Using Machine Learning to Forecast Future Earnings
Earnings prediction has always been an important subject in accounting research given the proven relationship between accurate earnings prediction and excess investment return (Beaver, Journal of Accounting Research, 1968). Apart from the development of accounting and fnance subjects, advances in st...
Saved in:
Published in | Atlantic economic journal Vol. 48; no. 4; pp. 543 - 545 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0197-4254 1573-9678 |
DOI | 10.1007/s11293-020-09691-1 |
Cover
Loading…
Abstract | Earnings prediction has always been an important subject in accounting research given the proven relationship between accurate earnings prediction and excess investment return (Beaver, Journal of Accounting Research, 1968). Apart from the development of accounting and fnance subjects, advances in statistics and computer science have also contributed to advances in earnings prediction methods. Numerous studies have highlighted the surprising potential of machine learning models in earnings prediction. This paper is aimed to recommend an applicable approach for earnings prediction with a state-of-the-art machine learning model, LightGBM (Online Supplemental Appendix Table 1), which has shown noteworthy efciency in other prediction tasks such as cryptocurrency pricing (Sun et al., Finance Research Letters, 2018), but has not been extensively studied for earnings prediction. In this paper, the model was constructed using LightGBM to predict accounting earnings growth with fnancial, macroeconomic, and market variables. The samples were selected from the quarterly reports of 3,000 companies with the highest market capitalization in the U.S. equity market from 1988 to 2018, eliminating companies with share prices below $1, companies from the utility and fnance sectors and companies whose fscal year-end changed or was not March, June, September, or December |
---|---|
AbstractList | Earnings prediction has always been an important subject in accounting research given the proven relationship between accurate earnings prediction and excess investment return (Beaver, Journal of Accounting Research, 1968). Apart from the development of accounting and fnance subjects, advances in statistics and computer science have also contributed to advances in earnings prediction methods. Numerous studies have highlighted the surprising potential of machine learning models in earnings prediction. This paper is aimed to recommend an applicable approach for earnings prediction with a state-of-the-art machine learning model, LightGBM (Online Supplemental Appendix Table 1), which has shown noteworthy efciency in other prediction tasks such as cryptocurrency pricing (Sun et al., Finance Research Letters, 2018), but has not been extensively studied for earnings prediction. In this paper, the model was constructed using LightGBM to predict accounting earnings growth with fnancial, macroeconomic, and market variables. The samples were selected from the quarterly reports of 3,000 companies with the highest market capitalization in the U.S. equity market from 1988 to 2018, eliminating companies with share prices below $1, companies from the utility and fnance sectors and companies whose fscal year-end changed or was not March, June, September, or December |
Author | Zhaoyu, Xu Yue, Zhou Xinyue, Cui |
Author_xml | – sequence: 1 givenname: Cui surname: Xinyue fullname: Xinyue, Cui email: clair.cuixinyue@gmail.com organization: School of Accounting and Finance, The Hong Kong Polytechnic University – sequence: 2 givenname: Xu surname: Zhaoyu fullname: Zhaoyu, Xu organization: School of Accounting and Finance, The Hong Kong Polytechnic University – sequence: 3 givenname: Zhou surname: Yue fullname: Yue, Zhou organization: School of Accounting and Finance, The Hong Kong Polytechnic University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqP52nwcpbRWqHix5zCbzdYtNVuT7MF_79YVBA89Dcy8z8zwzNAkdMEjdEvJPSVEPSRKmeGYMIKJkYZieoGmtFQcG6n0BE0JNQoLVoorNEtpTwaICjNFbJvasCtewL23wRcbDzGcGrkrVl30DlIuVn3uoy-W4yhdo8sGDsnf_NY52q6Wb4s13rw-PS8eN9hxJTPmrHHa1E3TVLUpDWVQMuVAGqKVprUsKyGV4loL4SoDFECXRurK1DUIIJzP0d249xi7z96nbPddH8Nw0jJhiCBMajqk2JhysUsp-sYeY_sB8ctSYk9u7OjGDm7sjxt7gvQ_yLUZctuFHKE9nEf5iKbhTtj5-PfVGeobBRt47Q |
CitedBy_id | crossref_primary_10_1007_s10796_022_10249_6 crossref_primary_10_3390_jrfm16120520 |
ContentType | Journal Article |
Copyright | International Atlantic Economic Society 2021 International Atlantic Economic Society 2021. |
Copyright_xml | – notice: International Atlantic Economic Society 2021 – notice: International Atlantic Economic Society 2021. |
DBID | AAYXX CITATION 0-V 3V. 7TQ 7WY 7WZ 7X5 7XB 87Z 88J 8AO 8BJ 8FK 8FL ABUWG AFKRA ALSLI AZQEC BENPR BEZIV CCPQU DHY DON DPSOV DWQXO FQK FRNLG F~G GNUQQ JBE K60 K6~ K8~ KC- L.- M0C M2L M2R PHGZM PHGZT PKEHL POGQB PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PRQQA Q9U S0X |
DOI | 10.1007/s11293-020-09691-1 |
DatabaseName | CrossRef ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) PAIS Index ABI-INFORM Complete ABI/INFORM Global (PDF only) Entrepreneurship Database ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Social Science Database (Alumni Edition) ProQuest Pharma Collection International Bibliography of the Social Sciences (IBSS) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College PAIS International PAIS International (Ovid) Politics Collection ProQuest Central Korea International Bibliography of the Social Sciences Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection DELNET Management Collection ProQuest Politics Collection ABI/INFORM Professional Advanced ABI/INFORM Global Political Science Database Social Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest One Community College Politics Collection ProQuest Pharma Collection Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) ProQuest Entrepreneurship Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Political Science ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition PAIS International ProQuest DELNET Management Collection ProQuest One Business (Alumni) ProQuest Politics Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Computer Science |
EISSN | 1573-9678 |
EndPage | 545 |
ExternalDocumentID | 10_1007_s11293_020_09691_1 |
GroupedDBID | -4X -57 -5G -BR -EM -ET -Y2 -~C -~X .86 .VR 0-V 06D 0R~ 0VY 186 199 1N0 1SB 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3R3 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 78A 7WY 8AO 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACSNA ACYUM ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADLEJ ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAAKF BAPOH BBWZM BDATZ BENPR BEZIV BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DO4 DPSOV DPUIP DWQXO EBA EBE EBLON EBO EBR EBS EBU ECR EIOEI EJD EMF EMG EMH EMK EOH EPL ESBYG F5P FAC FAS FEDTE FERAY FFXSO FIGPU FINBP FJW FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IBB IEA IGG IHE IJ- IKXTQ IOF ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ K8~ KC- KDC KOV KOW LLZTM LPU M0C M2L M2R M4Y MA- MVM N2Q N95 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OHT P19 P2P P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PV9 Q2X QOK QOS QWB R-Y R4E R89 R9I RHV RNI ROL RPX RSV RWL RXW RZK RZL S0X S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TAF TH9 TN5 TSG TSK TSV TUC U2A U5U UG4 ULY UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 X6Y XI7 YLTOR YQJ Z45 Z81 Z8U ZL0 ZMTXR ZYFGU ~8M ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TQ 7X5 7XB 8BJ 8FK ABRTQ DHY DON FQK JBE L.- PKEHL POGQB PQEST PQUKI PRINS PRQQA Q9U |
ID | FETCH-LOGICAL-c376t-32fc89dfffbd95912a527ca6908781d65b467738844cb9a1aa85968b9dda4a033 |
IEDL.DBID | BENPR |
ISSN | 0197-4254 |
IngestDate | Fri Jul 25 21:46:28 EDT 2025 Tue Jul 01 03:37:48 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Fri Feb 21 02:49:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | G10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-32fc89dfffbd95912a527ca6908781d65b467738844cb9a1aa85968b9dda4a033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2490402681 |
PQPubID | 37758 |
PageCount | 3 |
ParticipantIDs | proquest_journals_2490402681 crossref_primary_10_1007_s11293_020_09691_1 crossref_citationtrail_10_1007_s11293_020_09691_1 springer_journals_10_1007_s11293_020_09691_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Atlantic economic journal |
PublicationTitleAbbrev | Atl Econ J |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
SSID | ssj0007149 |
Score | 2.212451 |
Snippet | Earnings prediction has always been an important subject in accounting research given the proven relationship between accurate earnings prediction and excess... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 543 |
SubjectTerms | Accounting Anthology Companies Computer science Digital currencies Earnings Economics Economics and Finance Finance International Economics Internet Machine learning Macroeconomics Macroeconomics/Monetary Economics//Financial Economics Microeconomics Predictions Prices Public Finance Securities markets Statistics |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SD3oRn9haJQdvGmiyeR6LtBShniz0tiSbrBdpxV3_v5PsbhdFBc8zyWEymfmGeSF0y7j1zoWMKOo84bw0RAvFCHNMOhWkVKlvbfkkFyv-uBbrtims6qrdu5RkstR9s1t0TSSGOwC7DSUQ8-yLGLuDFq_YdGd_FW1ALzWKgEbytlXm5zu-uqMeY35LiyZvMz9GRy1MxNPmXU_QXticooOui7g6Qyzl-vEy1UIG3I5JfcH1Fsdtm4WtajxP80LwrCFV52g1nz0_LEi7_4AU8O1rkrGy0MaXZem8EYYyK5gqLMSzWgHMlMKBlVOZ1pwXzlhqrRZGame8t9xOsuwCDTbbTbhEuAwQ95TAO2GBi5j9pEo5HbwNzGbaDRHtxJAX7XDwuKPiNe_HGkfR5SC6PIkup0N0tzvz1ozG-JN73Ek3b79JlUPsB0aESQ3k-07iPfn320b_Y79Chyw-eipDGaNB_f4RrgFM1O4m6c4n9FK8OA priority: 102 providerName: Springer Nature |
Title | Using Machine Learning to Forecast Future Earnings |
URI | https://link.springer.com/article/10.1007/s11293-020-09691-1 https://www.proquest.com/docview/2490402681 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED4BHejCo4AolMoDG1jUjhPbEyqoBYGoEKISTJGdOCyoBRL-P7bjtAKJzn4M5_N339n3ADilTOVamwhzonPMWCGxiDnFVNNEc5Mk3OetPUyS2ym7e4lfwoNbGcIqG0z0QJ3PM_dGfmHdBKtvNBHk8uMTu65R7nc1tNBYh5aFYGGdr9bVaPL4tMBiTmoCTCTHVjtZSJupk-ecqcPOfbI0XhJMfpumJd_880XqLc94B7YCZUTD-ox3Yc3MOrDdtGNA4XZ2YLNJMi470HYksq7BvAfUxwWgBx83aVAoqfqGqjlynTkzVVZo7GuLoFE9VO7DdDx6vr7FoVcCzixEVDiiRSZkXhSFzmUsCVUx5Zmyvq_glpImsbaIyCMhGMu0VEQpEctEaJnniqlBFB3Axmw-M4eACmN9pMLOHVDDYvdTSjjXwuTKUBUJ3QXSiCnNQiFx18_iPV2WQHaiTa1oUy_alHThbLHmoy6jsXJ2r5F-Gq5UmS4VoAvnzYksh__f7Wj1bsfQpk4JfIhKDzaqr29zYolGpfvQGt683o_6Qav6sD6lwx8cXc26 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB2hpAgNRwARThdQgQX2etd2gRBHogRIhFCQ6BZ710uDEmAXIX6Kb8Tegwgk0qX2UYzfjOfZcwDsUaZirY2HOdExZiyRWPicYqppoLkJAp7nrfUHQfeeXT34D3PwVeXCuLDKyibmhjoeR-6N_MjSBIs3Gghy-vKKXdco97tatdAoYHFtPj8sZUtPepf2fPcp7bSHF11cdhXAkVWmDHs0iYSMkyTRsfQlocqnPFKWJQpunbfA19Z2cE8IxiItFVFK-DIQWsaxYurYPYBak19nnqUyNaiftwe3dz-2n5PC4SaSY6sNrEzTKZL13NWKHV2ztEESTH5fhRP_9s-XbH7TdZZgoXRR0VmBqWWYM6MmLFbtH1BpDZrQqJKa0ybMO6e1qPm8AjSPQ0D9PE7ToLKE6xPKxsh1Ao1UmqFOXssEtYuhdBXuZyLFNaiNxiOzDigxlpMldu4xNcx3P7OEcy1MrAxVntAtIJWYwqgsXO76ZzyHk5LLTrShFW2YizYkLTj4WfNSlO2YOnurkn5YqnAaTgDXgsPqRCbD_--2MX23XWh0h_2b8KY3uN6EeeoAkYfHbEEte3s329bJyfROiSwEj7MG8zdeNQfX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6hIBUutA0gQmnrA5zAIna8a_uAqkISJUAihEDitti7Xi4oAXarqn-tv47xrpeISuXG2Y_D-PPMfPY8AHa5MJm1rkclsxkVItdURZJTbnlspYtjWeWtTabx6Fqc3kQ3S_C3yYXxYZWNTqwUdTZP_Rv5IdIExBuPFTvMQ1jERX_44-GR-g5S_qe1aadRQ-TM_fmN9K04GvfxrPc4Hw6uTkY0dBigKV6skvZ4niqd5XluMx1pxk3EZWqQMSqJjlwcWdQjsqeUEKnVhhmjIh0rq7PMCNP1j6Go_pclsqJuC5aPB9OLyxc7IFntfDMtKd4MEVJ26sQ9b2app25IITSj7LVZXPi6_3zPVlZv-AnWgrtKftb4-gxLbtaGj00rCBI0QxtWmgTnog2r3oGt6z-vA69iEsikitl0JJRzvSPlnPiuoKkpSjKs6pqQQT1UbMD1u0hxE1qz-cxtAckd8rMc53a5E5H_pWVSWuUy47jpKdsB1ogpSUMRc99L4z5ZlF_2ok1QtEkl2oR1YP9lzUNdwuPN2TuN9JNwnYtkAb4OHDQnshj-_27bb-_2HT4giJPz8fTsC6xyj4cqUmYHWuXTL_cV_Z3SfgvAInD73lh-BszsDAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Machine+Learning+to+Forecast+Future+Earnings&rft.jtitle=Atlantic+economic+journal&rft.au=Xinyue%2C+Cui&rft.au=Zhaoyu%2C+Xu&rft.au=Yue%2C+Zhou&rft.date=2020-12-01&rft.issn=0197-4254&rft.eissn=1573-9678&rft.volume=48&rft.issue=4&rft.spage=543&rft.epage=545&rft_id=info:doi/10.1007%2Fs11293-020-09691-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11293_020_09691_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-4254&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-4254&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-4254&client=summon |