Mathematical modeling and sensibility analysis of a solar humidification-dehumidification desalination system considering saturated air

•A mathematical model for a solar desalination process is proposed.•The mean error of the model is 48% less than the one proposed in the literature.•A sensibility analysis of input parameters in distillate production is made.•Extra heat sources should be placed after the condenser rather than in fee...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 157; pp. 321 - 327
Main Authors Campos, Bruno Lacerda de Oliveira, Costa, Andréa Oliveira Souza da, Costa Junior, Esly Ferreira da
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.11.2017
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A mathematical model for a solar desalination process is proposed.•The mean error of the model is 48% less than the one proposed in the literature.•A sensibility analysis of input parameters in distillate production is made.•Extra heat sources should be placed after the condenser rather than in feed water. Due to factors such as global warming, population growth and environment degradation, access to drinking water has become a problem in many regions of the planet, specially where the weather is dry. Solar desalination by humidification-dehumidification is a method whose energy source is clean and renewable, and is an interesting alternative to purifying salt or brackish water for human consumption. Modeling works of this system may be divided in two groups: those that consider saturated air in the whole system and the ones that do not adopt this consideration and describe mass transfer. In this work, a mathematical model considering saturation was developed to describe a process based in literature. Four model parameters were estimated by minimization of the sum of squared residuals for experimental temperature values throughout the equipment. The proposed model contains fewer parameters than the model described in literature, which does not consider saturated air. The deviance related to temperature experimental data has the same order as the experimental error. The error related to distillate production was more than 48% reduced, if compared to the literature model. After the validation of the model, a sensibility analysis was made regarding input and project parameters in relation to distillate production. The increase of absorbed heat in the solar collector, the increase of humidifier height and the reduction of seawater mass flow rate were the most significant factors to increase the distillate flow rate. On the other hand, environment temperature variation had little significance in distillate production.
AbstractList •A mathematical model for a solar desalination process is proposed.•The mean error of the model is 48% less than the one proposed in the literature.•A sensibility analysis of input parameters in distillate production is made.•Extra heat sources should be placed after the condenser rather than in feed water. Due to factors such as global warming, population growth and environment degradation, access to drinking water has become a problem in many regions of the planet, specially where the weather is dry. Solar desalination by humidification-dehumidification is a method whose energy source is clean and renewable, and is an interesting alternative to purifying salt or brackish water for human consumption. Modeling works of this system may be divided in two groups: those that consider saturated air in the whole system and the ones that do not adopt this consideration and describe mass transfer. In this work, a mathematical model considering saturation was developed to describe a process based in literature. Four model parameters were estimated by minimization of the sum of squared residuals for experimental temperature values throughout the equipment. The proposed model contains fewer parameters than the model described in literature, which does not consider saturated air. The deviance related to temperature experimental data has the same order as the experimental error. The error related to distillate production was more than 48% reduced, if compared to the literature model. After the validation of the model, a sensibility analysis was made regarding input and project parameters in relation to distillate production. The increase of absorbed heat in the solar collector, the increase of humidifier height and the reduction of seawater mass flow rate were the most significant factors to increase the distillate flow rate. On the other hand, environment temperature variation had little significance in distillate production.
Due to factors such as global warming, population growth and environment degradation, access to drinking water has become a problem in many regions of the planet, specially where the weather is dry. Solar desalination by humidification-dehumidification is a method whose energy source is clean and renewable, and is an interesting alternative to purifying salt or brackish water for human consumption. Modeling works of this system may be divided in two groups: those that consider saturated air in the whole system and the ones that do not adopt this consideration and describe mass transfer. In this work, a mathematical model considering saturation was developed to describe a process based in literature. Four model parameters were estimated by minimization of the sum of squared residuals for experimental temperature values throughout the equipment. The proposed model contains fewer parameters than the model described in literature, which does not consider saturated air. The deviance related to temperature experimental data has the same order as the experimental error. The error related to distillate production was more than 48% reduced, if compared to the literature model. After the validation of the model, a sensibility analysis was made regarding input and project parameters in relation to distillate production. The increase of absorbed heat in the solar collector, the increase of humidifier height and the reduction of seawater mass flow rate were the most significant factors to increase the distillate flow rate. On the other hand, environment temperature variation had little significance in distillate production.
Author Campos, Bruno Lacerda de Oliveira
Costa, Andréa Oliveira Souza da
Costa Junior, Esly Ferreira da
Author_xml – sequence: 1
  givenname: Bruno Lacerda de Oliveira
  surname: Campos
  fullname: Campos, Bruno Lacerda de Oliveira
  email: brunolacerdaoc@gmail.com
– sequence: 2
  givenname: Andréa Oliveira Souza da
  surname: Costa
  fullname: Costa, Andréa Oliveira Souza da
– sequence: 3
  givenname: Esly Ferreira da
  surname: Costa Junior
  fullname: Costa Junior, Esly Ferreira da
BookMark eNqFkE1r3DAQhkVJoZs0P6Eg6NmuZHstmR5KCf2ClF5SyE2MpXEzi22lGm1hf0H-drXZXNpLTmKk93kHPefibI0rCvFGq1or3b_b1RxnXDHVjdKmVrZWzfBCbHRndKWbrTkTG6VaW6mhuX0lzpl3qgS1NRvx8B3yHS6QycMslxhwpvWXhDVIxpVppJnyocwwH5hYxkmCLOsgybv9QoGmAmaKaxXw3wsZkKGUnQY-cMZF-lg6A6bjDoa8T5AxSKD0WrycYGa8fDovxM_Pn26uvlbXP758u_p4XfnW9LlqwIzQ6XFrG936DibsTTfazvcWoQ1mMl0fjLdozYTgW2jGaSiOhj50vbemvRBvT733Kf7eI2e3i_tUfsdOD7Yzg9o-pranlE-ROeHk7hMtkA5OK3d07nbuybk7OnfKuuK8cO__4zzlRwE5Ac3P0h9ONBYBf6i8sidcPQZK6LMLkZ5p-Atnn6g0
CitedBy_id crossref_primary_10_1016_j_desal_2018_03_014
crossref_primary_10_1016_j_desal_2019_114101
crossref_primary_10_1080_14484846_2022_2113618
crossref_primary_10_1016_j_egyr_2021_09_165
crossref_primary_10_1016_j_enconman_2019_112016
crossref_primary_10_1016_j_seta_2022_102141
crossref_primary_10_1039_D1RE00040C
crossref_primary_10_1016_j_matpr_2022_05_231
crossref_primary_10_1016_j_apenergy_2023_121950
crossref_primary_10_1016_j_enconman_2018_08_089
crossref_primary_10_1007_s10098_023_02517_z
crossref_primary_10_1016_j_apenergy_2018_06_135
crossref_primary_10_1016_j_jclepro_2019_04_140
crossref_primary_10_1016_j_applthermaleng_2022_119956
crossref_primary_10_1016_j_solener_2018_11_059
crossref_primary_10_3390_e23101282
crossref_primary_10_1088_2634_4505_ac3ca0
crossref_primary_10_1016_j_enconman_2019_112129
crossref_primary_10_2166_ws_2021_120
crossref_primary_10_1016_j_geothermics_2018_06_008
crossref_primary_10_1016_j_eswa_2022_119289
crossref_primary_10_1061__ASCE_EY_1943_7897_0000603
crossref_primary_10_1016_j_desal_2020_114860
crossref_primary_10_1016_j_pecs_2020_100850
crossref_primary_10_5004_dwt_2019_23743
crossref_primary_10_3390_w15061125
crossref_primary_10_1016_j_cscee_2023_100500
crossref_primary_10_1016_j_desal_2018_02_021
crossref_primary_10_1021_acs_iecr_1c02952
crossref_primary_10_1039_D0EW00558D
crossref_primary_10_1016_j_desal_2022_116029
crossref_primary_10_1016_j_renene_2023_119662
Cites_doi 10.1016/j.desal.2012.02.023
10.1016/j.desal.2008.01.024
10.1016/S0196-8904(99)00017-5
10.1016/j.solener.2012.07.017
10.1016/S0011-9164(01)00371-X
10.1016/j.desal.2015.03.032
10.1016/j.desal.2013.10.018
10.1016/j.desal.2012.12.005
10.1016/j.enconman.2016.10.005
10.1016/j.desal.2017.01.036
10.1016/S0011-9164(02)00994-3
10.1016/j.enconman.2017.04.011
10.1016/j.desal.2015.09.018
10.1016/j.enconman.2017.02.043
10.1016/S0196-8904(03)00151-1
10.1016/j.applthermaleng.2016.05.120
10.1016/j.ijhydene.2016.05.207
10.1038/517006a
10.1016/j.desal.2014.06.016
10.1016/j.desal.2015.09.024
10.1016/j.egypro.2014.10.310
10.1016/j.solener.2011.09.016
10.1016/j.desal.2011.09.041
10.1016/j.desal.2014.12.005
10.1016/j.desal.2008.01.023
10.1016/j.desal.2013.02.021
10.1590/S1413-41522014019000000741
10.1016/j.desal.2014.02.039
10.1016/j.desal.2006.01.012
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Pergamon Press Inc. Nov 15, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Nov 15, 2017
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2017.08.029
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 327
ExternalDocumentID 10_1016_j_solener_2017_08_029
S0038092X17307090
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
SAC
SEW
SSH
UKR
VOH
WUQ
XOL
ZY4
~A~
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c376t-2a7ba41b58213c4afe674b84c68ea3d7f746d7c8e87feac3a2bf901696d46c873
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Wed Aug 13 09:09:42 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Tue Jul 01 01:08:47 EDT 2025
Fri Feb 23 02:28:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parameter estimation
Humidification-dehumidification
Mathematical model
Solar desalination
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-2a7ba41b58213c4afe674b84c68ea3d7f746d7c8e87feac3a2bf901696d46c873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1984790587
PQPubID 9393
PageCount 7
ParticipantIDs proquest_journals_1984790587
crossref_primary_10_1016_j_solener_2017_08_029
crossref_citationtrail_10_1016_j_solener_2017_08_029
elsevier_sciencedirect_doi_10_1016_j_solener_2017_08_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-15
PublicationDateYYYYMMDD 2017-11-15
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2017
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References El-Shazly, Al-Zahrani, Alhamed, Nosier (b0020) 2012; 293
Eliasson (b0025) 2015; 517
(Access: Sept. 2016).
Xiong, Wang, Wang (b0160) 2006; 196
Nematollahi, Rahimi, Gheinani (b0110) 2013; 317
Ashrafizadeh, Amidpour (b0015) 2012; 285
Available at
Hernández, Rubalcaba, Hermosillo (b0075) 2014; 57
Moumouh, Tahiri, Salouhi, Balli (b0085) 2016; 41
Ghalavand, Hatamipour, Rahimi (b0045) 2014; 341
Giwa, Fath, Hasan (b0050) 2016; 377
Farid, Parekh, Selman, Al-Hallaj (b0035) 2002; 151
Narayan, McGovern, Lienhard, Zubair (b0100) 2011
Smith, Van Ness, Abbott (b0130) 2007
Wu, Zheng, Ma, Kutlu, Su (b0155) 2017; 143
Zubair, Al-Sulaiman, Antar, Al-Dini, Ibrahim (b0170) 2017; 132
Nawayseh, Farid, Omar, Sabirin (b0105) 1999; 40
Henker, Rodrigues, Costa, Kearcher, Machado (b0065) 2014; 19
Rajaseenivasan, Srithar (b0115) 2017; 139
Sharshir, Peng, Yang, El-Samadony, Kabeel (b0120) 2016; 104
Wu, Zheng, Kang, Yang, Cheng, Chang (b0150) 2016; 378
Sharqawy, Antar, Zubair, Elbashir (b0125) 2014; 349
Hamed, Kabeel, Omara, Sharshir (b0055) 2015; 358
Fernandes, V., 2016. Crimes disparam na guerra pela água devido à seca no Espírito Santo. Gazeta Online
Eslamimanesh, Hatamipour (b0030) 2009; 237
(Access in July 2017).
Nafey, Fath, El-Helaby, Soliman (b0095) 2004; 45
Hamieh, Beckman, Ybarra (b9000) 2000; 10
Soufari, Zamen, Amidpour (b0135) 2009; 237
Thermocouple Info, 2017. Type T thermocouple accuracy. Available at
Hamieh, Beckman, Ybarra (b0060) 2001; 140
Muthusamy, Srithar (b0090) 2015; 367
Zamen, Soufari, Vahdat, Amidpour, Zeinali, Izanloo, Aghababaie (b0165) 2014; 332
Ahmed, Ismail, Saleh, Ahmed (b0005) 2017; 410
Hermosillo, Arancibia-Bulnes, Estrada (b0070) 2012; 86
Summers, Antar, Lienhard (b0140) 2012; 86
Miller, Lienhard (b0080) 2013; 313
Wu (10.1016/j.solener.2017.08.029_b0155) 2017; 143
Eslamimanesh (10.1016/j.solener.2017.08.029_b0030) 2009; 237
10.1016/j.solener.2017.08.029_b0145
Soufari (10.1016/j.solener.2017.08.029_b0135) 2009; 237
Hermosillo (10.1016/j.solener.2017.08.029_b0070) 2012; 86
Ghalavand (10.1016/j.solener.2017.08.029_b0045) 2014; 341
10.1016/j.solener.2017.08.029_b0040
Muthusamy (10.1016/j.solener.2017.08.029_b0090) 2015; 367
Nawayseh (10.1016/j.solener.2017.08.029_b0105) 1999; 40
Giwa (10.1016/j.solener.2017.08.029_b0050) 2016; 377
Zamen (10.1016/j.solener.2017.08.029_b0165) 2014; 332
Narayan (10.1016/j.solener.2017.08.029_b0100) 2011
Xiong (10.1016/j.solener.2017.08.029_b0160) 2006; 196
Wu (10.1016/j.solener.2017.08.029_b0150) 2016; 378
Smith (10.1016/j.solener.2017.08.029_b0130) 2007
El-Shazly (10.1016/j.solener.2017.08.029_b0020) 2012; 293
Henker (10.1016/j.solener.2017.08.029_b0065) 2014; 19
Hernández (10.1016/j.solener.2017.08.029_b0075) 2014; 57
Sharqawy (10.1016/j.solener.2017.08.029_b0125) 2014; 349
Moumouh (10.1016/j.solener.2017.08.029_b0085) 2016; 41
Ahmed (10.1016/j.solener.2017.08.029_b0005) 2017; 410
Eliasson (10.1016/j.solener.2017.08.029_b0025) 2015; 517
Zubair (10.1016/j.solener.2017.08.029_b0170) 2017; 132
Hamieh (10.1016/j.solener.2017.08.029_b0060) 2001; 140
Miller (10.1016/j.solener.2017.08.029_b0080) 2013; 313
Farid (10.1016/j.solener.2017.08.029_b0035) 2002; 151
Hamed (10.1016/j.solener.2017.08.029_b0055) 2015; 358
Summers (10.1016/j.solener.2017.08.029_b0140) 2012; 86
Ashrafizadeh (10.1016/j.solener.2017.08.029_b0015) 2012; 285
Nematollahi (10.1016/j.solener.2017.08.029_b0110) 2013; 317
Sharshir (10.1016/j.solener.2017.08.029_b0120) 2016; 104
Nafey (10.1016/j.solener.2017.08.029_b0095) 2004; 45
Rajaseenivasan (10.1016/j.solener.2017.08.029_b0115) 2017; 139
Hamieh (10.1016/j.solener.2017.08.029_b9000) 2000; 10
References_xml – volume: 517
  start-page: 6
  year: 2015
  ident: b0025
  article-title: The rising pressure of global warming shortages
  publication-title: Nature
– volume: 341
  start-page: 120
  year: 2014
  end-page: 125
  ident: b0045
  article-title: Humidification compression desalination
  publication-title: Desalination
– volume: 367
  start-page: 49
  year: 2015
  end-page: 59
  ident: b0090
  article-title: Energy and exergy analysis for a humidification-dehumidification desalination system integrated with multiple inserts
  publication-title: Desalination
– volume: 86
  start-page: 1070
  year: 2012
  end-page: 1076
  ident: b0070
  article-title: Water desalination by air humidification: mathematical model and experimental study
  publication-title: Sol. Energy
– volume: 377
  start-page: 163
  year: 2016
  end-page: 171
  ident: b0050
  article-title: Humidification-dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small scale sustainable water and power production
  publication-title: Desalination
– year: 2011
  ident: b0100
  article-title: Variable pressure humidification dehumidification desalination system
  publication-title: ASME/JSME Thermal Engineering Joint Conference, AJTEC 2011-44095, March 2011, Honolulu, Hawaii, USA
– volume: 313
  start-page: 87
  year: 2013
  end-page: 96
  ident: b0080
  article-title: Impact of extraction on a humidification-dehumidification desalination system
  publication-title: Desalination
– volume: 349
  start-page: 10
  year: 2014
  end-page: 21
  ident: b0125
  article-title: Optimum thermal design of humidification dehumidification desalination systems
  publication-title: Desalination
– volume: 19
  start-page: 345
  year: 2014
  end-page: 352
  ident: b0065
  article-title: Água potável com desumidificação do ar e energia solar: adaptação ao stress hídrico no RS
  publication-title: Eng Sanitária e Ambiental
– volume: 237
  start-page: 305
  year: 2009
  end-page: 317
  ident: b0135
  article-title: Performance optimization of the humidification-dehumidification desalination process using mathematical programming
  publication-title: Desalination
– volume: 358
  start-page: 9
  year: 2015
  end-page: 17
  ident: b0055
  article-title: Mathematical and experimental investigation of a solar humidification-dehumidification desalination unit
  publication-title: Desalination
– volume: 285
  start-page: 108
  year: 2012
  end-page: 116
  ident: b0015
  article-title: Exergy analysis of humidification-dehumidification desalination systems using driving forces concept
  publication-title: Desalination
– volume: 410
  start-page: 19
  year: 2017
  end-page: 29
  ident: b0005
  article-title: Experimental investigation of humidification-dehumidification desalination system with corrugated packing in the humidifier
  publication-title: Desalination
– reference: Fernandes, V., 2016. Crimes disparam na guerra pela água devido à seca no Espírito Santo. Gazeta Online
– volume: 237
  start-page: 296
  year: 2009
  end-page: 304
  ident: b0030
  article-title: Mathematical modeling of a direct contact humidification-dehumidification desalination process
  publication-title: Desalination
– volume: 45
  start-page: 1243
  year: 2004
  end-page: 1261
  ident: b0095
  article-title: Solar desalination using humidification dehumidification process. Part I. A numerical investigation
  publication-title: Energy Convers. Manage.
– volume: 57
  start-page: 2781
  year: 2014
  end-page: 2786
  ident: b0075
  article-title: Improvement of a MEH desalination unit by means of heat recovery
  publication-title: Energy Proc.
– reference: > (Access in July 2017).
– volume: 143
  start-page: 241
  year: 2017
  end-page: 251
  ident: b0155
  article-title: Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens concentrator
  publication-title: Energy Convers. Manage.
– volume: 40
  start-page: 1441
  year: 1999
  ident: b0105
  article-title: Solar desalination based on humidification process – II. Computer simulation
  publication-title: Energy Convers. Manage.
– volume: 196
  start-page: 177
  year: 2006
  end-page: 187
  ident: b0160
  article-title: A mathematical model for a thermally coupled humidification-dehumidification desalination process
  publication-title: Desalination
– volume: 86
  start-page: 3417
  year: 2012
  end-page: 3429
  ident: b0140
  article-title: Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification-dehumidification desalination
  publication-title: Sol. Energy
– volume: 378
  start-page: 100
  year: 2016
  end-page: 107
  ident: b0150
  article-title: Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification-dehumidification process
  publication-title: Desalination
– reference: Available at: <
– volume: 293
  start-page: 53
  year: 2012
  end-page: 60
  ident: b0020
  article-title: Productivity intensification of humidification-dehumidification desalination unit by using pulsed water flow regime
  publication-title: Desalination
– volume: 140
  start-page: 217
  year: 2001
  end-page: 226
  ident: b0060
  article-title: Brackish and seawater desalination using a 20 ft
  publication-title: Desalination
– volume: 317
  start-page: 23
  year: 2013
  end-page: 31
  ident: b0110
  article-title: Experimental and theoretical energy and exergy analysis for a solar desalination system
  publication-title: Desalination
– start-page: 626p
  year: 2007
  ident: b0130
  article-title: Introdução à termodinâmica da engenharia química
– volume: 332
  start-page: 1
  year: 2014
  end-page: 6
  ident: b0165
  article-title: Experimental investigation of a two-solar stage humidification-dehumidification desalination process
  publication-title: Desalination
– volume: 41
  start-page: 20818
  year: 2016
  end-page: 20822
  ident: b0085
  article-title: Theoretical and experimental study of a solar desalination unit based on humidification-dehumidification of air
  publication-title: Int. J. Hydrogen Energy
– volume: 132
  start-page: 28
  year: 2017
  end-page: 39
  ident: b0170
  article-title: Performance and cost assessment of solar driven humidification dehumidification desalination system
  publication-title: Energy Convers. Manage.
– volume: 139
  start-page: 232
  year: 2017
  end-page: 244
  ident: b0115
  article-title: An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy
  publication-title: Energy Convers. Manage.
– reference: Thermocouple Info, 2017. Type T thermocouple accuracy. Available at: <
– volume: 151
  start-page: 153
  year: 2002
  end-page: 164
  ident: b0035
  article-title: Solar desalination with a humdification and dehumidification cycle: mathematical modeling of the unit
  publication-title: Desalination
– reference: > (Access: Sept. 2016).
– volume: 104
  start-page: 734
  year: 2016
  end-page: 742
  ident: b0120
  article-title: A continuous desalination system using humidification-dehumidification and a solar still with an evacuated solar water heater
  publication-title: Appl. Therm. Eng.
– volume: 10
  year: 2000
  ident: b9000
  article-title: The dewvaporation tower: an experimental and theoretical study with economic analysis
  publication-title: Int. Desal. Water Reuse Quarter.
– volume: 293
  start-page: 53
  year: 2012
  ident: 10.1016/j.solener.2017.08.029_b0020
  article-title: Productivity intensification of humidification-dehumidification desalination unit by using pulsed water flow regime
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.02.023
– volume: 237
  start-page: 305
  year: 2009
  ident: 10.1016/j.solener.2017.08.029_b0135
  article-title: Performance optimization of the humidification-dehumidification desalination process using mathematical programming
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.01.024
– year: 2011
  ident: 10.1016/j.solener.2017.08.029_b0100
  article-title: Variable pressure humidification dehumidification desalination system
– volume: 40
  start-page: 1441
  year: 1999
  ident: 10.1016/j.solener.2017.08.029_b0105
  article-title: Solar desalination based on humidification process – II. Computer simulation
  publication-title: Energy Convers. Manage.
  doi: 10.1016/S0196-8904(99)00017-5
– volume: 86
  start-page: 3417
  year: 2012
  ident: 10.1016/j.solener.2017.08.029_b0140
  article-title: Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification-dehumidification desalination
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.07.017
– volume: 10
  issue: 2
  year: 2000
  ident: 10.1016/j.solener.2017.08.029_b9000
  article-title: The dewvaporation tower: an experimental and theoretical study with economic analysis
  publication-title: Int. Desal. Water Reuse Quarter.
– volume: 140
  start-page: 217
  issue: 3
  year: 2001
  ident: 10.1016/j.solener.2017.08.029_b0060
  article-title: Brackish and seawater desalination using a 20 ft2 dewvaporation tower
  publication-title: Desalination
  doi: 10.1016/S0011-9164(01)00371-X
– volume: 367
  start-page: 49
  year: 2015
  ident: 10.1016/j.solener.2017.08.029_b0090
  article-title: Energy and exergy analysis for a humidification-dehumidification desalination system integrated with multiple inserts
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.03.032
– volume: 332
  start-page: 1
  year: 2014
  ident: 10.1016/j.solener.2017.08.029_b0165
  article-title: Experimental investigation of a two-solar stage humidification-dehumidification desalination process
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.10.018
– volume: 313
  start-page: 87
  year: 2013
  ident: 10.1016/j.solener.2017.08.029_b0080
  article-title: Impact of extraction on a humidification-dehumidification desalination system
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.12.005
– volume: 132
  start-page: 28
  year: 2017
  ident: 10.1016/j.solener.2017.08.029_b0170
  article-title: Performance and cost assessment of solar driven humidification dehumidification desalination system
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.10.005
– ident: 10.1016/j.solener.2017.08.029_b0040
– volume: 410
  start-page: 19
  year: 2017
  ident: 10.1016/j.solener.2017.08.029_b0005
  article-title: Experimental investigation of humidification-dehumidification desalination system with corrugated packing in the humidifier
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.01.036
– volume: 151
  start-page: 153
  year: 2002
  ident: 10.1016/j.solener.2017.08.029_b0035
  article-title: Solar desalination with a humdification and dehumidification cycle: mathematical modeling of the unit
  publication-title: Desalination
  doi: 10.1016/S0011-9164(02)00994-3
– volume: 143
  start-page: 241
  year: 2017
  ident: 10.1016/j.solener.2017.08.029_b0155
  article-title: Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens concentrator
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.04.011
– volume: 377
  start-page: 163
  year: 2016
  ident: 10.1016/j.solener.2017.08.029_b0050
  article-title: Humidification-dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small scale sustainable water and power production
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.09.018
– volume: 139
  start-page: 232
  year: 2017
  ident: 10.1016/j.solener.2017.08.029_b0115
  article-title: An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.02.043
– volume: 45
  start-page: 1243
  year: 2004
  ident: 10.1016/j.solener.2017.08.029_b0095
  article-title: Solar desalination using humidification dehumidification process. Part I. A numerical investigation
  publication-title: Energy Convers. Manage.
  doi: 10.1016/S0196-8904(03)00151-1
– volume: 104
  start-page: 734
  year: 2016
  ident: 10.1016/j.solener.2017.08.029_b0120
  article-title: A continuous desalination system using humidification-dehumidification and a solar still with an evacuated solar water heater
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.05.120
– volume: 41
  start-page: 20818
  issue: 45
  year: 2016
  ident: 10.1016/j.solener.2017.08.029_b0085
  article-title: Theoretical and experimental study of a solar desalination unit based on humidification-dehumidification of air
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.207
– start-page: 626p
  year: 2007
  ident: 10.1016/j.solener.2017.08.029_b0130
– volume: 517
  start-page: 6
  year: 2015
  ident: 10.1016/j.solener.2017.08.029_b0025
  article-title: The rising pressure of global warming shortages
  publication-title: Nature
  doi: 10.1038/517006a
– volume: 349
  start-page: 10
  year: 2014
  ident: 10.1016/j.solener.2017.08.029_b0125
  article-title: Optimum thermal design of humidification dehumidification desalination systems
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.06.016
– volume: 378
  start-page: 100
  year: 2016
  ident: 10.1016/j.solener.2017.08.029_b0150
  article-title: Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification-dehumidification process
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.09.024
– volume: 57
  start-page: 2781
  year: 2014
  ident: 10.1016/j.solener.2017.08.029_b0075
  article-title: Improvement of a MEH desalination unit by means of heat recovery
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2014.10.310
– volume: 86
  start-page: 1070
  year: 2012
  ident: 10.1016/j.solener.2017.08.029_b0070
  article-title: Water desalination by air humidification: mathematical model and experimental study
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.09.016
– volume: 285
  start-page: 108
  year: 2012
  ident: 10.1016/j.solener.2017.08.029_b0015
  article-title: Exergy analysis of humidification-dehumidification desalination systems using driving forces concept
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.09.041
– volume: 358
  start-page: 9
  year: 2015
  ident: 10.1016/j.solener.2017.08.029_b0055
  article-title: Mathematical and experimental investigation of a solar humidification-dehumidification desalination unit
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.12.005
– ident: 10.1016/j.solener.2017.08.029_b0145
– volume: 237
  start-page: 296
  year: 2009
  ident: 10.1016/j.solener.2017.08.029_b0030
  article-title: Mathematical modeling of a direct contact humidification-dehumidification desalination process
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.01.023
– volume: 317
  start-page: 23
  year: 2013
  ident: 10.1016/j.solener.2017.08.029_b0110
  article-title: Experimental and theoretical energy and exergy analysis for a solar desalination system
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.02.021
– volume: 19
  start-page: 345
  issue: 3
  year: 2014
  ident: 10.1016/j.solener.2017.08.029_b0065
  article-title: Água potável com desumidificação do ar e energia solar: adaptação ao stress hídrico no RS
  publication-title: Eng Sanitária e Ambiental
  doi: 10.1590/S1413-41522014019000000741
– volume: 341
  start-page: 120
  year: 2014
  ident: 10.1016/j.solener.2017.08.029_b0045
  article-title: Humidification compression desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.02.039
– volume: 196
  start-page: 177
  year: 2006
  ident: 10.1016/j.solener.2017.08.029_b0160
  article-title: A mathematical model for a thermally coupled humidification-dehumidification desalination process
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.01.012
SSID ssj0017187
Score 2.3879251
Snippet •A mathematical model for a solar desalination process is proposed.•The mean error of the model is 48% less than the one proposed in the literature.•A...
Due to factors such as global warming, population growth and environment degradation, access to drinking water has become a problem in many regions of the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 321
SubjectTerms Air temperature
Brackish water
Chemical analysis
Clean energy
Climate change
Dehumidification
Desalination
Distillates
Drinking water
Energy sources
Environmental degradation
Flow rates
Global warming
Humidification
Humidification-dehumidification
Mass flow rate
Mass transfer
Mathematical model
Mathematical models
Parameter estimation
Population growth
Seawater
Solar collectors
Solar desalination
Solar energy
Temperature
Temperature effects
Water analysis
Water purification
Title Mathematical modeling and sensibility analysis of a solar humidification-dehumidification desalination system considering saturated air
URI https://dx.doi.org/10.1016/j.solener.2017.08.029
https://www.proquest.com/docview/1984790587
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTg9e6mzbN4yiirIqeFPYWpkmKK7rKdj148erfNpOm6wNB8JjQaUtm-s0MnfmGkEMNIazgDDLlRUhQWMBBYNJmXpcglAseqI5sn9dicMsvhuVwjpx0vTBYVpmwv8X0iNZpp5dOs_c8GmGPb6H6Oh8yiXarMW_nXKKVH73NyjxYwN6WN7PA3_z58LOLp3cfktgHJHfGCi8ZmTxjpPmrf_qB1NH9nK2Q5RQ30uP21VbJnB-vkaUvbILr5P1qRsEarowjbsI-hbGjje_KYF_DuqUhoU81BdpgakvvXh5HDouGop4y579vUOcbwM7duGjJn6lNoz7xGQ3Sg4ao1VEYTTbI7dnpzckgS3MWMhvgZZrlICvgrMKe2cJyqL2QvFLcCuWhcLKWXDhplVeyDjhdQF7VGllchOPCKllskvnx09hvEVrJEnJWaccUcO8q3a-tErbOAcqQ8vJtwrvTNTaRkOMsjAfTVZvdm6QUg0oxOCMz19vkaCb23LJw_CWgOtWZb-Zkgqf4S3SvU7VJ33NjmA5eXPdLJXf-f-ddsogr7GRk5R6Zn05e_H4IaabVQbTZA7JwfH45uP4AHf_7iQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQcmg5VG0B8Wx96DXsOnH8OCJUtBTYE0h7sya2oy6CXUSWA7-gf5uZxNkCqoTUoydxEnmcb2bkmW8Y-2EB3QopIDNRYYAiEAdBaJ9FW4IyAS1Q3bJ9TtT4Wv6altM1dtLXwlBaZcL-DtNbtE6SYVrN4f1sRjW-hRnZfCo07VuLcfs6sVOVA7Z-fHY-nqwOExB-O-rMgk768-nfQp7hDcaxt8TvTEleuiXzbJ3Nf5qoN2DdWqDTz-xTch35cfd1X9hanH9lGy8IBTfZn8sVCyve2Xa5QTmHeeBN7DNhn3DcMZHwRc2BNxTd8t-Pd7NAeUOtqrIQXwt4iA1Q8W476PifuU_dPukdDTGEouMaOMwettj16c-rk3GWWi1kHhFmmeWgK5CiorLZwkuoo9KyMtIrE6EIutZSBe1NNLpGqC4gr2pLRC4qSOWNLrbZYL6Yxx3GK11CLiobhAEZQ2VHtTfK1zlAiVGv3GWyX13nEw85tcO4dX3C2Y1LSnGkFEdtMnO7y45W0-47Io73Jphede7VjnJoLN6betCr2qVfunHCoiG3o9Lovf9_8nf2YXx1eeEuzibn--wjXaHCRlEesMHy4TEeooezrL6lHfwMqtn-Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+modeling+and+sensibility+analysis+of+a+solar+humidification-dehumidification+desalination+system+considering+saturated+air&rft.jtitle=Solar+energy&rft.au=de+Oliveira+Campos%2C+Bruno+Lacerda&rft.au=Souza+da+Costa%2C+Andr%C3%A9a+Oliveira&rft.au=da+Costa%2C+Esly+Ferreira&rft.date=2017-11-15&rft.pub=Pergamon+Press+Inc&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=157&rft.spage=321&rft_id=info:doi/10.1016%2Fj.solener.2017.08.029&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon