Electric and dielectric properties of a SiO2–Na2O–Nb2O5 glass subject to a controlled heat-treatment process

Glass and glass ceramics with the molar composition 60SiO2-30Na2O-10Nb2O5 (mol%) were prepared by the melt-quenching method. Sodium niobate (NaNbO3) crystallites were precipitated on the surface of the glass through a controlled heat-treatment (HT) process. The NaNbO3 crystallites, detected by X-ray...

Full description

Saved in:
Bibliographic Details
Published inPhysica. B, Condensed matter Vol. 396; no. 1-2; pp. 62 - 69
Main Authors Graça, M.P.F., Ferreira da Silva, M.G., Sombra, A.S.B., Valente, M.A.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier 15.06.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glass and glass ceramics with the molar composition 60SiO2-30Na2O-10Nb2O5 (mol%) were prepared by the melt-quenching method. Sodium niobate (NaNbO3) crystallites were precipitated on the surface of the glass through a controlled heat-treatment (HT) process. The NaNbO3 crystallites, detected by X-ray diffraction (XRD) in the 750 and 800 deg C HT sample, have scientific and technological interest due to their electrical and dielectrical properties and potential applications in microwave, pyroelectric and piezoelectric devices. Scanning electron microscopy (SEM), XRD, DC and AC conductivity and dielectric relaxation measurements were the techniques used to study these glass and glass ceramic materials. The dielectric properties of the glass ceramics have a strong dependence on the HT temperature. The number of particles, precipitated in the surface of the glass-ceramic samples, increases from the 650 to the 750 deg C samples and decreases in the 800 deg C sample. The size of the surface particles increases with the rise of the HT temperature. In the 750 and 800 deg C samples it was observed the presence of NaNbO3 particles. The DC (sigmaDC) and AC conductivity (sigmaAC) behaviour depends mainly of the number of network modifier ions in the glass matrix. The dielectric results are in agreement with the electric equivalent circuit formed by a three R/C (resistance in parallel with a capacitor element) serial model (two related with the sample surfaces and one with the bulk material). The dielectric relaxation data were fitted with a complex nonlinear least squares algorithm (CNLLS), which reveals that a resistor (R), in parallel with a constant phase element (CPE, ZCPE=1/[Q0(jw)n]), is a good equivalent circuit.
AbstractList Glass and glass ceramics with the molar composition 60SiO2-30Na2O-10Nb2O5 (mol%) were prepared by the melt-quenching method. Sodium niobate (NaNbO3) crystallites were precipitated on the surface of the glass through a controlled heat-treatment (HT) process. The NaNbO3 crystallites, detected by X-ray diffraction (XRD) in the 750 and 800 deg C HT sample, have scientific and technological interest due to their electrical and dielectrical properties and potential applications in microwave, pyroelectric and piezoelectric devices. Scanning electron microscopy (SEM), XRD, DC and AC conductivity and dielectric relaxation measurements were the techniques used to study these glass and glass ceramic materials. The dielectric properties of the glass ceramics have a strong dependence on the HT temperature. The number of particles, precipitated in the surface of the glass-ceramic samples, increases from the 650 to the 750 deg C samples and decreases in the 800 deg C sample. The size of the surface particles increases with the rise of the HT temperature. In the 750 and 800 deg C samples it was observed the presence of NaNbO3 particles. The DC (sigmaDC) and AC conductivity (sigmaAC) behaviour depends mainly of the number of network modifier ions in the glass matrix. The dielectric results are in agreement with the electric equivalent circuit formed by a three R/C (resistance in parallel with a capacitor element) serial model (two related with the sample surfaces and one with the bulk material). The dielectric relaxation data were fitted with a complex nonlinear least squares algorithm (CNLLS), which reveals that a resistor (R), in parallel with a constant phase element (CPE, ZCPE=1/[Q0(jw)n]), is a good equivalent circuit.
Author Graça, M.P.F.
Ferreira da Silva, M.G.
Sombra, A.S.B.
Valente, M.A.
Author_xml – sequence: 1
  givenname: M.P.F.
  surname: Graça
  fullname: Graça, M.P.F.
– sequence: 2
  givenname: M.G.
  surname: Ferreira da Silva
  fullname: Ferreira da Silva, M.G.
– sequence: 3
  givenname: A.S.B.
  surname: Sombra
  fullname: Sombra, A.S.B.
– sequence: 4
  givenname: M.A.
  surname: Valente
  fullname: Valente, M.A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18825144$$DView record in Pascal Francis
BookMark eNp9kDtOxDAQhl2ABCycgMYNdAm2E-dRIrQ8pBVbALU1cRzwypsEj7fYjjtwQ06CA4uQKHDh0Yy-f0b6jsheP_SGkFPOUs54cbFKx5ctNqlgrExZljJW75FDVgue5FIUB-QIccXi4yU_JOPcGR281RT6lrbW_LSjH0bjgzVIh44CfbBL8fH2fg9iOZVGLCV9doBIcdOsYoiGIWJ66IMfnDMtfTEQkuDjvzZ9mBZqg3hM9jtwaE52dUaeruePV7fJYnlzd3W5SHRWFiERXEBVtEUtWs6bqjV5B9pArUFqnjdZG-fAK1HJvKm7UshG57woRJUBbyTj2Yycf--Nd183BoNaW9TGOejNsEGVRQOllFUEz3YgoAbXeei1RTV6uwa_VbyqhOR5Hrnsm9N-QPSm-0WYmsyrlfoyrybzimUqmo-p-k9K2wDBTprAun-zn_MSkdo
CitedBy_id crossref_primary_10_3390_magnetochemistry9090209
crossref_primary_10_1007_s11581_012_0765_1
crossref_primary_10_1080_00150193_2015_1072007
crossref_primary_10_3390_cryst13081251
crossref_primary_10_1088_1757_899X_2_1_012012
crossref_primary_10_1016_j_ceramint_2024_02_350
crossref_primary_10_1016_j_jnoncrysol_2012_04_011
crossref_primary_10_1016_j_ceramint_2017_02_031
crossref_primary_10_1016_j_optmat_2011_02_011
crossref_primary_10_1080_00150193_2013_849526
crossref_primary_10_1039_c3tc00793f
crossref_primary_10_1080_01411594_2011_603072
crossref_primary_10_1557_mrs_2017_32
crossref_primary_10_1080_00150190902877262
crossref_primary_10_1016_j_jnoncrysol_2010_10_007
crossref_primary_10_1016_j_optmat_2013_05_032
crossref_primary_10_3390_coatings13020294
crossref_primary_10_1016_j_solidstatesciences_2008_07_010
crossref_primary_10_1016_j_jmst_2016_09_008
crossref_primary_10_1016_j_jnoncrysol_2020_120553
crossref_primary_10_1080_01614940_2024_2446474
crossref_primary_10_1007_s12613_023_2744_0
crossref_primary_10_1016_j_jnoncrysol_2010_11_038
crossref_primary_10_3390_jfb14050279
crossref_primary_10_1016_j_cap_2011_03_025
crossref_primary_10_1016_j_ceramint_2024_06_233
crossref_primary_10_3390_ijms24065244
crossref_primary_10_1007_s10853_012_6482_3
crossref_primary_10_3390_ijms241310571
crossref_primary_10_1007_s11664_016_4783_z
crossref_primary_10_1016_j_jksus_2023_102695
crossref_primary_10_3390_biomimetics9040213
crossref_primary_10_3390_biomimetics9060325
crossref_primary_10_3390_cryst13060960
crossref_primary_10_1080_00150191003711285
crossref_primary_10_4028_www_scientific_net_KEM_421_422_189
crossref_primary_10_1016_j_jcrysgro_2012_02_043
crossref_primary_10_1080_00150193_2013_845513
crossref_primary_10_1016_j_tsf_2015_02_047
crossref_primary_10_1080_00150193_2013_846181
crossref_primary_10_1007_s11664_015_3724_6
Cites_doi 10.1088/0953-8984/16/15/L03
10.1016/0167-2738(86)90031-7
10.1103/PhysRev.82.727
10.1063/1.478989
10.1016/S0955-2219(03)00532-6
10.1016/S0921-5107(01)00919-9
10.1002/(SICI)1097-4555(199805)29:5<379::AID-JRS249>3.0.CO;2-F
10.1016/0022-3093(83)90506-9
10.1016/0022-3093(86)90067-0
10.1023/A:1022194512814
10.1088/0953-8984/11/22/315
10.1016/S0022-3093(03)00314-4
10.1016/S0022-3093(01)00417-3
10.1016/S0167-577X(00)00203-2
10.1002/1521-4079(200110)36:8/10<893::AID-CRAT893>3.0.CO;2-#
10.1016/0022-3093(89)90187-7
10.4028/www.scientific.net/MSF.514-516.274
10.1016/S1293-2558(03)00156-0
10.1016/j.ssi.2005.03.013
10.1016/S0022-0728(02)01309-8
10.2298/JSC0410791L
10.1016/j.matlet.2005.02.090
10.1007/s10853-005-3652-6
10.1016/j.jnoncrysol.2005.03.077
10.1016/0167-2738(84)90025-0
10.1016/S0167-2738(97)00460-8
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7U5
8FD
L7M
DOI 10.1016/j.physb.2007.03.009
DatabaseName CrossRef
Pascal-Francis
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EndPage 69
ExternalDocumentID 18825144
10_1016_j_physb_2007_03_009
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABMAC
ABNEU
ABWVN
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AFFNX
AFJKZ
AFTJW
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CITATION
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MAGPM
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
TN5
VOH
WUQ
XJT
XOL
XPP
YNT
ZMT
~02
~G-
AACTN
IQODW
7U5
8FD
AFXIZ
L7M
ID FETCH-LOGICAL-c376t-212a86d692d11b8de4facea9ca5c14b3d2d1a182854b9f725bc4166283a1b5013
ISSN 0921-4526
IngestDate Fri Jul 11 02:08:06 EDT 2025
Wed Apr 02 07:15:28 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Tue Jul 01 03:14:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Scanning electron microscopy
Sodium niobate; Silicate glasses; Ceramic glasses; Electrical properties; Dielectrical properties
Sodium oxides
Inorganic compounds
Electrical conductivity
Microwave radiation
Dielectric materials
Dielectric properties
Ternary systems
Glass
Niobates
Liquid state quenching
Pyroelectricity
XRD
Silica
Heat treatments
Dielectric relaxation
63.50; 72.20; 77.22; 77.84
Precipitation
Glass ceramics
Equivalent circuits
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-212a86d692d11b8de4facea9ca5c14b3d2d1a182854b9f725bc4166283a1b5013
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 30007558
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_30007558
pascalfrancis_primary_18825144
crossref_primary_10_1016_j_physb_2007_03_009
crossref_citationtrail_10_1016_j_physb_2007_03_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-06-15
PublicationDateYYYYMMDD 2007-06-15
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Physica. B, Condensed matter
PublicationYear 2007
Publisher Elsevier
Publisher_xml – name: Elsevier
References Graça (10.1016/j.physb.2007.03.009_bib21) 2006; 514–516
Andrade (10.1016/j.physb.2007.03.009_bib4) 1999; 11
Prasad (10.1016/j.physb.2007.03.009_bib2) 2001; 47
Graça (10.1016/j.physb.2007.03.009_bib5) 2003; 325
Graça (10.1016/j.physb.2007.03.009_bib28) 2006; 41
Li (10.1016/j.physb.2007.03.009_bib30) 2004; 69
Jonscher (10.1016/j.physb.2007.03.009_bib15) 1983
Chowdari (10.1016/j.physb.2007.03.009_bib17) 1989; 110
Matthias (10.1016/j.physb.2007.03.009_bib23) 1951; 82
Reznichenko (10.1016/j.physb.2007.03.009_bib8) 2003; 39
Boukamp (10.1016/j.physb.2007.03.009_bib19) 1986; 20
Macdonald (10.1016/j.physb.2007.03.009_bib14) 1987
Shen (10.1016/j.physb.2007.03.009_bib9) 1998; 29
Martin (10.1016/j.physb.2007.03.009_bib13) 1986; 83
Jiménez (10.1016/j.physb.2007.03.009_bib11) 2004; 24
Karapetyan (10.1016/j.physb.2007.03.009_bib22) 2001; 283
Jovic (10.1016/j.physb.2007.03.009_bib20) 2003; 541
Cutroni (10.1016/j.physb.2007.03.009_bib24) 1998; 105
Tatsumisago (10.1016/j.physb.2007.03.009_bib1) 1983; 56
Raevski (10.1016/j.physb.2007.03.009_bib7) 2004; 16
Bahri (10.1016/j.physb.2007.03.009_bib10) 2003; 5
Molak (10.1016/j.physb.2007.03.009_bib26) 2005; 176
Ngai (10.1016/j.physb.2007.03.009_bib31) 1999; 10
Prasad (10.1016/j.physb.2007.03.009_bib3) 2002; 90
Boukamp (10.1016/j.physb.2007.03.009_bib18) 1984; 11
Kremer (10.1016/j.physb.2007.03.009_bib16) 2002
Molak (10.1016/j.physb.2007.03.009_bib12) 2001; 36
10.1016/j.physb.2007.03.009_bib25
El-Desoky (10.1016/j.physb.2007.03.009_bib27) 1999; 10
Graça (10.1016/j.physb.2007.03.009_bib29) 2005; 351
Lu (10.1016/j.physb.2007.03.009_bib6) 2005; 59
References_xml – volume: 16
  start-page: L221
  year: 2004
  ident: 10.1016/j.physb.2007.03.009_bib7
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/16/15/L03
– volume: 20
  start-page: 31
  year: 1986
  ident: 10.1016/j.physb.2007.03.009_bib19
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(86)90031-7
– volume: 82
  start-page: 727
  issue: 5
  year: 1951
  ident: 10.1016/j.physb.2007.03.009_bib23
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.82.727
– volume: 10
  issue: 21
  year: 1999
  ident: 10.1016/j.physb.2007.03.009_bib31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478989
– volume: 24
  start-page: 1521
  year: 2004
  ident: 10.1016/j.physb.2007.03.009_bib11
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/S0955-2219(03)00532-6
– volume: 90
  start-page: 246
  year: 2002
  ident: 10.1016/j.physb.2007.03.009_bib3
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/S0921-5107(01)00919-9
– volume: 29
  start-page: 379
  year: 1998
  ident: 10.1016/j.physb.2007.03.009_bib9
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/(SICI)1097-4555(199805)29:5<379::AID-JRS249>3.0.CO;2-F
– volume: 10
  start-page: 279
  year: 1999
  ident: 10.1016/j.physb.2007.03.009_bib27
  publication-title: J. Mater. Sci.
– volume: 56
  start-page: 423
  year: 1983
  ident: 10.1016/j.physb.2007.03.009_bib1
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(83)90506-9
– volume: 83
  start-page: 185
  year: 1986
  ident: 10.1016/j.physb.2007.03.009_bib13
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(86)90067-0
– volume: 39
  start-page: 139
  issue: 2
  year: 2003
  ident: 10.1016/j.physb.2007.03.009_bib8
  publication-title: Inorg. Mater.
  doi: 10.1023/A:1022194512814
– volume: 11
  start-page: 4451
  year: 1999
  ident: 10.1016/j.physb.2007.03.009_bib4
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/11/22/315
– volume: 325
  start-page: 267
  year: 2003
  ident: 10.1016/j.physb.2007.03.009_bib5
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(03)00314-4
– volume: 283
  start-page: 114
  year: 2001
  ident: 10.1016/j.physb.2007.03.009_bib22
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(01)00417-3
– volume: 47
  start-page: 11
  year: 2001
  ident: 10.1016/j.physb.2007.03.009_bib2
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(00)00203-2
– volume: 36
  start-page: 893
  issue: 8–19
  year: 2001
  ident: 10.1016/j.physb.2007.03.009_bib12
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/1521-4079(200110)36:8/10<893::AID-CRAT893>3.0.CO;2-#
– volume: 110
  start-page: 101
  year: 1989
  ident: 10.1016/j.physb.2007.03.009_bib17
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(89)90187-7
– volume: 514–516
  start-page: 274
  year: 2006
  ident: 10.1016/j.physb.2007.03.009_bib21
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.514-516.274
– volume: 5
  start-page: 1229
  year: 2003
  ident: 10.1016/j.physb.2007.03.009_bib10
  publication-title: Solid State Sci.
  doi: 10.1016/S1293-2558(03)00156-0
– volume: 176
  start-page: 1439
  issue: 15–16
  year: 2005
  ident: 10.1016/j.physb.2007.03.009_bib26
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2005.03.013
– ident: 10.1016/j.physb.2007.03.009_bib25
– volume: 541
  start-page: 1
  year: 2003
  ident: 10.1016/j.physb.2007.03.009_bib20
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(02)01309-8
– year: 1983
  ident: 10.1016/j.physb.2007.03.009_bib15
– volume: 69
  start-page: 791
  issue: 10
  year: 2004
  ident: 10.1016/j.physb.2007.03.009_bib30
  publication-title: J. Serb. Chem. Soc.
  doi: 10.2298/JSC0410791L
– volume: 59
  start-page: 2821
  issue: 22
  year: 2005
  ident: 10.1016/j.physb.2007.03.009_bib6
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2005.02.090
– volume: 41
  start-page: 1137
  year: 2006
  ident: 10.1016/j.physb.2007.03.009_bib28
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-005-3652-6
– year: 2002
  ident: 10.1016/j.physb.2007.03.009_bib16
– year: 1987
  ident: 10.1016/j.physb.2007.03.009_bib14
– volume: 351
  start-page: 2951
  issue: 33–36
  year: 2005
  ident: 10.1016/j.physb.2007.03.009_bib29
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2005.03.077
– volume: 11
  start-page: 339
  year: 1984
  ident: 10.1016/j.physb.2007.03.009_bib18
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(84)90025-0
– volume: 105
  start-page: 149
  year: 1998
  ident: 10.1016/j.physb.2007.03.009_bib24
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(97)00460-8
SSID ssj0000171
Score 2.0159736
Snippet Glass and glass ceramics with the molar composition 60SiO2-30Na2O-10Nb2O5 (mol%) were prepared by the melt-quenching method. Sodium niobate (NaNbO3)...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 62
SubjectTerms Condensed matter: electronic structure, electrical, magnetic, and optical properties
Dielectric loss and relaxation
Dielectric properties of solids and liquids
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Exact sciences and technology
Physics
Pyroelectric and electrocaloric effects
Title Electric and dielectric properties of a SiO2–Na2O–Nb2O5 glass subject to a controlled heat-treatment process
URI https://www.proquest.com/docview/30007558
Volume 396
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgERIIIVhAlMfiA7fgqnGdNDkCaneFlnaltqi3yHYcqatuUyUpBw78dsavpqWI1yVqXbuNOl8834zngdDbXixzDmqVFP0kJ0wpTpKUFaSIaFLEosekMFG-4_hizj4tokV7XGCySxrRld9-mVfyP1KFMZCrzpL9B8nuvhQG4DXIF64gYbj-lYyHpoeNq7iaL5V_u9Ee9kqXSrXpj9PlhJIxpxMyFnQSBYYyB_VWaCeMZp_ch6yvgH_q7Zm0Aegbm0qwz2KvrHC7wQfjZy11F90aVt7wZi_a97zi0lDTz8FVG0Cc69tZfXUfnAcjVVVqWe20w7S8EZV19gbTtif0F67Vo3WjO_-r91WYwDqbremdjhQs1sjmyPv9t29b2nqguWxIu5-6ndpqZtvT5WjPt-6H6652BQlXlFKXrU1bFeeP9ceTbDS_vMxmw8XsNrpDwbTQXS-638O9kmPGSN_dqa9UZWICj37igM082PAaHqzCdkQ5Uu6GscweoYfO1MDvLW4eo1tqfYru7xWgPEV3rSTrJ2jlsYQBS7jFEm6xhMsCc_wTlrDBEnZYwk0JU1os4UMsYYelp2g-Gs4-XhDXiYNIUEANAX7DkziPU5qHoUhyxQouFU8lj2TIRD-HcR7qYohMpMWARkIC0Y-BuvJQRGBlPEMn63KtniMMDJFHsaCcxmAsxD0uYSQfyIFMI5bHvIOo_0cz6crU624pq8zHI15nRgy6geog6_UzEEMHvdst2tgqLb-ffnYgqnZNojO5GeugN152GWy3-gyNr1W5rbO-IdlR8uKPM16ie-0j8AqdNNVWvQYC24gzg7gf8tKbCw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric+and+dielectric+properties+of+a+SiO2-Na2O-Nb2O5+glass+subject+to+a+controlled+heat-treatment+process&rft.jtitle=Physica.+B%2C+Condensed+matter&rft.au=Graca%2C+M+P+F&rft.au=da+Silva%2C+M+G+Ferreira&rft.au=Sombra%2C+A+S+B&rft.au=Valente%2C+M+A&rft.date=2007-06-15&rft.issn=0921-4526&rft.volume=396&rft.issue=1-2&rft.spage=62&rft.epage=69&rft_id=info:doi/10.1016%2Fj.physb.2007.03.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-4526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-4526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-4526&client=summon