Matching formulation of the Staff Transfer Problem: meta-heuristic approaches
In this paper, the Staff Transfer Problem (STP) in Human Resource Management is addressed as a stable matching problem. Earlier, formulation of this problem was of scheduling/allocation type. Here, the stable matching formulation is completely a new and more practical approach to the problem. This n...
Saved in:
Published in | Opsearch Vol. 57; no. 3; pp. 629 - 668 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the Staff Transfer Problem (STP) in Human Resource Management is addressed as a stable matching problem. Earlier, formulation of this problem was of scheduling/allocation type. Here, the stable matching formulation is completely a new and more practical approach to the problem. This new formulation involves two preference lists: the first list contains the offices/locations preferred by the employees undergoing transfer and the second list contains the employees preferred by the employer of an office/location where those employees want to be transferred. The capacity of an office/location would act as a hard constraint. While matching these two lists, the objective is to maximize the number of transfers and at the same time to stabilize the matching, i.e., to minimize the number of blocking pairs. The resulting STP instance belongs to an instance of Maximum Size Minimum Blocking Pair Stable Matching with incomplete preference list (MAX SIZE MIN BP SMI) and has been proved in this paper to be NP-hard. As the problem is new in formulation, no previous work, method or result is available. There was no preference in selecting meta-heuristics. Among a large number of existing meta-heuristics, some most widely used meta-heuristics, namely, Simulated Annealing, Genetic Algorithms, Tabu Search and some variants of them have been chosen. Based on them four meta-heuristic approaches have been proposed, namely,
btSA_match
,
gtSA_match
,
GA_match
and
TS_match
. The variants
btSA_match
and
gtSA_match
are obtained from modifications made upon Simulated Annealing.
EGA_match
and
TS_match
are based on modified Genetic Algorithms and Tabu Search respectively. As there is no previous result in the existing literature, the performance has been compared among these four methods. It is observed that, variants of Simulated Annealing (SA) outperform others w.r.t. the performance metrics. The SA-variant with greedy nature, incorporated with a tabu list (gtSA_match) has shown that the best result on the basis of statistical analysis. |
---|---|
AbstractList | In this paper, the Staff Transfer Problem (STP) in Human Resource Management is addressed as a stable matching problem. Earlier, formulation of this problem was of scheduling/allocation type. Here, the stable matching formulation is completely a new and more practical approach to the problem. This new formulation involves two preference lists: the first list contains the offices/locations preferred by the employees undergoing transfer and the second list contains the employees preferred by the employer of an office/location where those employees want to be transferred. The capacity of an office/location would act as a hard constraint. While matching these two lists, the objective is to maximize the number of transfers and at the same time to stabilize the matching, i.e., to minimize the number of blocking pairs. The resulting STP instance belongs to an instance of Maximum Size Minimum Blocking Pair Stable Matching with incomplete preference list (MAX SIZE MIN BP SMI) and has been proved in this paper to be NP-hard. As the problem is new in formulation, no previous work, method or result is available. There was no preference in selecting meta-heuristics. Among a large number of existing meta-heuristics, some most widely used meta-heuristics, namely, Simulated Annealing, Genetic Algorithms, Tabu Search and some variants of them have been chosen. Based on them four meta-heuristic approaches have been proposed, namely,
btSA_match
,
gtSA_match
,
GA_match
and
TS_match
. The variants
btSA_match
and
gtSA_match
are obtained from modifications made upon Simulated Annealing.
EGA_match
and
TS_match
are based on modified Genetic Algorithms and Tabu Search respectively. As there is no previous result in the existing literature, the performance has been compared among these four methods. It is observed that, variants of Simulated Annealing (SA) outperform others w.r.t. the performance metrics. The SA-variant with greedy nature, incorporated with a tabu list (gtSA_match) has shown that the best result on the basis of statistical analysis. In this paper, the Staff Transfer Problem (STP) in Human Resource Management is addressed as a stable matching problem. Earlier, formulation of this problem was of scheduling/allocation type. Here, the stable matching formulation is completely a new and more practical approach to the problem. This new formulation involves two preference lists: the first list contains the offices/locations preferred by the employees undergoing transfer and the second list contains the employees preferred by the employer of an office/location where those employees want to be transferred. The capacity of an office/location would act as a hard constraint. While matching these two lists, the objective is to maximize the number of transfers and at the same time to stabilize the matching, i.e., to minimize the number of blocking pairs. The resulting STP instance belongs to an instance of Maximum Size Minimum Blocking Pair Stable Matching with incomplete preference list (MAX SIZE MIN BP SMI) and has been proved in this paper to be NP-hard. As the problem is new in formulation, no previous work, method or result is available. There was no preference in selecting meta-heuristics. Among a large number of existing meta-heuristics, some most widely used meta-heuristics, namely, Simulated Annealing, Genetic Algorithms, Tabu Search and some variants of them have been chosen. Based on them four meta-heuristic approaches have been proposed, namely, btSA_match, gtSA_match, GA_match and TS_match. The variants btSA_match and gtSA_match are obtained from modifications made upon Simulated Annealing. EGA_match and TS_match are based on modified Genetic Algorithms and Tabu Search respectively. As there is no previous result in the existing literature, the performance has been compared among these four methods. It is observed that, variants of Simulated Annealing (SA) outperform others w.r.t. the performance metrics. The SA-variant with greedy nature, incorporated with a tabu list (gtSA_match) has shown that the best result on the basis of statistical analysis. |
Author | Acharyya, S. Datta, A. K. |
Author_xml | – sequence: 1 givenname: S. surname: Acharyya fullname: Acharyya, S. email: srikalpa8@gmail.com organization: Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology – sequence: 2 givenname: A. K. surname: Datta fullname: Datta, A. K. organization: Department of Computer and System Sciences, Visva Bharati University |
BookMark | eNp9kM1KAzEYRYNUsK2-gKuA62j-ZjJxJ8U_aFGwrkOaSTpTOpOaZCi-vdER3Ln6vsW598KZgUnvewvAJcHXBGNxEwktpECYSIQxZxQdT8AUS1EgzCie5B8zjFhViTMwi3GHcclxxadgtdLJNG2_hc6Hbtjr1PoeegdTY-Fb0s7BddB9dDbA1-A3e9vdws4mjRo7hDam1kB9OASvTWPjOTh1eh_txe-dg_eH-_XiCS1fHp8Xd0tkmCgTYjXRwnJXS0FNwaqS1ZXmVW2Yc6UwlMiNI7jY1LaUGXKUMSocr5mlhJq6YnNwNfbm4Y_BxqR2fgh9nlSUU8EIl0Rmio6UCT7GYJ06hLbT4VMRrL61qVGbytrUjzZ1zCE2hmKG-60Nf9X_pL4AC0dy6Q |
CitedBy_id | crossref_primary_10_1007_s43681_023_00325_1 crossref_primary_10_1108_JEIM_11_2020_0436 |
Cites_doi | 10.1016/j.ijpe.2018.07.021 10.1007/BF03398729 10.1007/s40092-015-0111-0 10.1016/j.ejor.2008.06.042 10.1109/CSAE.2011.5952515 10.1016/j.cie.2016.12.027 10.1016/j.ejor.2009.05.024 10.1007/s00500-017-2685-5 10.1016/j.cie.2017.05.023 10.1016/j.tcs.2010.02.003 10.1080/00207543.2018.1535724 10.1016/j.cor.2014.08.006 10.1109/CEC.2008.4630914 10.1162/evco.1999.7.1.1 10.1016/j.cie.2017.06.008 10.1007/s00500-018-3139-4 10.1109/TCBB.2017.2771360 10.1109/ICCITECHN.2008.4803070 10.1007/978-3-540-72397-4_12 10.1007/s00500-015-1912-1 10.1007/s00500-018-3098-9 10.1016/j.ejor.2009.03.034 10.1016/j.ejor.2007.05.059 10.1287/opre.39.3.378 10.1007/s12539-017-0276-x 10.1016/j.asoc.2018.09.027 10.1016/j.ejor.2004.09.010 10.1007/s00500-017-2792-3 |
ContentType | Journal Article |
Copyright | Operational Research Society of India 2019 Operational Research Society of India 2019. |
Copyright_xml | – notice: Operational Research Society of India 2019 – notice: Operational Research Society of India 2019. |
DBID | AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1007/s12597-019-00432-w |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Business |
EISSN | 0975-0320 |
EndPage | 668 |
ExternalDocumentID | 10_1007_s12597_019_00432_w |
GroupedDBID | -57 -5G -BR -EM -~C -~X 06D 0R~ 0VY 1N0 203 29N 2JN 2KG 2LR 2VQ 30V 3V. 4.4 406 408 40D 40E 5VS 67Z 7WY 8FE 8FG 8FL 8TC 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTV ABJCF ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFFNX AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD AYQZM BA0 BAPOH BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ IKXTQ ITM IWAJR IXC I~X J-C J0Z JBSCW JZLTJ K60 K6~ K8~ KOV L6V LLZTM M0C M4Y M7S MA- NPVJJ NQJWS NU0 O9- O93 O9G O9J P9M PQBIZ PQQKQ PROAC PT4 PTHSS Q2X R9I RSV S1Z S27 S3B SBE SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7Z ZMTXR ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA ROL SJYHP 7TB 8FD AAYZH FR3 |
ID | FETCH-LOGICAL-c376t-3d1a7e4fd972c53863d8a48dc3ff67c219bf105bde69fd9f23327f4d3e212cd83 |
IEDL.DBID | AGYKE |
ISSN | 0030-3887 |
IngestDate | Mon Nov 04 11:21:23 EST 2024 Thu Sep 12 16:46:13 EDT 2024 Sat Dec 16 12:03:19 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Human resource planning Staff transfer Stable matching Optimization Meta-heuristics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-3d1a7e4fd972c53863d8a48dc3ff67c219bf105bde69fd9f23327f4d3e212cd83 |
PQID | 2427314919 |
PQPubID | 326266 |
PageCount | 40 |
ParticipantIDs | proquest_journals_2427314919 crossref_primary_10_1007_s12597_019_00432_w springer_journals_10_1007_s12597_019_00432_w |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi |
PublicationTitle | Opsearch |
PublicationTitleAbbrev | OPSEARCH |
PublicationYear | 2020 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | PeteghemVVVanhouckeMA genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problemEur. J. Oper. Res.2010201240941810.1016/j.ejor.2009.03.034 MaiyarLMThakkarJJA combined tactical and operational deterministic food grain transportation model: particle swarm based optimization approachComput. Ind. Eng.2017110304210.1016/j.cie.2017.05.023 BierwirthCMattfeldDCProduction scheduling and rescheduling with genetic algorithmsEvol. Comput.19997111710.1162/evco.1999.7.1.1 GuoZWangSYueXYangHGlobal harmony search with generalized opposition-based learningSoft. Comput.20172182129213710.1007/s00500-015-1912-1 Acharyya, S., Bagchi, A.: A SAT approach for solving the Staff Transfer Problem. In: Proceedings of the IMECS’08, Hong Kong, pp. 64–68 (2008) JohnsonDSAragonCRMcGeochLASchevonCOptimization by simulated annealing: an experimental evaluation, part II, graph colouring and number partitioningOper. Res.19913937840610.1287/opre.39.3.378 BrandãoJA deterministic tabu search algorithm for the fleet size and mix vehicle routing problemEur. J. Oper. Res.2009195371672810.1016/j.ejor.2007.05.059 Acharyya, S., Bagchi, A.: Staff transfers in a large organization: a constraint satisfaction approach. In: Proceedings of the KBCS’98, Mumbai, pp. 51–63 (1998) MacAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: Proceedings of the AAAI’97, pp. 321–326 (1997) Acharyya, S.: WalkSAT approach in solving the staff transfer problem. In: Proceedings of the ICCIT’08, pp. 1132–1137. IEEE Xplore, Khulna (2008) GoldbergDEGenetic Algorithms in Search, Optimization, and Machine Learning1989BostonAddison-Wesley Professional CuiLLiGZhuZWenZLuNLuJA novel differential evolution algorithm with a self-adaptation parameter control method by differential evolutionSoft Comput.201822186171619010.1007/s00500-017-2685-5 GusfieldDIrvingRWThe Stable Marriage Problem—Structure and Algorithms1999CambridgeMIT Press BeerMHuman Resource Management: A General Manager’s Perspective, Text and Cases1985New YorkThe Free Press Domberger, R., Frey, L., Hanne, T.: Single and multiobjective optimization of the train staff planning problem using genetic algorithms. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 970–977. IEEE (2008) KrajewskaMAKopferHTransportation planning in freight forwarding companies: tabu search algorithm for the integrated operational transportation planning problemEur. J. Oper. Res.2009197274175110.1016/j.ejor.2008.06.042 MeiriRZahaviJUsing simulated annealing to optimize the feature selection problem in marketing applicationsEur. J. Oper. Res.2006171384285810.1016/j.ejor.2004.09.010 JafariHSalmasiNMaximizing the nurses’ preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithmJ. Ind. Eng. Int.201511343945810.1007/s40092-015-0111-0 Acharyya, S: Simulated annealing variants in solving the staff transfer problem. In: Proceedings of the ICAEE’11, Dhaka, pp. 331–336 (2011) HuangHLvLYeSHaoZParticle swarm optimization with convergence speed controller for large-scale numerical optimizationSoft Comput.201923124421443710.1007/s00500-018-3098-9 Manlove, D.F., O’Malley, G., Prosser, P., Unsworth C.A.: Constraint programming approach to the hospitals/residents problem. Technical Report TR-2007-236. Department of Computing Science, University of Glasgow (2007) Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the AAAI’94, pp. 337–343 (1994) García-VilloriaAPastorRSolving the response time variability problem by means of a genetic algorithmEur. J. Oper. Res.2010202232032710.1016/j.ejor.2009.05.024 BiswasSDuttaSAcharyyaSIdentification of disease critical genes using collective meta-heuristic approaches: an application to preeclampsiaInterdiscip Sci Comput Life Sci201911344445910.1007/s12539-017-0276-x AcharyyaSBagchiAConstraint satisfaction methods for solving the staff transfer problemOpsearch200542317919810.1007/BF03398729 MogaleDGKumarSKMárquezFPGTiwariMKBulk wheat transportation and storage problem of public distribution systemComput. Ind. Eng.2017104809710.1016/j.cie.2016.12.027 JanaBMitraSAcharyyaSRepository and mutation based particle swarm optimization (RMPSO): a new PSO variant applied to reconstruction of gene regulatory networkAppl. Soft Comput.20197433035510.1016/j.asoc.2018.09.027 YadavNKRescheduling-based congestion management scheme using particle swarm optimization with distributed acceleration constantsSoft Comput.201923384785710.1007/s00500-017-2792-3 PengBLüZChengTCEA tabu search/path relinking algorithm to solve the job shop scheduling problemComput. Oper. Res.20155315416410.1016/j.cor.2014.08.006 BiswasSAcharyyaSA Bi-objective RNN model to reconstruct gene regulatory network: a modified multi-objective simulated annealing approachIEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)20181562053205910.1109/TCBB.2017.2771360 Fukunaga, A.S.: Variable selection heuristics in local search for SAT. In: Proceedings of the AAAI’97, pp. 275–280 (1997) BiroPManloveDFMittal S: Size versus stability in the marriage probleTheor. Comput. Sci.201041116–181828184110.1016/j.tcs.2010.02.003 ReevesCRModern Heuristic Techniques for Combinatorial Problems1993HyderabadOrient Longman MaiyarLMChoSTiwariMKThobenKDKiritsisDOptimising online review inspired product attribute classification using the self-learning particle swarm-based Bayesian learning approachInt. J. Prod. Res.201957103099312010.1080/00207543.2018.1535724 Acharyya, S., Bagchi, A.: SAT approaches for solving the staff transfer problem. In: Proceedings of the CSAE’11. IEEE Xplore: Shanghai, pp. 492–496 (2011) GloverFLagunaMTabu Search1998DordrechtKluwer Academic WangLHuHLiuRZhouXAn improved differential harmony search algorithm for function optimization problemsSoft Comput.201923134827485210.1007/s00500-018-3139-4 PapadimitriouCHSteiglitzKCombinatorial optimization: algorithms and complexity1982Upper Saddle RiverPrentice Hall Hoos, H. H.: On the run-time behavior of stochastic local search algorithms for SAT. In: Proceedings of the AAAI’99, pp. 661–666 (1999) MogaleDGDolguiAKandhwayRKumarSKTiwariMKA multi-period inventory transportation model for tactical planning of food grain supply chainComput. Ind. Eng.201711037939410.1016/j.cie.2017.06.008 DesslerGHuman Resource Management1997New DelhiPrentice Hall MaiyarLMThakkarJJModelling and analysis of intermodal food grain transportation under hub disruption towards sustainabilityInt. J. Prod. Econ.201921728129710.1016/j.ijpe.2018.07.021 A García-Villoria (432_CR24) 2010; 202 CH Papadimitriou (432_CR42) 1982 NK Yadav (432_CR33) 2019; 23 432_CR18 VV Peteghem (432_CR25) 2010; 201 LM Maiyar (432_CR31) 2017; 110 D Gusfield (432_CR14) 1999 L Wang (432_CR39) 2019; 23 H Huang (432_CR34) 2019; 23 432_CR9 432_CR8 CR Reeves (432_CR5) 1993 432_CR7 P Biro (432_CR13) 2010; 411 S Biswas (432_CR20) 2018; 15 J Brandão (432_CR27) 2009; 195 432_CR6 H Jafari (432_CR19) 2015; 11 DG Mogale (432_CR41) 2017; 110 432_CR3 S Acharyya (432_CR4) 2005; 42 DS Johnson (432_CR16) 1991; 39 G Dessler (432_CR2) 1997 M Beer (432_CR1) 1985 R Meiri (432_CR17) 2006; 171 432_CR23 F Glover (432_CR26) 1998 DE Goldberg (432_CR21) 1989 B Peng (432_CR29) 2015; 53 LM Maiyar (432_CR35) 2019; 57 MA Krajewska (432_CR28) 2009; 197 S Biswas (432_CR38) 2019; 11 432_CR15 L Cui (432_CR40) 2018; 22 LM Maiyar (432_CR32) 2019; 217 432_CR12 432_CR11 Z Guo (432_CR37) 2017; 21 432_CR10 B Jana (432_CR36) 2019; 74 C Bierwirth (432_CR22) 1999; 7 DG Mogale (432_CR30) 2017; 104 |
References_xml | – volume-title: The Stable Marriage Problem—Structure and Algorithms year: 1999 ident: 432_CR14 contributor: fullname: D Gusfield – volume: 217 start-page: 281 year: 2019 ident: 432_CR32 publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2018.07.021 contributor: fullname: LM Maiyar – volume-title: Human Resource Management year: 1997 ident: 432_CR2 contributor: fullname: G Dessler – volume: 42 start-page: 179 issue: 3 year: 2005 ident: 432_CR4 publication-title: Opsearch doi: 10.1007/BF03398729 contributor: fullname: S Acharyya – volume: 11 start-page: 439 issue: 3 year: 2015 ident: 432_CR19 publication-title: J. Ind. Eng. Int. doi: 10.1007/s40092-015-0111-0 contributor: fullname: H Jafari – volume: 197 start-page: 741 issue: 2 year: 2009 ident: 432_CR28 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2008.06.042 contributor: fullname: MA Krajewska – volume-title: Human Resource Management: A General Manager’s Perspective, Text and Cases year: 1985 ident: 432_CR1 contributor: fullname: M Beer – ident: 432_CR12 doi: 10.1109/CSAE.2011.5952515 – volume: 104 start-page: 80 year: 2017 ident: 432_CR30 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.12.027 contributor: fullname: DG Mogale – volume: 202 start-page: 320 issue: 2 year: 2010 ident: 432_CR24 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.05.024 contributor: fullname: A García-Villoria – volume-title: Genetic Algorithms in Search, Optimization, and Machine Learning year: 1989 ident: 432_CR21 contributor: fullname: DE Goldberg – volume: 22 start-page: 6171 issue: 18 year: 2018 ident: 432_CR40 publication-title: Soft Comput. doi: 10.1007/s00500-017-2685-5 contributor: fullname: L Cui – volume: 110 start-page: 30 year: 2017 ident: 432_CR31 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.05.023 contributor: fullname: LM Maiyar – volume: 411 start-page: 1828 issue: 16–18 year: 2010 ident: 432_CR13 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2010.02.003 contributor: fullname: P Biro – volume: 57 start-page: 3099 issue: 10 year: 2019 ident: 432_CR35 publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1535724 contributor: fullname: LM Maiyar – ident: 432_CR6 – volume: 53 start-page: 154 year: 2015 ident: 432_CR29 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.08.006 contributor: fullname: B Peng – ident: 432_CR23 doi: 10.1109/CEC.2008.4630914 – ident: 432_CR8 – volume: 7 start-page: 1 issue: 1 year: 1999 ident: 432_CR22 publication-title: Evol. Comput. doi: 10.1162/evco.1999.7.1.1 contributor: fullname: C Bierwirth – volume: 110 start-page: 379 year: 2017 ident: 432_CR41 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.06.008 contributor: fullname: DG Mogale – volume: 23 start-page: 4827 issue: 13 year: 2019 ident: 432_CR39 publication-title: Soft Comput. doi: 10.1007/s00500-018-3139-4 contributor: fullname: L Wang – volume-title: Modern Heuristic Techniques for Combinatorial Problems year: 1993 ident: 432_CR5 contributor: fullname: CR Reeves – volume: 15 start-page: 2053 issue: 6 year: 2018 ident: 432_CR20 publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) doi: 10.1109/TCBB.2017.2771360 contributor: fullname: S Biswas – ident: 432_CR11 doi: 10.1109/ICCITECHN.2008.4803070 – ident: 432_CR18 – ident: 432_CR15 doi: 10.1007/978-3-540-72397-4_12 – volume: 21 start-page: 2129 issue: 8 year: 2017 ident: 432_CR37 publication-title: Soft. Comput. doi: 10.1007/s00500-015-1912-1 contributor: fullname: Z Guo – volume: 23 start-page: 4421 issue: 12 year: 2019 ident: 432_CR34 publication-title: Soft Comput. doi: 10.1007/s00500-018-3098-9 contributor: fullname: H Huang – volume: 201 start-page: 409 issue: 2 year: 2010 ident: 432_CR25 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.03.034 contributor: fullname: VV Peteghem – ident: 432_CR3 – volume: 195 start-page: 716 issue: 3 year: 2009 ident: 432_CR27 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2007.05.059 contributor: fullname: J Brandão – volume: 39 start-page: 378 year: 1991 ident: 432_CR16 publication-title: Oper. Res. doi: 10.1287/opre.39.3.378 contributor: fullname: DS Johnson – volume: 11 start-page: 444 issue: 3 year: 2019 ident: 432_CR38 publication-title: Interdiscip Sci Comput Life Sci doi: 10.1007/s12539-017-0276-x contributor: fullname: S Biswas – ident: 432_CR7 – ident: 432_CR10 – ident: 432_CR9 – volume-title: Tabu Search year: 1998 ident: 432_CR26 contributor: fullname: F Glover – volume-title: Combinatorial optimization: algorithms and complexity year: 1982 ident: 432_CR42 contributor: fullname: CH Papadimitriou – volume: 74 start-page: 330 year: 2019 ident: 432_CR36 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.027 contributor: fullname: B Jana – volume: 171 start-page: 842 issue: 3 year: 2006 ident: 432_CR17 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2004.09.010 contributor: fullname: R Meiri – volume: 23 start-page: 847 issue: 3 year: 2019 ident: 432_CR33 publication-title: Soft Comput. doi: 10.1007/s00500-017-2792-3 contributor: fullname: NK Yadav |
SSID | ssj0064084 |
Score | 2.202536 |
Snippet | In this paper, the Staff Transfer Problem (STP) in Human Resource Management is addressed as a stable matching problem. Earlier, formulation of this problem... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 629 |
SubjectTerms | Application Article Business and Management Computer simulation Employees Genetic algorithms Heuristic Heuristic methods Human resource management Management Matching Mathematics Operations research Operations Research/Decision Theory Performance measurement Simulated annealing Statistical analysis Tabu search |
Title | Matching formulation of the Staff Transfer Problem: meta-heuristic approaches |
URI | https://link.springer.com/article/10.1007/s12597-019-00432-w https://www.proquest.com/docview/2427314919 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60BdGDj6pYrWUP3jQlySabjbcirUWpeGihnkKyDwSxlTal4K93skmMz0NzW7JsyMzuzDfszDcAFyHT6FZtadmC-hig8IzyFmOeMA7QIwhfhoanYPjABmPvbuJPqjpuk-xe3kgaQ13VuiFQz7IkQ8vQyFmrTagXhaf17u3Tfa80wAy_mJMv04w6lgdFrczfq3z3RxXI_HEvatxNfw9GZdFOnmXy0lmmSUe8_-ZwXOdP9mG3gJ-km--XA9hQ0wZsldnvDdj5wk-Io-EnqeviEIY4MpmXJAO6RdsvMtME55CsDbAmxvNpNSePeZ-aa_Kq0th6VsucEJqUFOZqcQTjfm90M7CKbgyWQCOUWlQ6caA8LcPAFWgmGZU89rgUVGsWCLR8iUawlkjFQpykXUrdQHuSKlSSkJweQ206m6oTINKRwmF2HLtcefjEmmsEZtrh3LddxZpwWeokestJN6KKXjmTXoTSi4z0olUTWqXaouIALiJEHgHF6M8Jm3BVqqF6_f9qp-tNP4NtN4vATdZZC2rpfKnOEaakSbvYlm3YHLvdD14b3a8 |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMcfOsEfB9GpOJ2agzcttE2bpt6GOKauw8MGu4WuSfDiJmvH_n1f0taq6MHeQkMKr-1730dePg_gOmYaw6orHTejISYo3CBvMeeJ0wgjQhbK2HIKkhEbTIKnaTitDoXldbV7vSVpPXVz2A2VuimTjB3LkXPWm7Bl-OqGmD_xe7X_ZfjAkr1MDTmWR9VRmd_X-B6OGo35Y1vURpv-AexXMpH0yvd6CBtq3obtukq9DXtfOII4Sj7hq_kRJDiyFZLECNKqPRdZaIJziGnXq4mNUFotyUvZT-aOvKkidV7VqgQ3kxo1rvJjmPQfxvcDp-qa4GToLAqHSi-NVKBlHPkZujNGJU8DLjOqNYsy9FAzjaJqJhWLcZL2KfUjHUiqMIplktMTaM0Xc3UKRHoy85ibpj5XAV6p5hoFlPY4D11fsQ7c1MYT7yUcQzQYZGNqgaYW1tRi3YFubV9R_Si5QIUQUczSvLgDt7XNm9t_r3b2v-lXsDMYJ0MxfBw9n8Oub7JmWynWhVaxXKkLlBbF7NJ-SR_l_sNg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oJkQPRlEjiroHb9pAu-12642oBD8gHCThtind3XixECjh7zu7bS0aPdjbppNtMm3nvcnOvAG4jphGWO1Ip5PQABMUbiRvMeeJ4hARIQlkZHUKBkPWH_vPk2Cy0cVvq93LI8m8p8GoNKVZey51u2p8Q9ZuSiYjx2rKOett2EEooqaob-x1y1jM8OG5DjM1KrI8LNpmft_jOzRVfPPHEalFnt4B7BeUkXTzd3wIWyptQL2sWG_A3oamIK4GX0KsyyMY4MpWSxJDTotRXWSmCdoQM7pXE4tWWi3IKJ8tc0c-VBY772qViziTUnZcLY9h3Ht8u-87xQQFJ8HAkTlUunGofC2j0EswtDEqeexzmVCtWZhgtJpqJFhTqViERtqj1Au1L6lCREskpydQS2epOgUiXZm4rBPHHlc-XrHmGsmUdjkPOp5iTbgpnSfmuVCGqCSRjasFulpYV4t1E1qlf0Xx0ywFsoWQYsbmRk24LX1e3f57t7P_mV9BffTQE69Pw5dz2PVMAm2LxlpQyxYrdYEsI5te2g_pE4rrx6U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matching+formulation+of+the+Staff+Transfer+Problem%3A+meta-heuristic+approaches&rft.jtitle=Opsearch&rft.au=Acharyya%2C+S.&rft.au=Datta%2C+A.+K.&rft.date=2020-09-01&rft.pub=Springer+India&rft.issn=0030-3887&rft.eissn=0975-0320&rft.volume=57&rft.issue=3&rft.spage=629&rft.epage=668&rft_id=info:doi/10.1007%2Fs12597-019-00432-w&rft.externalDocID=10_1007_s12597_019_00432_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3887&client=summon |