UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications

[Display omitted] •A photocurrent density of 2.16 mA cm−2 was observed for Cl-ZnO NRs.•LHE of ~97% has been achieved for the doped samples.•Low recombination rate and better electron-hole separation were observed.•Cl-ZnO NRs are envisioned to provide valuable platform for solar water splitting appli...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 193; pp. 148 - 163
Main Authors Sahoo, Pooja, Sharma, Akash, Padhan, Subash, Udayabhanu, G., Thangavel, R.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.11.2019
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A photocurrent density of 2.16 mA cm−2 was observed for Cl-ZnO NRs.•LHE of ~97% has been achieved for the doped samples.•Low recombination rate and better electron-hole separation were observed.•Cl-ZnO NRs are envisioned to provide valuable platform for solar water splitting application. Vertically aligned pristine ZnO and Cl-doped ZnO nanorod arrays were grown by a simple, cost-effective sol-gel and hydrothermal method. These nanorods (NRs) were fabricated to demonstrate their potential as highly efficient photoelectrodes to be used in photoelectrochemical water splitting applications. XRD measurements indicate that all the fabricated NRs have preferably grown along c-axis (0 0 2) direction. FESEM images confirmed hexagonal shaped NRs grown along (0 0 2) direction. The light harvesting efficiency of pristine ZnO NRs was enhanced with increase in doping concentration which is due to rise in absorbance as verified by UV–Vis absorption spectroscopy. When used as photoanodes in PEC water splitting under UV illumination, these NR arrays exhibits an enhanced photocurrent density of 2.16 mA cm−2 at 1.2 V vs. Ag/AgCl which is much higher than undoped ZnO NRs (0.103 mA cm−2). Cl_Z3 photoanode exhibits a stable photocurrent density even after continuous illumination of 12 h. The significantly improved photoresponse behavior and high photostability with suitable bandgap and high light harvesting efficiency of these photoanodes provides valuable platforms for efficient photoelectrochemical water splitting applications.
AbstractList Vertically aligned pristine ZnO and Cl-doped ZnO nanorod arrays were grown by a simple, cost-effective sol-gel and hydrothermal method. These nanorods (NRs) were fabricated to demonstrate their potential as highly efficient photoelectrodes to be used in photoelectrochemical water splitting applications. XRD measurements indicate that all the fabricated NRs have preferably grown along c-axis (0 0 2) direction. FESEM images confirmed hexagonal shaped NRs grown along (0 0 2) direction. The light harvesting efficiency of pristine ZnO NRs was enhanced with increase in doping concentration which is due to rise in absorbance as verified by UV–Vis absorption spectroscopy. When used as photoanodes in PEC water splitting under UV illumination, these NR arrays exhibits an enhanced photocurrent density of 2.16 mA cm−2 at 1.2 V vs. Ag/AgCl which is much higher than undoped ZnO NRs (0.103 mA cm−2). Cl_Z3 photoanode exhibits a stable photocurrent density even after continuous illumination of 12 h. The significantly improved photoresponse behavior and high photostability with suitable bandgap and high light harvesting efficiency of these photoanodes provides valuable platforms for efficient photoelectrochemical water splitting applications.
[Display omitted] •A photocurrent density of 2.16 mA cm−2 was observed for Cl-ZnO NRs.•LHE of ~97% has been achieved for the doped samples.•Low recombination rate and better electron-hole separation were observed.•Cl-ZnO NRs are envisioned to provide valuable platform for solar water splitting application. Vertically aligned pristine ZnO and Cl-doped ZnO nanorod arrays were grown by a simple, cost-effective sol-gel and hydrothermal method. These nanorods (NRs) were fabricated to demonstrate their potential as highly efficient photoelectrodes to be used in photoelectrochemical water splitting applications. XRD measurements indicate that all the fabricated NRs have preferably grown along c-axis (0 0 2) direction. FESEM images confirmed hexagonal shaped NRs grown along (0 0 2) direction. The light harvesting efficiency of pristine ZnO NRs was enhanced with increase in doping concentration which is due to rise in absorbance as verified by UV–Vis absorption spectroscopy. When used as photoanodes in PEC water splitting under UV illumination, these NR arrays exhibits an enhanced photocurrent density of 2.16 mA cm−2 at 1.2 V vs. Ag/AgCl which is much higher than undoped ZnO NRs (0.103 mA cm−2). Cl_Z3 photoanode exhibits a stable photocurrent density even after continuous illumination of 12 h. The significantly improved photoresponse behavior and high photostability with suitable bandgap and high light harvesting efficiency of these photoanodes provides valuable platforms for efficient photoelectrochemical water splitting applications.
Author Udayabhanu, G.
Thangavel, R.
Sahoo, Pooja
Sharma, Akash
Padhan, Subash
Author_xml – sequence: 1
  givenname: Pooja
  surname: Sahoo
  fullname: Sahoo, Pooja
  organization: Solar Energy Research Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
– sequence: 2
  givenname: Akash
  surname: Sharma
  fullname: Sharma, Akash
  organization: Solar Energy Research Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
– sequence: 3
  givenname: Subash
  surname: Padhan
  fullname: Padhan, Subash
  organization: Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
– sequence: 4
  givenname: G.
  surname: Udayabhanu
  fullname: Udayabhanu, G.
  organization: Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
– sequence: 5
  givenname: R.
  surname: Thangavel
  fullname: Thangavel, R.
  email: rthangavel@iitism.ac.in
  organization: Solar Energy Research Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
BookMark eNqFUU1LJDEQDYvCju7-hIWA555NOpn-wIMsw-4qCF5WES-hJqlMZ2iTNokj84_8mZtxPHkxFKRC3nv1qHdCjnzwSMgPzuac8ebnZp7CiB7jvGa8n7NScvGFzLhsecXrRXtEZoyJrmJ9ff-VnKS0YYy3vGtn5PX2roKUXMpo6AtkjDRNo8vZ-TUNlqYMqxHpcqxMmArkwd9QDz7EYOg0hBxKbzDRdQwvnm4dUAvaFUaxVK1xpMPOxJAHjI8w0ox68O7pGakNkaIfwOsiWrCwf2Jc7-gAcYvpbT5MxYqG7IJP38ixhTHh9_f7lNz--f1veVld3_y9Wv66rrRom1xxgVKuuobLWgvRmQ6xt7aXukdbTieQGQY1ML7iKBrR2RZE3xltagGibcUpOTvoTjEUoymrTXiOvoxUtaiFZI1sREGdH1A6hpQiWqVdfjOaI7hRcab20aiNeo9G7aNRrJRcFPbiA3uK7hHi7lPexYGHZQFbV36TdrhfoYuoszLBfaLwHwWVs3g
CitedBy_id crossref_primary_10_1016_j_spmi_2021_107050
crossref_primary_10_1002_asia_202201155
crossref_primary_10_1016_j_solener_2020_04_027
crossref_primary_10_1016_j_ijhydene_2021_12_107
crossref_primary_10_1016_j_inoche_2024_113420
crossref_primary_10_1016_j_ceramint_2025_01_448
crossref_primary_10_1007_s43630_022_00253_9
crossref_primary_10_1007_s00339_022_05847_9
crossref_primary_10_1016_j_jece_2023_109769
crossref_primary_10_3390_ijms24010443
crossref_primary_10_1016_j_energy_2023_127114
crossref_primary_10_1007_s10854_022_08476_3
crossref_primary_10_1016_j_optmat_2025_116925
crossref_primary_10_1016_j_chemosphere_2023_138496
crossref_primary_10_1016_j_micrna_2023_207550
crossref_primary_10_1016_j_surfin_2024_103850
crossref_primary_10_1016_j_ijhydene_2020_01_069
crossref_primary_10_1088_2053_1591_abe255
crossref_primary_10_1021_acsanm_3c00894
crossref_primary_10_1016_j_inoche_2022_109824
crossref_primary_10_1016_j_matchemphys_2021_125548
crossref_primary_10_1016_j_electacta_2021_138995
crossref_primary_10_3762_bjnano_13_114
crossref_primary_10_1016_j_mtcomm_2022_103450
crossref_primary_10_1016_j_solener_2020_10_051
crossref_primary_10_1021_acs_jpcc_4c03718
crossref_primary_10_1016_j_solener_2020_02_037
crossref_primary_10_2139_ssrn_3994411
crossref_primary_10_1016_j_mssp_2021_105985
crossref_primary_10_1039_D3CP01996A
crossref_primary_10_1021_acs_jpcc_3c00886
crossref_primary_10_1016_j_chemosphere_2022_136896
crossref_primary_10_1016_j_apcatb_2021_120224
crossref_primary_10_1016_j_sbsr_2023_100600
crossref_primary_10_1016_j_apsusc_2023_158505
crossref_primary_10_1016_j_ijhydene_2021_08_154
crossref_primary_10_1016_j_jpcs_2024_112218
crossref_primary_10_1016_j_radphyschem_2024_112240
crossref_primary_10_1186_s40712_025_00217_8
crossref_primary_10_1007_s10854_021_07091_y
crossref_primary_10_1016_j_jece_2023_109550
crossref_primary_10_1016_j_jelechem_2020_114580
crossref_primary_10_1016_j_mssp_2020_105433
crossref_primary_10_1016_j_chemosphere_2024_143198
crossref_primary_10_1016_j_jece_2023_111117
crossref_primary_10_4491_eer_2021_546
crossref_primary_10_1002_er_7564
crossref_primary_10_1016_j_jece_2020_104282
crossref_primary_10_1088_1361_6528_abe3b3
crossref_primary_10_1016_j_jphotochem_2022_114185
crossref_primary_10_1016_j_chemosphere_2022_134285
crossref_primary_10_1016_j_ijhydene_2020_06_173
Cites_doi 10.1038/srep04596
10.1007/s10008-016-3427-9
10.1021/acs.jpcc.6b11525
10.3390/catal7030093
10.1016/j.ssc.2013.06.026
10.1016/j.tsf.2008.04.076
10.1007/s00339-015-8996-4
10.1039/C6NR07670J
10.1039/C4NR03735A
10.1016/S0081-1947(08)60594-9
10.1021/acsami.6b04954
10.1016/j.jpowsour.2015.06.099
10.1021/acssuschemeng.6b01604
10.1002/adfm.201000931
10.1088/2399-1984/aa88a1
10.1021/cm802765c
10.1021/jp710855z
10.1021/nl2037326
10.1021/acs.nanolett.7b00184
10.1016/j.ceramint.2012.04.030
10.1021/nl100665r
10.1002/pssa.201330042
10.1016/j.jssc.2011.08.001
10.1016/j.solener.2018.01.035
10.1002/anie.201001827
10.1039/C6CY02085B
10.1039/C3TA13533K
10.1007/s10854-015-4100-2
10.1021/jp7113187
10.1021/nn405535j
10.1063/1.3673287
10.1021/nl801728d
10.1016/j.powtec.2014.12.053
10.1088/0022-3727/45/41/415301
10.1021/nl0808076
10.1016/j.spmi.2018.08.026
10.1038/nmat1014
10.1039/B811536B
10.1016/j.optlastec.2019.03.003
10.1016/j.cap.2012.05.019
10.1016/j.mseb.2011.09.005
10.1002/adma.201405674
10.1016/j.electacta.2018.12.082
10.1016/j.jece.2018.102843
10.1039/C6RA10488F
10.1021/am405141s
10.1016/j.matlet.2018.02.057
10.1039/C6RA04305D
10.1039/C0CC04775A
10.1016/j.cplett.2016.09.026
10.1002/adfm.200902390
10.1021/cm000572i
10.1039/C5NR08341A
10.1002/bbpc.19750791208
10.1021/acsami.5b11387
10.1016/S0040-6090(99)00167-4
10.1039/C7ME00038C
10.1016/j.actamat.2011.07.037
10.1146/annurev.pc.29.100178.001201
10.1016/j.mseb.2004.12.040
10.1016/j.cej.2016.01.029
10.1039/C5TC01763G
10.1021/cr1002326
10.1007/s13391-014-4227-y
10.1088/1361-6641/aad2ab
10.1016/j.ceramint.2010.12.010
10.1039/C8TA01420E
10.1016/j.solmat.2019.109975
10.1109/TED.2008.2005180
10.1038/238037a0
10.1002/smll.201501411
10.1038/srep40907
10.1021/nn900756s
10.1039/C6TA02788A
10.1007/s10971-017-4536-3
10.1016/j.apmt.2018.02.002
10.1016/j.elecom.2011.08.016
10.1088/0953-8984/16/25/R01
10.1149/2.0051704jes
10.1016/j.jallcom.2012.11.166
10.1016/j.ijhydene.2011.01.087
10.1021/acsami.7b07571
ContentType Journal Article
Copyright 2019 International Solar Energy Society
Copyright Pergamon Press Inc. Nov 15, 2019
Copyright_xml – notice: 2019 International Solar Energy Society
– notice: Copyright Pergamon Press Inc. Nov 15, 2019
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2019.09.045
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 163
ExternalDocumentID 10_1016_j_solener_2019_09_045
S0038092X19309193
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
SAC
SEW
SSH
UKR
VOH
WUQ
XOL
ZY4
~A~
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c376t-13e44b86142c338d8ee9ff94c9effff83e0d0a2a01b1e3638f7a398dcd23a3773
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Wed Aug 13 06:09:40 EDT 2025
Tue Jul 01 01:09:00 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 23 02:27:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ZnO nanorods
Flat band potential
Light harvesting efficiency
Photostability
Solar hydrogen generation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-13e44b86142c338d8ee9ff94c9effff83e0d0a2a01b1e3638f7a398dcd23a3773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2323406463
PQPubID 9393
PageCount 16
ParticipantIDs proquest_journals_2323406463
crossref_citationtrail_10_1016_j_solener_2019_09_045
crossref_primary_10_1016_j_solener_2019_09_045
elsevier_sciencedirect_doi_10_1016_j_solener_2019_09_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2019
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Suwanboon, Amornpitoksuk, Sukolrat (b0345) 2011; 37
Chen, Chen, Chang, Tsai, Liu, Hu, Chang, Chen (b0055) 2010; 49
Fan, Fábrega, Zamani, Shavel, Güell, Carrete, Andreu, López, Morante, Arbiol, Cabot (b0100) 2013; 555
Lee, Ginting, Tan, Tan, Alshanableh, Oleiwi, Yap, Jumali, Yahaya (b0185) 2016; 6
Hsu, Lin, Chen (b0165) 2011; 13
Dutoit, van Meirhaeghe, Cardon, Gomes (b0095) 1975; 79
Tang, Chen, Song, Lee, Cong, Cheng, Zhang, Bello, Lee (b0355) 2008; 8
Wang, Seo, Li, Kvit, Ma, Wang (b0380) 2014; 6
Deka Boruah, Misra (b0085) 2016; 8
Qiu, Yan, Deng, Yang (b0265) 2012; 12
Smith, Rodriguez-Clemente (b0325) 1999; 345
Singh, Prakash, Gupta (b0315) 2017; 2
Outemzabet, Doulache, Trari (b0255) 2015; 119
Boruah, Majji, Misra (b0025) 2017; 9
Lee, Park, Subramaniam, Lee, Lee, Lee, Kang (b0195) 2012; 12
Wang, Ai, Yu (b0390) 2017; 7
Babu, Hong, Vo, Jeong, Cho (b0010) 2015; 11
Chen, Wang, Li, Pootrakulchote, Alibabaei, Ngoc-le, Decoppet, Tsai, Grätzel, Wu, Zakeeruddin, Grätzel (b0050) 2009; 3
Yim, Lee, Lee, Lee, Cho, Lee, Nahm, Han (b0415) 2017; 7
Yousefi, Jamali-Sheini (b0420) 2012; 38
Luo, Wang, Zhang (b0220) 2018; 163
Karmakar, Sarkar, Mandal, Khan (b0180) 2016; 4
Muskens, Rivas, Algra, Bakkers, Lagendijk (b0235) 2008; 8
Ravichandran, Sathish, Snega, Karthika, Rajkumar, Subha, Sakthivel (b0280) 2015; 274
.
Wang, Lv, Zhang, Li, Gong (b0385) 2015; 7
Wei, Pan, Huang (b0405) 2011; 176
Choi, Kang, Lee, Park (b0065) 2015; 3
No, Akademisk (b0245) 2011
Sohila, Rajendran, Yaakob, Teridi, Sopian (b0330) 2016; 27
Cui, Soo, Chen, Gibson (b0075) 2008; 112
Rasouli, Rouhollahi, Ghahramanifard (b0270) 2019; 125
Chikoidze, Nolan, Modreanu, Sallet, Galtier (b0060) 2008; 516
Fan, Zamani, Fábrega, Shavel, Flox, Ibáñez, Andreu, López, Arbiol, Morante, Cabot (b0115) 2012; 45
Luo, Mueller, McCleskey, Burrell, Bauer, Jia (b0215) 2008; 112
Prakash, Sun, Swart, Kumar (b0260) 2018; 11
Hou, Li, Zhao, Quan, Chen (b0160) 2010; 20
Stern (b0335) 1963
Tyagi, Tripathi, Singh, Choudhary, Gupta (b0365) 2016; 6
Yousefi, Zak, Mahmoudian (b0425) 2011; 184
Rousset, Saucedo, Lincot (b0295) 2009; 21
Deka Boruah, Misra (b0090) 2016; 8
Gautam, Singh, Bhatnagar, Peta (b0125) 2016; 662
Chandrasekaran, Chung, Kim, Hur (b0045) 2016; 290
Singh, Prakash, Misra, Sharma, Gupta (b0320) 2017; 9
Kar, Jain, Kumar, Gupta (b0175) 2019; 7
Gonzalez-Valls, Lira-Cantu (b0135) 2009; 2
Singh, Mondal, Misra, Sharma, Gupta (b0310) 2016; 6
Bonomo, Naponiello, Venditti, Zardetto, Carlo, Dini (b0020) 2017; 164
Guc, Tsin, Rousset, Romanyuk, Izquierdo-Roca, Pérez-Rodríguez (b0145) 2017; 121
Nozik (b0250) 1978; 29
Jiamprasertboon, Powell, Dixon, Quesada-Cabrera, Alotaibi, Lu, Zhuang, Sathasivam, Siritanon, Parkin, Carmalt (b0170) 2018; 6
Takahara, Kondo, Takata, Lu, Domen (b0350) 2001; 13
Ng, Xu, Zhang, Yang, Sun (b0240) 2010; 20
Sharma, Chakraborty, Thangavel, Udayabhanu (b0305) 2018; 85
Li, Hsieh, Dalal, Newton, Stott, Hiralal, Nathan, Warburton, Unalan, Beecher, Flewitt, Robinson, Amaratunga, Milne (b0200) 2008; 55
Chandiran, Abdi-Jalebi, Nazeeruddin, Grätzel (b0040) 2014; 8
Ge, Cao, Li, Tang, Wang, Qi, Huang, Zhang, Al-Deyab, Lai (b0130) 2016; 8
Cha, Song, Kim, Shin, Yoon, Kang (b0030) 2011; 47
Chakraborty, Roy, Sharma, Thangavel (b0035) 2019; 200
Lee, Subramaniam, Lee, Lee, Kang (b0190) 2013; 210
Fan, Shavel, Zamani, Fábrega, Rousset, Haller, Güell, Carrete, Andreu, Arbiol, Morante, Cabot (b0110) 2011; 59
Ren, Sangle, Zhang, Yuan, Zhao, Shi, Hoye, Cho, Li, Macmanus-Driscoll (b0285) 2016; 4
Yang, Yan, Fardy (b0410) 2010; 10
Gunasekaran, Ezhilan, Mani, Shankar, Kulandaisamy, Rayappan, Babu (b0150) 2018; 33
Fan, Gell, Fbrega, Shavel, Carrete, Andreu, Ramn Morante, Cabot (b0105) 2011; 99
Li, Yang, Ling, Qiu, Wang, Liu, Song, Liu, Fang, Tong, Li (b0205) 2017; 17
Chu, Li, Yan, Hamann, Shih, Wang, Mi (b0070) 2017; 1
Vidyarthi, Hofmann, Savan, Sliozberg, König, Beranek, Schuhmann, Ludwig (b0370) 2011; 36
Walter, M.G., Warren, E.L., Mckone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., Lewis, N.S., 2010. Solar Water Splitting Cells pp. 6446–6473.
Wang (b0400) 2004; 16
Antony, Poornesh, Ozga, Rakus, Wojciechowski, Kityk, Sanjeev, Petwal, Verma, Dwivedi (b0005) 2019; 115
Rokade, Rondiya, Sharma, Prasad, Pathan, Jadkar (b0290) 2017; 21
Tian, Voigt, Liu, Mckenzie, Mcdermott, Rodriguez, Konishi, Xu (b0360) 2003; 2
Zhang, Qin, Xue, Yu, Zhang, Wang, Liu (b0430) 2015; 4
Das, Malakar, Nair (b0080) 2018; 219
Govatsi, Seferlis, Yannopoulos, Neophytides (b0140) 2019; 298
Hamid, Teh, Lai (b0155) 2017; 7
Liu, Gu, Liu, Huang, Ni (b0210) 2013; 171
Misra, Gupta, Paul, Singla (b0225) 2015; 294
Wang, Liow, Bisht, Liu, Sum, Chen, Li (b0395) 2015; 27
Ratheesh Kumar, Sudha Kartha, Vijayakumar, Singh, Avasthi (b0275) 2005; 117
Misra, Singh, Gupta (b0230) 2017; 7
Su, Sun, Han, Cui, Liu, Lai, Li, Hao, Liu, Green (b0340) 2014; 2
Fujishima, Honda (b0120) 1972; 238
Shao, Gao, Xin, Wang, Li, Shi, Lian, Koratkar, Sawyer (b0300) 2015; 11
Yang (10.1016/j.solener.2019.09.045_b0410) 2010; 10
Sharma (10.1016/j.solener.2019.09.045_b0305) 2018; 85
Muskens (10.1016/j.solener.2019.09.045_b0235) 2008; 8
Lee (10.1016/j.solener.2019.09.045_b0190) 2013; 210
Smith (10.1016/j.solener.2019.09.045_b0325) 1999; 345
Fan (10.1016/j.solener.2019.09.045_b0115) 2012; 45
Prakash (10.1016/j.solener.2019.09.045_b0260) 2018; 11
Babu (10.1016/j.solener.2019.09.045_b0010) 2015; 11
Fan (10.1016/j.solener.2019.09.045_b0105) 2011; 99
Ge (10.1016/j.solener.2019.09.045_b0130) 2016; 8
Liu (10.1016/j.solener.2019.09.045_b0210) 2013; 171
Cha (10.1016/j.solener.2019.09.045_b0030) 2011; 47
Fan (10.1016/j.solener.2019.09.045_b0100) 2013; 555
10.1016/j.solener.2019.09.045_b0375
Deka Boruah (10.1016/j.solener.2019.09.045_b0085) 2016; 8
Hamid (10.1016/j.solener.2019.09.045_b0155) 2017; 7
Rokade (10.1016/j.solener.2019.09.045_b0290) 2017; 21
Cui (10.1016/j.solener.2019.09.045_b0075) 2008; 112
Vidyarthi (10.1016/j.solener.2019.09.045_b0370) 2011; 36
Singh (10.1016/j.solener.2019.09.045_b0315) 2017; 2
Gautam (10.1016/j.solener.2019.09.045_b0125) 2016; 662
Das (10.1016/j.solener.2019.09.045_b0080) 2018; 219
Takahara (10.1016/j.solener.2019.09.045_b0350) 2001; 13
Hou (10.1016/j.solener.2019.09.045_b0160) 2010; 20
Shao (10.1016/j.solener.2019.09.045_b0300) 2015; 11
Rousset (10.1016/j.solener.2019.09.045_b0295) 2009; 21
Wang (10.1016/j.solener.2019.09.045_b0380) 2014; 6
Qiu (10.1016/j.solener.2019.09.045_b0265) 2012; 12
Wang (10.1016/j.solener.2019.09.045_b0385) 2015; 7
Sohila (10.1016/j.solener.2019.09.045_b0330) 2016; 27
Kar (10.1016/j.solener.2019.09.045_b0175) 2019; 7
Lee (10.1016/j.solener.2019.09.045_b0195) 2012; 12
No (10.1016/j.solener.2019.09.045_b0245) 2011
Wang (10.1016/j.solener.2019.09.045_b0400) 2004; 16
Chandrasekaran (10.1016/j.solener.2019.09.045_b0045) 2016; 290
Misra (10.1016/j.solener.2019.09.045_b0225) 2015; 294
Ravichandran (10.1016/j.solener.2019.09.045_b0280) 2015; 274
Fujishima (10.1016/j.solener.2019.09.045_b0120) 1972; 238
Outemzabet (10.1016/j.solener.2019.09.045_b0255) 2015; 119
Ratheesh Kumar (10.1016/j.solener.2019.09.045_b0275) 2005; 117
Tyagi (10.1016/j.solener.2019.09.045_b0365) 2016; 6
Karmakar (10.1016/j.solener.2019.09.045_b0180) 2016; 4
Lee (10.1016/j.solener.2019.09.045_b0185) 2016; 6
Suwanboon (10.1016/j.solener.2019.09.045_b0345) 2011; 37
Chen (10.1016/j.solener.2019.09.045_b0050) 2009; 3
Antony (10.1016/j.solener.2019.09.045_b0005) 2019; 115
Jiamprasertboon (10.1016/j.solener.2019.09.045_b0170) 2018; 6
Guc (10.1016/j.solener.2019.09.045_b0145) 2017; 121
Yim (10.1016/j.solener.2019.09.045_b0415) 2017; 7
Govatsi (10.1016/j.solener.2019.09.045_b0140) 2019; 298
Wang (10.1016/j.solener.2019.09.045_b0395) 2015; 27
Boruah (10.1016/j.solener.2019.09.045_b0025) 2017; 9
Gonzalez-Valls (10.1016/j.solener.2019.09.045_b0135) 2009; 2
Su (10.1016/j.solener.2019.09.045_b0340) 2014; 2
Ren (10.1016/j.solener.2019.09.045_b0285) 2016; 4
Yousefi (10.1016/j.solener.2019.09.045_b0425) 2011; 184
Luo (10.1016/j.solener.2019.09.045_b0220) 2018; 163
Misra (10.1016/j.solener.2019.09.045_b0230) 2017; 7
Rasouli (10.1016/j.solener.2019.09.045_b0270) 2019; 125
Zhang (10.1016/j.solener.2019.09.045_b0430) 2015; 4
Chu (10.1016/j.solener.2019.09.045_b0070) 2017; 1
Bonomo (10.1016/j.solener.2019.09.045_b0020) 2017; 164
Wang (10.1016/j.solener.2019.09.045_b0390) 2017; 7
Singh (10.1016/j.solener.2019.09.045_b0320) 2017; 9
Fan (10.1016/j.solener.2019.09.045_b0110) 2011; 59
Chakraborty (10.1016/j.solener.2019.09.045_b0035) 2019; 200
Choi (10.1016/j.solener.2019.09.045_b0065) 2015; 3
Dutoit (10.1016/j.solener.2019.09.045_b0095) 1975; 79
Tian (10.1016/j.solener.2019.09.045_b0360) 2003; 2
Luo (10.1016/j.solener.2019.09.045_b0215) 2008; 112
Singh (10.1016/j.solener.2019.09.045_b0310) 2016; 6
Chandiran (10.1016/j.solener.2019.09.045_b0040) 2014; 8
Chen (10.1016/j.solener.2019.09.045_b0055) 2010; 49
Chikoidze (10.1016/j.solener.2019.09.045_b0060) 2008; 516
Gunasekaran (10.1016/j.solener.2019.09.045_b0150) 2018; 33
Yousefi (10.1016/j.solener.2019.09.045_b0420) 2012; 38
Wei (10.1016/j.solener.2019.09.045_b0405) 2011; 176
Hsu (10.1016/j.solener.2019.09.045_b0165) 2011; 13
Li (10.1016/j.solener.2019.09.045_b0205) 2017; 17
Ng (10.1016/j.solener.2019.09.045_b0240) 2010; 20
Nozik (10.1016/j.solener.2019.09.045_b0250) 1978; 29
Stern (10.1016/j.solener.2019.09.045_b0335) 1963
Deka Boruah (10.1016/j.solener.2019.09.045_b0090) 2016; 8
Tang (10.1016/j.solener.2019.09.045_b0355) 2008; 8
Li (10.1016/j.solener.2019.09.045_b0200) 2008; 55
References_xml – reference: Walter, M.G., Warren, E.L., Mckone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., Lewis, N.S., 2010. Solar Water Splitting Cells pp. 6446–6473.
– volume: 11
  start-page: 65
  year: 2015
  end-page: 72
  ident: b0010
  article-title: Photoelectrochemical water splitting properties of hydrothermally-grown ZnO nanorods with controlled diameters
  publication-title: Electron. Mater. Lett.
– volume: 9
  start-page: 28495
  year: 2017
  end-page: 28507
  ident: b0320
  article-title: Dual functional Ta-doped electrospun TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0185
  article-title: Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement
  publication-title: Sci. Rep.
– volume: 115
  start-page: 519
  year: 2019
  end-page: 530
  ident: b0005
  article-title: An electron beam induced study in fluorine doped ZnO nanostructures for optical filtering and frequency conversion application
  publication-title: Opt. Laser Technol.
– volume: 36
  start-page: 4724
  year: 2011
  end-page: 4731
  ident: b0370
  article-title: Enhanced photoelectrochemical properties of WO3 thin films fabricated by reactive magnetron sputtering
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 12682
  year: 2018
  end-page: 12692
  ident: b0170
  article-title: Photocatalytic and electrically conductive transparent Cl-doped ZnO thin films via aerosol-assisted chemical vapour deposition
  publication-title: J. Mater. Chem. A
– volume: 125
  start-page: 177
  year: 2019
  end-page: 189
  ident: b0270
  article-title: Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting
  publication-title: Superlattices Microstruct.
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  ident: b0120
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
– volume: 27
  start-page: 2846
  year: 2016
  end-page: 2851
  ident: b0330
  article-title: Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 112
  start-page: 4475
  year: 2008
  end-page: 4479
  ident: b0075
  article-title: Low-temperature growth and characterization of Cl-doped ZnO nanowire arrays
  publication-title: J. Phys. Chem. C
– volume: 37
  start-page: 1359
  year: 2011
  end-page: 1365
  ident: b0345
  article-title: Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M=Al, Mg, Ti)
  publication-title: Ceram. Int.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0415
  article-title: Property database for single-element doping in ZnO obtained by automated first-principles calculations
  publication-title: Sci. Rep.
– volume: 10
  start-page: 1529
  year: 2010
  end-page: 1536
  ident: b0410
  article-title: Semiconductor nanowire: Whats Next?
  publication-title: Nano Lett.
– volume: 8
  start-page: 18182
  year: 2016
  end-page: 18188
  ident: b0085
  article-title: Energy-efficient hydrogenated zinc oxide nanoflakes for high-performance self-powered ultraviolet photodetector
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 72423
  year: 2016
  end-page: 72432
  ident: b0365
  article-title: Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis
  publication-title: RSC Adv.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0390
  article-title: Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method
  publication-title: Sci. Rep.
– volume: 298
  start-page: 587
  year: 2019
  end-page: 598
  ident: b0140
  article-title: The photo-electrokinetics of the O
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 93
  year: 2017
  ident: b0155
  article-title: Photocatalytic water oxidation on ZnO: a review
  publication-title: Catalysts
– volume: 4
  start-page: 10203
  year: 2016
  end-page: 10211
  ident: b0285
  article-title: Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures
  publication-title: J. Mater. Chem. A
– volume: 662
  start-page: 196
  year: 2016
  end-page: 200
  ident: b0125
  article-title: Role of Cl doping on the growth and relaxation dynamics of ZnO nanorods synthesized by hydrothermal method
  publication-title: Chem. Phys. Lett.
– volume: 45
  year: 2012
  ident: b0115
  article-title: Solution-growth and optoelectronic performance of ZnO:Cl/TiO
  publication-title: J. Phys. D. Appl. Phys.
– volume: 11
  start-page: 4785
  year: 2015
  end-page: 4792
  ident: b0300
  article-title: Cl-doped ZnO nanowire arrays on 3D graphene foam with highly efficient field emission and photocatalytic properties
  publication-title: Small
– volume: 176
  start-page: 1409
  year: 2011
  end-page: 1421
  ident: b0405
  article-title: Recent progress in the ZnO nanostructure-based sensors
  publication-title: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.
– volume: 7
  start-page: 570
  year: 2017
  end-page: 580
  ident: b0230
  article-title: Enhanced visible-light-driven photocatalytic activity of Au@Ag core–shell bimetallic nanoparticles immobilized on electrospun TiO
  publication-title: Catal. Sci. Technol.
– volume: 7
  start-page: 102843
  year: 2019
  ident: b0175
  article-title: Interfacial engineering of Fe
  publication-title: J. Environ. Chem. Eng.
– volume: 4
  start-page: 5693
  year: 2016
  end-page: 5702
  ident: b0180
  article-title: Stable and enhanced visible-light water electrolysis using C, N, and S surface functionalized ZnO nanorod photoanodes: engineering the absorption and electronic structure
  publication-title: ACS Sustain. Chem. Eng.
– volume: 8
  start-page: 2638
  year: 2008
  end-page: 2642
  ident: b0235
  article-title: Design of light scattering in nanowire materials for photovoltaic applications
  publication-title: Nano Lett.
– volume: 55
  start-page: 3001
  year: 2008
  end-page: 3011
  ident: b0200
  article-title: Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors
  publication-title: IEEE Trans. Electron Dev.
– volume: 184
  start-page: 2678
  year: 2011
  end-page: 2682
  ident: b0425
  article-title: Growth and characterization of Cl-doped ZnO hexagonal nanodisks
  publication-title: J. Solid State Chem.
– volume: 49
  start-page: 5966
  year: 2010
  end-page: 5969
  ident: b0055
  article-title: Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting
  publication-title: Angew. Chem. – Int. Ed.
– volume: 13
  start-page: 1194
  year: 2001
  end-page: 1199
  ident: b0350
  article-title: Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition
  publication-title: Chem. Mater.
– volume: 516
  start-page: 8146
  year: 2008
  end-page: 8149
  ident: b0060
  article-title: Effect of chlorine doping on electrical and optical properties of ZnO thin films
  publication-title: Thin Solid Films
– volume: 20
  start-page: 4287
  year: 2010
  end-page: 4294
  ident: b0240
  article-title: Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 3103
  year: 2009
  end-page: 3109
  ident: b0050
  article-title: Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells
  publication-title: ACS Nano
– volume: 121
  start-page: 3212
  year: 2017
  end-page: 3218
  ident: b0145
  article-title: Nondestructive raman scattering assessment of solution-processed ZnO-doped layers for photovoltaic applications
  publication-title: J. Phys. Chem. C
– volume: 164
  start-page: H137
  year: 2017
  end-page: H147
  ident: b0020
  article-title: Electrochemical and photoelectrochemical properties of screen-printed nickel oxide thin films obtained from precursor pastes with different compositions
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 4191
  year: 2008
  end-page: 4195
  ident: b0355
  article-title: Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells
  publication-title: Nano Lett.
– volume: 219
  start-page: 76
  year: 2018
  end-page: 80
  ident: b0080
  article-title: Engineering of ZnO nanostructures for efficient solar photocatalysis
  publication-title: Mater. Lett.
– volume: 12
  start-page: S80
  year: 2012
  end-page: S84
  ident: b0195
  article-title: Non-metallic element (chlorine) doped Zinc oxide grown by pulsed laser deposition for application in transparent electrode
  publication-title: Curr. Appl. Phys.
– volume: 290
  start-page: 465
  year: 2016
  end-page: 476
  ident: b0045
  article-title: Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 829
  year: 2004
  end-page: 858
  ident: b0400
  article-title: Zinc oxide nanostructures: growth, properties and applications
  publication-title: J. Phys. Condens. Matter
– volume: 79
  start-page: 1206
  year: 1975
  end-page: 1213
  ident: b0095
  article-title: Investigation on the frequency-dependence of the impedance of the nearly ideally polarizable semiconductor electrodes CdSe, CdS and TiO
  publication-title: Berichte der Bunsengesellschaft für Phys. Chemie
– year: 2011
  ident: b0245
  article-title: Luminescence properties of ZnO nanostructures and their implementation as white Light Emitting Diodes (LEDs)
  publication-title: Sci. Technol.
– volume: 200
  start-page: 109975
  year: 2019
  ident: b0035
  article-title: Post-treatment with ZnFe2O4 nanoparticles to improve photo-electrochemical performance of ZnO nanorods based photoelectrodes
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 345
  start-page: 192
  year: 1999
  end-page: 196
  ident: b0325
  article-title: Morphological differences in ZnO films deposited by the pyrosol technique: Effect of HCl
  publication-title: Thin Solid Films
– volume: 2
  start-page: 19
  year: 2009
  end-page: 34
  ident: b0135
  article-title: Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 82
  year: 2018
  end-page: 135
  ident: b0260
  article-title: Noble metals-TiO
  publication-title: Appl. Mater. Today
– volume: 7
  start-page: 77
  year: 2015
  end-page: 81
  ident: b0385
  article-title: Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting
  publication-title: Nanoscale
– volume: 117
  start-page: 307
  year: 2005
  end-page: 312
  ident: b0275
  article-title: Effect of fluorine doping on structural, electrical and optical properties of ZnO thin films
  publication-title: Mater. Sci. Eng. B
– volume: 163
  start-page: 289
  year: 2018
  end-page: 306
  ident: b0220
  article-title: Progress in perovskite solar cells based on ZnO nanostructures
  publication-title: Sol. Energy
– volume: 59
  start-page: 6790
  year: 2011
  end-page: 6800
  ident: b0110
  article-title: Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires
  publication-title: Acta Mater.
– start-page: 299
  year: 1963
  end-page: 408
  ident: b0335
  article-title: Elementary theory of the optical properties of solids
  publication-title: Solid State Phys.
– volume: 2
  start-page: 821
  year: 2003
  end-page: 826
  ident: b0360
  article-title: Complex and oriented ZnO nanostructures
  publication-title: Nat. Mater.
– volume: 12
  start-page: 407
  year: 2012
  end-page: 413
  ident: b0265
  article-title: Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting
  publication-title: Nano Lett.
– volume: 8
  start-page: 2261
  year: 2014
  end-page: 2268
  ident: b0040
  article-title: Analysis of electron transfer properties of ZnO and TiO
  publication-title: ACS Nano
– volume: 274
  start-page: 250
  year: 2015
  end-page: 257
  ident: b0280
  article-title: Improving the antibacterial efficiency of ZnO nanopowders through simultaneous anionic (F) and cationic (Ag) doping
  publication-title: Powder Technol.
– volume: 27
  start-page: 2207
  year: 2015
  end-page: 2214
  ident: b0395
  article-title: Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion
  publication-title: Adv. Mater.
– volume: 8
  start-page: 5226
  year: 2016
  end-page: 5234
  ident: b0130
  article-title: In situ plasmonic Ag nanoparticle anchored TiO
  publication-title: Nanoscale
– volume: 2
  start-page: 422
  year: 2017
  end-page: 439
  ident: b0315
  article-title: Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites
  publication-title: Mol. Syst. Des. Eng.
– volume: 21
  start-page: 534
  year: 2009
  end-page: 540
  ident: b0295
  article-title: Extrinsic doping of electrodeposited zinc oxide films by chlorine for transparent conductive oxide applications
  publication-title: Chem. Mater.
– volume: 20
  start-page: 2165
  year: 2010
  end-page: 2174
  ident: b0160
  article-title: Electrochemical method for synthesis of a ZnFe
  publication-title: Adv. Funct. Mater.
– volume: 294
  start-page: 580
  year: 2015
  end-page: 587
  ident: b0225
  article-title: Influence of gold core concentration on visible photocatalytic activity of gold–zinc sulfide core–shell nanoparticle
  publication-title: J. Power Sources
– volume: 1
  start-page: 022001
  year: 2017
  ident: b0070
  article-title: Roadmap on solar water splitting: current status and future prospects
  publication-title: Nano Futur.
– volume: 119
  start-page: 589
  year: 2015
  end-page: 596
  ident: b0255
  article-title: Physical and photoelectrochemical properties of Sb-doped SnO
  publication-title: Appl. Phys. A
– volume: 8
  start-page: 4771
  year: 2016
  end-page: 4780
  ident: b0090
  article-title: Effect of magnetic field on photoresponse of cobalt integrated zinc oxide nanorods
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 4596
  year: 2015
  ident: b0430
  article-title: Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods
  publication-title: Sci. Rep.
– volume: 3
  start-page: 8336
  year: 2015
  end-page: 8343
  ident: b0065
  article-title: Non-laminated growth of chlorine-doped zinc oxide films by atomic layer deposition at low temperatures
  publication-title: J. Mater. Chem. C
– volume: 171
  start-page: 30
  year: 2013
  end-page: 33
  ident: b0210
  article-title: Defect formation in chlorine-doped zinc oxide
  publication-title: Solid State Commun.
– volume: 29
  start-page: 189
  year: 1978
  end-page: 222
  ident: b0250
  article-title: Photoelectrochemistry: applications to solar energy conversion
  publication-title: Annu. Rev. Phys. Chem.
– volume: 85
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0305
  article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 210
  start-page: 2638
  year: 2013
  end-page: 2643
  ident: b0190
  article-title: Evaluation of optimal chlorine doping concentration in zinc oxide on glass for application as new transparent conductive oxide
  publication-title: Phys. Status Solidi Appl. Mater. Sci.
– volume: 13
  start-page: 1383
  year: 2011
  end-page: 1386
  ident: b0165
  article-title: Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting
  publication-title: Electrochem. commun.
– volume: 2
  start-page: 500
  year: 2014
  end-page: 509
  ident: b0340
  article-title: Fabrication of Cu
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 48109
  year: 2016
  end-page: 48119
  ident: b0310
  article-title: Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications
  publication-title: RSC Adv.
– reference: .
– volume: 47
  start-page: 2441
  year: 2011
  end-page: 2443
  ident: b0030
  article-title: Facile preparation of Fe
  publication-title: Chem. Commun.
– volume: 6
  start-page: 1288
  year: 2014
  end-page: 1293
  ident: b0380
  article-title: Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 2490
  year: 2017
  end-page: 2495
  ident: b0205
  article-title: Morphology and doping engineering of Sn-doped hematite nanowire photoanodes
  publication-title: Nano Lett.
– volume: 38
  start-page: 5821
  year: 2012
  end-page: 5825
  ident: b0420
  article-title: Effect of chlorine ion concentration on morphology and optical properties of Cl-doped ZnO nanostructures
  publication-title: Ceram. Int.
– volume: 21
  start-page: 2639
  year: 2017
  end-page: 2648
  ident: b0290
  article-title: Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water
  publication-title: J. Solid State Electrochem.
– volume: 112
  start-page: 6099
  year: 2008
  end-page: 6102
  ident: b0215
  article-title: Structural and photoelectrochemical properties of BiVO
  publication-title: J. Phys. Chem. C
– volume: 555
  start-page: 213
  year: 2013
  end-page: 218
  ident: b0100
  article-title: Solution-growth and optoelectronic properties of ZnO:Cl@ZnS core–shell nanowires with tunable shell thickness
  publication-title: J. Alloys Compd.
– volume: 99
  start-page: 262102
  year: 2011
  ident: b0105
  article-title: Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 4536
  year: 2017
  end-page: 4543
  ident: b0025
  article-title: Surface photo-charge effect in doped-ZnO nanorods for high-performance self-powered ultraviolet photodetectors
  publication-title: Nanoscale
– volume: 33
  start-page: 095005
  year: 2018
  ident: b0150
  article-title: Fluorine doped ZnO thin film as acetaldehyde sensor
  publication-title: Semicond. Sci. Technol.
– volume: 4
  start-page: 4596
  year: 2015
  ident: 10.1016/j.solener.2019.09.045_b0430
  article-title: Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods
  publication-title: Sci. Rep.
  doi: 10.1038/srep04596
– volume: 21
  start-page: 2639
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0290
  article-title: Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-016-3427-9
– volume: 121
  start-page: 3212
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0145
  article-title: Nondestructive raman scattering assessment of solution-processed ZnO-doped layers for photovoltaic applications
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11525
– volume: 7
  start-page: 93
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0155
  article-title: Photocatalytic water oxidation on ZnO: a review
  publication-title: Catalysts
  doi: 10.3390/catal7030093
– volume: 171
  start-page: 30
  year: 2013
  ident: 10.1016/j.solener.2019.09.045_b0210
  article-title: Defect formation in chlorine-doped zinc oxide
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2013.06.026
– volume: 516
  start-page: 8146
  year: 2008
  ident: 10.1016/j.solener.2019.09.045_b0060
  article-title: Effect of chlorine doping on electrical and optical properties of ZnO thin films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2008.04.076
– volume: 119
  start-page: 589
  year: 2015
  ident: 10.1016/j.solener.2019.09.045_b0255
  article-title: Physical and photoelectrochemical properties of Sb-doped SnO2 thin films deposited by chemical vapor deposition: application to chromate reduction under solar light
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-015-8996-4
– volume: 9
  start-page: 4536
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0025
  article-title: Surface photo-charge effect in doped-ZnO nanorods for high-performance self-powered ultraviolet photodetectors
  publication-title: Nanoscale
  doi: 10.1039/C6NR07670J
– volume: 7
  start-page: 77
  year: 2015
  ident: 10.1016/j.solener.2019.09.045_b0385
  article-title: Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting
  publication-title: Nanoscale
  doi: 10.1039/C4NR03735A
– start-page: 299
  year: 1963
  ident: 10.1016/j.solener.2019.09.045_b0335
  article-title: Elementary theory of the optical properties of solids
  publication-title: Solid State Phys.
  doi: 10.1016/S0081-1947(08)60594-9
– volume: 8
  start-page: 18182
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0085
  article-title: Energy-efficient hydrogenated zinc oxide nanoflakes for high-performance self-powered ultraviolet photodetector
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04954
– volume: 294
  start-page: 580
  year: 2015
  ident: 10.1016/j.solener.2019.09.045_b0225
  article-title: Influence of gold core concentration on visible photocatalytic activity of gold–zinc sulfide core–shell nanoparticle
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.06.099
– volume: 4
  start-page: 5693
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0180
  article-title: Stable and enhanced visible-light water electrolysis using C, N, and S surface functionalized ZnO nanorod photoanodes: engineering the absorption and electronic structure
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01604
– volume: 20
  start-page: 4287
  year: 2010
  ident: 10.1016/j.solener.2019.09.045_b0240
  article-title: Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000931
– volume: 1
  start-page: 022001
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0070
  article-title: Roadmap on solar water splitting: current status and future prospects
  publication-title: Nano Futur.
  doi: 10.1088/2399-1984/aa88a1
– volume: 21
  start-page: 534
  year: 2009
  ident: 10.1016/j.solener.2019.09.045_b0295
  article-title: Extrinsic doping of electrodeposited zinc oxide films by chlorine for transparent conductive oxide applications
  publication-title: Chem. Mater.
  doi: 10.1021/cm802765c
– volume: 112
  start-page: 4475
  year: 2008
  ident: 10.1016/j.solener.2019.09.045_b0075
  article-title: Low-temperature growth and characterization of Cl-doped ZnO nanowire arrays
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp710855z
– volume: 12
  start-page: 407
  year: 2012
  ident: 10.1016/j.solener.2019.09.045_b0265
  article-title: Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting
  publication-title: Nano Lett.
  doi: 10.1021/nl2037326
– volume: 17
  start-page: 2490
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0205
  article-title: Morphology and doping engineering of Sn-doped hematite nanowire photoanodes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00184
– volume: 38
  start-page: 5821
  year: 2012
  ident: 10.1016/j.solener.2019.09.045_b0420
  article-title: Effect of chlorine ion concentration on morphology and optical properties of Cl-doped ZnO nanostructures
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.04.030
– volume: 10
  start-page: 1529
  year: 2010
  ident: 10.1016/j.solener.2019.09.045_b0410
  article-title: Semiconductor nanowire: Whats Next?
  publication-title: Nano Lett.
  doi: 10.1021/nl100665r
– volume: 210
  start-page: 2638
  year: 2013
  ident: 10.1016/j.solener.2019.09.045_b0190
  article-title: Evaluation of optimal chlorine doping concentration in zinc oxide on glass for application as new transparent conductive oxide
  publication-title: Phys. Status Solidi Appl. Mater. Sci.
  doi: 10.1002/pssa.201330042
– volume: 184
  start-page: 2678
  year: 2011
  ident: 10.1016/j.solener.2019.09.045_b0425
  article-title: Growth and characterization of Cl-doped ZnO hexagonal nanodisks
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2011.08.001
– volume: 163
  start-page: 289
  year: 2018
  ident: 10.1016/j.solener.2019.09.045_b0220
  article-title: Progress in perovskite solar cells based on ZnO nanostructures
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.01.035
– volume: 49
  start-page: 5966
  year: 2010
  ident: 10.1016/j.solener.2019.09.045_b0055
  article-title: Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting
  publication-title: Angew. Chem. – Int. Ed.
  doi: 10.1002/anie.201001827
– volume: 7
  start-page: 570
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0230
  article-title: Enhanced visible-light-driven photocatalytic activity of Au@Ag core–shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY02085B
– year: 2011
  ident: 10.1016/j.solener.2019.09.045_b0245
  article-title: Luminescence properties of ZnO nanostructures and their implementation as white Light Emitting Diodes (LEDs)
  publication-title: Sci. Technol.
– volume: 2
  start-page: 500
  year: 2014
  ident: 10.1016/j.solener.2019.09.045_b0340
  article-title: Fabrication of Cu2 ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13533K
– volume: 27
  start-page: 2846
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0330
  article-title: Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-015-4100-2
– volume: 112
  start-page: 6099
  year: 2008
  ident: 10.1016/j.solener.2019.09.045_b0215
  article-title: Structural and photoelectrochemical properties of BiVO4 thin films
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp7113187
– volume: 8
  start-page: 2261
  year: 2014
  ident: 10.1016/j.solener.2019.09.045_b0040
  article-title: Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells
  publication-title: ACS Nano
  doi: 10.1021/nn405535j
– volume: 99
  start-page: 262102
  year: 2011
  ident: 10.1016/j.solener.2019.09.045_b0105
  article-title: Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3673287
– volume: 8
  start-page: 4191
  year: 2008
  ident: 10.1016/j.solener.2019.09.045_b0355
  article-title: Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells
  publication-title: Nano Lett.
  doi: 10.1021/nl801728d
– volume: 274
  start-page: 250
  year: 2015
  ident: 10.1016/j.solener.2019.09.045_b0280
  article-title: Improving the antibacterial efficiency of ZnO nanopowders through simultaneous anionic (F) and cationic (Ag) doping
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.12.053
– volume: 45
  year: 2012
  ident: 10.1016/j.solener.2019.09.045_b0115
  article-title: Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core-shell nanowires with tunable shell thickness
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/45/41/415301
– volume: 8
  start-page: 2638
  year: 2008
  ident: 10.1016/j.solener.2019.09.045_b0235
  article-title: Design of light scattering in nanowire materials for photovoltaic applications
  publication-title: Nano Lett.
  doi: 10.1021/nl0808076
– volume: 125
  start-page: 177
  year: 2019
  ident: 10.1016/j.solener.2019.09.045_b0270
  article-title: Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2018.08.026
– volume: 2
  start-page: 821
  year: 2003
  ident: 10.1016/j.solener.2019.09.045_b0360
  article-title: Complex and oriented ZnO nanostructures
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1014
– volume: 2
  start-page: 19
  year: 2009
  ident: 10.1016/j.solener.2019.09.045_b0135
  article-title: Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review
  publication-title: Energy Environ. Sci.
  doi: 10.1039/B811536B
– volume: 115
  start-page: 519
  year: 2019
  ident: 10.1016/j.solener.2019.09.045_b0005
  article-title: An electron beam induced study in fluorine doped ZnO nanostructures for optical filtering and frequency conversion application
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.03.003
– volume: 12
  start-page: S80
  year: 2012
  ident: 10.1016/j.solener.2019.09.045_b0195
  article-title: Non-metallic element (chlorine) doped Zinc oxide grown by pulsed laser deposition for application in transparent electrode
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2012.05.019
– volume: 176
  start-page: 1409
  year: 2011
  ident: 10.1016/j.solener.2019.09.045_b0405
  article-title: Recent progress in the ZnO nanostructure-based sensors
  publication-title: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.
  doi: 10.1016/j.mseb.2011.09.005
– volume: 27
  start-page: 2207
  year: 2015
  ident: 10.1016/j.solener.2019.09.045_b0395
  article-title: Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405674
– volume: 298
  start-page: 587
  year: 2019
  ident: 10.1016/j.solener.2019.09.045_b0140
  article-title: The photo-electrokinetics of the O2 evolution reaction on ZnO nanorods
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.082
– volume: 7
  start-page: 102843
  year: 2019
  ident: 10.1016/j.solener.2019.09.045_b0175
  article-title: Interfacial engineering of Fe2O3@BOC heterojunction for efficient detoxification of toxic metal and dye under visible light illumination
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.102843
– volume: 6
  start-page: 72423
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0365
  article-title: Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis
  publication-title: RSC Adv.
  doi: 10.1039/C6RA10488F
– volume: 6
  start-page: 1288
  year: 2014
  ident: 10.1016/j.solener.2019.09.045_b0380
  article-title: Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405141s
– volume: 219
  start-page: 76
  year: 2018
  ident: 10.1016/j.solener.2019.09.045_b0080
  article-title: Engineering of ZnO nanostructures for efficient solar photocatalysis
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.02.057
– volume: 6
  start-page: 48109
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0310
  article-title: Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04305D
– volume: 47
  start-page: 2441
  year: 2011
  ident: 10.1016/j.solener.2019.09.045_b0030
  article-title: Facile preparation of Fe2O3 thin film with photoelectrochemical properties
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC04775A
– volume: 662
  start-page: 196
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0125
  article-title: Role of Cl doping on the growth and relaxation dynamics of ZnO nanorods synthesized by hydrothermal method
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.09.026
– volume: 20
  start-page: 2165
  year: 2010
  ident: 10.1016/j.solener.2019.09.045_b0160
  article-title: Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200902390
– volume: 13
  start-page: 1194
  year: 2001
  ident: 10.1016/j.solener.2019.09.045_b0350
  article-title: Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition
  publication-title: Chem. Mater.
  doi: 10.1021/cm000572i
– volume: 8
  start-page: 5226
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0130
  article-title: In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting
  publication-title: Nanoscale
  doi: 10.1039/C5NR08341A
– volume: 79
  start-page: 1206
  year: 1975
  ident: 10.1016/j.solener.2019.09.045_b0095
  article-title: Investigation on the frequency-dependence of the impedance of the nearly ideally polarizable semiconductor electrodes CdSe, CdS and TiO2
  publication-title: Berichte der Bunsengesellschaft für Phys. Chemie
  doi: 10.1002/bbpc.19750791208
– volume: 8
  start-page: 4771
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0090
  article-title: Effect of magnetic field on photoresponse of cobalt integrated zinc oxide nanorods
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11387
– volume: 345
  start-page: 192
  year: 1999
  ident: 10.1016/j.solener.2019.09.045_b0325
  article-title: Morphological differences in ZnO films deposited by the pyrosol technique: Effect of HCl
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)00167-4
– volume: 2
  start-page: 422
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0315
  article-title: Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C7ME00038C
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0390
  article-title: Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method
  publication-title: Sci. Rep.
– volume: 59
  start-page: 6790
  year: 2011
  ident: 10.1016/j.solener.2019.09.045_b0110
  article-title: Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.07.037
– volume: 29
  start-page: 189
  year: 1978
  ident: 10.1016/j.solener.2019.09.045_b0250
  article-title: Photoelectrochemistry: applications to solar energy conversion
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.29.100178.001201
– volume: 117
  start-page: 307
  year: 2005
  ident: 10.1016/j.solener.2019.09.045_b0275
  article-title: Effect of fluorine doping on structural, electrical and optical properties of ZnO thin films
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2004.12.040
– volume: 290
  start-page: 465
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0045
  article-title: Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.01.029
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0185
  article-title: Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement
  publication-title: Sci. Rep.
– volume: 3
  start-page: 8336
  year: 2015
  ident: 10.1016/j.solener.2019.09.045_b0065
  article-title: Non-laminated growth of chlorine-doped zinc oxide films by atomic layer deposition at low temperatures
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC01763G
– ident: 10.1016/j.solener.2019.09.045_b0375
  doi: 10.1021/cr1002326
– volume: 11
  start-page: 65
  year: 2015
  ident: 10.1016/j.solener.2019.09.045_b0010
  article-title: Photoelectrochemical water splitting properties of hydrothermally-grown ZnO nanorods with controlled diameters
  publication-title: Electron. Mater. Lett.
  doi: 10.1007/s13391-014-4227-y
– volume: 33
  start-page: 095005
  year: 2018
  ident: 10.1016/j.solener.2019.09.045_b0150
  article-title: Fluorine doped ZnO thin film as acetaldehyde sensor
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aad2ab
– volume: 37
  start-page: 1359
  year: 2011
  ident: 10.1016/j.solener.2019.09.045_b0345
  article-title: Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M=Al, Mg, Ti)
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2010.12.010
– volume: 6
  start-page: 12682
  year: 2018
  ident: 10.1016/j.solener.2019.09.045_b0170
  article-title: Photocatalytic and electrically conductive transparent Cl-doped ZnO thin films via aerosol-assisted chemical vapour deposition
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01420E
– volume: 200
  start-page: 109975
  year: 2019
  ident: 10.1016/j.solener.2019.09.045_b0035
  article-title: Post-treatment with ZnFe2O4 nanoparticles to improve photo-electrochemical performance of ZnO nanorods based photoelectrodes
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.109975
– volume: 55
  start-page: 3001
  year: 2008
  ident: 10.1016/j.solener.2019.09.045_b0200
  article-title: Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors
  publication-title: IEEE Trans. Electron Dev.
  doi: 10.1109/TED.2008.2005180
– volume: 238
  start-page: 37
  year: 1972
  ident: 10.1016/j.solener.2019.09.045_b0120
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 11
  start-page: 4785
  year: 2015
  ident: 10.1016/j.solener.2019.09.045_b0300
  article-title: Cl-doped ZnO nanowire arrays on 3D graphene foam with highly efficient field emission and photocatalytic properties
  publication-title: Small
  doi: 10.1002/smll.201501411
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0415
  article-title: Property database for single-element doping in ZnO obtained by automated first-principles calculations
  publication-title: Sci. Rep.
  doi: 10.1038/srep40907
– volume: 3
  start-page: 3103
  year: 2009
  ident: 10.1016/j.solener.2019.09.045_b0050
  article-title: Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells
  publication-title: ACS Nano
  doi: 10.1021/nn900756s
– volume: 4
  start-page: 10203
  year: 2016
  ident: 10.1016/j.solener.2019.09.045_b0285
  article-title: Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02788A
– volume: 85
  start-page: 1
  year: 2018
  ident: 10.1016/j.solener.2019.09.045_b0305
  article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-017-4536-3
– volume: 11
  start-page: 82
  year: 2018
  ident: 10.1016/j.solener.2019.09.045_b0260
  article-title: Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.02.002
– volume: 13
  start-page: 1383
  year: 2011
  ident: 10.1016/j.solener.2019.09.045_b0165
  article-title: Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting
  publication-title: Electrochem. commun.
  doi: 10.1016/j.elecom.2011.08.016
– volume: 16
  start-page: 829
  year: 2004
  ident: 10.1016/j.solener.2019.09.045_b0400
  article-title: Zinc oxide nanostructures: growth, properties and applications
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/16/25/R01
– volume: 164
  start-page: H137
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0020
  article-title: Electrochemical and photoelectrochemical properties of screen-printed nickel oxide thin films obtained from precursor pastes with different compositions
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0051704jes
– volume: 555
  start-page: 213
  year: 2013
  ident: 10.1016/j.solener.2019.09.045_b0100
  article-title: Solution-growth and optoelectronic properties of ZnO:Cl@ZnS core–shell nanowires with tunable shell thickness
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.11.166
– volume: 36
  start-page: 4724
  year: 2011
  ident: 10.1016/j.solener.2019.09.045_b0370
  article-title: Enhanced photoelectrochemical properties of WO3 thin films fabricated by reactive magnetron sputtering
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.01.087
– volume: 9
  start-page: 28495
  year: 2017
  ident: 10.1016/j.solener.2019.09.045_b0320
  article-title: Dual functional Ta-doped electrospun TiO2 nanofibers with enhanced photocatalysis and SERS detection for organic compounds
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07571
SSID ssj0017187
Score 2.4935064
Snippet [Display omitted] •A photocurrent density of 2.16 mA cm−2 was observed for Cl-ZnO NRs.•LHE of ~97% has been achieved for the doped samples.•Low recombination...
Vertically aligned pristine ZnO and Cl-doped ZnO nanorod arrays were grown by a simple, cost-effective sol-gel and hydrothermal method. These nanorods (NRs)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms Absorption spectroscopy
Arrays
Density
Energy harvesting
Flat band potential
Illumination
Light harvesting efficiency
Nanorods
Photoanodes
Photoelectric effect
Photoelectric emission
Photostability
Photovoltaic cells
Silver chloride
Sol-gel processes
Solar energy
Solar hydrogen generation
Splitting
Water splitting
Zinc oxide
ZnO nanorods
Title UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications
URI https://dx.doi.org/10.1016/j.solener.2019.09.045
https://www.proquest.com/docview/2323406463
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLam7QIHxAaIwZh84Oo1sR0SH6uKqRvauFBU7WL5x8vaKSRVW0Bc-Hv2Z-69NCljQppElEMS2Yl_fu-z8t5nxt4HKLWJEIT0mRMaQiqMT4MA5T3IxCMuU-zwxeWH8USfT7PpDhv1sTDkVtlh_wbTW7Tungy61hws5nOK8VVFYuQUKQgaPUOKn1rnNMpPfm_dPFLE3o1upqLf_HL6J4pncIOL2IrEncnDy7RypxTV9G_79ACpW_Nz-pw963gjH26Kts92oD5gT--pCb5gt5OvAqkw9VvkP5FDLvkKKWbr2MybkiMP9BXwUSVis8AkV_VnXru6QQjli1mzbvA6wopf08qc_5g7XrqAoMGx_OIaKj77FZdtwNY3LMlW_JUj7eVQz1pXAkrr6JYiCvnMLVsVD_z-_R_lL9nk9OOX0Vh0GzGIgPhD29WD1r5ASy4DLmljAWDK0uhgoMSjUJDExEmXpD4FhTO6zJ0yRQxRKqfyXL1iu3VTw2vGYyll4TTp1mXa5dIh_1EBgQRX-DoGech03_w2dCrltFlGZXt3tBvb9ZqlXrMJnjo7ZCfbbIuNTMdjGYq-b-1f482iKXks61E_Fmw34VcWianCWmFl3vz_m9-yJ3RHoY5pdsR218vv8A45z9oft4P6mO0Nzz6NL-8Ab1EITA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxFNtaYsPXN1NbIeNj2jVaumLSxetuFh-TLpbhWS1u7Tqhd_Dz2QmmywFIVVqlENeTuzY_uazPPOZsQ8BCm0iBCF95oSGkArj0yBAeQ8y8YjLFDt8dv5xONLH42y8wQZdLAy5VbbYv8L0Bq3bK732b_Zm0ynF-Ko8MXKMFASNnlGP2GON3ZeWMTj4ufbzSBF8V8KZiub55fhPGE_vCkexJak7k4uXafROKazp_wbqH6hu7M_RC_a8JY780ypvL9kGVK_Ysztygq_Zr9FXgVyYKi7yGySRc75Ajtl4NvO64EgEfQl8UIpYz_CRb9UXXrmqRgzls0m9rPE4woJf0tCcX08dL1xA1OCYf3EJJZ_cxnkTsfUdc7JWf-XIezlUk8aXgJ51dEohhXzi5o2MB37_7kz5GzY6OrwYDEW7EoMICEC0Xj1o7XM05TLgmDbmAKYojA4GCtxyBUlMnHRJ6lNQ2KWLvlMmjyFK5VS_r96yzaquYIvxWEiZO03CdZl2femQAKmASIJDfB2D3Ga6-_02tDLltFpGaTt_tCvb1pqlWrMJ7jrbZgfrZLOVTsd9CfKubu1fDc6iLbkv6W7XFmzb4xcWmanCUmFhdh7-5vfsyfDi7NSefj4_ecee0h2Ke0yzXba5nP-APSRAS7_fNPDfXNAJ2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV-assisted+water+splitting+of+stable+Cl-doped+ZnO+nanorod+photoanodes+grown+via+facile+sol-gel+hydrothermal+technique+for+enhanced+solar+energy+harvesting+applications&rft.jtitle=Solar+energy&rft.au=Sahoo%2C+Pooja&rft.au=Sharma%2C+Akash&rft.au=Padhan%2C+Subash&rft.au=Udayabhanu%2C+G.&rft.date=2019-11-15&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=193&rft.spage=148&rft.epage=163&rft_id=info:doi/10.1016%2Fj.solener.2019.09.045&rft.externalDocID=S0038092X19309193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon