Spatially variant biases considered self-supervised depth estimation based on laparoscopic videos
Depth estimation is an essential tool in obtaining depth information for robotic surgery and augmented reality technology in the current laparoscopic surgery robot system. Since there is a lack of ground-truth for depth values and laparoscope motions during operation, depth estimation networks have...
Saved in:
Published in | Computer methods in biomechanics and biomedical engineering. Vol. 10; no. 3; pp. 274 - 282 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
04.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Depth estimation is an essential tool in obtaining depth information for robotic surgery and augmented reality technology in the current laparoscopic surgery robot system. Since there is a lack of ground-truth for depth values and laparoscope motions during operation, depth estimation networks have difficulties in predicting depth maps from laparoscopic images under the supervised strategy. It is challenging to generate the correct depth maps for the different environments from abdominal images. To tackle these problems, we propose a novel monocular self-supervised depth estimation network with sparse nest architecture. We design a non-local block to capture broader and deeper context features that can further enhance the scene-variant generalisation capacity of the network for the differences in datasets. Moreover, we introduce an improved multi-mask feature in the loss function to tackle the classical occlusion problem based on the time-series information from stereo videos. We also use heteroscedastic aleatoric uncertainty to reduce the effect of noisy data for depth estimation. We compared our proposed method with other existing methods for different scenes in datasets. The experimental results show that the proposed model outperformed the state-of-the-art models qualitatively and quantitatively. |
---|---|
AbstractList | Depth estimation is an essential tool in obtaining depth information for robotic surgery and augmented reality technology in the current laparoscopic surgery robot system. Since there is a lack of ground-truth for depth values and laparoscope motions during operation, depth estimation networks have difficulties in predicting depth maps from laparoscopic images under the supervised strategy. It is challenging to generate the correct depth maps for the different environments from abdominal images. To tackle these problems, we propose a novel monocular self-supervised depth estimation network with sparse nest architecture. We design a non-local block to capture broader and deeper context features that can further enhance the scene-variant generalisation capacity of the network for the differences in datasets. Moreover, we introduce an improved multi-mask feature in the loss function to tackle the classical occlusion problem based on the time-series information from stereo videos. We also use heteroscedastic aleatoric uncertainty to reduce the effect of noisy data for depth estimation. We compared our proposed method with other existing methods for different scenes in datasets. The experimental results show that the proposed model outperformed the state-of-the-art models qualitatively and quantitatively. |
Author | Oda, Masahiro Hayashi, Yuichiro Misawa, Kazunari Kitasaka, Takayuki Li, Wenda Mori, Kensaku |
Author_xml | – sequence: 1 givenname: Wenda surname: Li fullname: Li, Wenda organization: Nagoya University – sequence: 2 givenname: Yuichiro surname: Hayashi fullname: Hayashi, Yuichiro organization: Nagoya University – sequence: 3 givenname: Masahiro surname: Oda fullname: Oda, Masahiro organization: Nagoya University – sequence: 4 givenname: Takayuki surname: Kitasaka fullname: Kitasaka, Takayuki organization: Aichi Institute of Technology – sequence: 5 givenname: Kazunari surname: Misawa fullname: Misawa, Kazunari organization: Aichi Cancer Center Hospital – sequence: 6 givenname: Kensaku surname: Mori fullname: Mori, Kensaku email: kensaku@is.nagoya-u.ac.jp organization: National Institute of Informatics |
BookMark | eNqFkNtKAzEQhoNUsNY-grAvsDWz2SPeKMUTFLxQr8Mkm8VIulmSWNm3N2urF17oXMwJvp-Z_5TMetsrQs6BroDW9CKDsgYo2SqjGcQERZWxIzKf9ilABbOfvmQnZOn9G41RlyUriznBpwGDRmPGZIdOYx8SodErn0jbe90qp9rEK9Ol_n1Qbqd9nFs1hNdE-aC3EbZ9InBax8bggM56aQctk13ErT8jxx0ar5aHuiAvtzfP6_t083j3sL7epJJVZUiBKaEEk1mBhcw7kQugMi8orZSomYCK0UaJpsqgwZxK1TUyryGHOr5Y50ywBbnc68p4gHeq41KHr_OCQ204UD4Zxr8N45Nh_GBYpItf9ODid278l7vac7rvrNvih3Wm5QFHY13nsJfac_a3xCeUDYVM |
CitedBy_id | crossref_primary_10_1007_s11548_025_03332_1 |
Cites_doi | 10.1109/3DV.2018.00073 10.1109/CVPR.2017.667 10.1007/978-3-030-32254-0_9 10.1007/978-3-030-32254-0_14 10.1109/TIP.2003.819861 10.1109/TMI.2019.2903562 10.1109/TPAMI.2015.2389824 10.1109/CVPR.2019.00027 10.1109/CVPR.2017.700 10.1109/CVPR.2010.5540004 10.1007/978-3-642-33715-4_54 10.1007/978-3-030-58536-5_25 10.1007/s00464-004-9004-9 10.31256/HSMR2017.14 10.1109/CVPR42600.2020.01308 10.1007/978-3-030-59710-8_58 10.3390/s21165412 10.1142/S2424905X18410052 10.1109/ICCV.2019.00393 10.1117/12.2582348 10.1109/ICRA40945.2020.9196655 10.1109/CVPR.2012.6248074 10.1109/CVPRW50498.2020.00510 10.1109/CVPR42600.2020.00136 10.1109/ICCV48922.2021.01255 10.1109/SoCPaR.2011.6089110 10.1007/978-3-642-15705-9_34 10.1109/CVPR.2016.90 10.1609/aaai.v35i3.16329 10.1007/978-3-319-46484-8_45 10.1109/TPAMI.2019.2947374 10.1109/CVPR.2017.353 10.1109/CVPR.2017.699 10.1109/TPAMI.2007.1166 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
DBID | AAYXX CITATION |
DOI | 10.1080/21681163.2021.2015723 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-1171 |
EndPage | 282 |
ExternalDocumentID | 10_1080_21681163_2021_2015723 2015723 |
Genre | Research Article |
GroupedDBID | 0BK 30N 4.4 AAJMT AALDU AAMIU AAPUL AAQRR ABLIJ ABPAQ ABXUL ABXYU ACGFS ADCVX ADGTB AEISY AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ARCSS BLEHA CCCUG EBS EUPTU GTTXZ H13 HZ~ KYCEM LJTGL M4Z O9- RIG RNANH ROSJB RTWRZ SNACF SOJIQ TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ AAGDL AAYXX ADMLS ADYSH AFRVT AIYEW CITATION |
ID | FETCH-LOGICAL-c376t-13ebeb3c25a5c4fb4b10c45007eb83b17309eb97219a40cef9c481418171843b3 |
ISSN | 2168-1163 |
IngestDate | Thu Apr 24 22:55:09 EDT 2025 Tue Jul 01 04:23:37 EDT 2025 Wed Dec 25 09:05:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c376t-13ebeb3c25a5c4fb4b10c45007eb83b17309eb97219a40cef9c481418171843b3 |
PageCount | 9 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_21681163_2021_2015723 crossref_citationtrail_10_1080_21681163_2021_2015723 crossref_primary_10_1080_21681163_2021_2015723 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-04 |
PublicationDateYYYYMMDD | 2022-05-04 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Computer methods in biomechanics and biomedical engineering. |
PublicationYear | 2022 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0034 cit0031 cit0010 cit0032 Tian Y (cit0033) 2021; 11720 cit0030 cit0019 cit0017 cit0039 cit0018 cit0015 cit0037 cit0016 cit0038 cit0013 cit0035 cit0014 cit0036 cit0022 cit0023 cit0020 Bian JW (cit0002) 2020 cit0021 cit0040 cit0041 Guizilini V (cit0012) 2020 Allan M (cit0001) 2021 Paszke A (cit0026) 2017 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0005 cit0027 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0028 doi: 10.1109/3DV.2018.00073 – volume: 11720 start-page: 117201Z volume-title: Twelfth International Conference on Graphics and Image Processing (ICGIP 2020) year: 2021 ident: cit0033 – year: 2020 ident: cit0002 publication-title: arXiv preprint arXiv:200602708 – ident: cit0003 doi: 10.1109/CVPR.2017.667 – ident: cit0030 doi: 10.1007/978-3-030-32254-0_9 – ident: cit0027 doi: 10.1007/978-3-030-32254-0_14 – ident: cit0034 doi: 10.1109/TIP.2003.819861 – ident: cit0011 doi: 10.1109/TMI.2019.2903562 – ident: cit0013 doi: 10.1109/TPAMI.2015.2389824 – ident: cit0037 doi: 10.1109/CVPR.2019.00027 – ident: cit0040 doi: 10.1109/CVPR.2017.700 – volume-title: NIPS 2017 Workshop on Autodiff year: 2017 ident: cit0026 – year: 2021 ident: cit0001 publication-title: arXiv preprint arXiv:2101.01133 – ident: cit0021 doi: 10.1109/CVPR.2010.5540004 – ident: cit0031 doi: 10.1007/978-3-642-33715-4_54 – ident: cit0038 doi: 10.1007/978-3-030-58536-5_25 – start-page: 1 volume-title: International Conference on Learning Representations year: 2020 ident: cit0012 – ident: cit0005 doi: 10.1007/s00464-004-9004-9 – ident: cit0036 doi: 10.31256/HSMR2017.14 – ident: cit0039 doi: 10.1109/CVPR42600.2020.01308 – ident: cit0023 doi: 10.1007/978-3-030-59710-8_58 – ident: cit0018 – ident: cit0020 doi: 10.3390/s21165412 – ident: cit0025 doi: 10.1142/S2424905X18410052 – ident: cit0010 doi: 10.1109/ICCV.2019.00393 – ident: cit0022 doi: 10.1117/12.2582348 – ident: cit0016 doi: 10.1109/ICRA40945.2020.9196655 – ident: cit0008 doi: 10.1109/CVPR.2012.6248074 – ident: cit0006 doi: 10.1109/CVPRW50498.2020.00510 – ident: cit0035 doi: 10.1109/CVPR42600.2020.00136 – ident: cit0017 doi: 10.1109/ICCV48922.2021.01255 – ident: cit0041 doi: 10.1109/SoCPaR.2011.6089110 – ident: cit0032 doi: 10.1007/978-3-642-15705-9_34 – ident: cit0014 doi: 10.1109/CVPR.2016.90 – ident: cit0019 – ident: cit0024 doi: 10.1609/aaai.v35i3.16329 – ident: cit0007 doi: 10.1007/978-3-319-46484-8_45 – ident: cit0004 doi: 10.1109/TPAMI.2019.2947374 – ident: cit0029 doi: 10.1109/CVPR.2017.353 – ident: cit0009 doi: 10.1109/CVPR.2017.699 – ident: cit0015 doi: 10.1109/TPAMI.2007.1166 |
SSID | ssj0000866365 |
Score | 2.2061775 |
Snippet | Depth estimation is an essential tool in obtaining depth information for robotic surgery and augmented reality technology in the current laparoscopic surgery... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 274 |
SubjectTerms | Depth estimation laparoscopic videos self-supervised |
Title | Spatially variant biases considered self-supervised depth estimation based on laparoscopic videos |
URI | https://www.tandfonline.com/doi/abs/10.1080/21681163.2021.2015723 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay7rIdij2x7gUddjOcWZaU2Mdh2BBsWE8p1pshyTJqNEiC2imQ_bv-s5GSH2pXdOsujq1AkmN-IUWZ5EfIB2bSTJa2igUvZ7FgWR4rxXjMJcdURwlWFhOFfxzPFifi26k8nUyugqilXaun5teteSX_I1VoA7liluw9JDsMCg1wDvKFI0gYjv8kY-QThllW--gSXF54RpGuwSo1GEve0XBGjV1VcbPbok5o4Lq02_YswtoaPmkxQjtW4juDFdhNrG252dYmwvS8TRMuXXv-h4502sXRuuR9zB3uaz37bH4neDtWOpwOYT8uduCnDfYBFmqPfE7OFOxqc1ZfbIaN31L5dKJGhc3f6xZazt13S_jc787rcPMC_F4MFRSjjkvZDJxY1uk4G7Z5ZpZBSScBGHmocT3JT2e8U89k9Idd8IGUODJONoVbwb0BJucpHw1h__L_hn0cohZZV061H6bAYYpumAfkYQqeCpJo8OR42OYDj3HGHaHp8FP7PLIs-XjrDV1bIV2rnxusfJZPyGHnstBPHn9PycSun5HHQSHL50QNSKQdEqlHIh2RSG8gkTok0hGJ1CGRwkmIROqR-IKcfP2y_LyIO_KO2IDNamPGQT1oblKppBGVFpolRkhYklqdcc3AsuRWY-2oXInE2Co3ImOgLEDwmeCavyQH683aviLUyLlK82yuKvAvNJM6rUosfVYlhqfKJEdE9A-sMF1leyRYWRV3SuyITIduW1_a5W8d8lAaRev21CpPgFPwO_u-vu9kb8ij8Q_zlhy0Fzv7Dta_rX7vEPYbqs-pEg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeHlhT4lceI0JUBdpORWKLYscWFVVbkRQJfj13TVIVJGBgS4aLEvtyD-u-7yPkkhkeqcw6T4os8CSLYi9NmfCEEgh1VJBlESjc6wedR3n_pJ6WsDA4Vok9tCuJIuaxGn9uPIyuR-KuOAsiBoUEtHccezymQi5WyZqKgxBVDITfX5yzQMkeiLmiJFp5aFYDeX560pcU9YXAdCn1tLeJqV-6nDh5ac0K3TIf3_gc__dVO2SrqkzpdelKu2TFjvfI5hJf4T5JUcAYHHb0Tt-gx4ZNoXoIaTCnZqH7SXM7cl4-m2IQyuE-s9PimSKZR4mSpJg4MwoXI0jUSKY5mQ4NRTzgJD8gj-3bwU3HqzQaPAOhCZXswQu0MFylykinpWa-kQoqD6sjoRkEkNhqpAiKU-kb62IjIwY-wUJUmtHikDTGk7E9ItSoMOVxFKYOykjNlOYuQ4Yr5xvBU-M3iay3JTEVgTnqaIwSVvGc1iuY4Aom1Qo2SWthNi0ZPP4yiJf3PCnmRyeu1DlJxK-2x_-wvSDrnUGvm3Tv-g8nZIMjzgInK-UpaRSvM3sG1U-hz-fu_Qn4n_Sk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB5cQPTgLu7OwWtqZkuTo6ilbsWDgreQmcxgMbTBpIL-et9rklIF9dBbcnghmXl5y_C-7yPklBkeqtQ6T4o08CQLIy9JmPCEEgh1VJBlESh83wu6T_LmWTXThEU9Vok9tKuIIsaxGn_uPHXNRNwZZ0HIoI6A7o5ji8dUm4t5shggeTiiOPze5JgFKvZAjAUl0cpDswbH89uTvmWob_ylU5mns0Z0887VwMlra1Tqlvn8Qec400etk9W6LqXnlSNtkDk72CQrU2yFWyRB-WJw1-yDvkOHDVtCdR-SYEHNRPWTFjZzXjHKMQQVcJ_avHyhSOVRYSQpps2UwkUGaRqpNId531BEAw6LbfLUuXq86Hq1QoNnIDChjj34gBaGq0QZ6bTUzDdSQd1hdSg0g_ARWY0EQVEifWNdZGTIwCNYG3VmtNghC4PhwO4SalQ74VHYThwUkZopzV2K_FbON4Inxt8jstmV2NT05aiikcWsZjltVjDGFYzrFdwjrYlZXvF3_GcQTW95XI4PTlylchKLP233Z7A9IUsPl5347rp3e0CWOYIscKxSHpKF8m1kj6D0KfXx2Lm_APH280g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+variant+biases+considered+self-supervised+depth+estimation+based+on+laparoscopic+videos&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Li%2C+Wenda&rft.au=Hayashi%2C+Yuichiro&rft.au=Oda%2C+Masahiro&rft.au=Kitasaka%2C+Takayuki&rft.date=2022-05-04&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=10&rft.issue=3&rft.spage=274&rft.epage=282&rft_id=info:doi/10.1080%2F21681163.2021.2015723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_21681163_2021_2015723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon |