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMcfOsEfB9GpOJ2agzcttE2bpt6GOKauw8MGu4WuSfDiJmvH_n1f0taq6MHeQkMKr-1730dePg_gOmYaw6orHTejISYo3CBvMeeJ0wgjQhbK2HIKkhEbTIKnaTitDoXldbV7vSVpPXVz2A2VuimTjB3LkXPWm7Bl-OqGmD_xe7X_ZfjAkr1MDTmWR9VRmd_X-B6OGo35Y1vURpv-AexXMpH0yvd6CBtq3obtukq9DXtfOII4Sj7hq_kRJDiyFZLECNKqPRdZaIJziGnXq4mNUFotyUvZT-aOvKkidV7VqgQ3kxo1rvJjmPQfxvcDp-qa4GToLAqHSi-NVKBlHPkZujNGJU8DLjOqNYsy9FAzjaJqJhWLcZL2KfUjHUiqMIplktMTaM0Xc3UKRHoy85ibpj5XAV6p5hoFlPY4D11fsQ7c1MYT7yUcQzQYZGNqgaYW1tRi3YFubV9R_Si5QIUQUczSvLgDt7XNm9t_r3b2v-lXsDMYJ0MxfBw9n8Oub7JmWynWhVaxXKkLlBbF7NJ-SR_l_sNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oJkQPRlEjiroHb9pAu-12642oBD8gHCThtind3XixECjh7zu7bS0aPdjbppNtMm3nvcnOvAG4jphGWO1Ip5PQABMUbiRvMeeJ4hARIQlkZHUKBkPWH_vPk2Cy0cVvq93LI8m8p8GoNKVZey51u2p8Q9ZuSiYjx2rKOett2EEooqaob-x1y1jM8OG5DjM1KrI8LNpmft_jOzRVfPPHEalFnt4B7BeUkXTzd3wIWyptQL2sWG_A3oamIK4GX0KsyyMY4MpWSxJDTotRXWSmCdoQM7pXE4tWWi3IKJ8tc0c-VBY772qViziTUnZcLY9h3Ht8u-87xQQFJ8HAkTlUunGofC2j0EswtDEqeexzmVCtWZhgtJpqJFhTqViERtqj1Au1L6lCREskpydQS2epOgUiXZm4rBPHHlc-XrHmGsmUdjkPOp5iTbgpnSfmuVCGqCSRjasFulpYV4t1E1qlf0Xx0ywFsoWQYsbmRk24LX1e3f57t7P_mV9BffTQE69Pw5dz2PVMAm2LxlpQyxYrdYEsI5te2g_pE4rrx6U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matching+formulation+of+the+Staff+Transfer+Problem%3A+meta-heuristic+approaches&rft.jtitle=Opsearch&rft.au=Acharyya%2C+S.&rft.au=Datta%2C+A.+K.&rft.date=2020-09-01&rft.pub=Springer+India&rft.issn=0030-3887&rft.eissn=0975-0320&rft.volume=57&rft.issue=3&rft.spage=629&rft.epage=668&rft_id=info:doi/10.1007%2Fs12597-019-00432-w&rft.externalDocID=10_1007_s12597_019_00432_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3887&client=summon