Locally time-varying parameter regression

I discuss a framework to allow dynamic sparsity in time-varying parameter regression models. The conditional variances of the innovations of time-varying parameters are time varying and equal to zero adaptively via thresholding. The resulting model allows the dynamics of the time-varying parameters...

Full description

Saved in:
Bibliographic Details
Published inEconometric reviews Vol. 43; no. 5; pp. 269 - 300
Main Author He, Zhongfang
Format Journal Article
LanguageEnglish
Published New York Taylor & Francis 27.05.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0747-4938
1532-4168
DOI10.1080/07474938.2024.2330127

Cover

Abstract I discuss a framework to allow dynamic sparsity in time-varying parameter regression models. The conditional variances of the innovations of time-varying parameters are time varying and equal to zero adaptively via thresholding. The resulting model allows the dynamics of the time-varying parameters to mix over different frequencies of parameter changes in a data driven way and permits great flexibility while achieving model parsimony. A convenient strategy is discussed to infer if each coefficient is static or dynamic and, if dynamic, how frequent the parameter change is. An MCMC scheme is developed for model estimation. The performance of the proposed approach is illustrated in studies of both simulated and real economic data.
AbstractList I discuss a framework to allow dynamic sparsity in time-varying parameter regression models. The conditional variances of the innovations of time-varying parameters are time varying and equal to zero adaptively via thresholding. The resulting model allows the dynamics of the time-varying parameters to mix over different frequencies of parameter changes in a data driven way and permits great flexibility while achieving model parsimony. A convenient strategy is discussed to infer if each coefficient is static or dynamic and, if dynamic, how frequent the parameter change is. An MCMC scheme is developed for model estimation. The performance of the proposed approach is illustrated in studies of both simulated and real economic data.
Author He, Zhongfang
Author_xml – sequence: 1
  givenname: Zhongfang
  surname: He
  fullname: He, Zhongfang
  organization: Royal Bank of Canada
BookMark eNp9kE1LAzEQhoNUsFZ_glDw5GHr5GM32ZtS_IKCFz2HNB9ly25SJ1ul_95dWq9eZi7P-87wXJJJTNETckNhQUHBPUghRc3VggETC8Y5UCbPyJSWnBWCVmpCpiNTjNAFucx5CwCqYnxK7lbJmrY9zPum88W3wUMTN_OdQdP53uMc_QZ9zk2KV-Q8mDb769Oekc_np4_la7F6f3lbPq4Ky2XVF0xaWNvAHJVrExxlQkgAL71znkurjLTOuJp7WQ3T1aUVRlEDnLOyDIzyGbk99u4wfe197vU27TEOJzUHoViteC0GqjxSFlPO6IPeYdMN72sKerSi_6zo0Yo-WRlyD8dcE0PCzvwkbJ3uzaFNGNBE2wxn_q_4BRp3agQ
Cites_doi 10.1214/17-EJS1337SI
10.1093/biomet/asq017
10.1080/07350015.2020.1713796
10.1214/ss/1177011137
10.1016/j.jeconom.2013.10.012
10.1093/biomet/89.3.603
10.1016/j.jfineco.2012.04.003
10.1111/j.1467-9892.1994.tb00184.x
10.1111/rssb.12325
10.1080/01621459.2000.10474273
10.1080/01621459.1993.10476364
10.3390/econometrics8020020
10.26509/frbc-wp-202034
10.1109/LSP.2015.2503725
10.1016/j.jeconom.2019.10.008
10.1080/10618600.2020.1725523
10.1080/03610926.2014.936562
10.1016/j.jeconom.2016.09.005
10.1007/s11222-012-9367-z
10.1016/j.csda.2010.07.009
10.1198/jcgs.2009.08108
10.1111/j.1467-937X.2005.00353.x
10.1016/j.csda.2013.01.002
10.1016/j.red.2004.10.009
10.1515/9780691218632
10.1002/jae.2804
10.1002/for.2276
10.1016/j.jeconom.2006.07.008
10.1198/jcgs.2011.203main
10.1002/jae.2844
10.1198/073500107000000241
10.1016/j.jeconom.2009.07.003
10.1162/003465303322369777
10.1080/07350015.2012.747847
10.1007/s11222-018-9846-y
10.1080/07350015.1996.10524626
10.1111/1467-9868.00288
10.1002/jae.2680
10.1214/20-BA1199
10.1093/oso/9780198522249.001.0001
10.1093/rfs/hhm014
10.1016/j.jeconom.2018.11.006
10.1016/S1574-0706(05)01001-3
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
2024 Taylor & Francis Group, LLC
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
– notice: 2024 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
DOI 10.1080/07474938.2024.2330127
DatabaseName CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1532-4168
EndPage 300
ExternalDocumentID 10_1080_07474938_2024_2330127
2330127
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
3R3
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACHQT
ACIWK
ACTIO
ADCVX
ADGTB
ADLRE
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBR
EBS
EBU
EOH
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AHQJS
AIYEW
AMPGV
CITATION
EBE
EBO
EMK
EPL
7SC
8BJ
8FD
AEMOZ
FQK
JBE
JQ2
K1G
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c376t-27c0bcf2d17bafd1244700e7edde37c8a7cdad93e76d93d95c4a81a033255f213
ISSN 0747-4938
IngestDate Wed Aug 13 04:58:48 EDT 2025
Tue Jul 01 00:49:27 EDT 2025
Wed Dec 25 09:05:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-27c0bcf2d17bafd1244700e7edde37c8a7cdad93e76d93d95c4a81a033255f213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3048298394
PQPubID 36757
PageCount 32
ParticipantIDs crossref_primary_10_1080_07474938_2024_2330127
informaworld_taylorfrancis_310_1080_07474938_2024_2330127
proquest_journals_3048298394
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-27
PublicationDateYYYYMMDD 2024-05-27
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-27
  day: 27
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Econometric reviews
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_42_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_40_1
e_1_3_4_5_1
Clements M. (e_1_3_4_7_1) 1999
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_47_1
e_1_3_4_29_1
e_1_3_4_31_1
e_1_3_4_30_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_39_1
  doi: 10.1214/17-EJS1337SI
– ident: e_1_3_4_5_1
  doi: 10.1093/biomet/asq017
– ident: e_1_3_4_27_1
  doi: 10.1080/07350015.2020.1713796
– ident: e_1_3_4_20_1
  doi: 10.1214/ss/1177011137
– ident: e_1_3_4_29_1
  doi: 10.1016/j.jeconom.2013.10.012
– ident: e_1_3_4_13_1
  doi: 10.1093/biomet/89.3.603
– ident: e_1_3_4_9_1
  doi: 10.1016/j.jfineco.2012.04.003
– ident: e_1_3_4_15_1
  doi: 10.1111/j.1467-9892.1994.tb00184.x
– ident: e_1_3_4_31_1
  doi: 10.1111/rssb.12325
– ident: e_1_3_4_18_1
  doi: 10.1080/01621459.2000.10474273
– ident: e_1_3_4_35_1
  doi: 10.1080/01621459.1993.10476364
– ident: e_1_3_4_4_1
  doi: 10.3390/econometrics8020020
– ident: e_1_3_4_24_1
  doi: 10.26509/frbc-wp-202034
– ident: e_1_3_4_33_1
  doi: 10.1109/LSP.2015.2503725
– ident: e_1_3_4_12_1
  doi: 10.1016/j.jeconom.2019.10.008
– ident: e_1_3_4_32_1
  doi: 10.1080/10618600.2020.1725523
– volume-title: Forecasting Non-Stationary Economic Time Series
  year: 1999
  ident: e_1_3_4_7_1
– ident: e_1_3_4_17_1
  doi: 10.1080/03610926.2014.936562
– ident: e_1_3_4_6_1
  doi: 10.1016/j.jeconom.2016.09.005
– ident: e_1_3_4_10_1
  doi: 10.1007/s11222-012-9367-z
– ident: e_1_3_4_34_1
  doi: 10.1016/j.csda.2010.07.009
– ident: e_1_3_4_38_1
  doi: 10.1198/jcgs.2009.08108
– ident: e_1_3_4_40_1
  doi: 10.1111/j.1467-937X.2005.00353.x
– ident: e_1_3_4_30_1
  doi: 10.1016/j.csda.2013.01.002
– ident: e_1_3_4_8_1
  doi: 10.1016/j.red.2004.10.009
– ident: e_1_3_4_23_1
  doi: 10.1515/9780691218632
– ident: e_1_3_4_28_1
  doi: 10.1002/jae.2804
– ident: e_1_3_4_2_1
  doi: 10.1002/for.2276
– ident: e_1_3_4_37_1
  doi: 10.1016/j.jeconom.2006.07.008
– ident: e_1_3_4_47_1
  doi: 10.1198/jcgs.2011.203main
– ident: e_1_3_4_11_1
  doi: 10.1002/jae.2844
– ident: e_1_3_4_21_1
  doi: 10.1198/073500107000000241
– ident: e_1_3_4_45_1
– ident: e_1_3_4_16_1
  doi: 10.1016/j.jeconom.2009.07.003
– ident: e_1_3_4_14_1
  doi: 10.1162/003465303322369777
– ident: e_1_3_4_36_1
  doi: 10.1080/07350015.2012.747847
– ident: e_1_3_4_22_1
  doi: 10.1007/s11222-018-9846-y
– ident: e_1_3_4_43_1
  doi: 10.1080/07350015.1996.10524626
– ident: e_1_3_4_42_1
  doi: 10.1111/1467-9868.00288
– ident: e_1_3_4_25_1
– ident: e_1_3_4_26_1
  doi: 10.1002/jae.2680
– ident: e_1_3_4_41_1
  doi: 10.1214/20-BA1199
– ident: e_1_3_4_44_1
  doi: 10.1093/oso/9780198522249.001.0001
– ident: e_1_3_4_46_1
  doi: 10.1093/rfs/hhm014
– ident: e_1_3_4_3_1
  doi: 10.1016/j.jeconom.2018.11.006
– ident: e_1_3_4_19_1
  doi: 10.1016/S1574-0706(05)01001-3
SSID ssj0008623
Score 2.3336122
Snippet I discuss a framework to allow dynamic sparsity in time-varying parameter regression models. The conditional variances of the innovations of time-varying...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 269
SubjectTerms Bayesian shrinkage
Econometrics
economic time series
Innovations
MCMC
Parameters
Regression models
TVP
Title Locally time-varying parameter regression
URI https://www.tandfonline.com/doi/abs/10.1080/07474938.2024.2330127
https://www.proquest.com/docview/3048298394
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHOgFUR4qryoHLlWVKGt71_ER8dCqWuglq664WF4_4NCGaglI8OsZP7LJahG0vVhRosS7801mxhnPNwgd08LiQnOd9okkKdUKXilmARACDsGCkuTc1Q5fXg2GY_p90p-0rRh9dUk9zdTzq3Ul_4MqnANcXZXsPyA7fyicgGPAF0ZAGMa_wnjkHNGvJ98gPn2UM1-y5Mi8f7tNLt9m5ibscq0Wvr_7UmTXSCuSN7dh9TDkKm7vqhsro0uLXwQwdcnsUGDvMSyXmnN0dgjde4pqllIeSFUy09g9nEJsVnQNY-BPigrQ71q50F0lOkziqUaXbXHcvAizucky90szTIjLdbfOp0m4X_0QF-PRSJTnk_IDWsOMuaT72snw7Prn3LPC6ivSqoY_0FRkOa7016ZZiDUWmGiXPK8PJ8pNtBHXAclJAPUTWjHVFlpvysTvt9HXCG7SBTeZg5u04O6g8cV5eTpMY1-LVIE5rwErlU-VxbrHptJqF2GxPDfMgKshTBWSKS01J4YNYNS8r6gsejInBNZ_FvfILlqt7irzGSWOWp1pxsCqWkqV4nBM-QAbw62hRO6hrJGA-BPoS0SvYYWNIhNOZCKKbA_xrpxE7ZXJBj0S5J17DxuhiviWwC3gIjCHMJzuv335AH1slfkQrdazB3MEAV89_RL14AUSmE-M
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDGXhjSgUyMDCkJLYTh2PCFEVaDu1Ujcr8YMBCKikSPDrucsDURBi6BJZis5Kzvey9d1nQs547GhspPEjljCfGw0uJRwsCIOE4MBIAom9w8NRtz_ht9No-q0XBmGVuId2JVFEEavRufEwuobEXSDpO5cMkVmUdyhsyUMqVslaBLU7WjkLRl_RGCr2iopT-ChTd_H8Nc1CflpgL_0VrYsU1Nskuv74Enny0JnnaUd__OB1XO7vtshGVaF6l6VJbZMVm-2QZt3A_LpLzgeY_x7fPbyX3n9LZtgp5SGH-BNia7yZvS_BtdkemfSux1d9v7pxwdcQaHKfCh2k2lETijRxBnO_CAIrLARBJnScCG0SI5kVXXgaGWmexGESMAY7E0dDtk8a2XNmD4iHpN_CCAH-7jjXWsKYyy61VjrLWdIinVrP6qUk1lBhzVdaaUChBlSlgRaR31dD5cWJhiuvH1HsH9l2vXSq8lEQgeBFJRSI_HCJqU9Jsz8eDtTgZnR3RNbxFYILqGiTRj6b22OoWfL0pDDKT4RQ3NY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60gnrxLVar5uDFQ2qyu81mj6KWqrV4sOAtJPvwoMbSpoL-emeSrFhFPHgJgTBLMrvzCt98Q8gRjy2NtdR-h6XM51qBSQkLG8IgIFg4JIHE3uGbQdQb8qv7jkMTTmpYJdbQtiKKKH01GvdIW4eIO0HOdy4ZArMob1OoyEMq5slCBOkJovpYMPh0xpCw10ycwkcZ18Tz2zIz4WmGvPSHsy4jUHeVZO7dK-DJY3taZG31_o3W8V8ft0ZW6vzUO60O1DqZM_kGWXLty5NNctzH6Pf05uFUev81HWOflIcM4s-IrPHG5qGC1uZbZNi9uDvr-fW8BV-Bmyl8KlSQKUt1KLLUaoz8IgiMMOACmVBxKpROtWRGRHDVsqN4GodpwBjUJZaGbJs08pfc7BAPKb-FFgKs3XKulIR7LiNqjLSGs7RJ2k7Nyaii1UhCx1ZaayBBDSS1BppEft2MpCj_Z9hq-EjC_pBtuZ1LagsFEXBdVEJ6yHf_sfQhWbw97yb9y8H1HlnGJ4gsoKJFGsV4avYhYSmyg_JIfgDfp9t6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locally+time-varying+parameter+regression&rft.jtitle=Econometric+reviews&rft.au=He%2C+Zhongfang&rft.date=2024-05-27&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0747-4938&rft.eissn=1532-4168&rft.volume=43&rft.issue=5&rft.spage=269&rft.epage=300&rft_id=info:doi/10.1080%2F07474938.2024.2330127&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4938&client=summon