Pruning by explaining: A novel criterion for deep neural network pruning
•A novel criterion to efficiently prune convolutional neural networks inspired by explaining nonlinear classification decisions in terms of input variables is introduced.•The method is inspired by neural network interpretability: Layer-wise Relevance Propagation.•This is the first report to link the...
Saved in:
Published in | Pattern recognition Vol. 115; p. 107899 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2021.107899 |
Cover
Loading…
Abstract | •A novel criterion to efficiently prune convolutional neural networks inspired by explaining nonlinear classification decisions in terms of input variables is introduced.•The method is inspired by neural network interpretability: Layer-wise Relevance Propagation.•This is the first report to link the two disconnected lines of interpretability and model compression research.•The method is tested on two popular convolutional neural network families and a broad range of benchmark datasets under two different scenarios.
The success of convolutional neural networks (CNNs) in various applications is accompanied by a significant increase in computation and parameter storage costs. Recent efforts to reduce these overheads involve pruning and compressing the weights of various layers while at the same time aiming to not sacrifice performance. In this paper, we propose a novel criterion for CNN pruning inspired by neural network interpretability: The most relevant units, i.e. weights or filters, are automatically found using their relevance scores obtained from concepts of explainable AI (XAI). By exploring this idea, we connect the lines of interpretability and model compression research. We show that our proposed method can efficiently prune CNN models in transfer-learning setups in which networks pre-trained on large corpora are adapted to specialized tasks. The method is evaluated on a broad range of computer vision datasets. Notably, our novel criterion is not only competitive or better compared to state-of-the-art pruning criteria when successive retraining is performed, but clearly outperforms these previous criteria in the resource-constrained application scenario in which the data of the task to be transferred to is very scarce and one chooses to refrain from fine-tuning. Our method is able to compress the model iteratively while maintaining or even improving accuracy. At the same time, it has a computational cost in the order of gradient computation and is comparatively simple to apply without the need for tuning hyperparameters for pruning. |
---|---|
AbstractList | The success of convolutional neural networks (CNNs) in various applications is accompanied by a significant increase in computation and parameter storage costs. Recent efforts to reduce these overheads involve pruning and compressing the weights of various layers while at the same time aiming to not sacrifice performance. In this paper, we propose a novel criterion for CNN pruning inspired by neural network interpretability: The most relevant units, i.e. weights or filters, are automatically found using their relevance scores obtained from concepts of explainable AI (XAI). By exploring this idea, we connect the lines of interpretability and model compression research. We show that our proposed method can efficiently prune CNN models in transfer-learning setups in which networks pre-trained on large corpora are adapted to specialized tasks. The method is evaluated on a broad range of computer vision datasets. Notably, our novel criterion is not only competitive or better compared to state-of-the-art pruning criteria when successive retraining is performed, but clearly outperforms these previous criteria in the resource-constrained application scenario in which the data of the task to be transferred to is very scarce and one chooses to refrain from fine-tuning. Our method is able to compress the model iteratively while maintaining or even improving accuracy. At the same time, it has a computational cost in the order of gradient computation and is comparatively simple to apply without the need for tuning hyperparameters for pruning. •A novel criterion to efficiently prune convolutional neural networks inspired by explaining nonlinear classification decisions in terms of input variables is introduced.•The method is inspired by neural network interpretability: Layer-wise Relevance Propagation.•This is the first report to link the two disconnected lines of interpretability and model compression research.•The method is tested on two popular convolutional neural network families and a broad range of benchmark datasets under two different scenarios. The success of convolutional neural networks (CNNs) in various applications is accompanied by a significant increase in computation and parameter storage costs. Recent efforts to reduce these overheads involve pruning and compressing the weights of various layers while at the same time aiming to not sacrifice performance. In this paper, we propose a novel criterion for CNN pruning inspired by neural network interpretability: The most relevant units, i.e. weights or filters, are automatically found using their relevance scores obtained from concepts of explainable AI (XAI). By exploring this idea, we connect the lines of interpretability and model compression research. We show that our proposed method can efficiently prune CNN models in transfer-learning setups in which networks pre-trained on large corpora are adapted to specialized tasks. The method is evaluated on a broad range of computer vision datasets. Notably, our novel criterion is not only competitive or better compared to state-of-the-art pruning criteria when successive retraining is performed, but clearly outperforms these previous criteria in the resource-constrained application scenario in which the data of the task to be transferred to is very scarce and one chooses to refrain from fine-tuning. Our method is able to compress the model iteratively while maintaining or even improving accuracy. At the same time, it has a computational cost in the order of gradient computation and is comparatively simple to apply without the need for tuning hyperparameters for pruning. |
ArticleNumber | 107899 |
Author | Binder, Alexander Lapuschkin, Sebastian Müller, Klaus-Robert Yeom, Seul-Ki Wiedemann, Simon Seegerer, Philipp Samek, Wojciech |
Author_xml | – sequence: 1 givenname: Seul-Ki surname: Yeom fullname: Yeom, Seul-Ki email: yeom@tu-berlin.de organization: Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany – sequence: 2 givenname: Philipp orcidid: 0000-0002-4707-7991 surname: Seegerer fullname: Seegerer, Philipp email: philipp.seegerer@tu-berlin.de organization: Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany – sequence: 3 givenname: Sebastian orcidid: 0000-0002-0762-7258 surname: Lapuschkin fullname: Lapuschkin, Sebastian email: sebastian.lapuschkin@hhi.fraunhofer.de organization: Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany – sequence: 4 givenname: Alexander surname: Binder fullname: Binder, Alexander email: alexabin@uio.no organization: ISTD Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore – sequence: 5 givenname: Simon surname: Wiedemann fullname: Wiedemann, Simon email: simon.wiedemann@hhi.fraunhofer.de organization: Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany – sequence: 6 givenname: Klaus-Robert orcidid: 0000-0002-3861-7685 surname: Müller fullname: Müller, Klaus-Robert email: klaus-robert.mueller@tu-berlin.de organization: Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany – sequence: 7 givenname: Wojciech surname: Samek fullname: Samek, Wojciech email: wojciech.samek@hhi.fraunhofer.de organization: BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany |
BookMark | eNqFUEFOwzAQtFCRKIUfIOEPpNixEyc9IFUIKFIlOMDZcuxN5RLsyDGF_h5XgQsHOI12d2a0M6do4rwDhC4omVNCy6vtvFdR-808JzlNK1HV9RGa0kqwrKA8n6ApIYxmLCfsBJ0Ow5YQKtJhilZP4d1Zt8HNHsNn3yl7mBZ4iZ3fQYd1sBGC9Q63PmAD0GMH70F1CeKHD6-4Hw3O0HGrugHOv3GGXu5un29W2frx_uFmuc40E2XMaMUZ4VVDykKZptS8LmhNlBBVUZmy5q3WLYWSk0aYpuKmAWW0AsFaU7REKDZDl6Nv-myI1knng5KUVEUua0rLIjH4D8MPQ4BW9sG-qbBPLHnoS27l2Jc89CXHvpJs8UumbVQxRY9B2e4_8fUohhR9ZyHIQVtwGowNoKM03v5t8AVAWoqC |
CitedBy_id | crossref_primary_10_1016_j_vlsi_2024_102299 crossref_primary_10_1080_09540091_2022_2111405 crossref_primary_10_1016_j_inffus_2024_102472 crossref_primary_10_1007_s10666_023_09918_w crossref_primary_10_3390_app122111184 crossref_primary_10_1109_JIOT_2022_3219202 crossref_primary_10_1016_j_patcog_2021_108056 crossref_primary_10_3390_math12193032 crossref_primary_10_1088_1361_6501_ad7a1a crossref_primary_10_1088_1741_2552_acae07 crossref_primary_10_1016_j_neucom_2024_127698 crossref_primary_10_1007_s10489_024_05615_7 crossref_primary_10_1016_j_ress_2025_110925 crossref_primary_10_1109_TMLCN_2024_3395419 crossref_primary_10_1007_s11227_023_05273_5 crossref_primary_10_3389_fpls_2023_1269371 crossref_primary_10_1109_TPAMI_2023_3323496 crossref_primary_10_1145_3551486 crossref_primary_10_1145_3670685 crossref_primary_10_3390_electronics12224589 crossref_primary_10_1007_s10994_023_06438_2 crossref_primary_10_3390_informatics8040077 crossref_primary_10_1016_j_compeleceng_2024_109349 crossref_primary_10_1016_j_ins_2022_07_134 crossref_primary_10_3389_fnins_2022_906290 crossref_primary_10_1016_j_inffus_2023_101805 crossref_primary_10_1016_j_renene_2022_07_125 crossref_primary_10_3390_s23042208 crossref_primary_10_1007_s10489_024_05747_w crossref_primary_10_1016_j_inffus_2023_101883 crossref_primary_10_1016_j_measurement_2022_111655 crossref_primary_10_1111_exsy_13793 crossref_primary_10_1016_j_jisa_2023_103548 crossref_primary_10_1109_ACCESS_2024_3510746 crossref_primary_10_1007_s11042_023_17656_0 crossref_primary_10_1016_j_iot_2022_100599 crossref_primary_10_1109_TNNLS_2022_3217403 crossref_primary_10_3390_info14030164 crossref_primary_10_3389_fsysb_2024_1407994 crossref_primary_10_3390_make4040047 crossref_primary_10_1002_cpe_7351 crossref_primary_10_1038_s41598_023_35963_2 crossref_primary_10_1016_j_compbiomed_2023_106668 crossref_primary_10_3390_computation10090161 crossref_primary_10_1007_s10489_022_03779_8 crossref_primary_10_1016_j_patcog_2023_109463 crossref_primary_10_3390_e24020196 crossref_primary_10_1088_2631_8695_ad9afe crossref_primary_10_1016_j_ress_2024_110562 crossref_primary_10_3390_s22176519 crossref_primary_10_1016_j_neucom_2022_09_129 crossref_primary_10_1002_cpe_7143 crossref_primary_10_4108_eetsis_4858 crossref_primary_10_1016_j_knosys_2022_109465 crossref_primary_10_3390_app13020891 crossref_primary_10_1016_j_engappai_2025_110025 crossref_primary_10_1109_TAI_2024_3455313 crossref_primary_10_1007_s10489_022_03783_y crossref_primary_10_1109_TKDE_2024_3425268 crossref_primary_10_1016_j_jnca_2024_104034 crossref_primary_10_1371_journal_pone_0264783 crossref_primary_10_1016_j_inffus_2022_11_013 crossref_primary_10_1007_s11276_023_03449_8 crossref_primary_10_1002_widm_1554 crossref_primary_10_1016_j_aej_2024_07_049 crossref_primary_10_1038_s41598_024_68172_6 crossref_primary_10_1016_j_eij_2024_100503 crossref_primary_10_1016_j_ijpe_2024_109319 crossref_primary_10_3390_bdcc7020111 crossref_primary_10_1016_j_ins_2024_121265 crossref_primary_10_1016_j_advengsoft_2022_103339 crossref_primary_10_1016_j_neucom_2025_129661 crossref_primary_10_1016_j_inffus_2021_11_008 crossref_primary_10_1109_TPAMI_2023_3290213 crossref_primary_10_1365_s35764_024_00533_2 crossref_primary_10_1109_TNNLS_2022_3188799 crossref_primary_10_1007_s11227_024_06901_4 crossref_primary_10_1016_j_patcog_2023_109321 crossref_primary_10_1109_JAS_2023_123123 crossref_primary_10_1016_j_knosys_2021_107988 crossref_primary_10_1016_j_future_2024_01_021 crossref_primary_10_1109_JIOT_2023_3321299 crossref_primary_10_1016_j_inffus_2023_102094 crossref_primary_10_1109_TKDE_2023_3312109 crossref_primary_10_1002_aisy_202300644 crossref_primary_10_1109_JSTSP_2024_3431927 crossref_primary_10_54097_hset_v4i_920 crossref_primary_10_26599_TST_2024_9010039 crossref_primary_10_1016_j_asoc_2022_109558 crossref_primary_10_1007_s11263_024_02101_y crossref_primary_10_3390_electronics12214405 crossref_primary_10_1016_j_inffus_2024_102782 crossref_primary_10_1109_TII_2023_3268421 crossref_primary_10_1016_j_inffus_2024_102301 crossref_primary_10_3390_informatics11030067 crossref_primary_10_1016_j_patcog_2023_110146 crossref_primary_10_1109_TPAMI_2024_3388275 crossref_primary_10_1016_j_cviu_2021_103220 crossref_primary_10_1016_j_ijcce_2023_07_001 crossref_primary_10_3390_s23052718 crossref_primary_10_1016_j_patcog_2024_110724 crossref_primary_10_3390_computation11050092 crossref_primary_10_1016_j_egyai_2023_100330 crossref_primary_10_1016_j_neucom_2022_09_049 crossref_primary_10_1016_j_compag_2024_109469 crossref_primary_10_3390_informatics10030072 crossref_primary_10_1088_1741_2552_ac6770 crossref_primary_10_1016_j_patcog_2022_108729 |
Cites_doi | 10.1038/s41467-019-08987-4 10.1016/j.sigpro.2018.10.019 10.1109/72.329683 10.1007/s13042-019-01004-6 10.1016/j.patcog.2018.10.029 10.1109/TC.2019.2914438 10.1007/s11263-015-0816-y 10.1109/JPROC.2017.2761740 10.1016/j.patcog.2016.11.008 10.1109/TNNLS.2019.2910073 10.1109/TPAMI.2018.2858232 10.1109/ACCESS.2019.2913945 10.1016/j.patcog.2017.10.013 10.1109/TNNLS.2016.2599820 10.1109/JPROC.2021.3060483 10.1371/journal.pone.0130140 10.1109/MSP.2017.2765695 10.1109/TPAMI.2018.2886192 10.1016/j.dsp.2017.10.011 10.1109/ACCESS.2019.2947846 10.1016/j.patrec.2019.11.028 10.1038/s41598-020-62724-2 |
ContentType | Journal Article |
Copyright | 2021 The Authors info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: 2021 The Authors – notice: info:eu-repo/semantics/openAccess |
DBID | 6I. AAFTH AAYXX CITATION 3HK |
DOI | 10.1016/j.patcog.2021.107899 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef NORA - Norwegian Open Research Archives |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10852_91165 10_1016_j_patcog_2021_107899 S0031320321000868 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 3HK |
ID | FETCH-LOGICAL-c376t-1843048b065adb6c495190a77858d694fccf1e640b7db84dbeadcae73fd5f07a3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Mon Jul 01 06:56:17 EDT 2024 Tue Jul 01 02:36:33 EDT 2025 Thu Apr 24 23:10:45 EDT 2025 Fri Feb 23 02:45:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pruning Interpretation of models Convolutional neural network (CNN) Layer-wise relevance propagation (LRP) Explainable AI (XAI) |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-1843048b065adb6c495190a77858d694fccf1e640b7db84dbeadcae73fd5f07a3 |
Notes | NFR/309439 |
ORCID | 0000-0002-4707-7991 0000-0002-0762-7258 0000-0002-3861-7685 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0031320321000868 |
ParticipantIDs | cristin_nora_10852_91165 crossref_primary_10_1016_j_patcog_2021_107899 crossref_citationtrail_10_1016_j_patcog_2021_107899 elsevier_sciencedirect_doi_10_1016_j_patcog_2021_107899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Molchanov, Mallya, Tyree, Frosio, Kautz (bib0020) 2019 Montavon, Samek, Müller (bib0012) 2018; 73 Bach, Binder, Montavon, Klauschen, Müller, Samek (bib0007) 2015; 10 Lapuschkin, Wäldchen, Binder, Montavon, Samek, Müller (bib0008) 2019; 10 Tung, Mori (bib0016) 2020; 42 Wen, Wu, Wang, Chen, Li (bib0028) 2016 Samek, Binder, Montavon, Lapuschkin, Müller (bib0035) 2017; 28 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Li (bib0040) 2015; 115 Murata, Yoshizawa, Amari (bib0045) 1994; 5 Alber, Lapuschkin, Seegerer, Hägele, Schütt, Montavon, Samek, Müller, Dähne, Kindermans (bib0014) 2019; 20 Wiedemann, Müller, Samek (bib0015) 2020; 31 Sze, Chen, Yang, Emer (bib0003) 2017; 105 Cheng, Wang, Zhou, Zhang (bib0006) 2018; 35 Hassibi, Stork (bib0021) 1992 Molchanov, Tyree, Karras, Aila, Kautz (bib0022) 2017 Elson, Douceur, Howell, Saul (bib0038) 2007 Zhang, Zhou, Lin, Sun (bib0019) 2018 Liu, Wu (bib0024) 2019; 156 Montavon, Lapuschkin, Binder, Samek, Müller (bib0011) 2017; 65 Liu, Wang, Qiao (bib0044) 2017 LeCun, Denker, Solla (bib0004) 1989 Yu, Wang, Chen, Qin (bib0023) 2019; 10 Guillemot, Heusele, Korichi, Schnebert, Chen (bib0043) 2020; abs/2002.11018 Nilsback, Zisserman (bib0039) 2008 Guo, Xie, Xu, Xing (bib0017) 2019; 7 Yu, Li, Chen, Lai, Morariu, Han, Gao, Lin, Davis (bib0030) 2018 Seegerer, Binder, Saitenmacher, Bockmayr, Alber, Jurmeister, Klauschen, Müller (bib0010) 2020 Denil, Shakibi, Dinh, Ranzato, de Freitas (bib0002) 2013 Samek, Montavon, Lapuschkin, Anders, Müller (bib0013) 2021; 109 Li, Kadav, Durdanovic, Samet, Graf (bib0029) 2017 Hägele, Seegerer, Lapuschkin, Bockmayr, Samek, Klauschen, Müller, Binder (bib0009) 2020; 10 Luo, Zhang, Zhou, Xie, Wu, Lin (bib0031) 2019; 41 Han, Liu, Mao, Pu, Pedram, Horowitz, Dally (bib0027) 2016 Wang, Zhang, Wang, Hu (bib0042) 2018 Li, Li (bib0037) 2007 Han, Pool, Tran, Dally (bib0026) 2015 Gan, Wang, Lu (bib0032) 2020; 129 He, Zhang, Ren, Sun (bib0041) 2016 Lazebnik, Schmid, Ponce (bib0036) 2006 Tu, Lin (bib0005) 2019; 7 Xu, Yang, Zhang, Liu (bib0018) 2019; 88 Sun, Ren, Ma, Wang (bib0025) 2017 Dai, Yin, Jha (bib0033) 2019; 68 (bib0034) 2019; 11700 Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai, Chen (bib0001) 2018; 77 Murata (10.1016/j.patcog.2021.107899_bib0045) 1994; 5 Samek (10.1016/j.patcog.2021.107899_bib0035) 2017; 28 Cheng (10.1016/j.patcog.2021.107899_bib0006) 2018; 35 Lazebnik (10.1016/j.patcog.2021.107899_bib0036) 2006 Hassibi (10.1016/j.patcog.2021.107899_bib0021) 1992 Bach (10.1016/j.patcog.2021.107899_bib0007) 2015; 10 Seegerer (10.1016/j.patcog.2021.107899_bib0010) 2020 Dai (10.1016/j.patcog.2021.107899_bib0033) 2019; 68 Sze (10.1016/j.patcog.2021.107899_bib0003) 2017; 105 Hägele (10.1016/j.patcog.2021.107899_bib0009) 2020; 10 Han (10.1016/j.patcog.2021.107899_bib0027) 2016 Elson (10.1016/j.patcog.2021.107899_bib0038) 2007 Gan (10.1016/j.patcog.2021.107899_bib0032) 2020; 129 Li (10.1016/j.patcog.2021.107899_bib0037) 2007 Wiedemann (10.1016/j.patcog.2021.107899_bib0015) 2020; 31 Denil (10.1016/j.patcog.2021.107899_bib0002) 2013 Tung (10.1016/j.patcog.2021.107899_bib0016) 2020; 42 Luo (10.1016/j.patcog.2021.107899_bib0031) 2019; 41 Wen (10.1016/j.patcog.2021.107899_bib0028) 2016 Lapuschkin (10.1016/j.patcog.2021.107899_bib0008) 2019; 10 Zhang (10.1016/j.patcog.2021.107899_bib0019) 2018 Yu (10.1016/j.patcog.2021.107899_bib0023) 2019; 10 Alber (10.1016/j.patcog.2021.107899_bib0014) 2019; 20 Russakovsky (10.1016/j.patcog.2021.107899_bib0040) 2015; 115 Molchanov (10.1016/j.patcog.2021.107899_bib0022) 2017 Sun (10.1016/j.patcog.2021.107899_bib0025) 2017 Nilsback (10.1016/j.patcog.2021.107899_bib0039) 2008 Li (10.1016/j.patcog.2021.107899_bib0029) 2017 (10.1016/j.patcog.2021.107899_bib0034) 2019; 11700 Samek (10.1016/j.patcog.2021.107899_bib0013) 2021; 109 Wang (10.1016/j.patcog.2021.107899_bib0042) 2018 Xu (10.1016/j.patcog.2021.107899_bib0018) 2019; 88 Tu (10.1016/j.patcog.2021.107899_bib0005) 2019; 7 Han (10.1016/j.patcog.2021.107899_bib0026) 2015 Liu (10.1016/j.patcog.2021.107899_bib0044) 2017 Guillemot (10.1016/j.patcog.2021.107899_bib0043) 2020; abs/2002.11018 Molchanov (10.1016/j.patcog.2021.107899_bib0020) 2019 LeCun (10.1016/j.patcog.2021.107899_bib0004) 1989 Montavon (10.1016/j.patcog.2021.107899_bib0012) 2018; 73 Gu (10.1016/j.patcog.2021.107899_bib0001) 2018; 77 Guo (10.1016/j.patcog.2021.107899_bib0017) 2019; 7 Yu (10.1016/j.patcog.2021.107899_bib0030) 2018 Montavon (10.1016/j.patcog.2021.107899_bib0011) 2017; 65 Liu (10.1016/j.patcog.2021.107899_bib0024) 2019; 156 He (10.1016/j.patcog.2021.107899_bib0041) 2016 |
References_xml | – start-page: 2169 year: 2006 end-page: 2178 ident: bib0036 article-title: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 105 start-page: 2295 year: 2017 end-page: 2329 ident: bib0003 article-title: Efficient processing of deep neural networks: a tutorial and survey publication-title: Proc. IEEE – start-page: 16 year: 2020 end-page: 37 ident: bib0010 article-title: Interpretable deep neural network to predict estrogen receptor status from haematoxylin-eosin images publication-title: Artificial Intelligence and Machine Learning for Digital Pathology: State-of-the-Art and Future Challenges – volume: 7 start-page: 150823 year: 2019 end-page: 150832 ident: bib0017 article-title: Compressing by learning in a low-rank and sparse decomposition form publication-title: IEEE Access – year: 2017 ident: bib0029 article-title: Pruning filters for efficient convnets publication-title: International Conference on Learning Representations, (ICLR) – volume: 41 start-page: 2525 year: 2019 end-page: 2538 ident: bib0031 article-title: ThiNet: pruning CNN filters for a thinner net publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 10 start-page: 3129 year: 2019 end-page: 3144 ident: bib0023 article-title: Transfer channel pruning for compressing deep domain adaptation models publication-title: Int. J. Mach. Learn. Cybern. – volume: 10 start-page: 1096 year: 2019 ident: bib0008 article-title: Unmasking Clever Hans predictors and assessing what machines really learn publication-title: Nat Commun – volume: 129 start-page: 190 year: 2020 end-page: 197 ident: bib0032 article-title: Compressing the CNN architecture for in-air handwritten chinese character recognition publication-title: Pattern Recognit Lett – volume: 65 start-page: 211 year: 2017 end-page: 222 ident: bib0011 article-title: Explaining nonlinear classification decisions with deep taylor decomposition publication-title: Pattern Recognit – start-page: 366 year: 2007 end-page: 374 ident: bib0038 article-title: Asirra: a CAPTCHA that exploits interest-aligned manual image categorization publication-title: Proceedings of the 2007 ACM Conference on Computer and Communications Security (CCS) – volume: 28 start-page: 2660 year: 2017 end-page: 2673 ident: bib0035 article-title: Evaluating the visualization of what a deep neural network has learned publication-title: IEEE Trans Neural Netw Learn Syst – volume: abs/2002.11018 year: 2020 ident: bib0043 article-title: Breaking batch normalization for better explainability of deep neural networks through layer-wise relevance propagation publication-title: CoRR – volume: 88 start-page: 272 year: 2019 end-page: 284 ident: bib0018 article-title: LightweightNet: toward fast and lightweight convolutional neural networks via architecture distillation publication-title: Pattern Recognit – start-page: 1 year: 2007 end-page: 8 ident: bib0037 article-title: What, where and who? Classifying events by scene and object recognition publication-title: IEEE International Conference on Computer Vision (ICCV) – start-page: 149 year: 2018 ident: bib0042 article-title: Structured probabilistic pruning for convolutional neural network acceleration publication-title: British Machine Vision Conference (BMVC) – volume: 10 start-page: 6423 year: 2020 ident: bib0009 article-title: Resolving challenges in deep learning-based analyses of histopathological images using explanation methods publication-title: Sci Rep – volume: 156 start-page: 84 year: 2019 end-page: 91 ident: bib0024 article-title: Channel pruning based on mean gradient for accelerating convolutional neural networks publication-title: Signal Processing – volume: 109 start-page: 1 year: 2021 end-page: 32 ident: bib0013 article-title: Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications publication-title: Proceedings of the IEEE – volume: 5 start-page: 865 year: 1994 end-page: 872 ident: bib0045 article-title: Network information criterion-determining the number of hidden units for an artificial neural network model publication-title: IEEE Trans. Neural Networks – volume: 77 start-page: 354 year: 2018 end-page: 377 ident: bib0001 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit – start-page: 11264 year: 2019 end-page: 11272 ident: bib0020 article-title: Importance estimation for neural network pruning publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 11700 year: 2019 ident: bib0034 article-title: Explainable AI: interpreting, explaining and visualizing deep learning publication-title: Lecture Notes in Computer Science – volume: 20 start-page: 93:1 year: 2019 end-page: 93:8 ident: bib0014 article-title: iNNvestigate neural networks! publication-title: Journal of Machine Learning Research – year: 2017 ident: bib0022 article-title: Pruning convolutional neural networks for resource efficient transfer learning publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – volume: 68 start-page: 1487 year: 2019 end-page: 1497 ident: bib0033 article-title: Nest: a neural network synthesis tool based on a grow-and-prune paradigm publication-title: IEEE Trans. Comput. – start-page: 2245 year: 2017 end-page: 2251 ident: bib0044 article-title: Sparse deep transfer learning for convolutional neural network publication-title: AAAI Conference on Artificial Intelligence – volume: 7 start-page: 58113 year: 2019 end-page: 58119 ident: bib0005 article-title: Deep neural network compression technique towards efficient digital signal modulation recognition in edge device publication-title: IEEE Access – start-page: 3299 year: 2017 end-page: 3308 ident: bib0025 article-title: meprop: sparsified back propagation for accelerated deep learning with reduced overfitting publication-title: International Conference on Machine Learning (ICML) – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib0040 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis – start-page: 1135 year: 2015 end-page: 1143 ident: bib0026 article-title: Learning both weights and connections for efficient neural network publication-title: Advances in Neural Information Processing Systems (NIPS) – start-page: 770 year: 2016 end-page: 778 ident: bib0041 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016 – volume: 73 start-page: 1 year: 2018 end-page: 15 ident: bib0012 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit Signal Process – volume: 31 start-page: 772 year: 2020 end-page: 785 ident: bib0015 article-title: Compact and computationally efficient representation of deep neural networks publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 2074 year: 2016 end-page: 2082 ident: bib0028 article-title: Learning structured sparsity in deep neural networks publication-title: Advances in Neural Information Processing Systems (NIPS) – volume: 10 start-page: e0130140 year: 2015 ident: bib0007 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PLoS ONE – volume: 42 start-page: 568 year: 2020 end-page: 579 ident: bib0016 article-title: Deep neural network compression by in-parallel pruning-quantization publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 598 year: 1989 end-page: 605 ident: bib0004 article-title: Optimal brain damage publication-title: Advances in Neural Information Processing Systems (NIPS) – start-page: 243 year: 2016 end-page: 254 ident: bib0027 article-title: EIE: efficient inference engine on compressed deep neural network publication-title: International Symposium on Computer Architecture (ISCA) – start-page: 164 year: 1992 end-page: 171 ident: bib0021 article-title: Second order derivatives for network pruning: Optimal brain surgeon publication-title: Advances in Neural Information Processing Systems (NIPS) – start-page: 2148 year: 2013 end-page: 2156 ident: bib0002 article-title: Predicting parameters in deep learning publication-title: Advances in Neural Information Processing Systems (NIPS) – start-page: 9194 year: 2018 end-page: 9203 ident: bib0030 article-title: NISP: pruning networks using neuron importance score propagation publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 35 start-page: 126 year: 2018 end-page: 136 ident: bib0006 article-title: Model compression and acceleration for deep neural networks: the principles, progress, and challenges publication-title: IEEE Signal Process Mag – start-page: 6848 year: 2018 end-page: 6856 ident: bib0019 article-title: Shufflenet: An extremely efficient convolutional neural network for mobile devices publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 722 year: 2008 end-page: 729 ident: bib0039 article-title: Automated flower classification over a large number of classes publication-title: Sixth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP) – volume: 10 start-page: 1096 issue: 1 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0008 article-title: Unmasking Clever Hans predictors and assessing what machines really learn publication-title: Nat Commun doi: 10.1038/s41467-019-08987-4 – start-page: 1135 year: 2015 ident: 10.1016/j.patcog.2021.107899_bib0026 article-title: Learning both weights and connections for efficient neural network – volume: 156 start-page: 84 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0024 article-title: Channel pruning based on mean gradient for accelerating convolutional neural networks publication-title: Signal Processing doi: 10.1016/j.sigpro.2018.10.019 – start-page: 2245 year: 2017 ident: 10.1016/j.patcog.2021.107899_bib0044 article-title: Sparse deep transfer learning for convolutional neural network – volume: 5 start-page: 865 issue: 6 year: 1994 ident: 10.1016/j.patcog.2021.107899_bib0045 article-title: Network information criterion-determining the number of hidden units for an artificial neural network model publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.329683 – volume: 10 start-page: 3129 issue: 11 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0023 article-title: Transfer channel pruning for compressing deep domain adaptation models publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-01004-6 – volume: 88 start-page: 272 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0018 article-title: LightweightNet: toward fast and lightweight convolutional neural networks via architecture distillation publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.10.029 – volume: 68 start-page: 1487 issue: 10 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0033 article-title: Nest: a neural network synthesis tool based on a grow-and-prune paradigm publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2019.2914438 – start-page: 9194 year: 2018 ident: 10.1016/j.patcog.2021.107899_bib0030 article-title: NISP: pruning networks using neuron importance score propagation – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.patcog.2021.107899_bib0040 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – start-page: 11264 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0020 article-title: Importance estimation for neural network pruning – start-page: 2169 year: 2006 ident: 10.1016/j.patcog.2021.107899_bib0036 article-title: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories – volume: 105 start-page: 2295 issue: 12 year: 2017 ident: 10.1016/j.patcog.2021.107899_bib0003 article-title: Efficient processing of deep neural networks: a tutorial and survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2761740 – volume: 65 start-page: 211 year: 2017 ident: 10.1016/j.patcog.2021.107899_bib0011 article-title: Explaining nonlinear classification decisions with deep taylor decomposition publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.11.008 – volume: 31 start-page: 772 issue: 3 year: 2020 ident: 10.1016/j.patcog.2021.107899_bib0015 article-title: Compact and computationally efficient representation of deep neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2910073 – start-page: 6848 year: 2018 ident: 10.1016/j.patcog.2021.107899_bib0019 article-title: Shufflenet: An extremely efficient convolutional neural network for mobile devices – year: 2017 ident: 10.1016/j.patcog.2021.107899_bib0022 article-title: Pruning convolutional neural networks for resource efficient transfer learning – start-page: 164 year: 1992 ident: 10.1016/j.patcog.2021.107899_bib0021 article-title: Second order derivatives for network pruning: Optimal brain surgeon – volume: 41 start-page: 2525 issue: 10 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0031 article-title: ThiNet: pruning CNN filters for a thinner net publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2858232 – volume: 7 start-page: 58113 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0005 article-title: Deep neural network compression technique towards efficient digital signal modulation recognition in edge device publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913945 – start-page: 598 year: 1989 ident: 10.1016/j.patcog.2021.107899_bib0004 article-title: Optimal brain damage – start-page: 16 year: 2020 ident: 10.1016/j.patcog.2021.107899_bib0010 article-title: Interpretable deep neural network to predict estrogen receptor status from haematoxylin-eosin images – volume: 77 start-page: 354 year: 2018 ident: 10.1016/j.patcog.2021.107899_bib0001 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.10.013 – start-page: 3299 year: 2017 ident: 10.1016/j.patcog.2021.107899_bib0025 article-title: meprop: sparsified back propagation for accelerated deep learning with reduced overfitting – start-page: 2148 year: 2013 ident: 10.1016/j.patcog.2021.107899_bib0002 article-title: Predicting parameters in deep learning – volume: 28 start-page: 2660 issue: 11 year: 2017 ident: 10.1016/j.patcog.2021.107899_bib0035 article-title: Evaluating the visualization of what a deep neural network has learned publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2599820 – volume: 109 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.patcog.2021.107899_bib0013 article-title: Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2021.3060483 – year: 2017 ident: 10.1016/j.patcog.2021.107899_bib0029 article-title: Pruning filters for efficient convnets – volume: 20 start-page: 93:1 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0014 article-title: iNNvestigate neural networks! publication-title: Journal of Machine Learning Research – volume: 10 start-page: e0130140 issue: 7 year: 2015 ident: 10.1016/j.patcog.2021.107899_bib0007 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PLoS ONE doi: 10.1371/journal.pone.0130140 – start-page: 722 year: 2008 ident: 10.1016/j.patcog.2021.107899_bib0039 article-title: Automated flower classification over a large number of classes – volume: 35 start-page: 126 issue: 1 year: 2018 ident: 10.1016/j.patcog.2021.107899_bib0006 article-title: Model compression and acceleration for deep neural networks: the principles, progress, and challenges publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2017.2765695 – start-page: 770 year: 2016 ident: 10.1016/j.patcog.2021.107899_bib0041 article-title: Deep residual learning for image recognition – volume: 42 start-page: 568 issue: 3 year: 2020 ident: 10.1016/j.patcog.2021.107899_bib0016 article-title: Deep neural network compression by in-parallel pruning-quantization publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2886192 – start-page: 366 year: 2007 ident: 10.1016/j.patcog.2021.107899_bib0038 article-title: Asirra: a CAPTCHA that exploits interest-aligned manual image categorization – start-page: 2074 year: 2016 ident: 10.1016/j.patcog.2021.107899_bib0028 article-title: Learning structured sparsity in deep neural networks – volume: 11700 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0034 article-title: Explainable AI: interpreting, explaining and visualizing deep learning – start-page: 149 year: 2018 ident: 10.1016/j.patcog.2021.107899_bib0042 article-title: Structured probabilistic pruning for convolutional neural network acceleration – volume: 73 start-page: 1 year: 2018 ident: 10.1016/j.patcog.2021.107899_bib0012 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit Signal Process doi: 10.1016/j.dsp.2017.10.011 – start-page: 243 year: 2016 ident: 10.1016/j.patcog.2021.107899_bib0027 article-title: EIE: efficient inference engine on compressed deep neural network – volume: abs/2002.11018 year: 2020 ident: 10.1016/j.patcog.2021.107899_bib0043 article-title: Breaking batch normalization for better explainability of deep neural networks through layer-wise relevance propagation publication-title: CoRR – volume: 7 start-page: 150823 year: 2019 ident: 10.1016/j.patcog.2021.107899_bib0017 article-title: Compressing by learning in a low-rank and sparse decomposition form publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947846 – start-page: 1 year: 2007 ident: 10.1016/j.patcog.2021.107899_bib0037 article-title: What, where and who? Classifying events by scene and object recognition – volume: 129 start-page: 190 year: 2020 ident: 10.1016/j.patcog.2021.107899_bib0032 article-title: Compressing the CNN architecture for in-air handwritten chinese character recognition publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2019.11.028 – volume: 10 start-page: 6423 year: 2020 ident: 10.1016/j.patcog.2021.107899_bib0009 article-title: Resolving challenges in deep learning-based analyses of histopathological images using explanation methods publication-title: Sci Rep doi: 10.1038/s41598-020-62724-2 |
SSID | ssj0017142 |
Score | 2.6841054 |
Snippet | •A novel criterion to efficiently prune convolutional neural networks inspired by explaining nonlinear classification decisions in terms of input variables is... The success of convolutional neural networks (CNNs) in various applications is accompanied by a significant increase in computation and parameter storage... |
SourceID | cristin crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 107899 |
SubjectTerms | Convolutional neural network (CNN) Explainable AI (XAI) Interpretation of models Layer-wise relevance propagation (LRP) Pruning |
Title | Pruning by explaining: A novel criterion for deep neural network pruning |
URI | https://dx.doi.org/10.1016/j.patcog.2021.107899 http://hdl.handle.net/10852/91165 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KInjxLa2PsgevsWmz2U28lWKpCsWDhd6WfUUqJQ2lFb34253JJkVBFDxm2dmEyezM7PLNN4RcmdQwbRkLlGZwQDEsDrTq8SDpKZ6kWcKZKtEWYz6asPtpPG2QQV0Lg7DKyvd7n15662qkU2mzU8xmWOOLtIMhFqFgYo4Fv4wJtPLrjw3MA_t7e8bwqBvg7Lp8rsR4FeDuFs9wSux1YUgkyAC7Y8rdlf8cqL4En-EB2auyRtr3H3ZIGi4_Ivt1RwZabdBjMnpcrvGig-p36t6KuW__cEP7NF-8ujmFlyI38yKnkKtS61xBkdASls49HJwWfoETMhnePg1GQdUrITDgIlYBtm2Bzagho1BWcwPnHgj1SogkTixPWWZM1nWchVpYnTCrwYKMciLKbJyFQkWnZCtf5K5JaMQ1iKYWorlgzHKlkUWehypJhYpVt0WalYpkDmaKFKNxT6bI49MiUa0zaSqOcWx1MZc1mOxFep1L1Ln0Om-RYCNVeI6NP-aL-nfIb7YiIQz8Knn2b8lzsotPHqh7QbZWy7W7hHRkpdulvbXJdv_uYTT-BDUK3Zw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_0RPSltlXxWlv3oa_By2Wzu_HtkEqs9vBBwbdlvyLKkQtyiv73ztxupAWx0NdNZhMm87mZ-Q3AD1c5bj3nmbEcExTHy8yascjU2AhVNUpws6y2mIr6iv-6Lq9X4LjvhaGyymT7o01fWuu0cpi4edjd3lKPL8EOjqgJhQJztQprhE5VDmBtcnpWT19_JsicR9DwIs-IoO-gW5Z5dWjx5jeYKI5zXJKKQGDX3VLB2rd91R_-5-QjfEiBI5vEd_sEK6H9DFv9UAaWdHQb6ov7BzrrYPaZhaduFidAHLEJa-ePYcbwoQTPPG8ZhqvMh9AxwrTErdtYEc66uMEOXJ38vDyuszQuIXNoJRYZTW5BfbQYVBhvhcPUB729kVKVyouKN841eRB8ZKW3inuLQuRMkEXjy2YkTbELg3behj1ghbBIWnl06JJzL4wlIHkxMqqSpjT5EPYSi3SLkkooo-VYVwTlM4Si55l2CWacpl3MdF9PdqcjzzXxXEeeDyF7peoizMY_7pf959B_iYtGT_Au5Zf_pjyAjfry97k-P52efYVNuhLrdvdhsLh_CN8wOlnY70n6XgDbLuBN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pruning+by+explaining%3A+A+novel+criterion+for+deep+neural+network+pruning&rft.jtitle=Pattern+recognition&rft.au=Yeom%2C+Seul-Ki&rft.au=Seegerer%2C+Philipp&rft.au=Lapuschkin%2C+Sebastian&rft.au=Binder%2C+Alexander&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=115&rft_id=info:doi/10.1016%2Fj.patcog.2021.107899&rft.externalDocID=S0031320321000868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |