Mathematical modeling and sensibility analysis of a solar humidification-dehumidification desalination system considering saturated air
•A mathematical model for a solar desalination process is proposed.•The mean error of the model is 48% less than the one proposed in the literature.•A sensibility analysis of input parameters in distillate production is made.•Extra heat sources should be placed after the condenser rather than in fee...
Saved in:
Published in | Solar energy Vol. 157; pp. 321 - 327 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.11.2017
Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A mathematical model for a solar desalination process is proposed.•The mean error of the model is 48% less than the one proposed in the literature.•A sensibility analysis of input parameters in distillate production is made.•Extra heat sources should be placed after the condenser rather than in feed water.
Due to factors such as global warming, population growth and environment degradation, access to drinking water has become a problem in many regions of the planet, specially where the weather is dry. Solar desalination by humidification-dehumidification is a method whose energy source is clean and renewable, and is an interesting alternative to purifying salt or brackish water for human consumption. Modeling works of this system may be divided in two groups: those that consider saturated air in the whole system and the ones that do not adopt this consideration and describe mass transfer. In this work, a mathematical model considering saturation was developed to describe a process based in literature. Four model parameters were estimated by minimization of the sum of squared residuals for experimental temperature values throughout the equipment. The proposed model contains fewer parameters than the model described in literature, which does not consider saturated air. The deviance related to temperature experimental data has the same order as the experimental error. The error related to distillate production was more than 48% reduced, if compared to the literature model. After the validation of the model, a sensibility analysis was made regarding input and project parameters in relation to distillate production. The increase of absorbed heat in the solar collector, the increase of humidifier height and the reduction of seawater mass flow rate were the most significant factors to increase the distillate flow rate. On the other hand, environment temperature variation had little significance in distillate production. |
---|---|
AbstractList | •A mathematical model for a solar desalination process is proposed.•The mean error of the model is 48% less than the one proposed in the literature.•A sensibility analysis of input parameters in distillate production is made.•Extra heat sources should be placed after the condenser rather than in feed water.
Due to factors such as global warming, population growth and environment degradation, access to drinking water has become a problem in many regions of the planet, specially where the weather is dry. Solar desalination by humidification-dehumidification is a method whose energy source is clean and renewable, and is an interesting alternative to purifying salt or brackish water for human consumption. Modeling works of this system may be divided in two groups: those that consider saturated air in the whole system and the ones that do not adopt this consideration and describe mass transfer. In this work, a mathematical model considering saturation was developed to describe a process based in literature. Four model parameters were estimated by minimization of the sum of squared residuals for experimental temperature values throughout the equipment. The proposed model contains fewer parameters than the model described in literature, which does not consider saturated air. The deviance related to temperature experimental data has the same order as the experimental error. The error related to distillate production was more than 48% reduced, if compared to the literature model. After the validation of the model, a sensibility analysis was made regarding input and project parameters in relation to distillate production. The increase of absorbed heat in the solar collector, the increase of humidifier height and the reduction of seawater mass flow rate were the most significant factors to increase the distillate flow rate. On the other hand, environment temperature variation had little significance in distillate production. Due to factors such as global warming, population growth and environment degradation, access to drinking water has become a problem in many regions of the planet, specially where the weather is dry. Solar desalination by humidification-dehumidification is a method whose energy source is clean and renewable, and is an interesting alternative to purifying salt or brackish water for human consumption. Modeling works of this system may be divided in two groups: those that consider saturated air in the whole system and the ones that do not adopt this consideration and describe mass transfer. In this work, a mathematical model considering saturation was developed to describe a process based in literature. Four model parameters were estimated by minimization of the sum of squared residuals for experimental temperature values throughout the equipment. The proposed model contains fewer parameters than the model described in literature, which does not consider saturated air. The deviance related to temperature experimental data has the same order as the experimental error. The error related to distillate production was more than 48% reduced, if compared to the literature model. After the validation of the model, a sensibility analysis was made regarding input and project parameters in relation to distillate production. The increase of absorbed heat in the solar collector, the increase of humidifier height and the reduction of seawater mass flow rate were the most significant factors to increase the distillate flow rate. On the other hand, environment temperature variation had little significance in distillate production. |
Author | Campos, Bruno Lacerda de Oliveira Costa, Andréa Oliveira Souza da Costa Junior, Esly Ferreira da |
Author_xml | – sequence: 1 givenname: Bruno Lacerda de Oliveira surname: Campos fullname: Campos, Bruno Lacerda de Oliveira email: brunolacerdaoc@gmail.com – sequence: 2 givenname: Andréa Oliveira Souza da surname: Costa fullname: Costa, Andréa Oliveira Souza da – sequence: 3 givenname: Esly Ferreira da surname: Costa Junior fullname: Costa Junior, Esly Ferreira da |
BookMark | eNqFkE1r3DAQhkVJoZs0P6Eg6NmuZHstmR5KCf2ClF5SyE2MpXEzi22lGm1hf0H-drXZXNpLTmKk93kHPefibI0rCvFGq1or3b_b1RxnXDHVjdKmVrZWzfBCbHRndKWbrTkTG6VaW6mhuX0lzpl3qgS1NRvx8B3yHS6QycMslxhwpvWXhDVIxpVppJnyocwwH5hYxkmCLOsgybv9QoGmAmaKaxXw3wsZkKGUnQY-cMZF-lg6A6bjDoa8T5AxSKD0WrycYGa8fDovxM_Pn26uvlbXP758u_p4XfnW9LlqwIzQ6XFrG936DibsTTfazvcWoQ1mMl0fjLdozYTgW2jGaSiOhj50vbemvRBvT733Kf7eI2e3i_tUfsdOD7Yzg9o-pranlE-ROeHk7hMtkA5OK3d07nbuybk7OnfKuuK8cO__4zzlRwE5Ac3P0h9ONBYBf6i8sidcPQZK6LMLkZ5p-Atnn6g0 |
CitedBy_id | crossref_primary_10_1016_j_desal_2018_03_014 crossref_primary_10_1016_j_desal_2019_114101 crossref_primary_10_1080_14484846_2022_2113618 crossref_primary_10_1016_j_egyr_2021_09_165 crossref_primary_10_1016_j_enconman_2019_112016 crossref_primary_10_1016_j_seta_2022_102141 crossref_primary_10_1039_D1RE00040C crossref_primary_10_1016_j_matpr_2022_05_231 crossref_primary_10_1016_j_apenergy_2023_121950 crossref_primary_10_1016_j_enconman_2018_08_089 crossref_primary_10_1007_s10098_023_02517_z crossref_primary_10_1016_j_apenergy_2018_06_135 crossref_primary_10_1016_j_jclepro_2019_04_140 crossref_primary_10_1016_j_applthermaleng_2022_119956 crossref_primary_10_1016_j_solener_2018_11_059 crossref_primary_10_3390_e23101282 crossref_primary_10_1088_2634_4505_ac3ca0 crossref_primary_10_1016_j_enconman_2019_112129 crossref_primary_10_2166_ws_2021_120 crossref_primary_10_1016_j_geothermics_2018_06_008 crossref_primary_10_1016_j_eswa_2022_119289 crossref_primary_10_1061__ASCE_EY_1943_7897_0000603 crossref_primary_10_1016_j_desal_2020_114860 crossref_primary_10_1016_j_pecs_2020_100850 crossref_primary_10_5004_dwt_2019_23743 crossref_primary_10_3390_w15061125 crossref_primary_10_1016_j_cscee_2023_100500 crossref_primary_10_1016_j_desal_2018_02_021 crossref_primary_10_1021_acs_iecr_1c02952 crossref_primary_10_1039_D0EW00558D crossref_primary_10_1016_j_desal_2022_116029 crossref_primary_10_1016_j_renene_2023_119662 |
Cites_doi | 10.1016/j.desal.2012.02.023 10.1016/j.desal.2008.01.024 10.1016/S0196-8904(99)00017-5 10.1016/j.solener.2012.07.017 10.1016/S0011-9164(01)00371-X 10.1016/j.desal.2015.03.032 10.1016/j.desal.2013.10.018 10.1016/j.desal.2012.12.005 10.1016/j.enconman.2016.10.005 10.1016/j.desal.2017.01.036 10.1016/S0011-9164(02)00994-3 10.1016/j.enconman.2017.04.011 10.1016/j.desal.2015.09.018 10.1016/j.enconman.2017.02.043 10.1016/S0196-8904(03)00151-1 10.1016/j.applthermaleng.2016.05.120 10.1016/j.ijhydene.2016.05.207 10.1038/517006a 10.1016/j.desal.2014.06.016 10.1016/j.desal.2015.09.024 10.1016/j.egypro.2014.10.310 10.1016/j.solener.2011.09.016 10.1016/j.desal.2011.09.041 10.1016/j.desal.2014.12.005 10.1016/j.desal.2008.01.023 10.1016/j.desal.2013.02.021 10.1590/S1413-41522014019000000741 10.1016/j.desal.2014.02.039 10.1016/j.desal.2006.01.012 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Pergamon Press Inc. Nov 15, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Nov 15, 2017 |
DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
DOI | 10.1016/j.solener.2017.08.029 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1471-1257 |
EndPage | 327 |
ExternalDocumentID | 10_1016_j_solener_2017_08_029 S0038092X17307090 |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TAE TN5 WH7 XPP YNT ZMT ~02 ~G- ~KM ~S- 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ NEJ R2- SAC SEW SSH UKR VOH WUQ XOL ZY4 ~A~ 7SP 7ST 8FD C1K EFKBS FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c376t-2a7ba41b58213c4afe674b84c68ea3d7f746d7c8e87feac3a2bf901696d46c873 |
IEDL.DBID | .~1 |
ISSN | 0038-092X |
IngestDate | Wed Aug 13 09:09:42 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Tue Jul 01 01:08:47 EDT 2025 Fri Feb 23 02:28:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Parameter estimation Humidification-dehumidification Mathematical model Solar desalination |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-2a7ba41b58213c4afe674b84c68ea3d7f746d7c8e87feac3a2bf901696d46c873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1984790587 |
PQPubID | 9393 |
PageCount | 7 |
ParticipantIDs | proquest_journals_1984790587 crossref_primary_10_1016_j_solener_2017_08_029 crossref_citationtrail_10_1016_j_solener_2017_08_029 elsevier_sciencedirect_doi_10_1016_j_solener_2017_08_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-15 |
PublicationDateYYYYMMDD | 2017-11-15 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Solar energy |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | El-Shazly, Al-Zahrani, Alhamed, Nosier (b0020) 2012; 293 Eliasson (b0025) 2015; 517 (Access: Sept. 2016). Xiong, Wang, Wang (b0160) 2006; 196 Nematollahi, Rahimi, Gheinani (b0110) 2013; 317 Ashrafizadeh, Amidpour (b0015) 2012; 285 Available at Hernández, Rubalcaba, Hermosillo (b0075) 2014; 57 Moumouh, Tahiri, Salouhi, Balli (b0085) 2016; 41 Ghalavand, Hatamipour, Rahimi (b0045) 2014; 341 Giwa, Fath, Hasan (b0050) 2016; 377 Farid, Parekh, Selman, Al-Hallaj (b0035) 2002; 151 Narayan, McGovern, Lienhard, Zubair (b0100) 2011 Smith, Van Ness, Abbott (b0130) 2007 Wu, Zheng, Ma, Kutlu, Su (b0155) 2017; 143 Zubair, Al-Sulaiman, Antar, Al-Dini, Ibrahim (b0170) 2017; 132 Nawayseh, Farid, Omar, Sabirin (b0105) 1999; 40 Henker, Rodrigues, Costa, Kearcher, Machado (b0065) 2014; 19 Rajaseenivasan, Srithar (b0115) 2017; 139 Sharshir, Peng, Yang, El-Samadony, Kabeel (b0120) 2016; 104 Wu, Zheng, Kang, Yang, Cheng, Chang (b0150) 2016; 378 Sharqawy, Antar, Zubair, Elbashir (b0125) 2014; 349 Hamed, Kabeel, Omara, Sharshir (b0055) 2015; 358 Fernandes, V., 2016. Crimes disparam na guerra pela água devido à seca no Espírito Santo. Gazeta Online Eslamimanesh, Hatamipour (b0030) 2009; 237 (Access in July 2017). Nafey, Fath, El-Helaby, Soliman (b0095) 2004; 45 Hamieh, Beckman, Ybarra (b9000) 2000; 10 Soufari, Zamen, Amidpour (b0135) 2009; 237 Thermocouple Info, 2017. Type T thermocouple accuracy. Available at Hamieh, Beckman, Ybarra (b0060) 2001; 140 Muthusamy, Srithar (b0090) 2015; 367 Zamen, Soufari, Vahdat, Amidpour, Zeinali, Izanloo, Aghababaie (b0165) 2014; 332 Ahmed, Ismail, Saleh, Ahmed (b0005) 2017; 410 Hermosillo, Arancibia-Bulnes, Estrada (b0070) 2012; 86 Summers, Antar, Lienhard (b0140) 2012; 86 Miller, Lienhard (b0080) 2013; 313 Wu (10.1016/j.solener.2017.08.029_b0155) 2017; 143 Eslamimanesh (10.1016/j.solener.2017.08.029_b0030) 2009; 237 10.1016/j.solener.2017.08.029_b0145 Soufari (10.1016/j.solener.2017.08.029_b0135) 2009; 237 Hermosillo (10.1016/j.solener.2017.08.029_b0070) 2012; 86 Ghalavand (10.1016/j.solener.2017.08.029_b0045) 2014; 341 10.1016/j.solener.2017.08.029_b0040 Muthusamy (10.1016/j.solener.2017.08.029_b0090) 2015; 367 Nawayseh (10.1016/j.solener.2017.08.029_b0105) 1999; 40 Giwa (10.1016/j.solener.2017.08.029_b0050) 2016; 377 Zamen (10.1016/j.solener.2017.08.029_b0165) 2014; 332 Narayan (10.1016/j.solener.2017.08.029_b0100) 2011 Xiong (10.1016/j.solener.2017.08.029_b0160) 2006; 196 Wu (10.1016/j.solener.2017.08.029_b0150) 2016; 378 Smith (10.1016/j.solener.2017.08.029_b0130) 2007 El-Shazly (10.1016/j.solener.2017.08.029_b0020) 2012; 293 Henker (10.1016/j.solener.2017.08.029_b0065) 2014; 19 Hernández (10.1016/j.solener.2017.08.029_b0075) 2014; 57 Sharqawy (10.1016/j.solener.2017.08.029_b0125) 2014; 349 Moumouh (10.1016/j.solener.2017.08.029_b0085) 2016; 41 Ahmed (10.1016/j.solener.2017.08.029_b0005) 2017; 410 Eliasson (10.1016/j.solener.2017.08.029_b0025) 2015; 517 Zubair (10.1016/j.solener.2017.08.029_b0170) 2017; 132 Hamieh (10.1016/j.solener.2017.08.029_b0060) 2001; 140 Miller (10.1016/j.solener.2017.08.029_b0080) 2013; 313 Farid (10.1016/j.solener.2017.08.029_b0035) 2002; 151 Hamed (10.1016/j.solener.2017.08.029_b0055) 2015; 358 Summers (10.1016/j.solener.2017.08.029_b0140) 2012; 86 Ashrafizadeh (10.1016/j.solener.2017.08.029_b0015) 2012; 285 Nematollahi (10.1016/j.solener.2017.08.029_b0110) 2013; 317 Sharshir (10.1016/j.solener.2017.08.029_b0120) 2016; 104 Nafey (10.1016/j.solener.2017.08.029_b0095) 2004; 45 Rajaseenivasan (10.1016/j.solener.2017.08.029_b0115) 2017; 139 Hamieh (10.1016/j.solener.2017.08.029_b9000) 2000; 10 |
References_xml | – volume: 517 start-page: 6 year: 2015 ident: b0025 article-title: The rising pressure of global warming shortages publication-title: Nature – volume: 341 start-page: 120 year: 2014 end-page: 125 ident: b0045 article-title: Humidification compression desalination publication-title: Desalination – volume: 367 start-page: 49 year: 2015 end-page: 59 ident: b0090 article-title: Energy and exergy analysis for a humidification-dehumidification desalination system integrated with multiple inserts publication-title: Desalination – volume: 86 start-page: 1070 year: 2012 end-page: 1076 ident: b0070 article-title: Water desalination by air humidification: mathematical model and experimental study publication-title: Sol. Energy – volume: 377 start-page: 163 year: 2016 end-page: 171 ident: b0050 article-title: Humidification-dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small scale sustainable water and power production publication-title: Desalination – year: 2011 ident: b0100 article-title: Variable pressure humidification dehumidification desalination system publication-title: ASME/JSME Thermal Engineering Joint Conference, AJTEC 2011-44095, March 2011, Honolulu, Hawaii, USA – volume: 313 start-page: 87 year: 2013 end-page: 96 ident: b0080 article-title: Impact of extraction on a humidification-dehumidification desalination system publication-title: Desalination – volume: 349 start-page: 10 year: 2014 end-page: 21 ident: b0125 article-title: Optimum thermal design of humidification dehumidification desalination systems publication-title: Desalination – volume: 19 start-page: 345 year: 2014 end-page: 352 ident: b0065 article-title: Água potável com desumidificação do ar e energia solar: adaptação ao stress hídrico no RS publication-title: Eng Sanitária e Ambiental – volume: 237 start-page: 305 year: 2009 end-page: 317 ident: b0135 article-title: Performance optimization of the humidification-dehumidification desalination process using mathematical programming publication-title: Desalination – volume: 358 start-page: 9 year: 2015 end-page: 17 ident: b0055 article-title: Mathematical and experimental investigation of a solar humidification-dehumidification desalination unit publication-title: Desalination – volume: 285 start-page: 108 year: 2012 end-page: 116 ident: b0015 article-title: Exergy analysis of humidification-dehumidification desalination systems using driving forces concept publication-title: Desalination – volume: 410 start-page: 19 year: 2017 end-page: 29 ident: b0005 article-title: Experimental investigation of humidification-dehumidification desalination system with corrugated packing in the humidifier publication-title: Desalination – reference: Fernandes, V., 2016. Crimes disparam na guerra pela água devido à seca no Espírito Santo. Gazeta Online – volume: 237 start-page: 296 year: 2009 end-page: 304 ident: b0030 article-title: Mathematical modeling of a direct contact humidification-dehumidification desalination process publication-title: Desalination – volume: 45 start-page: 1243 year: 2004 end-page: 1261 ident: b0095 article-title: Solar desalination using humidification dehumidification process. Part I. A numerical investigation publication-title: Energy Convers. Manage. – volume: 57 start-page: 2781 year: 2014 end-page: 2786 ident: b0075 article-title: Improvement of a MEH desalination unit by means of heat recovery publication-title: Energy Proc. – reference: > (Access in July 2017). – volume: 143 start-page: 241 year: 2017 end-page: 251 ident: b0155 article-title: Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens concentrator publication-title: Energy Convers. Manage. – volume: 40 start-page: 1441 year: 1999 ident: b0105 article-title: Solar desalination based on humidification process – II. Computer simulation publication-title: Energy Convers. Manage. – volume: 196 start-page: 177 year: 2006 end-page: 187 ident: b0160 article-title: A mathematical model for a thermally coupled humidification-dehumidification desalination process publication-title: Desalination – volume: 86 start-page: 3417 year: 2012 end-page: 3429 ident: b0140 article-title: Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification-dehumidification desalination publication-title: Sol. Energy – volume: 378 start-page: 100 year: 2016 end-page: 107 ident: b0150 article-title: Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification-dehumidification process publication-title: Desalination – reference: Available at: < – volume: 293 start-page: 53 year: 2012 end-page: 60 ident: b0020 article-title: Productivity intensification of humidification-dehumidification desalination unit by using pulsed water flow regime publication-title: Desalination – volume: 140 start-page: 217 year: 2001 end-page: 226 ident: b0060 article-title: Brackish and seawater desalination using a 20 ft publication-title: Desalination – volume: 317 start-page: 23 year: 2013 end-page: 31 ident: b0110 article-title: Experimental and theoretical energy and exergy analysis for a solar desalination system publication-title: Desalination – start-page: 626p year: 2007 ident: b0130 article-title: Introdução à termodinâmica da engenharia química – volume: 332 start-page: 1 year: 2014 end-page: 6 ident: b0165 article-title: Experimental investigation of a two-solar stage humidification-dehumidification desalination process publication-title: Desalination – volume: 41 start-page: 20818 year: 2016 end-page: 20822 ident: b0085 article-title: Theoretical and experimental study of a solar desalination unit based on humidification-dehumidification of air publication-title: Int. J. Hydrogen Energy – volume: 132 start-page: 28 year: 2017 end-page: 39 ident: b0170 article-title: Performance and cost assessment of solar driven humidification dehumidification desalination system publication-title: Energy Convers. Manage. – volume: 139 start-page: 232 year: 2017 end-page: 244 ident: b0115 article-title: An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy publication-title: Energy Convers. Manage. – reference: Thermocouple Info, 2017. Type T thermocouple accuracy. Available at: < – volume: 151 start-page: 153 year: 2002 end-page: 164 ident: b0035 article-title: Solar desalination with a humdification and dehumidification cycle: mathematical modeling of the unit publication-title: Desalination – reference: > (Access: Sept. 2016). – volume: 104 start-page: 734 year: 2016 end-page: 742 ident: b0120 article-title: A continuous desalination system using humidification-dehumidification and a solar still with an evacuated solar water heater publication-title: Appl. Therm. Eng. – volume: 10 year: 2000 ident: b9000 article-title: The dewvaporation tower: an experimental and theoretical study with economic analysis publication-title: Int. Desal. Water Reuse Quarter. – volume: 293 start-page: 53 year: 2012 ident: 10.1016/j.solener.2017.08.029_b0020 article-title: Productivity intensification of humidification-dehumidification desalination unit by using pulsed water flow regime publication-title: Desalination doi: 10.1016/j.desal.2012.02.023 – volume: 237 start-page: 305 year: 2009 ident: 10.1016/j.solener.2017.08.029_b0135 article-title: Performance optimization of the humidification-dehumidification desalination process using mathematical programming publication-title: Desalination doi: 10.1016/j.desal.2008.01.024 – year: 2011 ident: 10.1016/j.solener.2017.08.029_b0100 article-title: Variable pressure humidification dehumidification desalination system – volume: 40 start-page: 1441 year: 1999 ident: 10.1016/j.solener.2017.08.029_b0105 article-title: Solar desalination based on humidification process – II. Computer simulation publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(99)00017-5 – volume: 86 start-page: 3417 year: 2012 ident: 10.1016/j.solener.2017.08.029_b0140 article-title: Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification-dehumidification desalination publication-title: Sol. Energy doi: 10.1016/j.solener.2012.07.017 – volume: 10 issue: 2 year: 2000 ident: 10.1016/j.solener.2017.08.029_b9000 article-title: The dewvaporation tower: an experimental and theoretical study with economic analysis publication-title: Int. Desal. Water Reuse Quarter. – volume: 140 start-page: 217 issue: 3 year: 2001 ident: 10.1016/j.solener.2017.08.029_b0060 article-title: Brackish and seawater desalination using a 20 ft2 dewvaporation tower publication-title: Desalination doi: 10.1016/S0011-9164(01)00371-X – volume: 367 start-page: 49 year: 2015 ident: 10.1016/j.solener.2017.08.029_b0090 article-title: Energy and exergy analysis for a humidification-dehumidification desalination system integrated with multiple inserts publication-title: Desalination doi: 10.1016/j.desal.2015.03.032 – volume: 332 start-page: 1 year: 2014 ident: 10.1016/j.solener.2017.08.029_b0165 article-title: Experimental investigation of a two-solar stage humidification-dehumidification desalination process publication-title: Desalination doi: 10.1016/j.desal.2013.10.018 – volume: 313 start-page: 87 year: 2013 ident: 10.1016/j.solener.2017.08.029_b0080 article-title: Impact of extraction on a humidification-dehumidification desalination system publication-title: Desalination doi: 10.1016/j.desal.2012.12.005 – volume: 132 start-page: 28 year: 2017 ident: 10.1016/j.solener.2017.08.029_b0170 article-title: Performance and cost assessment of solar driven humidification dehumidification desalination system publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.10.005 – ident: 10.1016/j.solener.2017.08.029_b0040 – volume: 410 start-page: 19 year: 2017 ident: 10.1016/j.solener.2017.08.029_b0005 article-title: Experimental investigation of humidification-dehumidification desalination system with corrugated packing in the humidifier publication-title: Desalination doi: 10.1016/j.desal.2017.01.036 – volume: 151 start-page: 153 year: 2002 ident: 10.1016/j.solener.2017.08.029_b0035 article-title: Solar desalination with a humdification and dehumidification cycle: mathematical modeling of the unit publication-title: Desalination doi: 10.1016/S0011-9164(02)00994-3 – volume: 143 start-page: 241 year: 2017 ident: 10.1016/j.solener.2017.08.029_b0155 article-title: Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens concentrator publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.04.011 – volume: 377 start-page: 163 year: 2016 ident: 10.1016/j.solener.2017.08.029_b0050 article-title: Humidification-dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small scale sustainable water and power production publication-title: Desalination doi: 10.1016/j.desal.2015.09.018 – volume: 139 start-page: 232 year: 2017 ident: 10.1016/j.solener.2017.08.029_b0115 article-title: An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.02.043 – volume: 45 start-page: 1243 year: 2004 ident: 10.1016/j.solener.2017.08.029_b0095 article-title: Solar desalination using humidification dehumidification process. Part I. A numerical investigation publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(03)00151-1 – volume: 104 start-page: 734 year: 2016 ident: 10.1016/j.solener.2017.08.029_b0120 article-title: A continuous desalination system using humidification-dehumidification and a solar still with an evacuated solar water heater publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.05.120 – volume: 41 start-page: 20818 issue: 45 year: 2016 ident: 10.1016/j.solener.2017.08.029_b0085 article-title: Theoretical and experimental study of a solar desalination unit based on humidification-dehumidification of air publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.207 – start-page: 626p year: 2007 ident: 10.1016/j.solener.2017.08.029_b0130 – volume: 517 start-page: 6 year: 2015 ident: 10.1016/j.solener.2017.08.029_b0025 article-title: The rising pressure of global warming shortages publication-title: Nature doi: 10.1038/517006a – volume: 349 start-page: 10 year: 2014 ident: 10.1016/j.solener.2017.08.029_b0125 article-title: Optimum thermal design of humidification dehumidification desalination systems publication-title: Desalination doi: 10.1016/j.desal.2014.06.016 – volume: 378 start-page: 100 year: 2016 ident: 10.1016/j.solener.2017.08.029_b0150 article-title: Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification-dehumidification process publication-title: Desalination doi: 10.1016/j.desal.2015.09.024 – volume: 57 start-page: 2781 year: 2014 ident: 10.1016/j.solener.2017.08.029_b0075 article-title: Improvement of a MEH desalination unit by means of heat recovery publication-title: Energy Proc. doi: 10.1016/j.egypro.2014.10.310 – volume: 86 start-page: 1070 year: 2012 ident: 10.1016/j.solener.2017.08.029_b0070 article-title: Water desalination by air humidification: mathematical model and experimental study publication-title: Sol. Energy doi: 10.1016/j.solener.2011.09.016 – volume: 285 start-page: 108 year: 2012 ident: 10.1016/j.solener.2017.08.029_b0015 article-title: Exergy analysis of humidification-dehumidification desalination systems using driving forces concept publication-title: Desalination doi: 10.1016/j.desal.2011.09.041 – volume: 358 start-page: 9 year: 2015 ident: 10.1016/j.solener.2017.08.029_b0055 article-title: Mathematical and experimental investigation of a solar humidification-dehumidification desalination unit publication-title: Desalination doi: 10.1016/j.desal.2014.12.005 – ident: 10.1016/j.solener.2017.08.029_b0145 – volume: 237 start-page: 296 year: 2009 ident: 10.1016/j.solener.2017.08.029_b0030 article-title: Mathematical modeling of a direct contact humidification-dehumidification desalination process publication-title: Desalination doi: 10.1016/j.desal.2008.01.023 – volume: 317 start-page: 23 year: 2013 ident: 10.1016/j.solener.2017.08.029_b0110 article-title: Experimental and theoretical energy and exergy analysis for a solar desalination system publication-title: Desalination doi: 10.1016/j.desal.2013.02.021 – volume: 19 start-page: 345 issue: 3 year: 2014 ident: 10.1016/j.solener.2017.08.029_b0065 article-title: Água potável com desumidificação do ar e energia solar: adaptação ao stress hídrico no RS publication-title: Eng Sanitária e Ambiental doi: 10.1590/S1413-41522014019000000741 – volume: 341 start-page: 120 year: 2014 ident: 10.1016/j.solener.2017.08.029_b0045 article-title: Humidification compression desalination publication-title: Desalination doi: 10.1016/j.desal.2014.02.039 – volume: 196 start-page: 177 year: 2006 ident: 10.1016/j.solener.2017.08.029_b0160 article-title: A mathematical model for a thermally coupled humidification-dehumidification desalination process publication-title: Desalination doi: 10.1016/j.desal.2006.01.012 |
SSID | ssj0017187 |
Score | 2.3879251 |
Snippet | •A mathematical model for a solar desalination process is proposed.•The mean error of the model is 48% less than the one proposed in the literature.•A... Due to factors such as global warming, population growth and environment degradation, access to drinking water has become a problem in many regions of the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 321 |
SubjectTerms | Air temperature Brackish water Chemical analysis Clean energy Climate change Dehumidification Desalination Distillates Drinking water Energy sources Environmental degradation Flow rates Global warming Humidification Humidification-dehumidification Mass flow rate Mass transfer Mathematical model Mathematical models Parameter estimation Population growth Seawater Solar collectors Solar desalination Solar energy Temperature Temperature effects Water analysis Water purification |
Title | Mathematical modeling and sensibility analysis of a solar humidification-dehumidification desalination system considering saturated air |
URI | https://dx.doi.org/10.1016/j.solener.2017.08.029 https://www.proquest.com/docview/1984790587 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTg9e6mzbN4yiirIqeFPYWpkmKK7rKdj148erfNpOm6wNB8JjQaUtm-s0MnfmGkEMNIazgDDLlRUhQWMBBYNJmXpcglAseqI5sn9dicMsvhuVwjpx0vTBYVpmwv8X0iNZpp5dOs_c8GmGPb6H6Oh8yiXarMW_nXKKVH73NyjxYwN6WN7PA3_z58LOLp3cfktgHJHfGCi8ZmTxjpPmrf_qB1NH9nK2Q5RQ30uP21VbJnB-vkaUvbILr5P1qRsEarowjbsI-hbGjje_KYF_DuqUhoU81BdpgakvvXh5HDouGop4y579vUOcbwM7duGjJn6lNoz7xGQ3Sg4ao1VEYTTbI7dnpzckgS3MWMhvgZZrlICvgrMKe2cJyqL2QvFLcCuWhcLKWXDhplVeyDjhdQF7VGllchOPCKllskvnx09hvEVrJEnJWaccUcO8q3a-tErbOAcqQ8vJtwrvTNTaRkOMsjAfTVZvdm6QUg0oxOCMz19vkaCb23LJw_CWgOtWZb-Zkgqf4S3SvU7VJ33NjmA5eXPdLJXf-f-ddsogr7GRk5R6Zn05e_H4IaabVQbTZA7JwfH45uP4AHf_7iQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQcmg5VG0B8Wx96DXsOnH8OCJUtBTYE0h7sya2oy6CXUSWA7-gf5uZxNkCqoTUoydxEnmcb2bkmW8Y-2EB3QopIDNRYYAiEAdBaJ9FW4IyAS1Q3bJ9TtT4Wv6altM1dtLXwlBaZcL-DtNbtE6SYVrN4f1sRjW-hRnZfCo07VuLcfs6sVOVA7Z-fHY-nqwOExB-O-rMgk768-nfQp7hDcaxt8TvTEleuiXzbJ3Nf5qoN2DdWqDTz-xTch35cfd1X9hanH9lGy8IBTfZn8sVCyve2Xa5QTmHeeBN7DNhn3DcMZHwRc2BNxTd8t-Pd7NAeUOtqrIQXwt4iA1Q8W476PifuU_dPukdDTGEouMaOMwettj16c-rk3GWWi1kHhFmmeWgK5CiorLZwkuoo9KyMtIrE6EIutZSBe1NNLpGqC4gr2pLRC4qSOWNLrbZYL6Yxx3GK11CLiobhAEZQ2VHtTfK1zlAiVGv3GWyX13nEw85tcO4dX3C2Y1LSnGkFEdtMnO7y45W0-47Io73Jphede7VjnJoLN6betCr2qVfunHCoiG3o9Lovf9_8nf2YXx1eeEuzibn--wjXaHCRlEesMHy4TEeooezrL6lHfwMqtn-Og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+modeling+and+sensibility+analysis+of+a+solar+humidification-dehumidification+desalination+system+considering+saturated+air&rft.jtitle=Solar+energy&rft.au=de+Oliveira+Campos%2C+Bruno+Lacerda&rft.au=Souza+da+Costa%2C+Andr%C3%A9a+Oliveira&rft.au=da+Costa%2C+Esly+Ferreira&rft.date=2017-11-15&rft.pub=Pergamon+Press+Inc&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=157&rft.spage=321&rft_id=info:doi/10.1016%2Fj.solener.2017.08.029&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |