Quantitative Analysis Using Consecutive Time Window for Unobtrusive Atrial Fibrillation Detection Based on Ballistocardiogram Signal
Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 15; p. 5516 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
24.07.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22155516 |
Cover
Loading…
Abstract | Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW–RQA features. As validation, the CTW–RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW–RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW–RQA features effectively supplement the existing BCG features for AF detection. |
---|---|
AbstractList | Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW–RQA features. As validation, the CTW–RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW–RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW–RQA features effectively supplement the existing BCG features for AF detection. Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW-RQA features. As validation, the CTW-RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW-RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW-RQA features effectively supplement the existing BCG features for AF detection.Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW-RQA features. As validation, the CTW-RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW-RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW-RQA features effectively supplement the existing BCG features for AF detection. |
Author | Cheng, Tianqing Jiang, Fangfang Zeng, Jitao Zhang, Biyong Li, Qing |
AuthorAffiliation | 3 BOBO Technology, Hangzhou 310000, China 2 College of Medicine and Biological Information Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; biyong.zhang@slaaplekker.cn 1 College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; 2171227@stu.neu.edu.cn (T.C.); 20195984@stu.neu.edu.cn (Q.L.); 20196008@stu.neu.edu.cn (J.Z.) |
AuthorAffiliation_xml | – name: 3 BOBO Technology, Hangzhou 310000, China – name: 2 College of Medicine and Biological Information Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; biyong.zhang@slaaplekker.cn – name: 1 College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; 2171227@stu.neu.edu.cn (T.C.); 20195984@stu.neu.edu.cn (Q.L.); 20196008@stu.neu.edu.cn (J.Z.) |
Author_xml | – sequence: 1 givenname: Tianqing surname: Cheng fullname: Cheng, Tianqing – sequence: 2 givenname: Fangfang orcidid: 0000-0001-5822-9842 surname: Jiang fullname: Jiang, Fangfang – sequence: 3 givenname: Qing surname: Li fullname: Li, Qing – sequence: 4 givenname: Jitao surname: Zeng fullname: Zeng, Jitao – sequence: 5 givenname: Biyong surname: Zhang fullname: Zhang, Biyong |
BookMark | eNplkk1v1DAQhiNURD_gwD-IxAUOS_0d54LULhQqVUKIrjhaE2cSvErsYjtFvfPDyWYLouXkked9nxmP57g48MFjUbyk5C3nNTlNjFEpJVVPiiMqmFhpxsjBP_FhcZzSlhDGOdfPikMuda0JI0fFry8T-OwyZHeL5ZmH4S65VG6S8325Dj6hnZbUtRux_OZ8G36WXYjlxocmxyktthwdDOWFa6IbhhkVfPkeM9olOoeEbbkEw-BSDhZi60IfYSy_un4u-bx42sGQ8MX9eVJsLj5crz-trj5_vFyfXa0sr1ReUQVaUD4_CqxkDRO2ZaqpaAsN1VWta9UKhhKwq2Sn2gYJdlhxYQEqJQTyk-Jyz20DbM1NdCPEOxPAmeUixN5AzM4OaFAo1ggrrbKV0ExryzoFUlEtW4Bux3q3Z91MzYitRZ8jDA-gDzPefTd9uDU157RWbAa8vgfE8GPClM3oksV5fh7DlAxTtSKUMCZm6atH0m2Y4jy4WVURUkktFJ9Vp3uVjSGliJ2xy7-GXX03GErMblvM322ZHW8eOf60_7_2N5DVwl0 |
CitedBy_id | crossref_primary_10_3389_fdgth_2023_1222898 |
Cites_doi | 10.1161/JAHA.118.009351 10.4028/www.scientific.net/AMR.1044-1045.1251 10.2196/14857 10.1186/1687-6180-2014-181 10.1109/ICECS.2018.8617931 10.1016/j.physrep.2006.11.001 10.1109/JBHI.2019.2927165 10.3390/s21072539 10.1109/CISP-BMEI48845.2019.8965793 10.1016/j.physleta.2016.12.028 10.1016/j.compbiomed.2022.105551 10.1140/epjst/e2008-00829-1 10.1016/S0140-6736(17)31072-3 10.1145/1143844.1143865 10.1016/j.eswa.2021.115219 10.1007/978-981-10-4086-3_142 10.3389/fcvm.2022.837958 10.3991/ijoe.v16i03.12871 10.1109/TBME.2019.2897952 10.1142/S0219720005001004 10.1136/heartjnl-2019-316004 10.1103/PhysRevE.65.021102 10.1088/0967-3334/28/3/R01 10.1038/srep31297 10.1016/j.hrthm.2014.08.035 10.1371/journal.pone.0220294 10.1007/s10439-009-9740-z 10.1152/japplphysiol.00298.2017 10.1186/s12938-021-00848-w 10.1109/TITB.2012.2225067 10.1016/j.medengphy.2008.01.008 10.1140/epjst/e2008-00833-5 10.22489/CinC.2016.081-339 10.1109/IEMBS.2011.6091058 10.1145/3136625 10.1007/s10462-007-9052-3 10.3390/s20030606 10.3390/app11198896 10.1161/CIRCULATIONAHA.105.595140 10.1109/EMBC.2019.8857059 10.3389/fphys.2019.00255 10.1161/CIR.0000000000000659 10.1016/j.bspc.2020.102262 10.1038/s41598-019-48267-1 10.2196/28974 10.1016/j.bspc.2015.01.007 10.3390/s21113814 10.1001/jama.285.18.2370 10.3390/ijerph19074014 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22155516 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e462b4c5c6c748288c2f6a56185daafe PMC9331962 10_3390_s22155516 |
GrantInformation_xml | – fundername: Northeastern University’s 16th session (2022) Innovation Training Program for College Students grantid: 221278 – fundername: National Natural Science Foundation of China grantid: 61801104; 61902058 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c376t-16a8413424ac52b24cd26b71dab1879896d42e5aef75f6dbe0efe734caa7644e3 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:25:08 EDT 2025 Thu Aug 21 18:31:56 EDT 2025 Fri Jul 11 00:30:49 EDT 2025 Sat Aug 23 14:17:25 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 Tue Jul 01 02:42:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-16a8413424ac52b24cd26b71dab1879896d42e5aef75f6dbe0efe734caa7644e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5822-9842 |
OpenAccessLink | https://www.proquest.com/docview/2700758463?pq-origsite=%requestingapplication% |
PMID | 35898020 |
PQID | 2700758463 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e462b4c5c6c748288c2f6a56185daafe pubmedcentral_primary_oai_pubmedcentral_nih_gov_9331962 proquest_miscellaneous_2696010224 proquest_journals_2700758463 crossref_citationtrail_10_3390_s22155516 crossref_primary_10_3390_s22155516 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220724 |
PublicationDateYYYYMMDD | 2022-07-24 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220724 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lundberg (ref_35) 2017; 30 Eckmann (ref_21) 1995; 16 ref_14 Etemadi (ref_10) 2018; 124 ref_13 ref_11 ref_55 Nazarian (ref_56) 2021; 23 (ref_22) 2020; 114092 Bonomi (ref_50) 2018; 7 Ikram (ref_33) 2017; 29 ref_18 Jiang (ref_20) 2021; 20 ref_16 Li (ref_42) 2018; 50 Krivoshei (ref_52) 2017; 19 Dash (ref_8) 2009; 37 Kirchhof (ref_3) 2017; 390 Guidoboni (ref_9) 2019; 66 Aloys (ref_39) 2017; 381 Zhao (ref_40) 2019; 10 Jung (ref_47) 2022; 9 Ladavich (ref_5) 2015; 18 ref_25 Kotsiantis (ref_37) 2006; 26 ref_28 Allen (ref_12) 2007; 28 ref_26 Kim (ref_15) 2016; 6 Bonomi (ref_51) 2019; 24 Brueser (ref_17) 2012; 17 Miyasaka (ref_1) 2006; 114 Sun (ref_23) 2008; 30 Marwan (ref_27) 2007; 438 (ref_53) 2020; 16 Go (ref_2) 2001; 285 Matassini (ref_29) 2002; 65 Xiong (ref_46) 2022; 146 ref_32 Benjamin (ref_4) 2019; 139 ref_38 Ding (ref_34) 2005; 3 Rajakariar (ref_44) 2020; 106 Chen (ref_36) 2021; 183 Schinkel (ref_30) 2008; 164 Fukuma (ref_48) 2019; 9 Mathunjwa (ref_24) 2021; 64 ref_45 Couderc (ref_54) 2015; 12 ref_41 Inui (ref_43) 2020; 4 Wen (ref_19) 2019; 24 ref_49 Marwan (ref_31) 2008; 164 ref_7 ref_6 |
References_xml | – volume: 7 start-page: e009351 year: 2018 ident: ref_50 article-title: Atrial fibrillation detection using a novel cardiac ambulatory monitor based on photo-plethysmography at the wrist publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.118.009351 – ident: ref_32 – ident: ref_25 doi: 10.4028/www.scientific.net/AMR.1044-1045.1251 – volume: 4 start-page: 14857 year: 2020 ident: ref_43 article-title: Use of a smart watch for early detection of paroxysmal atrial fibrillation: Validation study publication-title: JMIR Cardio doi: 10.2196/14857 – volume: 16 start-page: 441 year: 1995 ident: ref_21 article-title: Recurrence plots of dynamical systems publication-title: World Sci. Ser. Nonlinear Sci. Ser. A – ident: ref_41 doi: 10.1186/1687-6180-2014-181 – volume: 30 start-page: 4765 year: 2017 ident: ref_35 article-title: A Unified Approach to Interpreting Model Predictions publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_26 doi: 10.1109/ICECS.2018.8617931 – volume: 438 start-page: 237 year: 2007 ident: ref_27 article-title: Recurrence plots for the analysis of complex systems publication-title: Phys. Rep. doi: 10.1016/j.physrep.2006.11.001 – volume: 24 start-page: 1610 year: 2019 ident: ref_51 article-title: Detecting atrial fibrillation and atrial flutter in daily life using photoplethysmography data publication-title: IEEE J. Biomed. Health Inform. – volume: 24 start-page: 1093 year: 2019 ident: ref_19 article-title: A feasible feature extraction method for atrial fibrillation detection from BCG publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2927165 – volume: 114092 start-page: 864 year: 2020 ident: ref_22 article-title: Recurrence plots: A new methodology for electrochemical noise signal analysis publication-title: J. Electroanal. Chem. – ident: ref_55 doi: 10.3390/s21072539 – volume: 19 start-page: 753 year: 2017 ident: ref_52 article-title: Smart detection of atrial fibrillation publication-title: EP Europace – ident: ref_28 doi: 10.1109/CISP-BMEI48845.2019.8965793 – volume: 381 start-page: 604 year: 2017 ident: ref_39 article-title: Robust reconstruction of a signal from its unthresholded recurrence plot subject to disturbances publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2016.12.028 – volume: 146 start-page: e105551 year: 2022 ident: ref_46 article-title: Enhancing the detection of atrial fibrillation from wearable sensors with neural style transfer and convolutional recurrent networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105551 – volume: 164 start-page: 3 year: 2008 ident: ref_31 article-title: A historical review of recurrence plots publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2008-00829-1 – volume: 390 start-page: 1873 year: 2017 ident: ref_3 article-title: The future of atrial fibrillation management: Integrated care and stratified therapy publication-title: Lancet doi: 10.1016/S0140-6736(17)31072-3 – ident: ref_38 doi: 10.1145/1143844.1143865 – volume: 183 start-page: 115219 year: 2021 ident: ref_36 article-title: A Novel Self-learning Feature Selection Approach Based on Feature Attributions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115219 – ident: ref_7 doi: 10.1007/978-981-10-4086-3_142 – volume: 9 start-page: e837958 year: 2022 ident: ref_47 article-title: Clinical implications of atrial fibrillation detection using wearable devices in patients with cryptogenic stroke (CANDLE-AF) trial: Design and rationale publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.837958 – volume: 16 start-page: 60 year: 2020 ident: ref_53 article-title: Monitoring atrial fibrillation using PPG signals and a smartphone publication-title: Int. J. Online Biomed. Eng. doi: 10.3991/ijoe.v16i03.12871 – volume: 66 start-page: 2906 year: 2019 ident: ref_9 article-title: Cardiovascular function and ballistocardiogram: A relationship interpreted via mathematical modeling publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2897952 – volume: 3 start-page: 185 year: 2005 ident: ref_34 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S0219720005001004 – volume: 106 start-page: 665 year: 2020 ident: ref_44 article-title: Accuracy of a smartwatch based single-lead electrocardiogram device in detection of atrial fibrillation publication-title: Heart doi: 10.1136/heartjnl-2019-316004 – volume: 65 start-page: 021102 year: 2002 ident: ref_29 article-title: Optimizing of recurrence plots for noise reduction publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.65.021102 – volume: 28 start-page: R1 year: 2007 ident: ref_12 article-title: Photoplethysmography and its application in clinical physiological measurement publication-title: Physiol. Meas. doi: 10.1088/0967-3334/28/3/R01 – volume: 6 start-page: 31297 year: 2016 ident: ref_15 article-title: Ballistocardiogram: Mechanism and potential for unobtrusive cardiovascular health monitoring publication-title: Sci. Rep. doi: 10.1038/srep31297 – volume: 12 start-page: 195 year: 2015 ident: ref_54 article-title: Detection of atrial fibrillation using contactless facial video monitoring publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2014.08.035 – ident: ref_6 doi: 10.1371/journal.pone.0220294 – volume: 37 start-page: 1701 year: 2009 ident: ref_8 article-title: Automatic real time detection of atrial fibrillation publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9740-z – volume: 124 start-page: 452 year: 2018 ident: ref_10 article-title: Wearable ballistocardiogram and seismocardiogram systems for health and performance publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00298.2017 – volume: 20 start-page: 12 year: 2021 ident: ref_20 article-title: Attention-based multi-scale features fusion for un obtrusive atrial fibrillation detection using ballistocardiogram signal publication-title: BioMedical Eng. OnLine doi: 10.1186/s12938-021-00848-w – volume: 17 start-page: 162 year: 2012 ident: ref_17 article-title: Automatic detection of atrial fibrillation in cardiac vibration signals publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/TITB.2012.2225067 – volume: 30 start-page: 1105 year: 2008 ident: ref_23 article-title: Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.01.008 – volume: 164 start-page: 45 year: 2008 ident: ref_30 article-title: Selection of recurrence threshold for signal detection publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2008-00833-5 – ident: ref_49 doi: 10.22489/CinC.2016.081-339 – ident: ref_11 doi: 10.1109/IEMBS.2011.6091058 – volume: 50 start-page: 1 year: 2018 ident: ref_42 article-title: Feature Selection publication-title: ACM Comput. Surv. doi: 10.1145/3136625 – volume: 29 start-page: 462 year: 2017 ident: ref_33 article-title: Intrusion detection model using fusion of chi-square feature selection and multi class SVM publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 26 start-page: 159 year: 2006 ident: ref_37 article-title: Machine learning: A review of classification and combining techniques publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-007-9052-3 – ident: ref_45 doi: 10.3390/s20030606 – ident: ref_14 doi: 10.3390/app11198896 – volume: 114 start-page: 119 year: 2006 ident: ref_1 article-title: Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.595140 – ident: ref_18 doi: 10.1109/EMBC.2019.8857059 – volume: 10 start-page: 255 year: 2019 ident: ref_40 article-title: Computer-Aided Diagnosis System of Fetal Hypoxia Incorporating Recurrence Plot with Convolutional Neural Network publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00255 – volume: 139 start-page: e56 year: 2019 ident: ref_4 article-title: American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0000000000000659 – volume: 64 start-page: 102262 year: 2021 ident: ref_24 article-title: ECG arrhythmia classification by using a recurrence plot and convolutional neural network publication-title: Biomed. Signal Processing Control doi: 10.1016/j.bspc.2020.102262 – volume: 9 start-page: 11768 year: 2019 ident: ref_48 article-title: Feasibility of a T-shirt-type wearable electrocardiography monitor for detection of covert atrial fibrillation in young healthy adults publication-title: Sci. Rep. doi: 10.1038/s41598-019-48267-1 – volume: 23 start-page: e28974 year: 2021 ident: ref_56 article-title: Diagnostic accuracy of smartwatches for the detection of cardiac arrhythmia: Systematic review and meta-analysis publication-title: J. Med. Internet Res. doi: 10.2196/28974 – volume: 18 start-page: 274 year: 2015 ident: ref_5 article-title: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.01.007 – ident: ref_16 doi: 10.3390/s21113814 – volume: 285 start-page: 2370 year: 2001 ident: ref_2 article-title: Prevalence of diagnosed atrial fibrillation in adults: National implications for rhythm management and stroke prevention: The AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study publication-title: Jama doi: 10.1001/jama.285.18.2370 – ident: ref_13 doi: 10.3390/ijerph19074014 |
SSID | ssj0023338 |
Score | 2.374183 |
Snippet | Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5516 |
SubjectTerms | Accuracy Algorithms atrial fibrillation detection ballistocardiogram signal Cardiac arrhythmia Classification continuous time windows Electrocardiography Methods Quantitative analysis recurrence plot recurrence quantification analysis Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE-uLKB68FNskTbpHV10WD4LooreSpwpLV3AX_4A_3Jm0u2xB8OKtNFPaZibzYGa-IeTc57kFN8GlTgSWiqI0qcmZS3MebKatCLmJaJ_3cjgSdy_Fy9KoL6wJa-CBm4279EIyI2xhpVUCwoPSsiA1WP2ycFoHj9oXbN48mGpDLQ6RV4MjxCGov_xkYNkwJdSxPhGkv-NZdusilwzNYJNstB4ivWq-bIus-HqbrC_hBu6Q74eZrmN3GOgqOscVoTH9T3EEp7ezuIQNHvQZwu7JFwXvlI7qicEui_hYHNhBB1jzP24q4uiNn8bSrJr2wbo5Gi_GY4QfsLFwFWu56OP7K7xyl4wGt0_Xw7Qdp5Ba0CLTNJe6BJMlmNC2YIYJ65g0Knfa4MjxsiedYL7QPqgiSGd85oNXXFitFXhNnu-R1XpS-31CAzOBF5kucw3-lhcGVGoQjusys6AAVEIu5ttc2RZrHEdejCuIOZAj1YIjCTlbkH40ABu_EfWRVwsCxMSON0BSqlZSqr8kJSFHc05X7UH9rDDvrtAJ4wk5XSzDEcO8ia79ZAY0sicb6L2EqI6EdD6ou1K_v0Ww7h5HJccO_uMPDskaw-6LTKVMHJFVEBh_DD7R1JxE8f8BRKkP5A priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9VAEB9qe9GD-InRVlbx4CWabDa7eQeRfvgoBQXRh72F_ayFkGj7Huq9f7gzmw8aKL2F7IQNO7szv2FnfgPwxue5RZjgUicCT0VZmdTk3KV5EWymrQi5iWyfX-TxSpyclqdbMPbYHBbw8sbQjvpJrS6ad39___uIB_4DRZwYsr-_5Oi36MLnDuygQ1J0Pj-L6TKBFxiG9aRCc_GZK4qM_TOYOU-SvOZ1lg_g_gAX2X6v34ew5dtHcO8aieBjuPq60W0sFUPDxUaSERZzARj14_R2E4eo2oP9wBi8-8MQqrJV2xkquYifxe4dbEkFAE2fHseO_DrmabXsAF2dY_GhaYiLwMYsVkrsYt_Oz3DKJ7Bafvp-eJwOvRVSiyZlneZSV-i_BBfaltxwYR2XRuVOG-o_Xi2kE9yX2gdVBumMz3zwqhBWa4UQyhdPYbvtWv8MWOAmFGWmq1wj-PLCoH0NwhW6yixaA5XA23GZazsQj1P_i6bGAIQ0Uk8aSeD1JPqrZ9u4SeiAdDUJEEF2fNFdnNXDeau9kNwIW1pplcCosrI8SI1gsSqd1sEnsDtquh43XU2X8IoQWZHAq2kYzxtdoujWdxuUkQvZ8_AloGY7ZPZD85H2_Gdk7l4UZPH489snfwF3ORVZZCrlYhe2cSv4PYQ-a_Mybuz_v1gIPw priority: 102 providerName: Scholars Portal |
Title | Quantitative Analysis Using Consecutive Time Window for Unobtrusive Atrial Fibrillation Detection Based on Ballistocardiogram Signal |
URI | https://www.proquest.com/docview/2700758463 https://www.proquest.com/docview/2696010224 https://pubmed.ncbi.nlm.nih.gov/PMC9331962 https://doaj.org/article/e462b4c5c6c748288c2f6a56185daafe |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZg9wIHxFMElsogDlysTWzHdk-IwpYVEiteFb1Ffi4rVclCW_EH-OHMOGl3IyEuVhQ7SpSx5-H5_A0hL2NVeXATAgsycSZr45ireGCVSL60XqbKZbbPM3W6kB-W9XLYcFsPsMqdTsyKOnQe98iPMUGq0VqK15c_GVaNwuzqUELjJjlE6jKEdOnlVcAlIP7q2YQEhPbHaw72DRNDIxuUqfpH_uUYHXnN3MzvkjuDn0jf9IK9R27E9j65fY098AH583lr23xGDDQW3bGL0AwCoFiIM_pt7sJjHvQ7BN_dbwo-Kl20ncOzFvmxXLaDzhH5v-pxcfRd3GSAVktnYOMCzRerFZIQ-AxfRUQX_XpxDq98SBbzk29vT9lQVIF50CUbVilrwHBJLq2vuePSB66croJ1WHjcTFWQPNY2Jl0nFVwsY4paSG-tBt8pikfkoO3a-JjQxF0SdWlNZcHritKBYk0yCGtKD2pAF-TV7jc3fmAcx8IXqwYiD5RIs5dIQV7sh172NBv_GjRDWe0HIDN2vtH9Om-GhdZEqbiTvvbKawnhpPE8KQteoqmDtSkW5Ggn6WZYruvmanIV5Pm-GxYaZk9sG7stjFFT1RPwFUSPZsjog8Y97cWPTNk9Fajq-JP_v_wpucXxdEWpGZdH5ACmQnwGPs_GTfLEhtbM30_I4ezk7NOXSd4_gPajNH8BT4ULKg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMEChgEEpeoie3Y2QNClLLa0lIJ0RV7S_0slVZJYXdVcef38BuZcZJtIyFuvUWxE0eedzzzDSGvfJ5bcBNc6kRgqShKk5qcuTTnwWbaipCbiPZ5KCdT8WlWzDbIn74WBtMqe50YFbVrLP4j38YDUoXWkr87-5Fi1yg8Xe1baLRsse9_nUPItni7twv0fc3Y-OPRh0nadRVILQjTMs2lLkFzCya0LZhhwjomjcqdNth5uxxJJ5gvtA-qCNIZn_ngFRdWawXOg-fw3mvkOhjeDCVKzS4CPA7xXotexPko214wsKd4EDWwebE1wMCfHWZjXjJv4zvkdueX0vctI90lG76-R25dQiu8T35_Wek61qSBhqQ9mgmNSQcUG396u4pDWFZCv0Gw35xT8InptG4M1nbEx2KbEDrGSoN5m4dHd_0yJoTVdAdsqqPxYj5H0AMb02Uxg4x-PT2BJR-Q6ZVs90OyWTe1f0RoYCbwItNlrsHL88KAIg_CcV1mFtSOSsibfpsr2yGcY6ONeQWRDlKkWlMkIS_XU89aWI9_TdpBWq0nIBJ3vNH8PKk6wa68kMwIW1hplYDwtbQsSA1eaVk4rYNPyFZP6apTD4vqgpkT8mI9DIKNpzW69s0K5siRbAH_EqIGHDL4oOFIffo9QoSPOKpW9vj_iz8nNyZHnw-qg73D_SfkJsPKjkylTGyRTWAL_xT8raV5FpmckuOrlqq_RCREQg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9RAFB9qBdGD-InRqqMoeAmbzExmsgcR67q0Voqii3tL57MWlqS6uxTv_lX-db43SbYNiLfeQmaSCfO-M-_9HiEvfJ5bcBNc6kRgqShKk5qcuTTnwWbaipCbiPZ5KPdm4sO8mG-RP30tDKZV9joxKmrXWPxHPsIDUoXWko9ClxbxaTJ9c_ojxQ5SeNLat9NoWeTA_zqD8G35en8CtH7J2PT913d7addhILUgWKs0l7oELS6Y0LZghgnrmDQqd9pgF-5yLJ1gvtA-qCJIZ3zmg1dcWK0VOBKew3uvkKuKFznKmJqfB3scYr8WyYjzcTZaMrCteCg1sH-xTcDAtx1mZl4wddNb5Gbno9K3LVPdJlu-vkNuXEAuvEt-f17rOtangbakPbIJjQkIFJuAeruOQ1hiQr9B4N-cUfCP6axuDNZ5xMdiyxA6xaqDRZuTRyd-FZPDaroL9tXReLFYIACCjamzmE1Gv5wcw5L3yOxStvs-2a6b2j8gNDATeJHpMtfg8XlhQKkH4bguMwsqSCXkVb_Nle3QzrHpxqKCqAcpUm0okpDnm6mnLcTHvybtIq02ExCVO95ofh5XnZBXXkhmhC2stEpAKFtaFqQGD7UsnNbBJ2Snp3TVqYpldc7YCXm2GQYhx5MbXftmDXPkWLbgfwlRAw4ZfNBwpD75HuHCxxzVLHv4_8WfkmsgT9XH_cODR-Q6wyKPTKVM7JBt4Ar_GFyvlXkSeZySo8sWqr_yPEh4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Analysis+Using+Consecutive+Time+Window+for+Unobtrusive+Atrial+Fibrillation+Detection+Based+on+Ballistocardiogram+Signal&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cheng%2C+Tianqing&rft.au=Jiang%2C+Fangfang&rft.au=Li%2C+Qing&rft.au=Zeng%2C+Jitao&rft.date=2022-07-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5516&rft_id=info:doi/10.3390%2Fs22155516&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |