Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries
Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K + pre-intercalated layered V 2 O 5 (K 0.5 V 2 O 5 ) composites with metallic features a...
Saved in:
Published in | Nanoscale Vol. 13; no. 4; pp. 2399 - 247 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
04.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn
2+
diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K
+
pre-intercalated layered V
2
O
5
(K
0.5
V
2
O
5
) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K
0.5
V
2
O
5
electrode delivers a high reversible capacity of 251 mA h g
−1
at 5 A g
−1
after 1000 cycles. Even at a low temperature of −20 °C, high reversible capacities of 241 and 115 mA h g
−1
can be obtained after 1000 cycles at 1 and 5 A g
−1
, respectively. The outstanding electrochemical performance is attributed to the incorporation of K
+
into the layered V
2
O
5
, which acts as pillars to promote the Zn
2+
diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K
+
can benefit electron migration, and therefore enhance the Zn
2+
(de)intercalation kinetics. Meanwhile, the Zn
2+
storage mechanism of K
0.5
V
2
O
5
is revealed by
ex situ
X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs.
Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn
2+
diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. |
---|---|
AbstractList | Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K+ pre-intercalated layered V2O5 (K0.5V2O5) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K0.5V2O5 electrode delivers a high reversible capacity of 251 mA h g-1 at 5 A g-1 after 1000 cycles. Even at a low temperature of -20 °C, high reversible capacities of 241 and 115 mA h g-1 can be obtained after 1000 cycles at 1 and 5 A g-1, respectively. The outstanding electrochemical performance is attributed to the incorporation of K+ into the layered V2O5, which acts as pillars to promote the Zn2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K+ can benefit electron migration, and therefore enhance the Zn2+ (de)intercalation kinetics. Meanwhile, the Zn2+ storage mechanism of K0.5V2O5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs. Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K + pre-intercalated layered V 2 O 5 (K 0.5 V 2 O 5 ) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K 0.5 V 2 O 5 electrode delivers a high reversible capacity of 251 mA h g −1 at 5 A g −1 after 1000 cycles. Even at a low temperature of −20 °C, high reversible capacities of 241 and 115 mA h g −1 can be obtained after 1000 cycles at 1 and 5 A g −1 , respectively. The outstanding electrochemical performance is attributed to the incorporation of K + into the layered V 2 O 5 , which acts as pillars to promote the Zn 2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K + can benefit electron migration, and therefore enhance the Zn 2+ (de)intercalation kinetics. Meanwhile, the Zn 2+ storage mechanism of K 0.5 V 2 O 5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs. Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K + pre-intercalated layered V 2 O 5 (K 0.5 V 2 O 5 ) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K 0.5 V 2 O 5 electrode delivers a high reversible capacity of 251 mA h g −1 at 5 A g −1 after 1000 cycles. Even at a low temperature of −20 °C, high reversible capacities of 241 and 115 mA h g −1 can be obtained after 1000 cycles at 1 and 5 A g −1 , respectively. The outstanding electrochemical performance is attributed to the incorporation of K + into the layered V 2 O 5 , which acts as pillars to promote the Zn 2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K + can benefit electron migration, and therefore enhance the Zn 2+ (de)intercalation kinetics. Meanwhile, the Zn 2+ storage mechanism of K 0.5 V 2 O 5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs. Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn 2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K+ pre-intercalated layered V2O5 (K0.5V2O5) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K0.5V2O5 electrode delivers a high reversible capacity of 251 mA h g-1 at 5 A g-1 after 1000 cycles. Even at a low temperature of -20 °C, high reversible capacities of 241 and 115 mA h g-1 can be obtained after 1000 cycles at 1 and 5 A g-1, respectively. The outstanding electrochemical performance is attributed to the incorporation of K+ into the layered V2O5, which acts as pillars to promote the Zn2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K+ can benefit electron migration, and therefore enhance the Zn2+ (de)intercalation kinetics. Meanwhile, the Zn2+ storage mechanism of K0.5V2O5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs.Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K+ pre-intercalated layered V2O5 (K0.5V2O5) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K0.5V2O5 electrode delivers a high reversible capacity of 251 mA h g-1 at 5 A g-1 after 1000 cycles. Even at a low temperature of -20 °C, high reversible capacities of 241 and 115 mA h g-1 can be obtained after 1000 cycles at 1 and 5 A g-1, respectively. The outstanding electrochemical performance is attributed to the incorporation of K+ into the layered V2O5, which acts as pillars to promote the Zn2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K+ can benefit electron migration, and therefore enhance the Zn2+ (de)intercalation kinetics. Meanwhile, the Zn2+ storage mechanism of K0.5V2O5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs. Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate, long-term cycling and low-temperature properties. Herein, K+ pre-intercalated layered V2O5 (K0.5V2O5) composites with metallic features are capable of delivering excellent zinc storage performance. Specifically, the K0.5V2O5 electrode delivers a high reversible capacity of 251 mA h g−1 at 5 A g−1 after 1000 cycles. Even at a low temperature of −20 °C, high reversible capacities of 241 and 115 mA h g−1 can be obtained after 1000 cycles at 1 and 5 A g−1, respectively. The outstanding electrochemical performance is attributed to the incorporation of K+ into the layered V2O5, which acts as pillars to promote the Zn2+ diffusion and increase the structural stability during cycling. Density functional theory calculations demonstrate that the interlayer doping of K+ can benefit electron migration, and therefore enhance the Zn2+ (de)intercalation kinetics. Meanwhile, the Zn2+ storage mechanism of K0.5V2O5 is revealed by ex situ X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy characterization. This work may pave the way for exploiting high-performance cathodes for aqueous ZIBs. |
Author | Dong, Huilong Su, Guang Chen, Shufeng Geng, Hongbo Cheng, Yafei Wei, Huaixin Liu, Quan Ang, Edison Huixiang Li, Cheng Chao |
AuthorAffiliation | School of Materials Engineering Guangdong University of Technology Changshu Institute of Technology Nankai University College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) School of Chemical Biology and Materials Engineering Suzhou University of Science and Technology Natural Sciences and Science Education Nanyang Technological University School of Chemical Engineering and Light Industry National Institute of Education |
AuthorAffiliation_xml | – name: School of Chemical Biology and Materials Engineering – name: Natural Sciences and Science Education – name: National Institute of Education – name: School of Chemical Engineering and Light Industry – name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) – name: Changshu Institute of Technology – name: Guangdong University of Technology – name: Suzhou University of Science and Technology – name: School of Materials Engineering – name: College of Chemistry – name: Nanyang Technological University – name: Nankai University |
Author_xml | – sequence: 1 givenname: Guang surname: Su fullname: Su, Guang – sequence: 2 givenname: Shufeng surname: Chen fullname: Chen, Shufeng – sequence: 3 givenname: Huilong surname: Dong fullname: Dong, Huilong – sequence: 4 givenname: Yafei surname: Cheng fullname: Cheng, Yafei – sequence: 5 givenname: Quan surname: Liu fullname: Liu, Quan – sequence: 6 givenname: Huaixin surname: Wei fullname: Wei, Huaixin – sequence: 7 givenname: Edison Huixiang surname: Ang fullname: Ang, Edison Huixiang – sequence: 8 givenname: Hongbo surname: Geng fullname: Geng, Hongbo – sequence: 9 givenname: Cheng Chao surname: Li fullname: Li, Cheng Chao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33491718$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhi1URD_gwh1kiQtCCrXjrBMfUQu0qAIJlXM0cSbgVWIHf0C3_6b_FGe3LFLFyaPRM69fvTPH5MA6i4Q85-wtZ0Kd9sx6VotVs35EjkpWsUKIujzY17I6JMchrBmTSkjxhBwKUSle8-aI3F0na-x3Gn8gxRF19M4aTUP0ScfkkbqBjrBBjz39BRZ6kyY6o43uxvRIuw2dPRbGRvQaRojG2WVkdhFCWNjcCHRwnoY0oze58M5Np6P7XUSccgu238DPhC4FemusLhaRDmLWNBiekscDjAGf3b8n5NuH99dnF8XVl4-XZ--uCi1qGQverQYYGmh4A1iC4E0pS8561gEoHLiSMAi-0r1kVV-pWolOMlQytxXDqhQn5PVOd_YumwmxnUzQOI5gF2dtWTU55ErUPKOvHqBrl7zN7hZKMi6zi0y9vKdSN2Hfzt5M4Dft3_Az8GYHaO9C8DjsEc7aZbPtOfv8dbvZTxlmD2Bt4jbv6MGM_x95sRvxQe-l_x2L-AOvK7Mm |
CitedBy_id | crossref_primary_10_1039_D1TA10545K crossref_primary_10_1002_smll_202309154 crossref_primary_10_1016_j_est_2023_110135 crossref_primary_10_1002_aenm_202401737 crossref_primary_10_1021_acssuschemeng_3c07655 crossref_primary_10_1016_j_cej_2022_136714 crossref_primary_10_1002_cey2_512 crossref_primary_10_1016_j_ensm_2022_06_052 crossref_primary_10_1016_j_jechem_2022_11_049 crossref_primary_10_1007_s12598_022_02026_w crossref_primary_10_1016_j_jcis_2024_03_047 crossref_primary_10_1002_smtd_202301083 crossref_primary_10_1021_acsami_1c11560 crossref_primary_10_2139_ssrn_4076094 crossref_primary_10_1016_j_jallcom_2023_171679 crossref_primary_10_2139_ssrn_4167646 crossref_primary_10_1007_s11426_022_1556_x crossref_primary_10_1016_j_cej_2022_140260 crossref_primary_10_1016_j_cej_2024_151527 crossref_primary_10_1007_s40145_021_0493_y crossref_primary_10_1016_j_carbon_2023_118334 crossref_primary_10_1142_S1793604723500182 crossref_primary_10_1002_cnma_202200068 crossref_primary_10_1016_j_jallcom_2022_164388 crossref_primary_10_1039_D1NR05334E crossref_primary_10_1016_j_cej_2025_159891 crossref_primary_10_1016_j_est_2023_108081 crossref_primary_10_1002_smll_202409987 crossref_primary_10_1021_acsami_1c24417 crossref_primary_10_1002_smm2_1091 crossref_primary_10_1016_j_ensm_2022_08_007 crossref_primary_10_1016_j_nanoen_2023_108336 crossref_primary_10_1021_acs_nanolett_4c03191 crossref_primary_10_1039_D1SE00636C crossref_primary_10_1016_j_jallcom_2023_170790 crossref_primary_10_1126_sciadv_abn5097 crossref_primary_10_1002_cssc_202101856 crossref_primary_10_1002_aenm_202402721 crossref_primary_10_1039_D2QM00420H crossref_primary_10_1016_j_rser_2023_113861 crossref_primary_10_1039_D4NJ05297H crossref_primary_10_1021_acsanm_1c01069 crossref_primary_10_1016_j_apmate_2023_100169 crossref_primary_10_1007_s12598_023_02303_2 crossref_primary_10_1016_j_cej_2021_131799 crossref_primary_10_1016_j_cej_2025_160013 crossref_primary_10_1016_j_jelechem_2023_117665 crossref_primary_10_1016_j_jelechem_2022_116039 crossref_primary_10_1016_j_gee_2022_02_009 crossref_primary_10_1007_s12274_022_4419_y crossref_primary_10_1002_aenm_202203708 crossref_primary_10_1016_j_jechem_2023_02_037 crossref_primary_10_1016_j_ensm_2022_11_035 crossref_primary_10_1016_j_ccr_2023_215461 crossref_primary_10_1016_j_ensm_2024_103490 crossref_primary_10_1016_j_jpowsour_2023_233006 crossref_primary_10_1002_aenm_202304010 crossref_primary_10_2139_ssrn_4132873 crossref_primary_10_1016_j_jallcom_2022_168218 crossref_primary_10_1002_cnma_202100527 crossref_primary_10_1016_j_cej_2022_137290 crossref_primary_10_1002_smtd_202300101 crossref_primary_10_1016_j_jcis_2024_01_214 crossref_primary_10_1016_j_jallcom_2023_169366 crossref_primary_10_1016_j_electacta_2022_140603 crossref_primary_10_1002_cey2_681 crossref_primary_10_1016_j_jcis_2023_10_132 crossref_primary_10_1039_D4CE01096E crossref_primary_10_1039_D2QI01932A crossref_primary_10_1002_adfm_202306205 crossref_primary_10_1016_j_jallcom_2024_175772 crossref_primary_10_1016_j_jcis_2024_05_065 crossref_primary_10_1002_elsa_202100090 crossref_primary_10_1016_j_jssc_2025_125333 crossref_primary_10_1016_j_cej_2022_136772 crossref_primary_10_1002_inf2_12558 crossref_primary_10_1016_j_ccr_2022_214477 crossref_primary_10_1016_j_ensm_2024_103471 crossref_primary_10_1016_j_cej_2021_133387 crossref_primary_10_1002_adfm_202102827 crossref_primary_10_1016_j_jpowsour_2021_230872 crossref_primary_10_1039_D2CE01467J crossref_primary_10_1039_D1DT03242A crossref_primary_10_1021_acssuschemeng_4c04055 crossref_primary_10_1016_j_jallcom_2022_163824 crossref_primary_10_1021_acsami_3c09605 crossref_primary_10_1016_j_jcis_2022_01_155 crossref_primary_10_1016_j_apsusc_2021_151890 crossref_primary_10_1016_j_jallcom_2023_171846 crossref_primary_10_1007_s40843_022_2092_0 crossref_primary_10_1002_advs_202102053 crossref_primary_10_1016_j_ensm_2022_09_017 crossref_primary_10_1039_D1NR05521F crossref_primary_10_1039_D2NJ00079B crossref_primary_10_1016_j_cclet_2022_03_122 crossref_primary_10_1002_aenm_202401704 crossref_primary_10_1039_D1NR05708A crossref_primary_10_1016_j_jallcom_2024_176801 crossref_primary_10_1016_j_apmate_2021_10_002 crossref_primary_10_1007_s40820_021_00785_2 crossref_primary_10_1016_j_ensm_2024_103339 |
Cites_doi | 10.1021/acs.nanolett.7b05403 10.1002/eem2.12067 10.1039/C9TA05767F 10.1021/acsnano.9b04916 10.1039/C8TA01198B 10.1021/acsami.8b07781 10.1007/s40820-019-0278-9 10.1016/j.nanoen.2019.03.034 10.1038/nenergy.2016.119 10.1103/PhysRevLett.77.3865 10.1002/aenm.201400930 10.1021/acsami.9b21579 10.1016/j.nanoen.2019.05.005 10.1107/S0108270186091825 10.1021/acsenergylett.8b01423 10.1063/1.3382344 10.1021/acsenergylett.8b00565 10.1021/acs.nanolett.7b04889 10.1103/PhysRevB.54.11169 10.1007/s40820-020-00471-9 10.1016/j.cej.2020.124118 10.1016/j.ensm.2018.09.009 10.1038/s41467-018-04060-8 10.1021/acssuschemeng.9b01454 10.1016/j.nanoen.2019.04.009 10.1039/C8CC00987B 10.1039/C9TA11031C 10.1002/adma.201703725 10.1021/acsami.8b10849 10.1021/acsnano.9b07042 10.1039/C8CC05550E 10.1039/C8TA09338E 10.1016/j.electacta.2014.03.144 10.1002/cssc.202001261 10.1016/j.isci.2019.100797 10.1021/cm702979k 10.1002/adfm.201808375 10.1021/jacs.6b05958 10.1021/cm504717p 10.1016/j.electacta.2017.01.163 10.1016/j.jpowsour.2008.01.014 10.1103/PhysRevB.57.1505 10.1002/aenm.201702463 10.1103/PhysRevB.50.17953 10.1088/2053-1591/3/8/085005 10.1002/aenm.201801819 10.1002/anie.201908853 10.1002/adma.201705580 10.1016/j.jpowsour.2006.12.016 10.1002/adfm.202000599 10.1016/j.ensm.2020.01.023 10.1021/acs.nanolett.9b00697 10.1039/C9CC00897G 10.1016/j.nanoen.2018.07.014 10.1039/C7TA00100B 10.1002/anie.201903941 10.1364/AO.30.002782 10.1002/aenm.201901968 10.1002/adfm.201800670 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d0nr07358j |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 247 |
ExternalDocumentID | 33491718 10_1039_D0NR07358J d0nr07358j |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- F5P HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c376t-1b5faf8a818ae2a31826210d0baa9ef196af315cd604d49793b60e966af90e423 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 12:24:01 EDT 2025 Mon Jun 30 05:58:59 EDT 2025 Mon Jul 21 06:07:59 EDT 2025 Tue Jul 01 01:14:05 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Sat Jan 08 03:51:57 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c376t-1b5faf8a818ae2a31826210d0baa9ef196af315cd604d49793b60e966af90e423 |
Notes | 10.1039/d0nr07358j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8830-7848 0000-0002-4436-6392 |
PMID | 33491718 |
PQID | 2486016818 |
PQPubID | 2047485 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_D0NR07358J rsc_primary_d0nr07358j proquest_miscellaneous_2480734371 proquest_journals_2486016818 crossref_citationtrail_10_1039_D0NR07358J pubmed_primary_33491718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210204 |
PublicationDateYYYYMMDD | 2021-02-04 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210204 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Blöchl (D0NR07358J-(cit40)/*[position()=1]) 1994; 50 Guo (D0NR07358J-(cit9)/*[position()=1]) 2018; 8 Fang (D0NR07358J-(cit28)/*[position()=1]) 2019; 29 Wei (D0NR07358J-(cit47)/*[position()=1]) 2007; 165 Dudarev (D0NR07358J-(cit43)/*[position()=1]) 1998; 57 Liang (D0NR07358J-(cit12)/*[position()=1]) 2019; 19 Cui (D0NR07358J-(cit4)/*[position()=1]) 2020; 390 Tang (D0NR07358J-(cit13)/*[position()=1]) 2019; 7 Yang (D0NR07358J-(cit38)/*[position()=1]) 2019; 61 Soundharrajan (D0NR07358J-(cit6)/*[position()=1]) 2018; 18 Zhang (D0NR07358J-(cit15)/*[position()=1]) 2020; 8 Jiang (D0NR07358J-(cit54)/*[position()=1]) 2017; 229 Wu (D0NR07358J-(cit27)/*[position()=1]) 2017; 5 Yang (D0NR07358J-(cit56)/*[position()=1]) 2018; 10 Tang (D0NR07358J-(cit20)/*[position()=1]) 2020; 27 Wan (D0NR07358J-(cit29)/*[position()=1]) 2019; 58 Islam (D0NR07358J-(cit2)/*[position()=1]) 2019; 7 Hu (D0NR07358J-(cit33)/*[position()=1]) 2018; 18 Chain (D0NR07358J-(cit59)/*[position()=1]) 1991; 30 Grimme (D0NR07358J-(cit42)/*[position()=1]) 2010; 132 Shen (D0NR07358J-(cit16)/*[position()=1]) 2018; 10 Perdew (D0NR07358J-(cit41)/*[position()=1]) 1996; 77 Subba Reddy (D0NR07358J-(cit48)/*[position()=1]) 2008; 179 Guo (D0NR07358J-(cit19)/*[position()=1]) 2019; 13 Yan (D0NR07358J-(cit31)/*[position()=1]) 2018; 30 Ranea (D0NR07358J-(cit44)/*[position()=1]) 2016; 3 Wan (D0NR07358J-(cit52)/*[position()=1]) 2018; 9 Kundu (D0NR07358J-(cit32)/*[position()=1]) 2016; 1 Fang (D0NR07358J-(cit51)/*[position()=1]) 2020; 12 Zhang (D0NR07358J-(cit26)/*[position()=1]) 2016; 138 Xia (D0NR07358J-(cit55)/*[position()=1]) 2018; 30 Li (D0NR07358J-(cit1)/*[position()=1]) 2019; 60 Zhang (D0NR07358J-(cit53)/*[position()=1]) 2015; 5 Zhu (D0NR07358J-(cit3)/*[position()=1]) 2019; 9 Enjalbert (D0NR07358J-(cit58)/*[position()=1]) 1986; 42 Deng (D0NR07358J-(cit45)/*[position()=1]) 2018; 28 Wang (D0NR07358J-(cit21)/*[position()=1]) 2019; 13 Li (D0NR07358J-(cit57)/*[position()=1]) 2020; 12 Huang (D0NR07358J-(cit23)/*[position()=1]) 2019; 11 Alfaruqi (D0NR07358J-(cit22)/*[position()=1]) 2015; 27 Qin (D0NR07358J-(cit11)/*[position()=1]) 2019; 7 Deng (D0NR07358J-(cit10)/*[position()=1]) 2020; 30 Ming (D0NR07358J-(cit36)/*[position()=1]) 2018; 3 Kresse (D0NR07358J-(cit39)/*[position()=1]) 1996; 54 Shi (D0NR07358J-(cit35)/*[position()=1]) 2019; 58 Wang (D0NR07358J-(cit5)/*[position()=1]) 2020; 13 Ma (D0NR07358J-(cit25)/*[position()=1]) 2018; 54 Zhang (D0NR07358J-(cit30)/*[position()=1]) 2018; 3 Han (D0NR07358J-(cit24)/*[position()=1]) 2020; 23 Baddour-Hadjean (D0NR07358J-(cit46)/*[position()=1]) 2008; 20 Peng (D0NR07358J-(cit49)/*[position()=1]) 2018; 54 Islam (D0NR07358J-(cit34)/*[position()=1]) 2019; 55 Tang (D0NR07358J-(cit8)/*[position()=1]) 2018; 51 He (D0NR07358J-(cit37)/*[position()=1]) 2018; 8 Xu (D0NR07358J-(cit14)/*[position()=1]) 2019; 16 Zhu (D0NR07358J-(cit7)/*[position()=1]) 2018; 6 Li (D0NR07358J-(cit18)/*[position()=1]) 2020; 3 Chen (D0NR07358J-(cit17)/*[position()=1]) 2019; 60 Sarkar (D0NR07358J-(cit50)/*[position()=1]) 2014; 132 |
References_xml | – volume: 18 start-page: 2402 year: 2018 ident: D0NR07358J-(cit6)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05403 – volume: 3 start-page: 146 year: 2020 ident: D0NR07358J-(cit18)/*[position()=1] publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12067 – volume: 7 start-page: 20335 year: 2019 ident: D0NR07358J-(cit2)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05767F – volume: 13 start-page: 10643 year: 2019 ident: D0NR07358J-(cit21)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b04916 – volume: 6 start-page: 9677 year: 2018 ident: D0NR07358J-(cit7)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01198B – volume: 10 start-page: 25446 year: 2018 ident: D0NR07358J-(cit16)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07781 – volume: 11 start-page: 49 year: 2019 ident: D0NR07358J-(cit23)/*[position()=1] publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0278-9 – volume: 60 start-page: 171 year: 2019 ident: D0NR07358J-(cit17)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.034 – volume: 1 start-page: 16119 year: 2016 ident: D0NR07358J-(cit32)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 77 start-page: 3865 year: 1996 ident: D0NR07358J-(cit41)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 5 start-page: 1400930 year: 2015 ident: D0NR07358J-(cit53)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400930 – volume: 12 start-page: 10420 year: 2020 ident: D0NR07358J-(cit57)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21579 – volume: 61 start-page: 617 year: 2019 ident: D0NR07358J-(cit38)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.005 – volume: 42 start-page: 1467 year: 1986 ident: D0NR07358J-(cit58)/*[position()=1] publication-title: Acta Crystallogr., Sect. C: Cryst. Struct. Commun. doi: 10.1107/S0108270186091825 – volume: 3 start-page: 2602 year: 2018 ident: D0NR07358J-(cit36)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01423 – volume: 132 start-page: 154104 year: 2010 ident: D0NR07358J-(cit42)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 3 start-page: 1366 year: 2018 ident: D0NR07358J-(cit30)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00565 – volume: 18 start-page: 1758 year: 2018 ident: D0NR07358J-(cit33)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04889 – volume: 54 start-page: 11169 year: 1996 ident: D0NR07358J-(cit39)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 12 start-page: 128 year: 2020 ident: D0NR07358J-(cit51)/*[position()=1] publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00471-9 – volume: 390 start-page: 124118 year: 2020 ident: D0NR07358J-(cit4)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124118 – volume: 16 start-page: 527 year: 2019 ident: D0NR07358J-(cit14)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.09.009 – volume: 9 start-page: 1656 year: 2018 ident: D0NR07358J-(cit52)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04060-8 – volume: 7 start-page: 11564 year: 2019 ident: D0NR07358J-(cit11)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b01454 – volume: 60 start-page: 752 year: 2019 ident: D0NR07358J-(cit1)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.009 – volume: 54 start-page: 4041 year: 2018 ident: D0NR07358J-(cit49)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC00987B – volume: 8 start-page: 1731 year: 2020 ident: D0NR07358J-(cit15)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11031C – volume: 30 start-page: 1703725 year: 2018 ident: D0NR07358J-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703725 – volume: 10 start-page: 35079 year: 2018 ident: D0NR07358J-(cit56)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10849 – volume: 13 start-page: 13456 year: 2019 ident: D0NR07358J-(cit19)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b07042 – volume: 54 start-page: 10835 year: 2018 ident: D0NR07358J-(cit25)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC05550E – volume: 7 start-page: 940 year: 2019 ident: D0NR07358J-(cit13)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09338E – volume: 132 start-page: 448 year: 2014 ident: D0NR07358J-(cit50)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.03.144 – volume: 13 start-page: 4078 year: 2020 ident: D0NR07358J-(cit5)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.202001261 – volume: 23 start-page: 100797 year: 2020 ident: D0NR07358J-(cit24)/*[position()=1] publication-title: iScience doi: 10.1016/j.isci.2019.100797 – volume: 20 start-page: 1916 year: 2008 ident: D0NR07358J-(cit46)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm702979k – volume: 29 start-page: 1808375 year: 2019 ident: D0NR07358J-(cit28)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808375 – volume: 138 start-page: 12894 year: 2016 ident: D0NR07358J-(cit26)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05958 – volume: 27 start-page: 3609 year: 2015 ident: D0NR07358J-(cit22)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm504717p – volume: 229 start-page: 422 year: 2017 ident: D0NR07358J-(cit54)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.163 – volume: 179 start-page: 854 year: 2008 ident: D0NR07358J-(cit48)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.01.014 – volume: 57 start-page: 1505 year: 1998 ident: D0NR07358J-(cit43)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.57.1505 – volume: 8 start-page: 1702463 year: 2018 ident: D0NR07358J-(cit37)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702463 – volume: 50 start-page: 17953 year: 1994 ident: D0NR07358J-(cit40)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 – volume: 3 start-page: 085005 year: 2016 ident: D0NR07358J-(cit44)/*[position()=1] publication-title: Mater. Res. Express doi: 10.1088/2053-1591/3/8/085005 – volume: 8 start-page: 1801819 year: 2018 ident: D0NR07358J-(cit9)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801819 – volume: 58 start-page: 16057 year: 2019 ident: D0NR07358J-(cit35)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908853 – volume: 30 start-page: 1705580 year: 2018 ident: D0NR07358J-(cit55)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705580 – volume: 165 start-page: 386 year: 2007 ident: D0NR07358J-(cit47)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.12.016 – volume: 30 start-page: 2000599 year: 2020 ident: D0NR07358J-(cit10)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000599 – volume: 27 start-page: 109 year: 2020 ident: D0NR07358J-(cit20)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.023 – volume: 19 start-page: 3199 year: 2019 ident: D0NR07358J-(cit12)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00697 – volume: 55 start-page: 3793 year: 2019 ident: D0NR07358J-(cit34)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC00897G – volume: 51 start-page: 579 year: 2018 ident: D0NR07358J-(cit8)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.014 – volume: 5 start-page: 17990 year: 2017 ident: D0NR07358J-(cit27)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00100B – volume: 58 start-page: 16358 year: 2019 ident: D0NR07358J-(cit29)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201903941 – volume: 30 start-page: 2782 year: 1991 ident: D0NR07358J-(cit59)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.30.002782 – volume: 9 start-page: 1901968 year: 2019 ident: D0NR07358J-(cit3)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901968 – volume: 28 start-page: 1800670 year: 2018 ident: D0NR07358J-(cit45)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800670 |
SSID | ssj0069363 |
Score | 2.6067429 |
Snippet | Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn
2+
diffusion kinetics, continue to face challenges in terms of achieving superior high rate,... Aqueous zinc-ion batteries (ZIBs), due to their sluggish Zn2+ diffusion kinetics, continue to face challenges in terms of achieving superior high rate,... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2399 |
SubjectTerms | Cycles Density functional theory Diffusion layers Electrochemical analysis Electron microscopy Electronic structure Intercalation Interlayers Kinetics Low temperature Microscopy Photoelectrons Rechargeable batteries Structural stability Vanadium pentoxide |
Title | Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33491718 https://www.proquest.com/docview/2486016818 https://www.proquest.com/docview/2480734371 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1fb9MwEMCt0kloe0D8G3QMZAQvaApL4iRNHgcDqiH2wDYxnio7sUVRl1RtI9i-Ax-Cb8qdYzspHRLwEkWOk7S5X-7OzvmOkOcRcCNZimudWOhFRSo8ESnpiYKnGS-SQGhJfzhORmfR0Xl83uv96EQt1UvxMr-6dl3J_0gV2kCuuEr2HyTrLgoNsA_yhS1IGLZ_J-O6tKudOuVsmpSw-GEAHMEpv8RqnFielxeT-mJvBlam-j4pJDqeGAOCCSPmICnnO86qJXjU2FcHyWEc4qLGhMiwg342_N5p9c3DpFYmI_MeB-uCsbRXkzL38DJCp-20AYrG-QVNXi3gTo6lk1pPy9fcmE8dZtDowZMvtZJt86GJHB7Vk2m12lu3f-ZKTrozGGGgg56bWQSpNV2IYY2MDVfVMuvgF3V1LGtKKq0pf59h7tTCL-egt-L0a7cTCG52oTFgLIIhqlH6q6m27aEbZCOEUUfYJxsH71-9-2RNe5KxhNkctyzbb2-1SW7ak1cdnLVRC_gwc1tbRvswp7fJLTP4oAcNSXdIT5Z3yVYnJeU98rNhigJTtGWKOqZopahhilqmqGOKiku6xhSe4piiyBQFpqhliiJT-78RRQ1R1BJFHVH3ydnbN6evR54p4-HlYL2WXiBixVXKwTXkMuQMR7Rh4Be-4DyTCkwAVyyI8yLxoyLKwGCIxJcwDOcq8yW4-9ukX1alfEhonssQ5wBiGbNIDRVPhyoUheBSpkIFfEBe2Gc_zk2Oeyy1Mh3rWAuWjQ_9449aZEcD8sz1nTWZXa7ttWtFODZv_mIcYuW2IIE_NCBP3WHQy_ixjZf4eLAPXCFiw2BAHjSid7exqAzINrDgmlucdv54yiOy2b5Cu6QP0pePwS1eiicG1l8zIcK9 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+electronic+structure+of+layered+vanadium+pentoxide+by+pre-intercalation+of+potassium+ions+for+superior+room%2Flow-temperature+aqueous+zinc-ion+batteries&rft.jtitle=Nanoscale&rft.au=Su%2C+Guang&rft.au=Chen%2C+Shufeng&rft.au=Dong%2C+Huilong&rft.au=Cheng%2C+Yafei&rft.date=2021-02-04&rft.eissn=2040-3372&rft.volume=13&rft.issue=4&rft.spage=2399&rft_id=info:doi/10.1039%2Fd0nr07358j&rft_id=info%3Apmid%2F33491718&rft.externalDocID=33491718 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |