Quantitative Analysis Using Consecutive Time Window for Unobtrusive Atrial Fibrillation Detection Based on Ballistocardiogram Signal

Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 15; p. 5516
Main Authors Cheng, Tianqing, Jiang, Fangfang, Li, Qing, Zeng, Jitao, Zhang, Biyong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 24.07.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22155516

Cover

Loading…
Abstract Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW–RQA features. As validation, the CTW–RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW–RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW–RQA features effectively supplement the existing BCG features for AF detection.
AbstractList Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW–RQA features. As validation, the CTW–RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW–RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW–RQA features effectively supplement the existing BCG features for AF detection.
Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW-RQA features. As validation, the CTW-RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW-RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW-RQA features effectively supplement the existing BCG features for AF detection.Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW-RQA features. As validation, the CTW-RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW-RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW-RQA features effectively supplement the existing BCG features for AF detection.
Author Cheng, Tianqing
Jiang, Fangfang
Zeng, Jitao
Zhang, Biyong
Li, Qing
AuthorAffiliation 3 BOBO Technology, Hangzhou 310000, China
2 College of Medicine and Biological Information Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; biyong.zhang@slaaplekker.cn
1 College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; 2171227@stu.neu.edu.cn (T.C.); 20195984@stu.neu.edu.cn (Q.L.); 20196008@stu.neu.edu.cn (J.Z.)
AuthorAffiliation_xml – name: 3 BOBO Technology, Hangzhou 310000, China
– name: 2 College of Medicine and Biological Information Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; biyong.zhang@slaaplekker.cn
– name: 1 College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; 2171227@stu.neu.edu.cn (T.C.); 20195984@stu.neu.edu.cn (Q.L.); 20196008@stu.neu.edu.cn (J.Z.)
Author_xml – sequence: 1
  givenname: Tianqing
  surname: Cheng
  fullname: Cheng, Tianqing
– sequence: 2
  givenname: Fangfang
  orcidid: 0000-0001-5822-9842
  surname: Jiang
  fullname: Jiang, Fangfang
– sequence: 3
  givenname: Qing
  surname: Li
  fullname: Li, Qing
– sequence: 4
  givenname: Jitao
  surname: Zeng
  fullname: Zeng, Jitao
– sequence: 5
  givenname: Biyong
  surname: Zhang
  fullname: Zhang, Biyong
BookMark eNplkk1v1DAQhiNURD_gwD-IxAUOS_0d54LULhQqVUKIrjhaE2cSvErsYjtFvfPDyWYLouXkked9nxmP57g48MFjUbyk5C3nNTlNjFEpJVVPiiMqmFhpxsjBP_FhcZzSlhDGOdfPikMuda0JI0fFry8T-OwyZHeL5ZmH4S65VG6S8325Dj6hnZbUtRux_OZ8G36WXYjlxocmxyktthwdDOWFa6IbhhkVfPkeM9olOoeEbbkEw-BSDhZi60IfYSy_un4u-bx42sGQ8MX9eVJsLj5crz-trj5_vFyfXa0sr1ReUQVaUD4_CqxkDRO2ZaqpaAsN1VWta9UKhhKwq2Sn2gYJdlhxYQEqJQTyk-Jyz20DbM1NdCPEOxPAmeUixN5AzM4OaFAo1ggrrbKV0ExryzoFUlEtW4Bux3q3Z91MzYitRZ8jDA-gDzPefTd9uDU157RWbAa8vgfE8GPClM3oksV5fh7DlAxTtSKUMCZm6atH0m2Y4jy4WVURUkktFJ9Vp3uVjSGliJ2xy7-GXX03GErMblvM322ZHW8eOf60_7_2N5DVwl0
CitedBy_id crossref_primary_10_3389_fdgth_2023_1222898
Cites_doi 10.1161/JAHA.118.009351
10.4028/www.scientific.net/AMR.1044-1045.1251
10.2196/14857
10.1186/1687-6180-2014-181
10.1109/ICECS.2018.8617931
10.1016/j.physrep.2006.11.001
10.1109/JBHI.2019.2927165
10.3390/s21072539
10.1109/CISP-BMEI48845.2019.8965793
10.1016/j.physleta.2016.12.028
10.1016/j.compbiomed.2022.105551
10.1140/epjst/e2008-00829-1
10.1016/S0140-6736(17)31072-3
10.1145/1143844.1143865
10.1016/j.eswa.2021.115219
10.1007/978-981-10-4086-3_142
10.3389/fcvm.2022.837958
10.3991/ijoe.v16i03.12871
10.1109/TBME.2019.2897952
10.1142/S0219720005001004
10.1136/heartjnl-2019-316004
10.1103/PhysRevE.65.021102
10.1088/0967-3334/28/3/R01
10.1038/srep31297
10.1016/j.hrthm.2014.08.035
10.1371/journal.pone.0220294
10.1007/s10439-009-9740-z
10.1152/japplphysiol.00298.2017
10.1186/s12938-021-00848-w
10.1109/TITB.2012.2225067
10.1016/j.medengphy.2008.01.008
10.1140/epjst/e2008-00833-5
10.22489/CinC.2016.081-339
10.1109/IEMBS.2011.6091058
10.1145/3136625
10.1007/s10462-007-9052-3
10.3390/s20030606
10.3390/app11198896
10.1161/CIRCULATIONAHA.105.595140
10.1109/EMBC.2019.8857059
10.3389/fphys.2019.00255
10.1161/CIR.0000000000000659
10.1016/j.bspc.2020.102262
10.1038/s41598-019-48267-1
10.2196/28974
10.1016/j.bspc.2015.01.007
10.3390/s21113814
10.1001/jama.285.18.2370
10.3390/ijerph19074014
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22155516
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e462b4c5c6c748288c2f6a56185daafe
PMC9331962
10_3390_s22155516
GrantInformation_xml – fundername: Northeastern University’s 16th session (2022) Innovation Training Program for College Students
  grantid: 221278
– fundername: National Natural Science Foundation of China
  grantid: 61801104; 61902058
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c376t-16a8413424ac52b24cd26b71dab1879896d42e5aef75f6dbe0efe734caa7644e3
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:25:08 EDT 2025
Thu Aug 21 18:31:56 EDT 2025
Fri Jul 11 00:30:49 EDT 2025
Sat Aug 23 14:17:25 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
Tue Jul 01 02:42:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-16a8413424ac52b24cd26b71dab1879896d42e5aef75f6dbe0efe734caa7644e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5822-9842
OpenAccessLink https://www.proquest.com/docview/2700758463?pq-origsite=%requestingapplication%
PMID 35898020
PQID 2700758463
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e462b4c5c6c748288c2f6a56185daafe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9331962
proquest_miscellaneous_2696010224
proquest_journals_2700758463
crossref_citationtrail_10_3390_s22155516
crossref_primary_10_3390_s22155516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220724
PublicationDateYYYYMMDD 2022-07-24
PublicationDate_xml – month: 7
  year: 2022
  text: 20220724
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lundberg (ref_35) 2017; 30
Eckmann (ref_21) 1995; 16
ref_14
Etemadi (ref_10) 2018; 124
ref_13
ref_11
ref_55
Nazarian (ref_56) 2021; 23
(ref_22) 2020; 114092
Bonomi (ref_50) 2018; 7
Ikram (ref_33) 2017; 29
ref_18
Jiang (ref_20) 2021; 20
ref_16
Li (ref_42) 2018; 50
Krivoshei (ref_52) 2017; 19
Dash (ref_8) 2009; 37
Kirchhof (ref_3) 2017; 390
Guidoboni (ref_9) 2019; 66
Aloys (ref_39) 2017; 381
Zhao (ref_40) 2019; 10
Jung (ref_47) 2022; 9
Ladavich (ref_5) 2015; 18
ref_25
Kotsiantis (ref_37) 2006; 26
ref_28
Allen (ref_12) 2007; 28
ref_26
Kim (ref_15) 2016; 6
Bonomi (ref_51) 2019; 24
Brueser (ref_17) 2012; 17
Miyasaka (ref_1) 2006; 114
Sun (ref_23) 2008; 30
Marwan (ref_27) 2007; 438
(ref_53) 2020; 16
Go (ref_2) 2001; 285
Matassini (ref_29) 2002; 65
Xiong (ref_46) 2022; 146
ref_32
Benjamin (ref_4) 2019; 139
ref_38
Ding (ref_34) 2005; 3
Rajakariar (ref_44) 2020; 106
Chen (ref_36) 2021; 183
Schinkel (ref_30) 2008; 164
Fukuma (ref_48) 2019; 9
Mathunjwa (ref_24) 2021; 64
ref_45
Couderc (ref_54) 2015; 12
ref_41
Inui (ref_43) 2020; 4
Wen (ref_19) 2019; 24
ref_49
Marwan (ref_31) 2008; 164
ref_7
ref_6
References_xml – volume: 7
  start-page: e009351
  year: 2018
  ident: ref_50
  article-title: Atrial fibrillation detection using a novel cardiac ambulatory monitor based on photo-plethysmography at the wrist
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.118.009351
– ident: ref_32
– ident: ref_25
  doi: 10.4028/www.scientific.net/AMR.1044-1045.1251
– volume: 4
  start-page: 14857
  year: 2020
  ident: ref_43
  article-title: Use of a smart watch for early detection of paroxysmal atrial fibrillation: Validation study
  publication-title: JMIR Cardio
  doi: 10.2196/14857
– volume: 16
  start-page: 441
  year: 1995
  ident: ref_21
  article-title: Recurrence plots of dynamical systems
  publication-title: World Sci. Ser. Nonlinear Sci. Ser. A
– ident: ref_41
  doi: 10.1186/1687-6180-2014-181
– volume: 30
  start-page: 4765
  year: 2017
  ident: ref_35
  article-title: A Unified Approach to Interpreting Model Predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_26
  doi: 10.1109/ICECS.2018.8617931
– volume: 438
  start-page: 237
  year: 2007
  ident: ref_27
  article-title: Recurrence plots for the analysis of complex systems
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.11.001
– volume: 24
  start-page: 1610
  year: 2019
  ident: ref_51
  article-title: Detecting atrial fibrillation and atrial flutter in daily life using photoplethysmography data
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 24
  start-page: 1093
  year: 2019
  ident: ref_19
  article-title: A feasible feature extraction method for atrial fibrillation detection from BCG
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2927165
– volume: 114092
  start-page: 864
  year: 2020
  ident: ref_22
  article-title: Recurrence plots: A new methodology for electrochemical noise signal analysis
  publication-title: J. Electroanal. Chem.
– ident: ref_55
  doi: 10.3390/s21072539
– volume: 19
  start-page: 753
  year: 2017
  ident: ref_52
  article-title: Smart detection of atrial fibrillation
  publication-title: EP Europace
– ident: ref_28
  doi: 10.1109/CISP-BMEI48845.2019.8965793
– volume: 381
  start-page: 604
  year: 2017
  ident: ref_39
  article-title: Robust reconstruction of a signal from its unthresholded recurrence plot subject to disturbances
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2016.12.028
– volume: 146
  start-page: e105551
  year: 2022
  ident: ref_46
  article-title: Enhancing the detection of atrial fibrillation from wearable sensors with neural style transfer and convolutional recurrent networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105551
– volume: 164
  start-page: 3
  year: 2008
  ident: ref_31
  article-title: A historical review of recurrence plots
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2008-00829-1
– volume: 390
  start-page: 1873
  year: 2017
  ident: ref_3
  article-title: The future of atrial fibrillation management: Integrated care and stratified therapy
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31072-3
– ident: ref_38
  doi: 10.1145/1143844.1143865
– volume: 183
  start-page: 115219
  year: 2021
  ident: ref_36
  article-title: A Novel Self-learning Feature Selection Approach Based on Feature Attributions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115219
– ident: ref_7
  doi: 10.1007/978-981-10-4086-3_142
– volume: 9
  start-page: e837958
  year: 2022
  ident: ref_47
  article-title: Clinical implications of atrial fibrillation detection using wearable devices in patients with cryptogenic stroke (CANDLE-AF) trial: Design and rationale
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.837958
– volume: 16
  start-page: 60
  year: 2020
  ident: ref_53
  article-title: Monitoring atrial fibrillation using PPG signals and a smartphone
  publication-title: Int. J. Online Biomed. Eng.
  doi: 10.3991/ijoe.v16i03.12871
– volume: 66
  start-page: 2906
  year: 2019
  ident: ref_9
  article-title: Cardiovascular function and ballistocardiogram: A relationship interpreted via mathematical modeling
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2897952
– volume: 3
  start-page: 185
  year: 2005
  ident: ref_34
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720005001004
– volume: 106
  start-page: 665
  year: 2020
  ident: ref_44
  article-title: Accuracy of a smartwatch based single-lead electrocardiogram device in detection of atrial fibrillation
  publication-title: Heart
  doi: 10.1136/heartjnl-2019-316004
– volume: 65
  start-page: 021102
  year: 2002
  ident: ref_29
  article-title: Optimizing of recurrence plots for noise reduction
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.65.021102
– volume: 28
  start-page: R1
  year: 2007
  ident: ref_12
  article-title: Photoplethysmography and its application in clinical physiological measurement
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/28/3/R01
– volume: 6
  start-page: 31297
  year: 2016
  ident: ref_15
  article-title: Ballistocardiogram: Mechanism and potential for unobtrusive cardiovascular health monitoring
  publication-title: Sci. Rep.
  doi: 10.1038/srep31297
– volume: 12
  start-page: 195
  year: 2015
  ident: ref_54
  article-title: Detection of atrial fibrillation using contactless facial video monitoring
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2014.08.035
– ident: ref_6
  doi: 10.1371/journal.pone.0220294
– volume: 37
  start-page: 1701
  year: 2009
  ident: ref_8
  article-title: Automatic real time detection of atrial fibrillation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9740-z
– volume: 124
  start-page: 452
  year: 2018
  ident: ref_10
  article-title: Wearable ballistocardiogram and seismocardiogram systems for health and performance
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00298.2017
– volume: 20
  start-page: 12
  year: 2021
  ident: ref_20
  article-title: Attention-based multi-scale features fusion for un obtrusive atrial fibrillation detection using ballistocardiogram signal
  publication-title: BioMedical Eng. OnLine
  doi: 10.1186/s12938-021-00848-w
– volume: 17
  start-page: 162
  year: 2012
  ident: ref_17
  article-title: Automatic detection of atrial fibrillation in cardiac vibration signals
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/TITB.2012.2225067
– volume: 30
  start-page: 1105
  year: 2008
  ident: ref_23
  article-title: Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.01.008
– volume: 164
  start-page: 45
  year: 2008
  ident: ref_30
  article-title: Selection of recurrence threshold for signal detection
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2008-00833-5
– ident: ref_49
  doi: 10.22489/CinC.2016.081-339
– ident: ref_11
  doi: 10.1109/IEMBS.2011.6091058
– volume: 50
  start-page: 1
  year: 2018
  ident: ref_42
  article-title: Feature Selection
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3136625
– volume: 29
  start-page: 462
  year: 2017
  ident: ref_33
  article-title: Intrusion detection model using fusion of chi-square feature selection and multi class SVM
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 26
  start-page: 159
  year: 2006
  ident: ref_37
  article-title: Machine learning: A review of classification and combining techniques
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-007-9052-3
– ident: ref_45
  doi: 10.3390/s20030606
– ident: ref_14
  doi: 10.3390/app11198896
– volume: 114
  start-page: 119
  year: 2006
  ident: ref_1
  article-title: Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.595140
– ident: ref_18
  doi: 10.1109/EMBC.2019.8857059
– volume: 10
  start-page: 255
  year: 2019
  ident: ref_40
  article-title: Computer-Aided Diagnosis System of Fetal Hypoxia Incorporating Recurrence Plot with Convolutional Neural Network
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00255
– volume: 139
  start-page: e56
  year: 2019
  ident: ref_4
  article-title: American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000659
– volume: 64
  start-page: 102262
  year: 2021
  ident: ref_24
  article-title: ECG arrhythmia classification by using a recurrence plot and convolutional neural network
  publication-title: Biomed. Signal Processing Control
  doi: 10.1016/j.bspc.2020.102262
– volume: 9
  start-page: 11768
  year: 2019
  ident: ref_48
  article-title: Feasibility of a T-shirt-type wearable electrocardiography monitor for detection of covert atrial fibrillation in young healthy adults
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48267-1
– volume: 23
  start-page: e28974
  year: 2021
  ident: ref_56
  article-title: Diagnostic accuracy of smartwatches for the detection of cardiac arrhythmia: Systematic review and meta-analysis
  publication-title: J. Med. Internet Res.
  doi: 10.2196/28974
– volume: 18
  start-page: 274
  year: 2015
  ident: ref_5
  article-title: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.01.007
– ident: ref_16
  doi: 10.3390/s21113814
– volume: 285
  start-page: 2370
  year: 2001
  ident: ref_2
  article-title: Prevalence of diagnosed atrial fibrillation in adults: National implications for rhythm management and stroke prevention: The AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study
  publication-title: Jama
  doi: 10.1001/jama.285.18.2370
– ident: ref_13
  doi: 10.3390/ijerph19074014
SSID ssj0023338
Score 2.374183
Snippet Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5516
SubjectTerms Accuracy
Algorithms
atrial fibrillation detection
ballistocardiogram signal
Cardiac arrhythmia
Classification
continuous time windows
Electrocardiography
Methods
Quantitative analysis
recurrence plot
recurrence quantification analysis
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE-uLKB68FNskTbpHV10WD4LooreSpwpLV3AX_4A_3Jm0u2xB8OKtNFPaZibzYGa-IeTc57kFN8GlTgSWiqI0qcmZS3MebKatCLmJaJ_3cjgSdy_Fy9KoL6wJa-CBm4279EIyI2xhpVUCwoPSsiA1WP2ycFoHj9oXbN48mGpDLQ6RV4MjxCGov_xkYNkwJdSxPhGkv-NZdusilwzNYJNstB4ivWq-bIus-HqbrC_hBu6Q74eZrmN3GOgqOscVoTH9T3EEp7ezuIQNHvQZwu7JFwXvlI7qicEui_hYHNhBB1jzP24q4uiNn8bSrJr2wbo5Gi_GY4QfsLFwFWu56OP7K7xyl4wGt0_Xw7Qdp5Ba0CLTNJe6BJMlmNC2YIYJ65g0Knfa4MjxsiedYL7QPqgiSGd85oNXXFitFXhNnu-R1XpS-31CAzOBF5kucw3-lhcGVGoQjusys6AAVEIu5ttc2RZrHEdejCuIOZAj1YIjCTlbkH40ABu_EfWRVwsCxMSON0BSqlZSqr8kJSFHc05X7UH9rDDvrtAJ4wk5XSzDEcO8ia79ZAY0sicb6L2EqI6EdD6ou1K_v0Ww7h5HJccO_uMPDskaw-6LTKVMHJFVEBh_DD7R1JxE8f8BRKkP5A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9VAEB9qe9GD-InRVlbx4CWabDa7eQeRfvgoBQXRh72F_ayFkGj7Huq9f7gzmw8aKL2F7IQNO7szv2FnfgPwxue5RZjgUicCT0VZmdTk3KV5EWymrQi5iWyfX-TxSpyclqdbMPbYHBbw8sbQjvpJrS6ad39___uIB_4DRZwYsr-_5Oi36MLnDuygQ1J0Pj-L6TKBFxiG9aRCc_GZK4qM_TOYOU-SvOZ1lg_g_gAX2X6v34ew5dtHcO8aieBjuPq60W0sFUPDxUaSERZzARj14_R2E4eo2oP9wBi8-8MQqrJV2xkquYifxe4dbEkFAE2fHseO_DrmabXsAF2dY_GhaYiLwMYsVkrsYt_Oz3DKJ7Bafvp-eJwOvRVSiyZlneZSV-i_BBfaltxwYR2XRuVOG-o_Xi2kE9yX2gdVBumMz3zwqhBWa4UQyhdPYbvtWv8MWOAmFGWmq1wj-PLCoH0NwhW6yixaA5XA23GZazsQj1P_i6bGAIQ0Uk8aSeD1JPqrZ9u4SeiAdDUJEEF2fNFdnNXDeau9kNwIW1pplcCosrI8SI1gsSqd1sEnsDtquh43XU2X8IoQWZHAq2kYzxtdoujWdxuUkQvZ8_AloGY7ZPZD85H2_Gdk7l4UZPH489snfwF3ORVZZCrlYhe2cSv4PYQ-a_Mybuz_v1gIPw
  priority: 102
  providerName: Scholars Portal
Title Quantitative Analysis Using Consecutive Time Window for Unobtrusive Atrial Fibrillation Detection Based on Ballistocardiogram Signal
URI https://www.proquest.com/docview/2700758463
https://www.proquest.com/docview/2696010224
https://pubmed.ncbi.nlm.nih.gov/PMC9331962
https://doaj.org/article/e462b4c5c6c748288c2f6a56185daafe
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZg9wIHxFMElsogDlysTWzHdk-IwpYVEiteFb1Ffi4rVclCW_EH-OHMOGl3IyEuVhQ7SpSx5-H5_A0hL2NVeXATAgsycSZr45ireGCVSL60XqbKZbbPM3W6kB-W9XLYcFsPsMqdTsyKOnQe98iPMUGq0VqK15c_GVaNwuzqUELjJjlE6jKEdOnlVcAlIP7q2YQEhPbHaw72DRNDIxuUqfpH_uUYHXnN3MzvkjuDn0jf9IK9R27E9j65fY098AH583lr23xGDDQW3bGL0AwCoFiIM_pt7sJjHvQ7BN_dbwo-Kl20ncOzFvmxXLaDzhH5v-pxcfRd3GSAVktnYOMCzRerFZIQ-AxfRUQX_XpxDq98SBbzk29vT9lQVIF50CUbVilrwHBJLq2vuePSB66croJ1WHjcTFWQPNY2Jl0nFVwsY4paSG-tBt8pikfkoO3a-JjQxF0SdWlNZcHritKBYk0yCGtKD2pAF-TV7jc3fmAcx8IXqwYiD5RIs5dIQV7sh172NBv_GjRDWe0HIDN2vtH9Om-GhdZEqbiTvvbKawnhpPE8KQteoqmDtSkW5Ggn6WZYruvmanIV5Pm-GxYaZk9sG7stjFFT1RPwFUSPZsjog8Y97cWPTNk9Fajq-JP_v_wpucXxdEWpGZdH5ACmQnwGPs_GTfLEhtbM30_I4ezk7NOXSd4_gPajNH8BT4ULKg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMEChgEEpeoie3Y2QNClLLa0lIJ0RV7S_0slVZJYXdVcef38BuZcZJtIyFuvUWxE0eedzzzDSGvfJ5bcBNc6kRgqShKk5qcuTTnwWbaipCbiPZ5KCdT8WlWzDbIn74WBtMqe50YFbVrLP4j38YDUoXWkr87-5Fi1yg8Xe1baLRsse9_nUPItni7twv0fc3Y-OPRh0nadRVILQjTMs2lLkFzCya0LZhhwjomjcqdNth5uxxJJ5gvtA-qCNIZn_ngFRdWawXOg-fw3mvkOhjeDCVKzS4CPA7xXotexPko214wsKd4EDWwebE1wMCfHWZjXjJv4zvkdueX0vctI90lG76-R25dQiu8T35_Wek61qSBhqQ9mgmNSQcUG396u4pDWFZCv0Gw35xT8InptG4M1nbEx2KbEDrGSoN5m4dHd_0yJoTVdAdsqqPxYj5H0AMb02Uxg4x-PT2BJR-Q6ZVs90OyWTe1f0RoYCbwItNlrsHL88KAIg_CcV1mFtSOSsibfpsr2yGcY6ONeQWRDlKkWlMkIS_XU89aWI9_TdpBWq0nIBJ3vNH8PKk6wa68kMwIW1hplYDwtbQsSA1eaVk4rYNPyFZP6apTD4vqgpkT8mI9DIKNpzW69s0K5siRbAH_EqIGHDL4oOFIffo9QoSPOKpW9vj_iz8nNyZHnw-qg73D_SfkJsPKjkylTGyRTWAL_xT8raV5FpmckuOrlqq_RCREQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9RAFB9qBdGD-InRqqMoeAmbzExmsgcR67q0Voqii3tL57MWlqS6uxTv_lX-db43SbYNiLfeQmaSCfO-M-_9HiEvfJ5bcBNc6kRgqShKk5qcuTTnwWbaipCbiPZ5KPdm4sO8mG-RP30tDKZV9joxKmrXWPxHPsIDUoXWko9ClxbxaTJ9c_ojxQ5SeNLat9NoWeTA_zqD8G35en8CtH7J2PT913d7addhILUgWKs0l7oELS6Y0LZghgnrmDQqd9pgF-5yLJ1gvtA-qCJIZ3zmg1dcWK0VOBKew3uvkKuKFznKmJqfB3scYr8WyYjzcTZaMrCteCg1sH-xTcDAtx1mZl4wddNb5Gbno9K3LVPdJlu-vkNuXEAuvEt-f17rOtangbakPbIJjQkIFJuAeruOQ1hiQr9B4N-cUfCP6axuDNZ5xMdiyxA6xaqDRZuTRyd-FZPDaroL9tXReLFYIACCjamzmE1Gv5wcw5L3yOxStvs-2a6b2j8gNDATeJHpMtfg8XlhQKkH4bguMwsqSCXkVb_Nle3QzrHpxqKCqAcpUm0okpDnm6mnLcTHvybtIq02ExCVO95ofh5XnZBXXkhmhC2stEpAKFtaFqQGD7UsnNbBJ2Snp3TVqYpldc7YCXm2GQYhx5MbXftmDXPkWLbgfwlRAw4ZfNBwpD75HuHCxxzVLHv4_8WfkmsgT9XH_cODR-Q6wyKPTKVM7JBt4Ar_GFyvlXkSeZySo8sWqr_yPEh4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Analysis+Using+Consecutive+Time+Window+for+Unobtrusive+Atrial+Fibrillation+Detection+Based+on+Ballistocardiogram+Signal&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cheng%2C+Tianqing&rft.au=Jiang%2C+Fangfang&rft.au=Li%2C+Qing&rft.au=Zeng%2C+Jitao&rft.date=2022-07-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5516&rft_id=info:doi/10.3390%2Fs22155516&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon