Spatially variant biases considered self-supervised depth estimation based on laparoscopic videos

Depth estimation is an essential tool in obtaining depth information for robotic surgery and augmented reality technology in the current laparoscopic surgery robot system. Since there is a lack of ground-truth for depth values and laparoscope motions during operation, depth estimation networks have...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering. Vol. 10; no. 3; pp. 274 - 282
Main Authors Li, Wenda, Hayashi, Yuichiro, Oda, Masahiro, Kitasaka, Takayuki, Misawa, Kazunari, Mori, Kensaku
Format Journal Article
LanguageEnglish
Published Taylor & Francis 04.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Depth estimation is an essential tool in obtaining depth information for robotic surgery and augmented reality technology in the current laparoscopic surgery robot system. Since there is a lack of ground-truth for depth values and laparoscope motions during operation, depth estimation networks have difficulties in predicting depth maps from laparoscopic images under the supervised strategy. It is challenging to generate the correct depth maps for the different environments from abdominal images. To tackle these problems, we propose a novel monocular self-supervised depth estimation network with sparse nest architecture. We design a non-local block to capture broader and deeper context features that can further enhance the scene-variant generalisation capacity of the network for the differences in datasets. Moreover, we introduce an improved multi-mask feature in the loss function to tackle the classical occlusion problem based on the time-series information from stereo videos. We also use heteroscedastic aleatoric uncertainty to reduce the effect of noisy data for depth estimation. We compared our proposed method with other existing methods for different scenes in datasets. The experimental results show that the proposed model outperformed the state-of-the-art models qualitatively and quantitatively.
AbstractList Depth estimation is an essential tool in obtaining depth information for robotic surgery and augmented reality technology in the current laparoscopic surgery robot system. Since there is a lack of ground-truth for depth values and laparoscope motions during operation, depth estimation networks have difficulties in predicting depth maps from laparoscopic images under the supervised strategy. It is challenging to generate the correct depth maps for the different environments from abdominal images. To tackle these problems, we propose a novel monocular self-supervised depth estimation network with sparse nest architecture. We design a non-local block to capture broader and deeper context features that can further enhance the scene-variant generalisation capacity of the network for the differences in datasets. Moreover, we introduce an improved multi-mask feature in the loss function to tackle the classical occlusion problem based on the time-series information from stereo videos. We also use heteroscedastic aleatoric uncertainty to reduce the effect of noisy data for depth estimation. We compared our proposed method with other existing methods for different scenes in datasets. The experimental results show that the proposed model outperformed the state-of-the-art models qualitatively and quantitatively.
Author Oda, Masahiro
Hayashi, Yuichiro
Misawa, Kazunari
Kitasaka, Takayuki
Li, Wenda
Mori, Kensaku
Author_xml – sequence: 1
  givenname: Wenda
  surname: Li
  fullname: Li, Wenda
  organization: Nagoya University
– sequence: 2
  givenname: Yuichiro
  surname: Hayashi
  fullname: Hayashi, Yuichiro
  organization: Nagoya University
– sequence: 3
  givenname: Masahiro
  surname: Oda
  fullname: Oda, Masahiro
  organization: Nagoya University
– sequence: 4
  givenname: Takayuki
  surname: Kitasaka
  fullname: Kitasaka, Takayuki
  organization: Aichi Institute of Technology
– sequence: 5
  givenname: Kazunari
  surname: Misawa
  fullname: Misawa, Kazunari
  organization: Aichi Cancer Center Hospital
– sequence: 6
  givenname: Kensaku
  surname: Mori
  fullname: Mori, Kensaku
  email: kensaku@is.nagoya-u.ac.jp
  organization: National Institute of Informatics
BookMark eNqFkNtKAzEQhoNUsNY-grAvsDWz2SPeKMUTFLxQr8Mkm8VIulmSWNm3N2urF17oXMwJvp-Z_5TMetsrQs6BroDW9CKDsgYo2SqjGcQERZWxIzKf9ilABbOfvmQnZOn9G41RlyUriznBpwGDRmPGZIdOYx8SodErn0jbe90qp9rEK9Ol_n1Qbqd9nFs1hNdE-aC3EbZ9InBax8bggM56aQctk13ErT8jxx0ar5aHuiAvtzfP6_t083j3sL7epJJVZUiBKaEEk1mBhcw7kQugMi8orZSomYCK0UaJpsqgwZxK1TUyryGHOr5Y50ywBbnc68p4gHeq41KHr_OCQ204UD4Zxr8N45Nh_GBYpItf9ODid278l7vac7rvrNvih3Wm5QFHY13nsJfac_a3xCeUDYVM
CitedBy_id crossref_primary_10_1007_s11548_025_03332_1
Cites_doi 10.1109/3DV.2018.00073
10.1109/CVPR.2017.667
10.1007/978-3-030-32254-0_9
10.1007/978-3-030-32254-0_14
10.1109/TIP.2003.819861
10.1109/TMI.2019.2903562
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2019.00027
10.1109/CVPR.2017.700
10.1109/CVPR.2010.5540004
10.1007/978-3-642-33715-4_54
10.1007/978-3-030-58536-5_25
10.1007/s00464-004-9004-9
10.31256/HSMR2017.14
10.1109/CVPR42600.2020.01308
10.1007/978-3-030-59710-8_58
10.3390/s21165412
10.1142/S2424905X18410052
10.1109/ICCV.2019.00393
10.1117/12.2582348
10.1109/ICRA40945.2020.9196655
10.1109/CVPR.2012.6248074
10.1109/CVPRW50498.2020.00510
10.1109/CVPR42600.2020.00136
10.1109/ICCV48922.2021.01255
10.1109/SoCPaR.2011.6089110
10.1007/978-3-642-15705-9_34
10.1109/CVPR.2016.90
10.1609/aaai.v35i3.16329
10.1007/978-3-319-46484-8_45
10.1109/TPAMI.2019.2947374
10.1109/CVPR.2017.353
10.1109/CVPR.2017.699
10.1109/TPAMI.2007.1166
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
DBID AAYXX
CITATION
DOI 10.1080/21681163.2021.2015723
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-1171
EndPage 282
ExternalDocumentID 10_1080_21681163_2021_2015723
2015723
Genre Research Article
GroupedDBID 0BK
30N
4.4
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABLIJ
ABPAQ
ABXUL
ABXYU
ACGFS
ADCVX
ADGTB
AEISY
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ARCSS
BLEHA
CCCUG
EBS
EUPTU
GTTXZ
H13
HZ~
KYCEM
LJTGL
M4Z
O9-
RIG
RNANH
ROSJB
RTWRZ
SNACF
SOJIQ
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
AAGDL
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
CITATION
ID FETCH-LOGICAL-c376t-13ebeb3c25a5c4fb4b10c45007eb83b17309eb97219a40cef9c481418171843b3
ISSN 2168-1163
IngestDate Thu Apr 24 22:55:09 EDT 2025
Tue Jul 01 04:23:37 EDT 2025
Wed Dec 25 09:05:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-13ebeb3c25a5c4fb4b10c45007eb83b17309eb97219a40cef9c481418171843b3
PageCount 9
ParticipantIDs informaworld_taylorfrancis_310_1080_21681163_2021_2015723
crossref_citationtrail_10_1080_21681163_2021_2015723
crossref_primary_10_1080_21681163_2021_2015723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-04
PublicationDateYYYYMMDD 2022-05-04
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-04
  day: 04
PublicationDecade 2020
PublicationTitle Computer methods in biomechanics and biomedical engineering.
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0034
cit0031
cit0010
cit0032
Tian Y (cit0033) 2021; 11720
cit0030
cit0019
cit0017
cit0039
cit0018
cit0015
cit0037
cit0016
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
cit0023
cit0020
Bian JW (cit0002) 2020
cit0021
cit0040
cit0041
Guizilini V (cit0012) 2020
Allan M (cit0001) 2021
Paszke A (cit0026) 2017
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0005
cit0027
cit0024
cit0003
cit0025
References_xml – ident: cit0028
  doi: 10.1109/3DV.2018.00073
– volume: 11720
  start-page: 117201Z
  volume-title: Twelfth International Conference on Graphics and Image Processing (ICGIP 2020)
  year: 2021
  ident: cit0033
– year: 2020
  ident: cit0002
  publication-title: arXiv preprint arXiv:200602708
– ident: cit0003
  doi: 10.1109/CVPR.2017.667
– ident: cit0030
  doi: 10.1007/978-3-030-32254-0_9
– ident: cit0027
  doi: 10.1007/978-3-030-32254-0_14
– ident: cit0034
  doi: 10.1109/TIP.2003.819861
– ident: cit0011
  doi: 10.1109/TMI.2019.2903562
– ident: cit0013
  doi: 10.1109/TPAMI.2015.2389824
– ident: cit0037
  doi: 10.1109/CVPR.2019.00027
– ident: cit0040
  doi: 10.1109/CVPR.2017.700
– volume-title: NIPS 2017 Workshop on Autodiff
  year: 2017
  ident: cit0026
– year: 2021
  ident: cit0001
  publication-title: arXiv preprint arXiv:2101.01133
– ident: cit0021
  doi: 10.1109/CVPR.2010.5540004
– ident: cit0031
  doi: 10.1007/978-3-642-33715-4_54
– ident: cit0038
  doi: 10.1007/978-3-030-58536-5_25
– start-page: 1
  volume-title: International Conference on Learning Representations
  year: 2020
  ident: cit0012
– ident: cit0005
  doi: 10.1007/s00464-004-9004-9
– ident: cit0036
  doi: 10.31256/HSMR2017.14
– ident: cit0039
  doi: 10.1109/CVPR42600.2020.01308
– ident: cit0023
  doi: 10.1007/978-3-030-59710-8_58
– ident: cit0018
– ident: cit0020
  doi: 10.3390/s21165412
– ident: cit0025
  doi: 10.1142/S2424905X18410052
– ident: cit0010
  doi: 10.1109/ICCV.2019.00393
– ident: cit0022
  doi: 10.1117/12.2582348
– ident: cit0016
  doi: 10.1109/ICRA40945.2020.9196655
– ident: cit0008
  doi: 10.1109/CVPR.2012.6248074
– ident: cit0006
  doi: 10.1109/CVPRW50498.2020.00510
– ident: cit0035
  doi: 10.1109/CVPR42600.2020.00136
– ident: cit0017
  doi: 10.1109/ICCV48922.2021.01255
– ident: cit0041
  doi: 10.1109/SoCPaR.2011.6089110
– ident: cit0032
  doi: 10.1007/978-3-642-15705-9_34
– ident: cit0014
  doi: 10.1109/CVPR.2016.90
– ident: cit0019
– ident: cit0024
  doi: 10.1609/aaai.v35i3.16329
– ident: cit0007
  doi: 10.1007/978-3-319-46484-8_45
– ident: cit0004
  doi: 10.1109/TPAMI.2019.2947374
– ident: cit0029
  doi: 10.1109/CVPR.2017.353
– ident: cit0009
  doi: 10.1109/CVPR.2017.699
– ident: cit0015
  doi: 10.1109/TPAMI.2007.1166
SSID ssj0000866365
Score 2.2061775
Snippet Depth estimation is an essential tool in obtaining depth information for robotic surgery and augmented reality technology in the current laparoscopic surgery...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 274
SubjectTerms Depth estimation
laparoscopic videos
self-supervised
Title Spatially variant biases considered self-supervised depth estimation based on laparoscopic videos
URI https://www.tandfonline.com/doi/abs/10.1080/21681163.2021.2015723
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay7rIdij2x7gUddjOcWZaU2Mdh2BBsWE8p1pshyTJqNEiC2imQ_bv-s5GSH2pXdOsujq1AkmN-IUWZ5EfIB2bSTJa2igUvZ7FgWR4rxXjMJcdURwlWFhOFfxzPFifi26k8nUyugqilXaun5teteSX_I1VoA7liluw9JDsMCg1wDvKFI0gYjv8kY-QThllW--gSXF54RpGuwSo1GEve0XBGjV1VcbPbok5o4Lq02_YswtoaPmkxQjtW4juDFdhNrG252dYmwvS8TRMuXXv-h4502sXRuuR9zB3uaz37bH4neDtWOpwOYT8uduCnDfYBFmqPfE7OFOxqc1ZfbIaN31L5dKJGhc3f6xZazt13S_jc787rcPMC_F4MFRSjjkvZDJxY1uk4G7Z5ZpZBSScBGHmocT3JT2e8U89k9Idd8IGUODJONoVbwb0BJucpHw1h__L_hn0cohZZV061H6bAYYpumAfkYQqeCpJo8OR42OYDj3HGHaHp8FP7PLIs-XjrDV1bIV2rnxusfJZPyGHnstBPHn9PycSun5HHQSHL50QNSKQdEqlHIh2RSG8gkTok0hGJ1CGRwkmIROqR-IKcfP2y_LyIO_KO2IDNamPGQT1oblKppBGVFpolRkhYklqdcc3AsuRWY-2oXInE2Co3ImOgLEDwmeCavyQH683aviLUyLlK82yuKvAvNJM6rUosfVYlhqfKJEdE9A-sMF1leyRYWRV3SuyITIduW1_a5W8d8lAaRev21CpPgFPwO_u-vu9kb8ij8Q_zlhy0Fzv7Dta_rX7vEPYbqs-pEg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeHlhT4lceI0JUBdpORWKLYscWFVVbkRQJfj13TVIVJGBgS4aLEvtyD-u-7yPkkhkeqcw6T4os8CSLYi9NmfCEEgh1VJBlESjc6wedR3n_pJ6WsDA4Vok9tCuJIuaxGn9uPIyuR-KuOAsiBoUEtHccezymQi5WyZqKgxBVDITfX5yzQMkeiLmiJFp5aFYDeX560pcU9YXAdCn1tLeJqV-6nDh5ac0K3TIf3_gc__dVO2SrqkzpdelKu2TFjvfI5hJf4T5JUcAYHHb0Tt-gx4ZNoXoIaTCnZqH7SXM7cl4-m2IQyuE-s9PimSKZR4mSpJg4MwoXI0jUSKY5mQ4NRTzgJD8gj-3bwU3HqzQaPAOhCZXswQu0MFylykinpWa-kQoqD6sjoRkEkNhqpAiKU-kb62IjIwY-wUJUmtHikDTGk7E9ItSoMOVxFKYOykjNlOYuQ4Yr5xvBU-M3iay3JTEVgTnqaIwSVvGc1iuY4Aom1Qo2SWthNi0ZPP4yiJf3PCnmRyeu1DlJxK-2x_-wvSDrnUGvm3Tv-g8nZIMjzgInK-UpaRSvM3sG1U-hz-fu_Qn4n_Sk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB5cQPTgLu7OwWtqZkuTo6ilbsWDgreQmcxgMbTBpIL-et9rklIF9dBbcnghmXl5y_C-7yPklBkeqtQ6T4o08CQLIy9JmPCEEgh1VJBlESh83wu6T_LmWTXThEU9Vok9tKuIIsaxGn_uPHXNRNwZZ0HIoI6A7o5ji8dUm4t5shggeTiiOPze5JgFKvZAjAUl0cpDswbH89uTvmWob_ylU5mns0Z0887VwMlra1Tqlvn8Qec400etk9W6LqXnlSNtkDk72CQrU2yFWyRB-WJw1-yDvkOHDVtCdR-SYEHNRPWTFjZzXjHKMQQVcJ_avHyhSOVRYSQpps2UwkUGaRqpNId531BEAw6LbfLUuXq86Hq1QoNnIDChjj34gBaGq0QZ6bTUzDdSQd1hdSg0g_ARWY0EQVEifWNdZGTIwCNYG3VmtNghC4PhwO4SalQ74VHYThwUkZopzV2K_FbON4Inxt8jstmV2NT05aiikcWsZjltVjDGFYzrFdwjrYlZXvF3_GcQTW95XI4PTlylchKLP233Z7A9IUsPl5347rp3e0CWOYIscKxSHpKF8m1kj6D0KfXx2Lm_APH280g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+variant+biases+considered+self-supervised+depth+estimation+based+on+laparoscopic+videos&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Li%2C+Wenda&rft.au=Hayashi%2C+Yuichiro&rft.au=Oda%2C+Masahiro&rft.au=Kitasaka%2C+Takayuki&rft.date=2022-05-04&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=10&rft.issue=3&rft.spage=274&rft.epage=282&rft_id=info:doi/10.1080%2F21681163.2021.2015723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_21681163_2021_2015723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon