Using Machine Learning to Forecast Future Earnings

Earnings prediction has always been an important subject in accounting research given the proven relationship between accurate earnings prediction and excess investment return (Beaver, Journal of Accounting Research, 1968). Apart from the development of accounting and fnance subjects, advances in st...

Full description

Saved in:
Bibliographic Details
Published inAtlantic economic journal Vol. 48; no. 4; pp. 543 - 545
Main Authors Xinyue, Cui, Zhaoyu, Xu, Yue, Zhou
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0197-4254
1573-9678
DOI10.1007/s11293-020-09691-1

Cover

Loading…
Abstract Earnings prediction has always been an important subject in accounting research given the proven relationship between accurate earnings prediction and excess investment return (Beaver, Journal of Accounting Research, 1968). Apart from the development of accounting and fnance subjects, advances in statistics and computer science have also contributed to advances in earnings prediction methods. Numerous studies have highlighted the surprising potential of machine learning models in earnings prediction. This paper is aimed to recommend an applicable approach for earnings prediction with a state-of-the-art machine learning model, LightGBM (Online Supplemental Appendix Table 1), which has shown noteworthy efciency in other prediction tasks such as cryptocurrency pricing (Sun et al., Finance Research Letters, 2018), but has not been extensively studied for earnings prediction. In this paper, the model was constructed using LightGBM to predict accounting earnings growth with fnancial, macroeconomic, and market variables. The samples were selected from the quarterly reports of 3,000 companies with the highest market capitalization in the U.S. equity market from 1988 to 2018, eliminating companies with share prices below $1, companies from the utility and fnance sectors and companies whose fscal year-end changed or was not March, June, September, or December
AbstractList Earnings prediction has always been an important subject in accounting research given the proven relationship between accurate earnings prediction and excess investment return (Beaver, Journal of Accounting Research, 1968). Apart from the development of accounting and fnance subjects, advances in statistics and computer science have also contributed to advances in earnings prediction methods. Numerous studies have highlighted the surprising potential of machine learning models in earnings prediction. This paper is aimed to recommend an applicable approach for earnings prediction with a state-of-the-art machine learning model, LightGBM (Online Supplemental Appendix Table 1), which has shown noteworthy efciency in other prediction tasks such as cryptocurrency pricing (Sun et al., Finance Research Letters, 2018), but has not been extensively studied for earnings prediction. In this paper, the model was constructed using LightGBM to predict accounting earnings growth with fnancial, macroeconomic, and market variables. The samples were selected from the quarterly reports of 3,000 companies with the highest market capitalization in the U.S. equity market from 1988 to 2018, eliminating companies with share prices below $1, companies from the utility and fnance sectors and companies whose fscal year-end changed or was not March, June, September, or December
Author Zhaoyu, Xu
Yue, Zhou
Xinyue, Cui
Author_xml – sequence: 1
  givenname: Cui
  surname: Xinyue
  fullname: Xinyue, Cui
  email: clair.cuixinyue@gmail.com
  organization: School of Accounting and Finance, The Hong Kong Polytechnic University
– sequence: 2
  givenname: Xu
  surname: Zhaoyu
  fullname: Zhaoyu, Xu
  organization: School of Accounting and Finance, The Hong Kong Polytechnic University
– sequence: 3
  givenname: Zhou
  surname: Yue
  fullname: Yue, Zhou
  organization: School of Accounting and Finance, The Hong Kong Polytechnic University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqP52nwcpbRWqHix5zCbzdYtNVuT7MF_79YVBA89Dcy8z8zwzNAkdMEjdEvJPSVEPSRKmeGYMIKJkYZieoGmtFQcG6n0BE0JNQoLVoorNEtpTwaICjNFbJvasCtewL23wRcbDzGcGrkrVl30DlIuVn3uoy-W4yhdo8sGDsnf_NY52q6Wb4s13rw-PS8eN9hxJTPmrHHa1E3TVLUpDWVQMuVAGqKVprUsKyGV4loL4SoDFECXRurK1DUIIJzP0d249xi7z96nbPddH8Nw0jJhiCBMajqk2JhysUsp-sYeY_sB8ctSYk9u7OjGDm7sjxt7gvQ_yLUZctuFHKE9nEf5iKbhTtj5-PfVGeobBRt47Q
CitedBy_id crossref_primary_10_1007_s10796_022_10249_6
crossref_primary_10_3390_jrfm16120520
ContentType Journal Article
Copyright International Atlantic Economic Society 2021
International Atlantic Economic Society 2021.
Copyright_xml – notice: International Atlantic Economic Society 2021
– notice: International Atlantic Economic Society 2021.
DBID AAYXX
CITATION
0-V
3V.
7TQ
7WY
7WZ
7X5
7XB
87Z
88J
8AO
8BJ
8FK
8FL
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
BEZIV
CCPQU
DHY
DON
DPSOV
DWQXO
FQK
FRNLG
F~G
GNUQQ
JBE
K60
K6~
K8~
KC-
L.-
M0C
M2L
M2R
PHGZM
PHGZT
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
S0X
DOI 10.1007/s11293-020-09691-1
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
PAIS Index
ABI-INFORM Complete
ABI/INFORM Global (PDF only)
Entrepreneurship Database
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Social Science Database (Alumni Edition)
ProQuest Pharma Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
PAIS International
PAIS International (Ovid)
Politics Collection
ProQuest Central Korea
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
DELNET Management Collection
ProQuest Politics Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
Political Science Database
Social Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Sociology & Social Sciences Collection
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Politics Collection
ProQuest Pharma Collection
Sociology & Social Sciences Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Entrepreneurship
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Political Science
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
PAIS International
ProQuest DELNET Management Collection
ProQuest One Business (Alumni)
ProQuest Politics Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Computer Science
EISSN 1573-9678
EndPage 545
ExternalDocumentID 10_1007_s11293_020_09691_1
GroupedDBID -4X
-57
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.86
.VR
0-V
06D
0R~
0VY
186
199
1N0
1SB
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3R3
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
78A
7WY
8AO
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACYUM
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADLEJ
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAAKF
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DO4
DPSOV
DPUIP
DWQXO
EBA
EBE
EBLON
EBO
EBR
EBS
EBU
ECR
EIOEI
EJD
EMF
EMG
EMH
EMK
EOH
EPL
ESBYG
F5P
FAC
FAS
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FJW
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IBB
IEA
IGG
IHE
IJ-
IKXTQ
IOF
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
K8~
KC-
KDC
KOV
KOW
LLZTM
LPU
M0C
M2L
M2R
M4Y
MA-
MVM
N2Q
N95
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OHT
P19
P2P
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PV9
Q2X
QOK
QOS
QWB
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RWL
RXW
RZK
RZL
S0X
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TAF
TH9
TN5
TSG
TSK
TSV
TUC
U2A
U5U
UG4
ULY
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
X6Y
XI7
YLTOR
YQJ
Z45
Z81
Z8U
ZL0
ZMTXR
ZYFGU
~8M
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TQ
7X5
7XB
8BJ
8FK
ABRTQ
DHY
DON
FQK
JBE
L.-
PKEHL
POGQB
PQEST
PQUKI
PRINS
PRQQA
Q9U
ID FETCH-LOGICAL-c376t-32fc89dfffbd95912a527ca6908781d65b467738844cb9a1aa85968b9dda4a033
IEDL.DBID BENPR
ISSN 0197-4254
IngestDate Fri Jul 25 21:46:28 EDT 2025
Tue Jul 01 03:37:48 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Fri Feb 21 02:49:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords G10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-32fc89dfffbd95912a527ca6908781d65b467738844cb9a1aa85968b9dda4a033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2490402681
PQPubID 37758
PageCount 3
ParticipantIDs proquest_journals_2490402681
crossref_primary_10_1007_s11293_020_09691_1
crossref_citationtrail_10_1007_s11293_020_09691_1
springer_journals_10_1007_s11293_020_09691_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Atlantic economic journal
PublicationTitleAbbrev Atl Econ J
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
SSID ssj0007149
Score 2.212451
Snippet Earnings prediction has always been an important subject in accounting research given the proven relationship between accurate earnings prediction and excess...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 543
SubjectTerms Accounting
Anthology
Companies
Computer science
Digital currencies
Earnings
Economics
Economics and Finance
Finance
International Economics
Internet
Machine learning
Macroeconomics
Macroeconomics/Monetary Economics//Financial Economics
Microeconomics
Predictions
Prices
Public Finance
Securities markets
Statistics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SD3oRn9haJQdvGmiyeR6LtBShniz0tiSbrBdpxV3_v5PsbhdFBc8zyWEymfmGeSF0y7j1zoWMKOo84bw0RAvFCHNMOhWkVKlvbfkkFyv-uBbrtims6qrdu5RkstR9s1t0TSSGOwC7DSUQ8-yLGLuDFq_YdGd_FW1ALzWKgEbytlXm5zu-uqMeY35LiyZvMz9GRy1MxNPmXU_QXticooOui7g6Qyzl-vEy1UIG3I5JfcH1Fsdtm4WtajxP80LwrCFV52g1nz0_LEi7_4AU8O1rkrGy0MaXZem8EYYyK5gqLMSzWgHMlMKBlVOZ1pwXzlhqrRZGame8t9xOsuwCDTbbTbhEuAwQ95TAO2GBi5j9pEo5HbwNzGbaDRHtxJAX7XDwuKPiNe_HGkfR5SC6PIkup0N0tzvz1ozG-JN73Ek3b79JlUPsB0aESQ3k-07iPfn320b_Y79Chyw-eipDGaNB_f4RrgFM1O4m6c4n9FK8OA
  priority: 102
  providerName: Springer Nature
Title Using Machine Learning to Forecast Future Earnings
URI https://link.springer.com/article/10.1007/s11293-020-09691-1
https://www.proquest.com/docview/2490402681
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED4BHejCo4AolMoDG1jUjhPbEyqoBYGoEKISTJGdOCyoBRL-P7bjtAKJzn4M5_N339n3ADilTOVamwhzonPMWCGxiDnFVNNEc5Mk3OetPUyS2ym7e4lfwoNbGcIqG0z0QJ3PM_dGfmHdBKtvNBHk8uMTu65R7nc1tNBYh5aFYGGdr9bVaPL4tMBiTmoCTCTHVjtZSJupk-ecqcPOfbI0XhJMfpumJd_880XqLc94B7YCZUTD-ox3Yc3MOrDdtGNA4XZ2YLNJMi470HYksq7BvAfUxwWgBx83aVAoqfqGqjlynTkzVVZo7GuLoFE9VO7DdDx6vr7FoVcCzixEVDiiRSZkXhSFzmUsCVUx5Zmyvq_glpImsbaIyCMhGMu0VEQpEctEaJnniqlBFB3Axmw-M4eACmN9pMLOHVDDYvdTSjjXwuTKUBUJ3QXSiCnNQiFx18_iPV2WQHaiTa1oUy_alHThbLHmoy6jsXJ2r5F-Gq5UmS4VoAvnzYksh__f7Wj1bsfQpk4JfIhKDzaqr29zYolGpfvQGt683o_6Qav6sD6lwx8cXc26
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB2hpAgNRwARThdQgQX2etd2gRBHogRIhFCQ6BZ710uDEmAXIX6Kb8Tegwgk0qX2UYzfjOfZcwDsUaZirY2HOdExZiyRWPicYqppoLkJAp7nrfUHQfeeXT34D3PwVeXCuLDKyibmhjoeR-6N_MjSBIs3Gghy-vKKXdco97tatdAoYHFtPj8sZUtPepf2fPcp7bSHF11cdhXAkVWmDHs0iYSMkyTRsfQlocqnPFKWJQpunbfA19Z2cE8IxiItFVFK-DIQWsaxYurYPYBak19nnqUyNaiftwe3dz-2n5PC4SaSY6sNrEzTKZL13NWKHV2ztEESTH5fhRP_9s-XbH7TdZZgoXRR0VmBqWWYM6MmLFbtH1BpDZrQqJKa0ybMO6e1qPm8AjSPQ0D9PE7ToLKE6xPKxsh1Ao1UmqFOXssEtYuhdBXuZyLFNaiNxiOzDigxlpMldu4xNcx3P7OEcy1MrAxVntAtIJWYwqgsXO76ZzyHk5LLTrShFW2YizYkLTj4WfNSlO2YOnurkn5YqnAaTgDXgsPqRCbD_--2MX23XWh0h_2b8KY3uN6EeeoAkYfHbEEte3s329bJyfROiSwEj7MG8zdeNQfX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6hIBUutA0gQmnrA5zAIna8a_uAqkISJUAihEDitti7Xi4oAXarqn-tv47xrpeISuXG2Y_D-PPMfPY8AHa5MJm1rkclsxkVItdURZJTbnlspYtjWeWtTabx6Fqc3kQ3S_C3yYXxYZWNTqwUdTZP_Rv5IdIExBuPFTvMQ1jERX_44-GR-g5S_qe1aadRQ-TM_fmN9K04GvfxrPc4Hw6uTkY0dBigKV6skvZ4niqd5XluMx1pxk3EZWqQMSqJjlwcWdQjsqeUEKnVhhmjIh0rq7PMCNP1j6Go_pclsqJuC5aPB9OLyxc7IFntfDMtKd4MEVJ26sQ9b2app25IITSj7LVZXPi6_3zPVlZv-AnWgrtKftb4-gxLbtaGj00rCBI0QxtWmgTnog2r3oGt6z-vA69iEsikitl0JJRzvSPlnPiuoKkpSjKs6pqQQT1UbMD1u0hxE1qz-cxtAckd8rMc53a5E5H_pWVSWuUy47jpKdsB1ogpSUMRc99L4z5ZlF_2ok1QtEkl2oR1YP9lzUNdwuPN2TuN9JNwnYtkAb4OHDQnshj-_27bb-_2HT4giJPz8fTsC6xyj4cqUmYHWuXTL_cV_Z3SfgvAInD73lh-BszsDAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Machine+Learning+to+Forecast+Future+Earnings&rft.jtitle=Atlantic+economic+journal&rft.au=Xinyue%2C+Cui&rft.au=Zhaoyu%2C+Xu&rft.au=Yue%2C+Zhou&rft.date=2020-12-01&rft.issn=0197-4254&rft.eissn=1573-9678&rft.volume=48&rft.issue=4&rft.spage=543&rft.epage=545&rft_id=info:doi/10.1007%2Fs11293-020-09691-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11293_020_09691_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-4254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-4254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-4254&client=summon