Multiobjective evolution of deep learning parameters for robot manipulator object recognition and grasping
Deep Learning (DL) is currently very popular because of its similarity to the hierarchical architecture of human brain with multiple levels of abstraction. DL has many parameters that influence the network performance. In this paper, we introduce a multiobjective evolutionary algorithm (MOEA) to opt...
Saved in:
Published in | Advanced robotics Vol. 32; no. 20; pp. 1090 - 1101 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
18.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-1864 1568-5535 |
DOI | 10.1080/01691864.2018.1529620 |
Cover
Loading…
Abstract | Deep Learning (DL) is currently very popular because of its similarity to the hierarchical architecture of human brain with multiple levels of abstraction. DL has many parameters that influence the network performance. In this paper, we introduce a multiobjective evolutionary algorithm (MOEA) to optimize the DBNN parameters subject to the error rate and the network training time as two conflicting objectives. To verify the effectiveness, the proposed method is applied to the robot object recognition and grasping task. We compare the performance of the optimized DBNN model with a) DBNN with arbitrarily selected parameters and b) Deep Belief Network-Deep Neural Network (DBN-DNN). The results show that optimized DL has a superior performance in terms of training time and recognition success rate. In addition, the optimized DBNN model is effective for real-time robotic implementations. |
---|---|
AbstractList | Deep Learning (DL) is currently very popular because of its similarity to the hierarchical architecture of human brain with multiple levels of abstraction. DL has many parameters that influence the network performance. In this paper, we introduce a multiobjective evolutionary algorithm (MOEA) to optimize the DBNN parameters subject to the error rate and the network training time as two conflicting objectives. To verify the effectiveness, the proposed method is applied to the robot object recognition and grasping task. We compare the performance of the optimized DBNN model with a) DBNN with arbitrarily selected parameters and b) Deep Belief Network-Deep Neural Network (DBN-DNN). The results show that optimized DL has a superior performance in terms of training time and recognition success rate. In addition, the optimized DBNN model is effective for real-time robotic implementations. |
Author | Capi, Genci Hossain, Delowar |
Author_xml | – sequence: 1 givenname: Delowar surname: Hossain fullname: Hossain, Delowar organization: Assistive Robotics Laboratory, Department of Mechanical Engineering, Faculty of Science and Engineering, HOSEI University – sequence: 2 givenname: Genci surname: Capi fullname: Capi, Genci email: capi@hosei.ac.jp organization: Assistive Robotics Laboratory, Department of Mechanical Engineering, Faculty of Science and Engineering, HOSEI University |
BookMark | eNqFkM1KAzEUhYNUsK0-gpAXmJpMJvODG6X4BxU3uh7uJDclZZoMmbTSt3fG1o0LXV04nPNx-WZk4rxDQq45W3BWshvG84qXebZIGS8XXKZVnrIzMuUyLxMphZyQ6dhJxtIFmfX9hjFWZqKYks3rro3WNxtU0e6R4t63uyFw1BuqETvaIgRn3Zp2EGCLEUNPjQ80-MZHugVnu10LcUiOFBpQ-bWz3xBwmq4D9N0AuCTnBtoer053Tj4eH96Xz8nq7elleb9KlCjymAhujBKqLLkwoqowBSG1Vo00LGeFLhCblJnGZFKmXEudNrqAHAVCVrGCCzEnt0euCr7vA5pa2QjjOzGAbWvO6lFb_aOtHrXVJ23DWv5ad8FuIRz-3d0dd9YNdrbw6UOr6wiH1gcTwCnb1-JvxBeG44mb |
CitedBy_id | crossref_primary_10_1007_s12182_019_00417_w crossref_primary_10_1016_j_asoc_2023_110412 crossref_primary_10_1016_j_neucom_2022_09_114 crossref_primary_10_1108_IR_09_2019_0180 crossref_primary_10_1109_TNNLS_2021_3100554 crossref_primary_10_1017_S0263574721000023 crossref_primary_10_1016_j_inffus_2020_10_014 crossref_primary_10_3390_s23135826 |
Cites_doi | 10.1108/IR-05-2016-0140 10.1016/j.swevo.2011.03.001 10.1177/0278364914549607 10.1109/TEVC.2015.2424251 10.1109/TNNLS.2016.2582798 10.1109/TEVC.2007.892759 10.1023/B:VISI.0000029664.99615.94 10.1177/0278364917710318 10.1007/s11263-013-0620-5 10.14257/ijunesst.2015.8.11.31 10.1109/TNNLS.2013.2293418 10.1162/neco.2006.18.7.1527 10.1162/106365600568158 10.1109/4235.797969 10.1109/TGRS.2016.2543748 10.1016/0004-3702(77)90006-6 10.1109/ICCV.1999.790410 10.1109/TNNLS.2015.2469673 10.1109/TRO.2007.910773 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group and The Robotics Society of Japan 2018 |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group and The Robotics Society of Japan 2018 |
DBID | AAYXX CITATION |
DOI | 10.1080/01691864.2018.1529620 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1568-5535 |
EndPage | 1101 |
ExternalDocumentID | 10_1080_01691864_2018_1529620 1529620 |
Genre | Article |
GroupedDBID | -~X .QJ 0BK 0R~ 23M 30N 4.4 5GY AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ACUHS ADCVX ADGTB ADMLS ADYSH AEISY AENEX AEOZL AEPSL AEVUW AEYOC AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMFWP AMPGV AQRUH AVBZW AWYRJ BLEHA CCCUG CS3 DGEBU DKSSO EAP EBS EJD EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM M4Z NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ TUS UT5 ZGOLN ~S~ AAGDL AAHIA AAYXX CITATION |
ID | FETCH-LOGICAL-c376t-31ffc3c8813f399e2a35ddcb5f0607d7eeb20fbf45521d5d2bd7a6e3ea4907133 |
ISSN | 0169-1864 |
IngestDate | Tue Jul 01 01:11:36 EDT 2025 Thu Apr 24 22:52:02 EDT 2025 Tue May 20 10:45:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c376t-31ffc3c8813f399e2a35ddcb5f0607d7eeb20fbf45521d5d2bd7a6e3ea4907133 |
PageCount | 12 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_01691864_2018_1529620 crossref_citationtrail_10_1080_01691864_2018_1529620 crossref_primary_10_1080_01691864_2018_1529620 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-18 |
PublicationDateYYYYMMDD | 2018-10-18 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationTitle | Advanced robotics |
PublicationYear | 2018 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0032 Domhan T (CIT0029) 2015 CIT0031 CIT0034 Agrawal P (CIT0006) 2014; 8695 Hossain D (CIT0030) 2017; 11 Bergstra J (CIT0027) 2012; 13 Liu H (CIT0014) 2017 CIT0036 CIT0013 CIT0035 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 Deb K (CIT0043) 2000; 1917 IFR (CIT0001) 2017 CIT0041 Deng H (CIT0026) 2017; 681 CIT0022 CIT0044 Coello CC (CIT0033) 2007 Bergstra JS (CIT0028) 2011 CIT0003 CIT0002 CIT0005 CIT0004 CIT0009 |
References_xml | – volume: 8695 start-page: 329 year: 2014 ident: CIT0006 publication-title: Eur Conf Comput Vis – ident: CIT0018 doi: 10.1108/IR-05-2016-0140 – volume-title: World robotics industrial robots year: 2017 ident: CIT0001 – start-page: 3460 year: 2015 ident: CIT0029 publication-title: IJCAI'15 Proceedings of the 24th International Conference on Artificial Intelligence, Vol. 15; July; Buenos Aires, Argentina – volume-title: Evolutionary algorithms for solving multi-objective problems year: 2007 ident: CIT0033 – ident: CIT0035 doi: 10.1016/j.swevo.2011.03.001 – ident: CIT0015 doi: 10.1177/0278364914549607 – ident: CIT0036 doi: 10.1109/TEVC.2015.2424251 – ident: CIT0041 doi: 10.1109/TNNLS.2016.2582798 – ident: CIT0034 doi: 10.1109/TEVC.2007.892759 – ident: CIT0004 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: CIT0017 doi: 10.1177/0278364917710318 – ident: CIT0005 doi: 10.1007/s11263-013-0620-5 – ident: CIT0022 doi: 10.14257/ijunesst.2015.8.11.31 – volume: 13 start-page: 281 year: 2012 ident: CIT0027 publication-title: J Mach Learn Res – ident: CIT0037 doi: 10.1109/TNNLS.2013.2293418 – ident: CIT0009 doi: 10.1162/neco.2006.18.7.1527 – ident: CIT0032 doi: 10.1162/106365600568158 – volume: 681 start-page: 417 year: 2017 ident: CIT0026 publication-title: Bioins Comput Theor Appl – ident: CIT0031 doi: 10.1109/4235.797969 – ident: CIT0013 doi: 10.1109/TGRS.2016.2543748 – volume: 1917 start-page: 849 year: 2000 ident: CIT0043 publication-title: Parallel Probl Solving Nat PPSN VI – volume: 11 start-page: 629 issue: 3 year: 2017 ident: CIT0030 publication-title: World Acad Sci, Eng Technol, Int J Mech, Aerosp, Ind, Mechatron Manuf Eng – ident: CIT0002 doi: 10.1016/0004-3702(77)90006-6 – start-page: 1 issue: 99 year: 2017 ident: CIT0014 publication-title: IEEE Trans Intell Transp Syst – ident: CIT0003 doi: 10.1109/ICCV.1999.790410 – start-page: 2546 year: 2011 ident: CIT0028 publication-title: Advances in Neural Information Processing Systems; Granada, Spain – ident: CIT0038 doi: 10.1109/TNNLS.2015.2469673 – ident: CIT0044 doi: 10.1109/TRO.2007.910773 |
SSID | ssj0008437 |
Score | 2.233308 |
Snippet | Deep Learning (DL) is currently very popular because of its similarity to the hierarchical architecture of human brain with multiple levels of abstraction. DL... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1090 |
SubjectTerms | DBNN Deep learning multiobjective evolution object recognition robot grasping |
Title | Multiobjective evolution of deep learning parameters for robot manipulator object recognition and grasping |
URI | https://www.tandfonline.com/doi/abs/10.1080/01691864.2018.1529620 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBay9rIdiu6Fde0GHXYLHDiW7FjHYg8EA7ZTixU7zJAsqUjRxUHq7tBfX1IPR8GCPS9GoERSIH4hKYb8SMgbXmlRFMJmpeICLiiKZ4prkWEzeGkNY9LVcX_6XM3P-ceL8mI0-pZkLd32atLe7awr-RepwhjIFatk_0Kyw6IwAK9BvvAECcPzj2Tsqmc7deWV1tj8CLuhB6iNWcWeEJdjZPj-jpkvjn5hvO5U12Pm6sK174IRv8p4yCcKScqXa3mzitYtktXGtAG3SpItPweDKxdBjV1jPu7mH47Vwkfgl-0iDTRMHetr0I2uVO2nnh9pWLIS8FnPRz4xQZViTVfpyUiirt3EMvHKmyeaExNEEysMXsl0p4YPKZHI8QP7YW5ejT2cRBVW2ybPDu88IPsFXCNAce-fzt99_TLY6pp7VtX4_WONF7Kv79piy3vZ4rZNvJKzQ3IQrhP01GPjMRmZ5RPyKCGZfEqutlFCB5TQzlJECY0ooRuUUNiSOvnSBCXUr0ITlFBACY0oeUbOP7w_ezvPQoeNrAXD0oMBtrZlbV1PmQVP1RSSlVq3qrR5lc_0zBhV5FZZXoKXp0tdKD2TlWFGcuHCG8_J3rJbmheEMqaFKmUrGTY4kLI2eVuDTKXiUlZcHxEeT65pA_08dkG5bqaRpTYceIMH3oQDPyKTYdrK86_8boJIxdL0DrbWI7Zhv5z78j_mHpOHmx_NCdnr17fmFfirvXodQHcPi82TVg |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8JAFJ4YPKgHdyOuc_BabDvTZY7GSFCBEyTcmllJUCmB4sFf77wupJioB65t3mTWt-W970PojoaK-T4zTiAoswGKoI6gijlABs-NJoTnfdy9ftgZ0pdRMKr1wkBZJcTQpgCKyHU1PG5IRlclcfeAIOLFIaREvBgYfFjo27B9O2BhBI-TuP2VNo5pgZtpRRyQqbp4fhtmzT6toZfW7E77AMlqxkW5yVtrmYmW_PoB5rjZkg7RfumW4ofiHh2hLT09Rns1sMITNMl7dVMxKVQk1p_lrcWpwUrrGS4ZKMYY8MQ_oM5mge3C8DwVaYYBaCMnC7NfilHwqnrJDmKnjsdzvoD-rVM0bD8NHjtOydTgSKugMqvIjZFExrFHjPV4tM9JoJQUgXFDN1KRtvG7a4ShgfUWVKB8oSIeaqI5ZXmYfIYa03SqzxEmRDERcMkJAOVzHmtXxi5zuaCch1Q1Ea3OJ5EljDmwabwnXoV2Wm5lAluZlFvZRK2V2KzA8fhPgNUPP8nyBIop2E4S8qfsxQayt2inM-h1k-5z__US7cIvMJVefIUa2Xypr60PlImb_JJ_AxRa-jc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkRAMvBHl6YE1JYkd1x4RUPGsGEBii-zYrlSgqdqUgV-PL06qFgkYuiY6yz4793Duvg-hM8q0iGNhg0RR4RIURQNFtQiADF5aQ4gs-7gfu-zmhd69JnU14bgqq4Qc2nqgiNJWw8c91LauiDsHAJGIM7gRiTgQ-AgWu6x9mcFPPujiCLtTY8yph810IgHI1E08vw0z557mwEtn3E5nA6l6wr7a5K01KVQr-_qB5bjQijbRehWU4gt_irbQkhlso7UZqMId1C87dXPV9wYSm8_qzOLcYm3MEFf8Ez0MaOIfUGUzxm5deJSrvMAAs1FShbknfhQ8rV1yg7iZ495IjqF7axe9dK6fL2-CiqchyJx5KpwZtzYjGecRsS7eMbEkidaZSmzIwrZuG5e9h1ZZmrhYQSc6VrotmSFGUlEmyXuoMcgHZh9hQrRQicwkAZh8KbkJMx6KUCoqJaO6iWi9PWlWgZgDl8Z7GtVYp5UqU1BlWqmyiVpTsaFH8fhPQMzufVqU1yfWc52k5E_ZgwVkT9HK01Unfbjt3h-iVXgDfjLiR6hRjCbm2AVAhTopj_g3_5z42w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+evolution+of+deep+learning+parameters+for+robot+manipulator+object+recognition+and+grasping&rft.jtitle=Advanced+robotics&rft.au=Hossain%2C+Delowar&rft.au=Capi%2C+Genci&rft.date=2018-10-18&rft.pub=Taylor+%26+Francis&rft.issn=0169-1864&rft.eissn=1568-5535&rft.volume=32&rft.issue=20&rft.spage=1090&rft.epage=1101&rft_id=info:doi/10.1080%2F01691864.2018.1529620&rft.externalDocID=1529620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1864&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1864&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1864&client=summon |