Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries

Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K + pre-intercalated layered V 2 O 5 (K 0.5 V 2 O 5 ) composites with metallic features a...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 13; no. 4; pp. 2399 - 247
Main Authors Su, Guang, Chen, Shufeng, Dong, Huilong, Cheng, Yafei, Liu, Quan, Wei, Huaixin, Ang, Edison Huixiang, Geng, Hongbo, Li, Cheng Chao
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 04.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K + pre-intercalated layered V 2 O 5 (K 0.5 V 2 O 5 ) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K 0.5 V 2 O 5 electrode delivers a high reversible capacity of 251 mA h g −1 at 5 A g −1 after 1000 cycles. Even at a low temperature of −20 °C, high reversible capacities of 241 and 115 mA h g −1 can be obtained after 1000 cycles at 1 and 5 A g −1 , respectively. The outstanding electrochemical performance is attributed to the incorporation of K + into the layered V 2 O 5 , which acts as pillars to promote the Zn 2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K + can benefit electron migration, and therefore enhance the Zn 2+ (de)intercalation kinetics. Meanwhile, the Zn 2+ storage mechanism of K 0.5 V 2 O 5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs. Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties.
AbstractList Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K+ pre-intercalated layered V2O5 (K0.5V2O5) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K0.5V2O5 electrode delivers a high reversible capacity of 251 mA h g-1 at 5 A g-1 after 1000 cycles. Even at a low temperature of -20 °C, high reversible capacities of 241 and 115 mA h g-1 can be obtained after 1000 cycles at 1 and 5 A g-1, respectively. The outstanding electrochemical performance is attributed to the incorporation of K+ into the layered V2O5, which acts as pillars to promote the Zn2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K+ can benefit electron migration, and therefore enhance the Zn2+ (de)intercalation kinetics. Meanwhile, the Zn2+ storage mechanism of K0.5V2O5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs.
Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K + pre-intercalated layered V 2 O 5 (K 0.5 V 2 O 5 ) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K 0.5 V 2 O 5 electrode delivers a high reversible capacity of 251 mA h g −1 at 5 A g −1 after 1000 cycles. Even at a low temperature of −20 °C, high reversible capacities of 241 and 115 mA h g −1 can be obtained after 1000 cycles at 1 and 5 A g −1 , respectively. The outstanding electrochemical performance is attributed to the incorporation of K + into the layered V 2 O 5 , which acts as pillars to promote the Zn 2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K + can benefit electron migration, and therefore enhance the Zn 2+ (de)intercalation kinetics. Meanwhile, the Zn 2+ storage mechanism of K 0.5 V 2 O 5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs.
Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K + pre-intercalated layered V 2 O 5 (K 0.5 V 2 O 5 ) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K 0.5 V 2 O 5 electrode delivers a high reversible capacity of 251 mA h g −1 at 5 A g −1 after 1000 cycles. Even at a low temperature of −20 °C, high reversible capacities of 241 and 115 mA h g −1 can be obtained after 1000 cycles at 1 and 5 A g −1 , respectively. The outstanding electrochemical performance is attributed to the incorporation of K + into the layered V 2 O 5 , which acts as pillars to promote the Zn 2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K + can benefit electron migration, and therefore enhance the Zn 2+ (de)intercalation kinetics. Meanwhile, the Zn 2+ storage mechanism of K 0.5 V 2 O 5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs. Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties.
Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K+ pre-intercalated layered V2O5 (K0.5V2O5) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K0.5V2O5 electrode delivers a high reversible capacity of 251 mA h g-1 at 5 A g-1 after 1000 cycles. Even at a low temperature of -20 °C, high reversible capacities of 241 and 115 mA h g-1 can be obtained after 1000 cycles at 1 and 5 A g-1, respectively. The outstanding electrochemical performance is attributed to the incorporation of K+ into the layered V2O5, which acts as pillars to promote the Zn2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K+ can benefit electron migration, and therefore enhance the Zn2+ (de)intercalation kinetics. Meanwhile, the Zn2+ storage mechanism of K0.5V2O5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs.Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K+ pre-intercalated layered V2O5 (K0.5V2O5) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K0.5V2O5 electrode delivers a high reversible capacity of 251 mA h g-1 at 5 A g-1 after 1000 cycles. Even at a low temperature of -20 °C, high reversible capacities of 241 and 115 mA h g-1 can be obtained after 1000 cycles at 1 and 5 A g-1, respectively. The outstanding electrochemical performance is attributed to the incorporation of K+ into the layered V2O5, which acts as pillars to promote the Zn2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K+ can benefit electron migration, and therefore enhance the Zn2+ (de)intercalation kinetics. Meanwhile, the Zn2+ storage mechanism of K0.5V2O5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs.
Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K+ pre-intercalated layered V2O5 (K0.5V2O5) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K0.5V2O5 electrode delivers a high reversible capacity of 251 mA h g−1 at 5 A g−1 after 1000 cycles. Even at a low temperature of −20 °C, high reversible capacities of 241 and 115 mA h g−1 can be obtained after 1000 cycles at 1 and 5 A g−1, respectively. The outstanding electrochemical performance is attributed to the incorporation of K+ into the layered V2O5, which acts as pillars to promote the Zn2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K+ can benefit electron migration, and therefore enhance the Zn2+ (de)intercalation kinetics. Meanwhile, the Zn2+ storage mechanism of K0.5V2O5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs.
Author Dong, Huilong
Su, Guang
Chen, Shufeng
Geng, Hongbo
Cheng, Yafei
Wei, Huaixin
Liu, Quan
Ang, Edison Huixiang
Li, Cheng Chao
AuthorAffiliation School of Materials Engineering
Guangdong University of Technology
Changshu Institute of Technology
Nankai University
College of Chemistry
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
School of Chemical Biology and Materials Engineering
Suzhou University of Science and Technology
Natural Sciences and Science Education
Nanyang Technological University
School of Chemical Engineering and Light Industry
National Institute of Education
AuthorAffiliation_xml – name: School of Chemical Biology and Materials Engineering
– name: Natural Sciences and Science Education
– name: National Institute of Education
– name: School of Chemical Engineering and Light Industry
– name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
– name: Changshu Institute of Technology
– name: Guangdong University of Technology
– name: Suzhou University of Science and Technology
– name: School of Materials Engineering
– name: College of Chemistry
– name: Nanyang Technological University
– name: Nankai University
Author_xml – sequence: 1
  givenname: Guang
  surname: Su
  fullname: Su, Guang
– sequence: 2
  givenname: Shufeng
  surname: Chen
  fullname: Chen, Shufeng
– sequence: 3
  givenname: Huilong
  surname: Dong
  fullname: Dong, Huilong
– sequence: 4
  givenname: Yafei
  surname: Cheng
  fullname: Cheng, Yafei
– sequence: 5
  givenname: Quan
  surname: Liu
  fullname: Liu, Quan
– sequence: 6
  givenname: Huaixin
  surname: Wei
  fullname: Wei, Huaixin
– sequence: 7
  givenname: Edison Huixiang
  surname: Ang
  fullname: Ang, Edison Huixiang
– sequence: 8
  givenname: Hongbo
  surname: Geng
  fullname: Geng, Hongbo
– sequence: 9
  givenname: Cheng Chao
  surname: Li
  fullname: Li, Cheng Chao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33491718$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1URD_gwh1kiQtCCrXjrBMfUQu0qAIJlXM0cSbgVWIHf0C3_6b_FGe3LFLFyaPRM69fvTPH5MA6i4Q85-wtZ0Kd9sx6VotVs35EjkpWsUKIujzY17I6JMchrBmTSkjxhBwKUSle8-aI3F0na-x3Gn8gxRF19M4aTUP0ScfkkbqBjrBBjz39BRZ6kyY6o43uxvRIuw2dPRbGRvQaRojG2WVkdhFCWNjcCHRwnoY0oze58M5Np6P7XUSccgu238DPhC4FemusLhaRDmLWNBiekscDjAGf3b8n5NuH99dnF8XVl4-XZ--uCi1qGQverQYYGmh4A1iC4E0pS8561gEoHLiSMAi-0r1kVV-pWolOMlQytxXDqhQn5PVOd_YumwmxnUzQOI5gF2dtWTU55ErUPKOvHqBrl7zN7hZKMi6zi0y9vKdSN2Hfzt5M4Dft3_Az8GYHaO9C8DjsEc7aZbPtOfv8dbvZTxlmD2Bt4jbv6MGM_x95sRvxQe-l_x2L-AOvK7Mm
CitedBy_id crossref_primary_10_1039_D1TA10545K
crossref_primary_10_1002_smll_202309154
crossref_primary_10_1016_j_est_2023_110135
crossref_primary_10_1002_aenm_202401737
crossref_primary_10_1021_acssuschemeng_3c07655
crossref_primary_10_1016_j_cej_2022_136714
crossref_primary_10_1002_cey2_512
crossref_primary_10_1016_j_ensm_2022_06_052
crossref_primary_10_1016_j_jechem_2022_11_049
crossref_primary_10_1007_s12598_022_02026_w
crossref_primary_10_1016_j_jcis_2024_03_047
crossref_primary_10_1002_smtd_202301083
crossref_primary_10_1021_acsami_1c11560
crossref_primary_10_2139_ssrn_4076094
crossref_primary_10_1016_j_jallcom_2023_171679
crossref_primary_10_2139_ssrn_4167646
crossref_primary_10_1007_s11426_022_1556_x
crossref_primary_10_1016_j_cej_2022_140260
crossref_primary_10_1016_j_cej_2024_151527
crossref_primary_10_1007_s40145_021_0493_y
crossref_primary_10_1016_j_carbon_2023_118334
crossref_primary_10_1142_S1793604723500182
crossref_primary_10_1002_cnma_202200068
crossref_primary_10_1016_j_jallcom_2022_164388
crossref_primary_10_1039_D1NR05334E
crossref_primary_10_1016_j_cej_2025_159891
crossref_primary_10_1016_j_est_2023_108081
crossref_primary_10_1002_smll_202409987
crossref_primary_10_1021_acsami_1c24417
crossref_primary_10_1002_smm2_1091
crossref_primary_10_1016_j_ensm_2022_08_007
crossref_primary_10_1016_j_nanoen_2023_108336
crossref_primary_10_1021_acs_nanolett_4c03191
crossref_primary_10_1039_D1SE00636C
crossref_primary_10_1016_j_jallcom_2023_170790
crossref_primary_10_1126_sciadv_abn5097
crossref_primary_10_1002_cssc_202101856
crossref_primary_10_1002_aenm_202402721
crossref_primary_10_1039_D2QM00420H
crossref_primary_10_1016_j_rser_2023_113861
crossref_primary_10_1039_D4NJ05297H
crossref_primary_10_1021_acsanm_1c01069
crossref_primary_10_1016_j_apmate_2023_100169
crossref_primary_10_1007_s12598_023_02303_2
crossref_primary_10_1016_j_cej_2021_131799
crossref_primary_10_1016_j_cej_2025_160013
crossref_primary_10_1016_j_jelechem_2023_117665
crossref_primary_10_1016_j_jelechem_2022_116039
crossref_primary_10_1016_j_gee_2022_02_009
crossref_primary_10_1007_s12274_022_4419_y
crossref_primary_10_1002_aenm_202203708
crossref_primary_10_1016_j_jechem_2023_02_037
crossref_primary_10_1016_j_ensm_2022_11_035
crossref_primary_10_1016_j_ccr_2023_215461
crossref_primary_10_1016_j_ensm_2024_103490
crossref_primary_10_1016_j_jpowsour_2023_233006
crossref_primary_10_1002_aenm_202304010
crossref_primary_10_2139_ssrn_4132873
crossref_primary_10_1016_j_jallcom_2022_168218
crossref_primary_10_1002_cnma_202100527
crossref_primary_10_1016_j_cej_2022_137290
crossref_primary_10_1002_smtd_202300101
crossref_primary_10_1016_j_jcis_2024_01_214
crossref_primary_10_1016_j_jallcom_2023_169366
crossref_primary_10_1016_j_electacta_2022_140603
crossref_primary_10_1002_cey2_681
crossref_primary_10_1016_j_jcis_2023_10_132
crossref_primary_10_1039_D4CE01096E
crossref_primary_10_1039_D2QI01932A
crossref_primary_10_1002_adfm_202306205
crossref_primary_10_1016_j_jallcom_2024_175772
crossref_primary_10_1016_j_jcis_2024_05_065
crossref_primary_10_1002_elsa_202100090
crossref_primary_10_1016_j_jssc_2025_125333
crossref_primary_10_1016_j_cej_2022_136772
crossref_primary_10_1002_inf2_12558
crossref_primary_10_1016_j_ccr_2022_214477
crossref_primary_10_1016_j_ensm_2024_103471
crossref_primary_10_1016_j_cej_2021_133387
crossref_primary_10_1002_adfm_202102827
crossref_primary_10_1016_j_jpowsour_2021_230872
crossref_primary_10_1039_D2CE01467J
crossref_primary_10_1039_D1DT03242A
crossref_primary_10_1021_acssuschemeng_4c04055
crossref_primary_10_1016_j_jallcom_2022_163824
crossref_primary_10_1021_acsami_3c09605
crossref_primary_10_1016_j_jcis_2022_01_155
crossref_primary_10_1016_j_apsusc_2021_151890
crossref_primary_10_1016_j_jallcom_2023_171846
crossref_primary_10_1007_s40843_022_2092_0
crossref_primary_10_1002_advs_202102053
crossref_primary_10_1016_j_ensm_2022_09_017
crossref_primary_10_1039_D1NR05521F
crossref_primary_10_1039_D2NJ00079B
crossref_primary_10_1016_j_cclet_2022_03_122
crossref_primary_10_1002_aenm_202401704
crossref_primary_10_1039_D1NR05708A
crossref_primary_10_1016_j_jallcom_2024_176801
crossref_primary_10_1016_j_apmate_2021_10_002
crossref_primary_10_1007_s40820_021_00785_2
crossref_primary_10_1016_j_ensm_2024_103339
Cites_doi 10.1021/acs.nanolett.7b05403
10.1002/eem2.12067
10.1039/C9TA05767F
10.1021/acsnano.9b04916
10.1039/C8TA01198B
10.1021/acsami.8b07781
10.1007/s40820-019-0278-9
10.1016/j.nanoen.2019.03.034
10.1038/nenergy.2016.119
10.1103/PhysRevLett.77.3865
10.1002/aenm.201400930
10.1021/acsami.9b21579
10.1016/j.nanoen.2019.05.005
10.1107/S0108270186091825
10.1021/acsenergylett.8b01423
10.1063/1.3382344
10.1021/acsenergylett.8b00565
10.1021/acs.nanolett.7b04889
10.1103/PhysRevB.54.11169
10.1007/s40820-020-00471-9
10.1016/j.cej.2020.124118
10.1016/j.ensm.2018.09.009
10.1038/s41467-018-04060-8
10.1021/acssuschemeng.9b01454
10.1016/j.nanoen.2019.04.009
10.1039/C8CC00987B
10.1039/C9TA11031C
10.1002/adma.201703725
10.1021/acsami.8b10849
10.1021/acsnano.9b07042
10.1039/C8CC05550E
10.1039/C8TA09338E
10.1016/j.electacta.2014.03.144
10.1002/cssc.202001261
10.1016/j.isci.2019.100797
10.1021/cm702979k
10.1002/adfm.201808375
10.1021/jacs.6b05958
10.1021/cm504717p
10.1016/j.electacta.2017.01.163
10.1016/j.jpowsour.2008.01.014
10.1103/PhysRevB.57.1505
10.1002/aenm.201702463
10.1103/PhysRevB.50.17953
10.1088/2053-1591/3/8/085005
10.1002/aenm.201801819
10.1002/anie.201908853
10.1002/adma.201705580
10.1016/j.jpowsour.2006.12.016
10.1002/adfm.202000599
10.1016/j.ensm.2020.01.023
10.1021/acs.nanolett.9b00697
10.1039/C9CC00897G
10.1016/j.nanoen.2018.07.014
10.1039/C7TA00100B
10.1002/anie.201903941
10.1364/AO.30.002782
10.1002/aenm.201901968
10.1002/adfm.201800670
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0nr07358j
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 247
ExternalDocumentID 33491718
10_1039_D0NR07358J
d0nr07358j
Genre Journal Article
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c376t-1b5faf8a818ae2a31826210d0baa9ef196af315cd604d49793b60e966af90e423
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 12:24:01 EDT 2025
Mon Jun 30 05:58:59 EDT 2025
Mon Jul 21 06:07:59 EDT 2025
Tue Jul 01 01:14:05 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Sat Jan 08 03:51:57 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-1b5faf8a818ae2a31826210d0baa9ef196af315cd604d49793b60e966af90e423
Notes 10.1039/d0nr07358j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8830-7848
0000-0002-4436-6392
PMID 33491718
PQID 2486016818
PQPubID 2047485
PageCount 9
ParticipantIDs crossref_primary_10_1039_D0NR07358J
rsc_primary_d0nr07358j
proquest_miscellaneous_2480734371
proquest_journals_2486016818
crossref_citationtrail_10_1039_D0NR07358J
pubmed_primary_33491718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210204
PublicationDateYYYYMMDD 2021-02-04
PublicationDate_xml – month: 2
  year: 2021
  text: 20210204
  day: 4
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Blöchl (D0NR07358J-(cit40)/*[position()=1]) 1994; 50
Guo (D0NR07358J-(cit9)/*[position()=1]) 2018; 8
Fang (D0NR07358J-(cit28)/*[position()=1]) 2019; 29
Wei (D0NR07358J-(cit47)/*[position()=1]) 2007; 165
Dudarev (D0NR07358J-(cit43)/*[position()=1]) 1998; 57
Liang (D0NR07358J-(cit12)/*[position()=1]) 2019; 19
Cui (D0NR07358J-(cit4)/*[position()=1]) 2020; 390
Tang (D0NR07358J-(cit13)/*[position()=1]) 2019; 7
Yang (D0NR07358J-(cit38)/*[position()=1]) 2019; 61
Soundharrajan (D0NR07358J-(cit6)/*[position()=1]) 2018; 18
Zhang (D0NR07358J-(cit15)/*[position()=1]) 2020; 8
Jiang (D0NR07358J-(cit54)/*[position()=1]) 2017; 229
Wu (D0NR07358J-(cit27)/*[position()=1]) 2017; 5
Yang (D0NR07358J-(cit56)/*[position()=1]) 2018; 10
Tang (D0NR07358J-(cit20)/*[position()=1]) 2020; 27
Wan (D0NR07358J-(cit29)/*[position()=1]) 2019; 58
Islam (D0NR07358J-(cit2)/*[position()=1]) 2019; 7
Hu (D0NR07358J-(cit33)/*[position()=1]) 2018; 18
Chain (D0NR07358J-(cit59)/*[position()=1]) 1991; 30
Grimme (D0NR07358J-(cit42)/*[position()=1]) 2010; 132
Shen (D0NR07358J-(cit16)/*[position()=1]) 2018; 10
Perdew (D0NR07358J-(cit41)/*[position()=1]) 1996; 77
Subba Reddy (D0NR07358J-(cit48)/*[position()=1]) 2008; 179
Guo (D0NR07358J-(cit19)/*[position()=1]) 2019; 13
Yan (D0NR07358J-(cit31)/*[position()=1]) 2018; 30
Ranea (D0NR07358J-(cit44)/*[position()=1]) 2016; 3
Wan (D0NR07358J-(cit52)/*[position()=1]) 2018; 9
Kundu (D0NR07358J-(cit32)/*[position()=1]) 2016; 1
Fang (D0NR07358J-(cit51)/*[position()=1]) 2020; 12
Zhang (D0NR07358J-(cit26)/*[position()=1]) 2016; 138
Xia (D0NR07358J-(cit55)/*[position()=1]) 2018; 30
Li (D0NR07358J-(cit1)/*[position()=1]) 2019; 60
Zhang (D0NR07358J-(cit53)/*[position()=1]) 2015; 5
Zhu (D0NR07358J-(cit3)/*[position()=1]) 2019; 9
Enjalbert (D0NR07358J-(cit58)/*[position()=1]) 1986; 42
Deng (D0NR07358J-(cit45)/*[position()=1]) 2018; 28
Wang (D0NR07358J-(cit21)/*[position()=1]) 2019; 13
Li (D0NR07358J-(cit57)/*[position()=1]) 2020; 12
Huang (D0NR07358J-(cit23)/*[position()=1]) 2019; 11
Alfaruqi (D0NR07358J-(cit22)/*[position()=1]) 2015; 27
Qin (D0NR07358J-(cit11)/*[position()=1]) 2019; 7
Deng (D0NR07358J-(cit10)/*[position()=1]) 2020; 30
Ming (D0NR07358J-(cit36)/*[position()=1]) 2018; 3
Kresse (D0NR07358J-(cit39)/*[position()=1]) 1996; 54
Shi (D0NR07358J-(cit35)/*[position()=1]) 2019; 58
Wang (D0NR07358J-(cit5)/*[position()=1]) 2020; 13
Ma (D0NR07358J-(cit25)/*[position()=1]) 2018; 54
Zhang (D0NR07358J-(cit30)/*[position()=1]) 2018; 3
Han (D0NR07358J-(cit24)/*[position()=1]) 2020; 23
Baddour-Hadjean (D0NR07358J-(cit46)/*[position()=1]) 2008; 20
Peng (D0NR07358J-(cit49)/*[position()=1]) 2018; 54
Islam (D0NR07358J-(cit34)/*[position()=1]) 2019; 55
Tang (D0NR07358J-(cit8)/*[position()=1]) 2018; 51
He (D0NR07358J-(cit37)/*[position()=1]) 2018; 8
Xu (D0NR07358J-(cit14)/*[position()=1]) 2019; 16
Zhu (D0NR07358J-(cit7)/*[position()=1]) 2018; 6
Li (D0NR07358J-(cit18)/*[position()=1]) 2020; 3
Chen (D0NR07358J-(cit17)/*[position()=1]) 2019; 60
Sarkar (D0NR07358J-(cit50)/*[position()=1]) 2014; 132
References_xml – volume: 18
  start-page: 2402
  year: 2018
  ident: D0NR07358J-(cit6)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05403
– volume: 3
  start-page: 146
  year: 2020
  ident: D0NR07358J-(cit18)/*[position()=1]
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12067
– volume: 7
  start-page: 20335
  year: 2019
  ident: D0NR07358J-(cit2)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05767F
– volume: 13
  start-page: 10643
  year: 2019
  ident: D0NR07358J-(cit21)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04916
– volume: 6
  start-page: 9677
  year: 2018
  ident: D0NR07358J-(cit7)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01198B
– volume: 10
  start-page: 25446
  year: 2018
  ident: D0NR07358J-(cit16)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07781
– volume: 11
  start-page: 49
  year: 2019
  ident: D0NR07358J-(cit23)/*[position()=1]
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0278-9
– volume: 60
  start-page: 171
  year: 2019
  ident: D0NR07358J-(cit17)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.034
– volume: 1
  start-page: 16119
  year: 2016
  ident: D0NR07358J-(cit32)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.119
– volume: 77
  start-page: 3865
  year: 1996
  ident: D0NR07358J-(cit41)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 5
  start-page: 1400930
  year: 2015
  ident: D0NR07358J-(cit53)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400930
– volume: 12
  start-page: 10420
  year: 2020
  ident: D0NR07358J-(cit57)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21579
– volume: 61
  start-page: 617
  year: 2019
  ident: D0NR07358J-(cit38)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.005
– volume: 42
  start-page: 1467
  year: 1986
  ident: D0NR07358J-(cit58)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
  doi: 10.1107/S0108270186091825
– volume: 3
  start-page: 2602
  year: 2018
  ident: D0NR07358J-(cit36)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01423
– volume: 132
  start-page: 154104
  year: 2010
  ident: D0NR07358J-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 3
  start-page: 1366
  year: 2018
  ident: D0NR07358J-(cit30)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00565
– volume: 18
  start-page: 1758
  year: 2018
  ident: D0NR07358J-(cit33)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04889
– volume: 54
  start-page: 11169
  year: 1996
  ident: D0NR07358J-(cit39)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 12
  start-page: 128
  year: 2020
  ident: D0NR07358J-(cit51)/*[position()=1]
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00471-9
– volume: 390
  start-page: 124118
  year: 2020
  ident: D0NR07358J-(cit4)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124118
– volume: 16
  start-page: 527
  year: 2019
  ident: D0NR07358J-(cit14)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.09.009
– volume: 9
  start-page: 1656
  year: 2018
  ident: D0NR07358J-(cit52)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04060-8
– volume: 7
  start-page: 11564
  year: 2019
  ident: D0NR07358J-(cit11)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01454
– volume: 60
  start-page: 752
  year: 2019
  ident: D0NR07358J-(cit1)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.009
– volume: 54
  start-page: 4041
  year: 2018
  ident: D0NR07358J-(cit49)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00987B
– volume: 8
  start-page: 1731
  year: 2020
  ident: D0NR07358J-(cit15)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11031C
– volume: 30
  start-page: 1703725
  year: 2018
  ident: D0NR07358J-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703725
– volume: 10
  start-page: 35079
  year: 2018
  ident: D0NR07358J-(cit56)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10849
– volume: 13
  start-page: 13456
  year: 2019
  ident: D0NR07358J-(cit19)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07042
– volume: 54
  start-page: 10835
  year: 2018
  ident: D0NR07358J-(cit25)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC05550E
– volume: 7
  start-page: 940
  year: 2019
  ident: D0NR07358J-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09338E
– volume: 132
  start-page: 448
  year: 2014
  ident: D0NR07358J-(cit50)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.03.144
– volume: 13
  start-page: 4078
  year: 2020
  ident: D0NR07358J-(cit5)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001261
– volume: 23
  start-page: 100797
  year: 2020
  ident: D0NR07358J-(cit24)/*[position()=1]
  publication-title: iScience
  doi: 10.1016/j.isci.2019.100797
– volume: 20
  start-page: 1916
  year: 2008
  ident: D0NR07358J-(cit46)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm702979k
– volume: 29
  start-page: 1808375
  year: 2019
  ident: D0NR07358J-(cit28)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808375
– volume: 138
  start-page: 12894
  year: 2016
  ident: D0NR07358J-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05958
– volume: 27
  start-page: 3609
  year: 2015
  ident: D0NR07358J-(cit22)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm504717p
– volume: 229
  start-page: 422
  year: 2017
  ident: D0NR07358J-(cit54)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.163
– volume: 179
  start-page: 854
  year: 2008
  ident: D0NR07358J-(cit48)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.01.014
– volume: 57
  start-page: 1505
  year: 1998
  ident: D0NR07358J-(cit43)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.57.1505
– volume: 8
  start-page: 1702463
  year: 2018
  ident: D0NR07358J-(cit37)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702463
– volume: 50
  start-page: 17953
  year: 1994
  ident: D0NR07358J-(cit40)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 3
  start-page: 085005
  year: 2016
  ident: D0NR07358J-(cit44)/*[position()=1]
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/3/8/085005
– volume: 8
  start-page: 1801819
  year: 2018
  ident: D0NR07358J-(cit9)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801819
– volume: 58
  start-page: 16057
  year: 2019
  ident: D0NR07358J-(cit35)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908853
– volume: 30
  start-page: 1705580
  year: 2018
  ident: D0NR07358J-(cit55)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705580
– volume: 165
  start-page: 386
  year: 2007
  ident: D0NR07358J-(cit47)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.12.016
– volume: 30
  start-page: 2000599
  year: 2020
  ident: D0NR07358J-(cit10)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000599
– volume: 27
  start-page: 109
  year: 2020
  ident: D0NR07358J-(cit20)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.023
– volume: 19
  start-page: 3199
  year: 2019
  ident: D0NR07358J-(cit12)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00697
– volume: 55
  start-page: 3793
  year: 2019
  ident: D0NR07358J-(cit34)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00897G
– volume: 51
  start-page: 579
  year: 2018
  ident: D0NR07358J-(cit8)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.014
– volume: 5
  start-page: 17990
  year: 2017
  ident: D0NR07358J-(cit27)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00100B
– volume: 58
  start-page: 16358
  year: 2019
  ident: D0NR07358J-(cit29)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201903941
– volume: 30
  start-page: 2782
  year: 1991
  ident: D0NR07358J-(cit59)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.30.002782
– volume: 9
  start-page: 1901968
  year: 2019
  ident: D0NR07358J-(cit3)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901968
– volume: 28
  start-page: 1800670
  year: 2018
  ident: D0NR07358J-(cit45)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800670
SSID ssj0069363
Score 2.6067429
Snippet Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate,...
Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate,...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2399
SubjectTerms Cycles
Density functional theory
Diffusion layers
Electrochemical analysis
Electron microscopy
Electronic structure
Intercalation
Interlayers
Kinetics
Low temperature
Microscopy
Photoelectrons
Rechargeable batteries
Structural stability
Vanadium pentoxide
Title Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/33491718
https://www.proquest.com/docview/2486016818
https://www.proquest.com/docview/2480734371
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1fb9MwEMCt0kloe0D8G3QMZAQvaApL4iRNHgcDqiH2wDYxnio7sUVRl1RtI9i-Ax-Cb8qdYzspHRLwEkWOk7S5X-7OzvmOkOcRcCNZimudWOhFRSo8ESnpiYKnGS-SQGhJfzhORmfR0Xl83uv96EQt1UvxMr-6dl3J_0gV2kCuuEr2HyTrLgoNsA_yhS1IGLZ_J-O6tKudOuVsmpSw-GEAHMEpv8RqnFielxeT-mJvBlam-j4pJDqeGAOCCSPmICnnO86qJXjU2FcHyWEc4qLGhMiwg342_N5p9c3DpFYmI_MeB-uCsbRXkzL38DJCp-20AYrG-QVNXi3gTo6lk1pPy9fcmE8dZtDowZMvtZJt86GJHB7Vk2m12lu3f-ZKTrozGGGgg56bWQSpNV2IYY2MDVfVMuvgF3V1LGtKKq0pf59h7tTCL-egt-L0a7cTCG52oTFgLIIhqlH6q6m27aEbZCOEUUfYJxsH71-9-2RNe5KxhNkctyzbb2-1SW7ak1cdnLVRC_gwc1tbRvswp7fJLTP4oAcNSXdIT5Z3yVYnJeU98rNhigJTtGWKOqZopahhilqmqGOKiku6xhSe4piiyBQFpqhliiJT-78RRQ1R1BJFHVH3ydnbN6evR54p4-HlYL2WXiBixVXKwTXkMuQMR7Rh4Be-4DyTCkwAVyyI8yLxoyLKwGCIxJcwDOcq8yW4-9ukX1alfEhonssQ5wBiGbNIDRVPhyoUheBSpkIFfEBe2Gc_zk2Oeyy1Mh3rWAuWjQ_9449aZEcD8sz1nTWZXa7ttWtFODZv_mIcYuW2IIE_NCBP3WHQy_ixjZf4eLAPXCFiw2BAHjSid7exqAzINrDgmlucdv54yiOy2b5Cu6QP0pePwS1eiicG1l8zIcK9
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+electronic+structure+of+layered+vanadium+pentoxide+by+pre-intercalation+of+potassium+ions+for+superior+room%2Flow-temperature+aqueous+zinc-ion+batteries&rft.jtitle=Nanoscale&rft.au=Su%2C+Guang&rft.au=Chen%2C+Shufeng&rft.au=Dong%2C+Huilong&rft.au=Cheng%2C+Yafei&rft.date=2021-02-04&rft.eissn=2040-3372&rft.volume=13&rft.issue=4&rft.spage=2399&rft_id=info:doi/10.1039%2Fd0nr07358j&rft_id=info%3Apmid%2F33491718&rft.externalDocID=33491718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon