How does the interplay between bromine substitution at bay area and bulky substituents at imide position influence the photophysical properties of perylene diimides?

This article reports a comparative study on the synthesis, self-assembly, and photophysical properties of perylene diimides (PDIs) symmetrically tethered with long alkyl chains or polyhedral oligomeric silsesquioxanes (POSS) at the imide position and/or bromo substitutions at 1,7-positions of the ba...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 7; no. 26; pp. 16155 - 16162
Main Authors Shao, Yu, Zhang, Xinlin, Liang, Kai, Wang, Jing, Lin, Yuejian, Yang, Shuguang, Zhang, Wen-Bin, Zhu, Meifang, Sun, Bin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article reports a comparative study on the synthesis, self-assembly, and photophysical properties of perylene diimides (PDIs) symmetrically tethered with long alkyl chains or polyhedral oligomeric silsesquioxanes (POSS) at the imide position and/or bromo substitutions at 1,7-positions of the bay area. This series of samples include dodecyl-PDI H -dodecyl ( 1 ), dodecyl-PDI Br -dodecyl ( 2 ), POSS-PDI H -POSS ( 3 ), and POSS-PDI Br -POSS ( 4 ). In solution, the PDIs with bromine substitution at bay area ( 2 , 4 ) exhibit red-shifted absorption maximum compared to those without ( 1 , 3 ), which is consistent with a twisted perylene chromophore as revealed by molecular simulation. Similar bathochromatic shift was observed on the solid crystal state emission of 2 as compared to 1 . However, in crystals, the emission spectrum of 4 exhibits a seemingly hypochromatic shift relative to that of 3 , which could be rationalized by their packing in the crystals. The bromo substitution is believed to partially quench the fluorescence and the relatively loose packing of the twisted π-plane of 4 may not be able to confine π-plane in place, leaving multiple pathways for fluorescent quenching rather than red-shifted emission. While both 3 and 4 exhibit a unique dimer packing scheme, the dimers have quite different longitudinal offset and transverse offset of the π-plane. The longitudinal offset in dimers of 4 is so large that the naphthalene moieties in the dimer almost adopt a face-to-face arrangement and their mutual interactions are considered relatively independent. All these contribute to the less red-shifted fluorescent emission and the lower fluorescent yields in crystals of 4 relative to 3 as compared to that in solution. The study shall shed light into the complicated mutual interactions among intrinsic electronic structure, microscopic molecular packing, and the macroscopic optoelectronic properties. This article reports a comparative study on the photophysical properties of perylene diimides which caused by the interplay between bromine substitution at bay area and bulky substituents at imide position.
AbstractList This article reports a comparative study on the synthesis, self-assembly, and photophysical properties of perylene diimides (PDIs) symmetrically tethered with long alkyl chains or polyhedral oligomeric silsesquioxanes (POSS) at the imide position and/or bromo substitutions at 1,7-positions of the bay area. This series of samples include dodecyl–PDIH–dodecyl (1), dodecyl–PDIBᵣ–dodecyl (2), POSS–PDIH–POSS (3), and POSS–PDIBᵣ–POSS (4). In solution, the PDIs with bromine substitution at bay area (2, 4) exhibit red-shifted absorption maximum compared to those without (1, 3), which is consistent with a twisted perylene chromophore as revealed by molecular simulation. Similar bathochromatic shift was observed on the solid crystal state emission of 2 as compared to 1. However, in crystals, the emission spectrum of 4 exhibits a seemingly hypochromatic shift relative to that of 3, which could be rationalized by their packing in the crystals. The bromo substitution is believed to partially quench the fluorescence and the relatively loose packing of the twisted π-plane of 4 may not be able to confine π-plane in place, leaving multiple pathways for fluorescent quenching rather than red-shifted emission. While both 3 and 4 exhibit a unique dimer packing scheme, the dimers have quite different longitudinal offset and transverse offset of the π-plane. The longitudinal offset in dimers of 4 is so large that the naphthalene moieties in the dimer almost adopt a face-to-face arrangement and their mutual interactions are considered relatively independent. All these contribute to the less red-shifted fluorescent emission and the lower fluorescent yields in crystals of 4 relative to 3 as compared to that in solution. The study shall shed light into the complicated mutual interactions among intrinsic electronic structure, microscopic molecular packing, and the macroscopic optoelectronic properties.
This article reports a comparative study on the synthesis, self-assembly, and photophysical properties of perylene diimides (PDIs) symmetrically tethered with long alkyl chains or polyhedral oligomeric silsesquioxanes (POSS) at the imide position and/or bromo substitutions at 1,7-positions of the bay area. This series of samples include dodecyl–PDIH–dodecyl (1), dodecyl–PDIBr–dodecyl (2), POSS–PDIH–POSS (3), and POSS–PDIBr–POSS (4). In solution, the PDIs with bromine substitution at bay area (2, 4) exhibit red-shifted absorption maximum compared to those without (1, 3), which is consistent with a twisted perylene chromophore as revealed by molecular simulation. Similar bathochromatic shift was observed on the solid crystal state emission of 2 as compared to 1. However, in crystals, the emission spectrum of 4 exhibits a seemingly hypochromatic shift relative to that of 3, which could be rationalized by their packing in the crystals. The bromo substitution is believed to partially quench the fluorescence and the relatively loose packing of the twisted π-plane of 4 may not be able to confine π-plane in place, leaving multiple pathways for fluorescent quenching rather than red-shifted emission. While both 3 and 4 exhibit a unique dimer packing scheme, the dimers have quite different longitudinal offset and transverse offset of the π-plane. The longitudinal offset in dimers of 4 is so large that the naphthalene moieties in the dimer almost adopt a face-to-face arrangement and their mutual interactions are considered relatively independent. All these contribute to the less red-shifted fluorescent emission and the lower fluorescent yields in crystals of 4 relative to 3 as compared to that in solution. The study shall shed light into the complicated mutual interactions among intrinsic electronic structure, microscopic molecular packing, and the macroscopic optoelectronic properties.
This article reports a comparative study on the synthesis, self-assembly, and photophysical properties of perylene diimides (PDIs) symmetrically tethered with long alkyl chains or polyhedral oligomeric silsesquioxanes (POSS) at the imide position and/or bromo substitutions at 1,7-positions of the bay area. This series of samples include dodecyl-PDI H -dodecyl ( 1 ), dodecyl-PDI Br -dodecyl ( 2 ), POSS-PDI H -POSS ( 3 ), and POSS-PDI Br -POSS ( 4 ). In solution, the PDIs with bromine substitution at bay area ( 2 , 4 ) exhibit red-shifted absorption maximum compared to those without ( 1 , 3 ), which is consistent with a twisted perylene chromophore as revealed by molecular simulation. Similar bathochromatic shift was observed on the solid crystal state emission of 2 as compared to 1 . However, in crystals, the emission spectrum of 4 exhibits a seemingly hypochromatic shift relative to that of 3 , which could be rationalized by their packing in the crystals. The bromo substitution is believed to partially quench the fluorescence and the relatively loose packing of the twisted π-plane of 4 may not be able to confine π-plane in place, leaving multiple pathways for fluorescent quenching rather than red-shifted emission. While both 3 and 4 exhibit a unique dimer packing scheme, the dimers have quite different longitudinal offset and transverse offset of the π-plane. The longitudinal offset in dimers of 4 is so large that the naphthalene moieties in the dimer almost adopt a face-to-face arrangement and their mutual interactions are considered relatively independent. All these contribute to the less red-shifted fluorescent emission and the lower fluorescent yields in crystals of 4 relative to 3 as compared to that in solution. The study shall shed light into the complicated mutual interactions among intrinsic electronic structure, microscopic molecular packing, and the macroscopic optoelectronic properties. This article reports a comparative study on the photophysical properties of perylene diimides which caused by the interplay between bromine substitution at bay area and bulky substituents at imide position.
This article reports a comparative study on the synthesis, self-assembly, and photophysical properties of perylene diimides (PDIs) symmetrically tethered with long alkyl chains or polyhedral oligomeric silsesquioxanes (POSS) at the imide position and/or bromo substitutions at 1,7-positions of the bay area. This series of samples include dodecyl–PDI H –dodecyl ( 1 ), dodecyl–PDI Br –dodecyl ( 2 ), POSS–PDI H –POSS ( 3 ), and POSS–PDI Br –POSS ( 4 ). In solution, the PDIs with bromine substitution at bay area ( 2 , 4 ) exhibit red-shifted absorption maximum compared to those without ( 1 , 3 ), which is consistent with a twisted perylene chromophore as revealed by molecular simulation. Similar bathochromatic shift was observed on the solid crystal state emission of 2 as compared to 1 . However, in crystals, the emission spectrum of 4 exhibits a seemingly hypochromatic shift relative to that of 3 , which could be rationalized by their packing in the crystals. The bromo substitution is believed to partially quench the fluorescence and the relatively loose packing of the twisted π-plane of 4 may not be able to confine π-plane in place, leaving multiple pathways for fluorescent quenching rather than red-shifted emission. While both 3 and 4 exhibit a unique dimer packing scheme, the dimers have quite different longitudinal offset and transverse offset of the π-plane. The longitudinal offset in dimers of 4 is so large that the naphthalene moieties in the dimer almost adopt a face-to-face arrangement and their mutual interactions are considered relatively independent. All these contribute to the less red-shifted fluorescent emission and the lower fluorescent yields in crystals of 4 relative to 3 as compared to that in solution. The study shall shed light into the complicated mutual interactions among intrinsic electronic structure, microscopic molecular packing, and the macroscopic optoelectronic properties.
Author Zhang, Wen-Bin
Shao, Yu
Lin, Yuejian
Yang, Shuguang
Zhu, Meifang
Sun, Bin
Wang, Jing
Zhang, Xinlin
Liang, Kai
AuthorAffiliation Department of Chemistry
Center for Soft Matter Science and Engineering
Fudan University
Peking University
Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
Donghua University
Center for Advanced Low-dimension Materials
South China University of Science and Technology
College of Chemistry and Molecular Engineering
College of Materials Science and Engineering
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
South China Advanced Institute of Soft Matter Science and Technology
AuthorAffiliation_xml – sequence: 0
  name: Center for Soft Matter Science and Engineering
– sequence: 0
  name: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
– sequence: 0
  name: Peking University
– sequence: 0
  name: South China University of Science and Technology
– sequence: 0
  name: Fudan University
– sequence: 0
  name: College of Materials Science and Engineering
– sequence: 0
  name: South China Advanced Institute of Soft Matter Science and Technology
– sequence: 0
  name: Center for Advanced Low-dimension Materials
– sequence: 0
  name: Donghua University
– sequence: 0
  name: College of Chemistry and Molecular Engineering
Author_xml – sequence: 1
  givenname: Yu
  surname: Shao
  fullname: Shao, Yu
– sequence: 2
  givenname: Xinlin
  surname: Zhang
  fullname: Zhang, Xinlin
– sequence: 3
  givenname: Kai
  surname: Liang
  fullname: Liang, Kai
– sequence: 4
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 5
  givenname: Yuejian
  surname: Lin
  fullname: Lin, Yuejian
– sequence: 6
  givenname: Shuguang
  surname: Yang
  fullname: Yang, Shuguang
– sequence: 7
  givenname: Wen-Bin
  surname: Zhang
  fullname: Zhang, Wen-Bin
– sequence: 8
  givenname: Meifang
  surname: Zhu
  fullname: Zhu, Meifang
– sequence: 9
  givenname: Bin
  surname: Sun
  fullname: Sun, Bin
BookMark eNp9kl1rHCEUhqUk0DTJTe8Lht6UwKZ-zOjOVQlLmgQChdJeD-ocWVNXJ-oQ5gf1f9bdLUkJJXrhAZ_znvd4fIcOQgyA0HtKLijh3WcjkyJEyg7eoCNGGrFgRHQH_8Rv0WnO96Qu0VIm6BH6fRMf8RAh47IG7EKBNHo1Yw3lESBgneLGBcB50rm4MhUXA1YF68qoBAqrMGA9-V_zEwKh5C3iNm4APMbsdkkuWF_vDOwqjetY4rieszPK4zHFEVJx1Ua0uIazh1p0cDuN_OUEHVrlM5z-PY_Rz69XP1Y3i7tv17ery7uF4VKU2mLTmlbTlki95JYSYgbJlDKdVI3mLWssFbZhVlvREbMcjKibLRlrlrKzLT9Gn_a61dDDBLn0G5cNeK8CxCn3jHHZcsK5qOjHF-h9nFKo7ipFKti0klbqfE-ZFHNOYPsxuY1Kc09Jvx1av5LfL3dDu6oweQEbV9T28UpSzv8_5WyfkrJ5kn7-B_042Mp8eI3hfwAfwbQO
CitedBy_id crossref_primary_10_1007_s11307_023_01800_1
crossref_primary_10_1002_anie_202310445
crossref_primary_10_1002_chem_201800895
crossref_primary_10_1039_C7RA04296E
crossref_primary_10_3390_molecules24112114
crossref_primary_10_1002_chem_201806337
crossref_primary_10_1002_ange_202310445
crossref_primary_10_1002_slct_201800267
crossref_primary_10_1016_j_jssc_2021_122665
crossref_primary_10_3390_molecules25225324
crossref_primary_10_1039_D0CY01982H
crossref_primary_10_1016_j_poly_2023_116638
crossref_primary_10_3390_nano14211733
crossref_primary_10_1021_jacs_0c10457
crossref_primary_10_1039_C7SM01918A
crossref_primary_10_1002_cphc_201900716
crossref_primary_10_1117_1_JBO_29_8_085001
Cites_doi 10.1002/chem.200600891
10.1016/j.dyepig.2011.05.028
10.1039/C4CE02392G
10.1021/jp200735m
10.1039/c2jm16613e
10.1021/j100867a003
10.1039/b813737d
10.1021/bc3005655
10.1039/b401630k
10.1002/anie.201002307
10.1021/jo2001963
10.1515/msp-2015-0016
10.1039/b9nj00672a
10.1021/ma300100s
10.1021/ma0344801
10.1021/jp061739j
10.1039/b918154g
10.1039/b517020f
10.1021/la901173s
10.1021/cr990402t
10.1002/chem.200600889
10.1002/adma.200702935
10.1021/jp100126u
10.1016/0009-2614(88)80050-2
10.1021/ja0687724
10.1021/jp046133e
10.1039/C6RA28147H
10.1002/anie.200701139
10.1002/adfm.200301005
10.1021/jp907697f
10.1021/cm1018647
10.1021/cm970589+
10.1021/ol070139f
10.1021/ja5092613
10.3987/REV-94-SR2
10.1021/ja052940v
10.4028/www.scientific.net/AMR.668.701
10.1007/978-0-387-46312-4
10.1021/ol0700963
10.1002/adma.19960080312
10.1021/ar800223c
10.1016/j.electacta.2014.08.019
10.1039/C3SC52344F
10.1021/ja901077a
10.1021/jo048880d
10.1021/ja908173x
10.1016/j.eurpolymj.2012.06.008
10.1016/j.dyepig.2012.11.015
10.1039/c3nj00050h
10.1021/cr030067f
10.1016/0009-2614(93)85142-B
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2017
Copyright_xml – notice: Copyright Royal Society of Chemistry 2017
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7S9
L.6
DOI 10.1039/c7ra00779e
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 16162
ExternalDocumentID 10_1039_C7RA00779E
c7ra00779e
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
R7C
R7G
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAEMU
AAYXX
ABASK
ABIQK
ABJNI
AETIL
AFPKN
AFRZK
AKMSF
CITATION
ECGLT
J3G
J3H
PGMZT
RAOCF
RPM
YAE
7SR
8BQ
8FD
JG9
7S9
L.6
ID FETCH-LOGICAL-c376t-2045c5b1507b83f100cd72aac97a4b3524f16f42fbf690c8dc6c6c28224879f53
ISSN 2046-2069
IngestDate Fri Jul 11 08:22:06 EDT 2025
Mon Jun 30 05:04:54 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Tue Jul 01 03:31:09 EDT 2025
Tue Dec 17 21:00:11 EST 2024
Thu May 30 17:48:10 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-2045c5b1507b83f100cd72aac97a4b3524f16f42fbf690c8dc6c6c28224879f53
Notes 2
10.1039/c7ra00779e
4
Electronic supplementary information (ESI) available: Experimental section, detailed characterization of
and the X-ray crystallographic data for the structure of
and
energy-minimized molecular models of
CCDC 1527259. For ESI and crystallographic data in CIF or other electronic format see DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3546-2574
0000-0002-0101-555X
0000-0002-8746-0792
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2017/ra/c7ra00779e
PQID 2202234571
PQPubID 2047525
PageCount 8
ParticipantIDs proquest_miscellaneous_2237530336
crossref_citationtrail_10_1039_C7RA00779E
crossref_primary_10_1039_C7RA00779E
proquest_journals_2202234571
rsc_primary_c7ra00779e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle RSC advances
PublicationYear 2017
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chen (C7RA00779E-(cit51)/*[position()=1]) 2013; 37
Würthner (C7RA00779E-(cit18)/*[position()=1]) 2006
Chen (C7RA00779E-(cit14)/*[position()=1]) 2007; 13
Du (C7RA00779E-(cit26)/*[position()=1]) 2012; 45
Zhuang (C7RA00779E-(cit12)/*[position()=1]) 2010; 34
Huang (C7RA00779E-(cit35)/*[position()=1]) 2011; 115
Heek (C7RA00779E-(cit24)/*[position()=1]) 2013; 24
Mulder (C7RA00779E-(cit3)/*[position()=1]) 2009; 42
Jiménez (C7RA00779E-(cit20)/*[position()=1]) 2014; 5
Shao (C7RA00779E-(cit30)/*[position()=1]) 2017; 7
Islam (C7RA00779E-(cit40)/*[position()=1]) 2012; 48
Rosi (C7RA00779E-(cit4)/*[position()=1]) 2005; 105
Delgado (C7RA00779E-(cit36)/*[position()=1]) 2010; 132
Gvishi (C7RA00779E-(cit39)/*[position()=1]) 1993; 213
Zeng (C7RA00779E-(cit33)/*[position()=1]) 2015; 3
Würthner (C7RA00779E-(cit21)/*[position()=1]) 2004; 69
Emerson (C7RA00779E-(cit48)/*[position()=1]) 1967; 71
Yagai (C7RA00779E-(cit44)/*[position()=1]) 2007; 9
Kaiser (C7RA00779E-(cit15)/*[position()=1]) 2007; 46
Mishra (C7RA00779E-(cit49)/*[position()=1]) 2000; 100
Wangatia (C7RA00779E-(cit32)/*[position()=1]) 2013; 668
Lv (C7RA00779E-(cit23)/*[position()=1]) 2009; 25
Lakowicz (C7RA00779E-(cit47)/*[position()=1]) 2006
Schlettwein (C7RA00779E-(cit10)/*[position()=1]) 1998; 10
Zhang (C7RA00779E-(cit29)/*[position()=1]) 2015; 17
Sivalmurugan (C7RA00779E-(cit37)/*[position()=1]) 2010; 114
Chen (C7RA00779E-(cit13)/*[position()=1]) 2007; 13
Langhals (C7RA00779E-(cit9)/*[position()=1]) 1995; 40
Ren (C7RA00779E-(cit28)/*[position()=1]) 2010; 114
Kanibolotsky (C7RA00779E-(cit2)/*[position()=1]) 2010; 39
Clarke (C7RA00779E-(cit25)/*[position()=1]) 2012; 92
Huang (C7RA00779E-(cit7)/*[position()=1]) 2011; 76
Dubey (C7RA00779E-(cit34)/*[position()=1]) 2010; 23
Lucenti (C7RA00779E-(cit27)/*[position()=1]) 2013; 96
Horowitz (C7RA00779E-(cit6)/*[position()=1]) 1996; 8
Clark (C7RA00779E-(cit42)/*[position()=1]) 2007; 129
Yan (C7RA00779E-(cit46)/*[position()=1]) 2005; 109
Datar (C7RA00779E-(cit45)/*[position()=1]) 2006; 110
Balakrishnan (C7RA00779E-(cit43)/*[position()=1]) 2005; 127
Wangatia (C7RA00779E-(cit31)/*[position()=1]) 2015; 33
Zhong (C7RA00779E-(cit5)/*[position()=1]) 2014; 136
Liu (C7RA00779E-(cit41)/*[position()=1]) 2003; 36
Fron (C7RA00779E-(cit22)/*[position()=1]) 2008; 7
Wuerthner (C7RA00779E-(cit16)/*[position()=1]) 2008; 20
Feldmann (C7RA00779E-(cit1)/*[position()=1]) 2003; 13
Würthner (C7RA00779E-(cit11)/*[position()=1]) 2004
Zhao (C7RA00779E-(cit38)/*[position()=1]) 2012; 22
Würthner (C7RA00779E-(cit50)/*[position()=1]) 2011; 50
Langhals (C7RA00779E-(cit8)/*[position()=1]) 1988; 150
Schmidt (C7RA00779E-(cit19)/*[position()=1]) 2009; 131
Dehm (C7RA00779E-(cit17)/*[position()=1]) 2007; 9
Sefer (C7RA00779E-(cit52)/*[position()=1]) 2014; 143
References_xml – issn: 2006
  publication-title: Principles of Fluorescence Spectroscopy
  doi: Lakowicz
– volume: 13
  start-page: 450
  year: 2007
  ident: C7RA00779E-(cit13)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.200600891
– volume: 92
  start-page: 659
  year: 2012
  ident: C7RA00779E-(cit25)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2011.05.028
– volume: 17
  start-page: 1453
  year: 2015
  ident: C7RA00779E-(cit29)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C4CE02392G
– volume: 115
  start-page: 10399
  year: 2011
  ident: C7RA00779E-(cit35)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200735m
– volume: 22
  start-page: 7387
  year: 2012
  ident: C7RA00779E-(cit38)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16613e
– volume: 71
  start-page: 2396
  year: 1967
  ident: C7RA00779E-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100867a003
– volume: 7
  start-page: 1509
  year: 2008
  ident: C7RA00779E-(cit22)/*[position()=1]
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b813737d
– volume: 24
  start-page: 153
  year: 2013
  ident: C7RA00779E-(cit24)/*[position()=1]
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc3005655
– start-page: 1564
  year: 2004
  ident: C7RA00779E-(cit11)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b401630k
– volume: 50
  start-page: 3376
  year: 2011
  ident: C7RA00779E-(cit50)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201002307
– volume: 76
  start-page: 2386
  year: 2011
  ident: C7RA00779E-(cit7)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo2001963
– volume: 33
  start-page: 113
  year: 2015
  ident: C7RA00779E-(cit31)/*[position()=1]
  publication-title: Mater. Sci.-Pol.
  doi: 10.1515/msp-2015-0016
– volume: 34
  start-page: 1120
  year: 2010
  ident: C7RA00779E-(cit12)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/b9nj00672a
– volume: 45
  start-page: 3086
  year: 2012
  ident: C7RA00779E-(cit26)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma300100s
– volume: 36
  start-page: 5918
  year: 2003
  ident: C7RA00779E-(cit41)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma0344801
– volume: 110
  start-page: 12327
  year: 2006
  ident: C7RA00779E-(cit45)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp061739j
– volume: 39
  start-page: 2695
  year: 2010
  ident: C7RA00779E-(cit2)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b918154g
– volume: 3
  start-page: 372
  year: 2015
  ident: C7RA00779E-(cit33)/*[position()=1]
  publication-title: J. Donghua Univ.
– start-page: 1188
  year: 2006
  ident: C7RA00779E-(cit18)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b517020f
– volume: 25
  start-page: 11351
  year: 2009
  ident: C7RA00779E-(cit23)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la901173s
– volume: 100
  start-page: 1973
  year: 2000
  ident: C7RA00779E-(cit49)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr990402t
– volume: 13
  start-page: 436
  year: 2007
  ident: C7RA00779E-(cit14)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.200600889
– volume: 20
  start-page: 1695
  year: 2008
  ident: C7RA00779E-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702935
– volume: 114
  start-page: 4802
  year: 2010
  ident: C7RA00779E-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp100126u
– volume: 150
  start-page: 321
  year: 1988
  ident: C7RA00779E-(cit8)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(88)80050-2
– volume: 129
  start-page: 7586
  year: 2007
  ident: C7RA00779E-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0687724
– volume: 109
  start-page: 724
  year: 2005
  ident: C7RA00779E-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046133e
– volume: 7
  start-page: 6530
  year: 2017
  ident: C7RA00779E-(cit30)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28147H
– volume: 46
  start-page: 5541
  year: 2007
  ident: C7RA00779E-(cit15)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701139
– volume: 13
  start-page: 511
  year: 2003
  ident: C7RA00779E-(cit1)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200301005
– volume: 114
  start-page: 1782
  year: 2010
  ident: C7RA00779E-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp907697f
– volume: 23
  start-page: 778
  year: 2010
  ident: C7RA00779E-(cit34)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm1018647
– volume: 10
  start-page: 601
  year: 1998
  ident: C7RA00779E-(cit10)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm970589+
– volume: 9
  start-page: 1137
  year: 2007
  ident: C7RA00779E-(cit44)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol070139f
– volume: 136
  start-page: 15215
  year: 2014
  ident: C7RA00779E-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5092613
– volume: 40
  start-page: 477
  year: 1995
  ident: C7RA00779E-(cit9)/*[position()=1]
  publication-title: Heterocycles
  doi: 10.3987/REV-94-SR2
– volume: 127
  start-page: 10496
  year: 2005
  ident: C7RA00779E-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052940v
– volume: 668
  start-page: 701
  year: 2013
  ident: C7RA00779E-(cit32)/*[position()=1]
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.668.701
– volume-title: Principles of Fluorescence Spectroscopy
  year: 2006
  ident: C7RA00779E-(cit47)/*[position()=1]
  doi: 10.1007/978-0-387-46312-4
– volume: 9
  start-page: 1085
  year: 2007
  ident: C7RA00779E-(cit17)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol0700963
– volume: 8
  start-page: 242
  year: 1996
  ident: C7RA00779E-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19960080312
– volume: 42
  start-page: 904
  year: 2009
  ident: C7RA00779E-(cit3)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800223c
– volume: 143
  start-page: 106
  year: 2014
  ident: C7RA00779E-(cit52)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.08.019
– volume: 5
  start-page: 608
  year: 2014
  ident: C7RA00779E-(cit20)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC52344F
– volume: 131
  start-page: 6215
  year: 2009
  ident: C7RA00779E-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901077a
– volume: 69
  start-page: 7933
  year: 2004
  ident: C7RA00779E-(cit21)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo048880d
– volume: 132
  start-page: 3375
  year: 2010
  ident: C7RA00779E-(cit36)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908173x
– volume: 48
  start-page: 1538
  year: 2012
  ident: C7RA00779E-(cit40)/*[position()=1]
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2012.06.008
– volume: 96
  start-page: 748
  year: 2013
  ident: C7RA00779E-(cit27)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2012.11.015
– volume: 37
  start-page: 1720
  year: 2013
  ident: C7RA00779E-(cit51)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/c3nj00050h
– volume: 105
  start-page: 1547
  year: 2005
  ident: C7RA00779E-(cit4)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr030067f
– volume: 213
  start-page: 338
  year: 1993
  ident: C7RA00779E-(cit39)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)85142-B
SSID ssj0000651261
Score 2.2479844
Snippet This article reports a comparative study on the synthesis, self-assembly, and photophysical properties of perylene diimides (PDIs) symmetrically tethered with...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16155
SubjectTerms Bromine
Chromophores
Comparative studies
Computer simulation
Crystallography
Crystals
Dimers
Electronic structure
Emission
Fluorescence
moieties
molecular dynamics
Molecular structure
Naphthalene
Optoelectronics
Polyhedral oligomeric silsesquioxane
Properties (attributes)
Self-assembly
silsesquioxanes
Substitutes
Title How does the interplay between bromine substitution at bay area and bulky substituents at imide position influence the photophysical properties of perylene diimides?
URI https://www.proquest.com/docview/2202234571
https://www.proquest.com/docview/2237530336
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZp97C9jN3K0nVDY3sZwZnvip9GCSllKx20CWRPRrIlYprGwXEesv_T_7kjWZLdNQ_dCJggn8gh58u5SJ_OQegz97lsfhI4lHnUCROfOsyVvV5y8LVukAv4mGRbXMbns_D7PJr3encd1tK2ZsPs995zJf-jVRgDvcpTsv-gWTspDMB70C9cQcNwfZSOZT-4vJRFGhZcFX6o1ku6s9wrVpW3MojcgHFQjABFPa4HDGQoBItq44Btlzc7K6LOu4FIcVvkfGAYXZKy1bQyaU5WLUpZjkAreC2X8ytZl1Wxp3m1A0fGB3mh5tj8xRy8uh4b3oGN5q8XVC3Y_to-WMaeF7KSh2UNFXr4By3anQDNKTY-WC9heKSzhKEsnQ9JOii26dky5HvGtKkmHUTCH2M9VNuqDly1SW-ssBrtuHR7_4G_cANZbjUjFZV1jRLeekXDBLj8mZ7NLi7S6WQ-PUBPfMhG_E7m3jh8iJpUZV77pU0h3CD52k5-P_Rp85mDyjSbUUHN9AV6rrMRfNpA6yXq8dUr9HRsmgC-RncAMSwhhkHx2EIMa4hhDTHchRimNQaIYQkxDBDDCmK4CzEpouCBDcSwhZh60j2I4RZiuBTYQAwbiH17g2Znk-n43NGdPZwMHFrtyB4IWcRkMsJGgfBcN8uJT2mWEBoyyAlC4cUi9AUTceJmozyL4aUYzyOSiCg4QoercsXfIixYLMCiRCGXx_I4ozR0R4IkURQTwV3SR1_Mj55muuy97L6yTBX9IkjSMbk6VQqa9NEnK7tuir3slToxuku1Mdikvg_BcBBGxOujj_Y2KEvuv9EVL7dSJiARGMAg7qMj0Ll9RguRPjrefyNd5-L4ETO_Q8_af9gJOqyrLX8PYXPNPijQ_gHxUcpA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+the+interplay+between+bromine+substitution+at+bay+area+and+bulky+substituents+at+imide+position+influence+the+photophysical+properties+of+perylene+diimides%3F&rft.jtitle=RSC+advances&rft.au=Shao%2C+Yu&rft.au=Zhang%2C+Xinlin&rft.au=Liang%2C+Kai&rft.au=Wang%2C+Jing&rft.date=2017-01-01&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=7&rft.issue=26+p.16155-16162&rft.spage=16155&rft.epage=16162&rft_id=info:doi/10.1039%2Fc7ra00779e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon