UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications
[Display omitted] •A photocurrent density of 2.16 mA cm−2 was observed for Cl-ZnO NRs.•LHE of ~97% has been achieved for the doped samples.•Low recombination rate and better electron-hole separation were observed.•Cl-ZnO NRs are envisioned to provide valuable platform for solar water splitting appli...
Saved in:
Published in | Solar energy Vol. 193; pp. 148 - 163 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.11.2019
Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A photocurrent density of 2.16 mA cm−2 was observed for Cl-ZnO NRs.•LHE of ~97% has been achieved for the doped samples.•Low recombination rate and better electron-hole separation were observed.•Cl-ZnO NRs are envisioned to provide valuable platform for solar water splitting application.
Vertically aligned pristine ZnO and Cl-doped ZnO nanorod arrays were grown by a simple, cost-effective sol-gel and hydrothermal method. These nanorods (NRs) were fabricated to demonstrate their potential as highly efficient photoelectrodes to be used in photoelectrochemical water splitting applications. XRD measurements indicate that all the fabricated NRs have preferably grown along c-axis (0 0 2) direction. FESEM images confirmed hexagonal shaped NRs grown along (0 0 2) direction. The light harvesting efficiency of pristine ZnO NRs was enhanced with increase in doping concentration which is due to rise in absorbance as verified by UV–Vis absorption spectroscopy. When used as photoanodes in PEC water splitting under UV illumination, these NR arrays exhibits an enhanced photocurrent density of 2.16 mA cm−2 at 1.2 V vs. Ag/AgCl which is much higher than undoped ZnO NRs (0.103 mA cm−2). Cl_Z3 photoanode exhibits a stable photocurrent density even after continuous illumination of 12 h. The significantly improved photoresponse behavior and high photostability with suitable bandgap and high light harvesting efficiency of these photoanodes provides valuable platforms for efficient photoelectrochemical water splitting applications. |
---|---|
AbstractList | Vertically aligned pristine ZnO and Cl-doped ZnO nanorod arrays were grown by a simple, cost-effective sol-gel and hydrothermal method. These nanorods (NRs) were fabricated to demonstrate their potential as highly efficient photoelectrodes to be used in photoelectrochemical water splitting applications. XRD measurements indicate that all the fabricated NRs have preferably grown along c-axis (0 0 2) direction. FESEM images confirmed hexagonal shaped NRs grown along (0 0 2) direction. The light harvesting efficiency of pristine ZnO NRs was enhanced with increase in doping concentration which is due to rise in absorbance as verified by UV–Vis absorption spectroscopy. When used as photoanodes in PEC water splitting under UV illumination, these NR arrays exhibits an enhanced photocurrent density of 2.16 mA cm−2 at 1.2 V vs. Ag/AgCl which is much higher than undoped ZnO NRs (0.103 mA cm−2). Cl_Z3 photoanode exhibits a stable photocurrent density even after continuous illumination of 12 h. The significantly improved photoresponse behavior and high photostability with suitable bandgap and high light harvesting efficiency of these photoanodes provides valuable platforms for efficient photoelectrochemical water splitting applications. [Display omitted] •A photocurrent density of 2.16 mA cm−2 was observed for Cl-ZnO NRs.•LHE of ~97% has been achieved for the doped samples.•Low recombination rate and better electron-hole separation were observed.•Cl-ZnO NRs are envisioned to provide valuable platform for solar water splitting application. Vertically aligned pristine ZnO and Cl-doped ZnO nanorod arrays were grown by a simple, cost-effective sol-gel and hydrothermal method. These nanorods (NRs) were fabricated to demonstrate their potential as highly efficient photoelectrodes to be used in photoelectrochemical water splitting applications. XRD measurements indicate that all the fabricated NRs have preferably grown along c-axis (0 0 2) direction. FESEM images confirmed hexagonal shaped NRs grown along (0 0 2) direction. The light harvesting efficiency of pristine ZnO NRs was enhanced with increase in doping concentration which is due to rise in absorbance as verified by UV–Vis absorption spectroscopy. When used as photoanodes in PEC water splitting under UV illumination, these NR arrays exhibits an enhanced photocurrent density of 2.16 mA cm−2 at 1.2 V vs. Ag/AgCl which is much higher than undoped ZnO NRs (0.103 mA cm−2). Cl_Z3 photoanode exhibits a stable photocurrent density even after continuous illumination of 12 h. The significantly improved photoresponse behavior and high photostability with suitable bandgap and high light harvesting efficiency of these photoanodes provides valuable platforms for efficient photoelectrochemical water splitting applications. |
Author | Udayabhanu, G. Thangavel, R. Sahoo, Pooja Sharma, Akash Padhan, Subash |
Author_xml | – sequence: 1 givenname: Pooja surname: Sahoo fullname: Sahoo, Pooja organization: Solar Energy Research Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India – sequence: 2 givenname: Akash surname: Sharma fullname: Sharma, Akash organization: Solar Energy Research Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India – sequence: 3 givenname: Subash surname: Padhan fullname: Padhan, Subash organization: Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India – sequence: 4 givenname: G. surname: Udayabhanu fullname: Udayabhanu, G. organization: Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India – sequence: 5 givenname: R. surname: Thangavel fullname: Thangavel, R. email: rthangavel@iitism.ac.in organization: Solar Energy Research Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India |
BookMark | eNqFUU1LJDEQDYvCju7-hIWA555NOpn-wIMsw-4qCF5WES-hJqlMZ2iTNokj84_8mZtxPHkxFKRC3nv1qHdCjnzwSMgPzuac8ebnZp7CiB7jvGa8n7NScvGFzLhsecXrRXtEZoyJrmJ9ff-VnKS0YYy3vGtn5PX2roKUXMpo6AtkjDRNo8vZ-TUNlqYMqxHpcqxMmArkwd9QDz7EYOg0hBxKbzDRdQwvnm4dUAvaFUaxVK1xpMPOxJAHjI8w0ox68O7pGakNkaIfwOsiWrCwf2Jc7-gAcYvpbT5MxYqG7IJP38ixhTHh9_f7lNz--f1veVld3_y9Wv66rrRom1xxgVKuuobLWgvRmQ6xt7aXukdbTieQGQY1ML7iKBrR2RZE3xltagGibcUpOTvoTjEUoymrTXiOvoxUtaiFZI1sREGdH1A6hpQiWqVdfjOaI7hRcab20aiNeo9G7aNRrJRcFPbiA3uK7hHi7lPexYGHZQFbV36TdrhfoYuoszLBfaLwHwWVs3g |
CitedBy_id | crossref_primary_10_1016_j_spmi_2021_107050 crossref_primary_10_1002_asia_202201155 crossref_primary_10_1016_j_solener_2020_04_027 crossref_primary_10_1016_j_ijhydene_2021_12_107 crossref_primary_10_1016_j_inoche_2024_113420 crossref_primary_10_1016_j_ceramint_2025_01_448 crossref_primary_10_1007_s43630_022_00253_9 crossref_primary_10_1007_s00339_022_05847_9 crossref_primary_10_1016_j_jece_2023_109769 crossref_primary_10_3390_ijms24010443 crossref_primary_10_1016_j_energy_2023_127114 crossref_primary_10_1007_s10854_022_08476_3 crossref_primary_10_1016_j_optmat_2025_116925 crossref_primary_10_1016_j_chemosphere_2023_138496 crossref_primary_10_1016_j_micrna_2023_207550 crossref_primary_10_1016_j_surfin_2024_103850 crossref_primary_10_1016_j_ijhydene_2020_01_069 crossref_primary_10_1088_2053_1591_abe255 crossref_primary_10_1021_acsanm_3c00894 crossref_primary_10_1016_j_inoche_2022_109824 crossref_primary_10_1016_j_matchemphys_2021_125548 crossref_primary_10_1016_j_electacta_2021_138995 crossref_primary_10_3762_bjnano_13_114 crossref_primary_10_1016_j_mtcomm_2022_103450 crossref_primary_10_1016_j_solener_2020_10_051 crossref_primary_10_1021_acs_jpcc_4c03718 crossref_primary_10_1016_j_solener_2020_02_037 crossref_primary_10_2139_ssrn_3994411 crossref_primary_10_1016_j_mssp_2021_105985 crossref_primary_10_1039_D3CP01996A crossref_primary_10_1021_acs_jpcc_3c00886 crossref_primary_10_1016_j_chemosphere_2022_136896 crossref_primary_10_1016_j_apcatb_2021_120224 crossref_primary_10_1016_j_sbsr_2023_100600 crossref_primary_10_1016_j_apsusc_2023_158505 crossref_primary_10_1016_j_ijhydene_2021_08_154 crossref_primary_10_1016_j_jpcs_2024_112218 crossref_primary_10_1016_j_radphyschem_2024_112240 crossref_primary_10_1186_s40712_025_00217_8 crossref_primary_10_1007_s10854_021_07091_y crossref_primary_10_1016_j_jece_2023_109550 crossref_primary_10_1016_j_jelechem_2020_114580 crossref_primary_10_1016_j_mssp_2020_105433 crossref_primary_10_1016_j_chemosphere_2024_143198 crossref_primary_10_1016_j_jece_2023_111117 crossref_primary_10_4491_eer_2021_546 crossref_primary_10_1002_er_7564 crossref_primary_10_1016_j_jece_2020_104282 crossref_primary_10_1088_1361_6528_abe3b3 crossref_primary_10_1016_j_jphotochem_2022_114185 crossref_primary_10_1016_j_chemosphere_2022_134285 crossref_primary_10_1016_j_ijhydene_2020_06_173 |
Cites_doi | 10.1038/srep04596 10.1007/s10008-016-3427-9 10.1021/acs.jpcc.6b11525 10.3390/catal7030093 10.1016/j.ssc.2013.06.026 10.1016/j.tsf.2008.04.076 10.1007/s00339-015-8996-4 10.1039/C6NR07670J 10.1039/C4NR03735A 10.1016/S0081-1947(08)60594-9 10.1021/acsami.6b04954 10.1016/j.jpowsour.2015.06.099 10.1021/acssuschemeng.6b01604 10.1002/adfm.201000931 10.1088/2399-1984/aa88a1 10.1021/cm802765c 10.1021/jp710855z 10.1021/nl2037326 10.1021/acs.nanolett.7b00184 10.1016/j.ceramint.2012.04.030 10.1021/nl100665r 10.1002/pssa.201330042 10.1016/j.jssc.2011.08.001 10.1016/j.solener.2018.01.035 10.1002/anie.201001827 10.1039/C6CY02085B 10.1039/C3TA13533K 10.1007/s10854-015-4100-2 10.1021/jp7113187 10.1021/nn405535j 10.1063/1.3673287 10.1021/nl801728d 10.1016/j.powtec.2014.12.053 10.1088/0022-3727/45/41/415301 10.1021/nl0808076 10.1016/j.spmi.2018.08.026 10.1038/nmat1014 10.1039/B811536B 10.1016/j.optlastec.2019.03.003 10.1016/j.cap.2012.05.019 10.1016/j.mseb.2011.09.005 10.1002/adma.201405674 10.1016/j.electacta.2018.12.082 10.1016/j.jece.2018.102843 10.1039/C6RA10488F 10.1021/am405141s 10.1016/j.matlet.2018.02.057 10.1039/C6RA04305D 10.1039/C0CC04775A 10.1016/j.cplett.2016.09.026 10.1002/adfm.200902390 10.1021/cm000572i 10.1039/C5NR08341A 10.1002/bbpc.19750791208 10.1021/acsami.5b11387 10.1016/S0040-6090(99)00167-4 10.1039/C7ME00038C 10.1016/j.actamat.2011.07.037 10.1146/annurev.pc.29.100178.001201 10.1016/j.mseb.2004.12.040 10.1016/j.cej.2016.01.029 10.1039/C5TC01763G 10.1021/cr1002326 10.1007/s13391-014-4227-y 10.1088/1361-6641/aad2ab 10.1016/j.ceramint.2010.12.010 10.1039/C8TA01420E 10.1016/j.solmat.2019.109975 10.1109/TED.2008.2005180 10.1038/238037a0 10.1002/smll.201501411 10.1038/srep40907 10.1021/nn900756s 10.1039/C6TA02788A 10.1007/s10971-017-4536-3 10.1016/j.apmt.2018.02.002 10.1016/j.elecom.2011.08.016 10.1088/0953-8984/16/25/R01 10.1149/2.0051704jes 10.1016/j.jallcom.2012.11.166 10.1016/j.ijhydene.2011.01.087 10.1021/acsami.7b07571 |
ContentType | Journal Article |
Copyright | 2019 International Solar Energy Society Copyright Pergamon Press Inc. Nov 15, 2019 |
Copyright_xml | – notice: 2019 International Solar Energy Society – notice: Copyright Pergamon Press Inc. Nov 15, 2019 |
DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
DOI | 10.1016/j.solener.2019.09.045 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1471-1257 |
EndPage | 163 |
ExternalDocumentID | 10_1016_j_solener_2019_09_045 S0038092X19309193 |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TAE TN5 WH7 XPP YNT ZMT ~02 ~G- ~KM ~S- 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ NEJ R2- SAC SEW SSH UKR VOH WUQ XOL ZY4 ~A~ 7SP 7ST 8FD C1K EFKBS FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c376t-13e44b86142c338d8ee9ff94c9effff83e0d0a2a01b1e3638f7a398dcd23a3773 |
IEDL.DBID | .~1 |
ISSN | 0038-092X |
IngestDate | Wed Aug 13 06:09:40 EDT 2025 Tue Jul 01 01:09:00 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Fri Feb 23 02:27:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ZnO nanorods Flat band potential Light harvesting efficiency Photostability Solar hydrogen generation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-13e44b86142c338d8ee9ff94c9effff83e0d0a2a01b1e3638f7a398dcd23a3773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2323406463 |
PQPubID | 9393 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2323406463 crossref_citationtrail_10_1016_j_solener_2019_09_045 crossref_primary_10_1016_j_solener_2019_09_045 elsevier_sciencedirect_doi_10_1016_j_solener_2019_09_045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-15 |
PublicationDateYYYYMMDD | 2019-11-15 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Solar energy |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | Suwanboon, Amornpitoksuk, Sukolrat (b0345) 2011; 37 Chen, Chen, Chang, Tsai, Liu, Hu, Chang, Chen (b0055) 2010; 49 Fan, Fábrega, Zamani, Shavel, Güell, Carrete, Andreu, López, Morante, Arbiol, Cabot (b0100) 2013; 555 Lee, Ginting, Tan, Tan, Alshanableh, Oleiwi, Yap, Jumali, Yahaya (b0185) 2016; 6 Hsu, Lin, Chen (b0165) 2011; 13 Dutoit, van Meirhaeghe, Cardon, Gomes (b0095) 1975; 79 Tang, Chen, Song, Lee, Cong, Cheng, Zhang, Bello, Lee (b0355) 2008; 8 Wang, Seo, Li, Kvit, Ma, Wang (b0380) 2014; 6 Deka Boruah, Misra (b0085) 2016; 8 Qiu, Yan, Deng, Yang (b0265) 2012; 12 Smith, Rodriguez-Clemente (b0325) 1999; 345 Singh, Prakash, Gupta (b0315) 2017; 2 Outemzabet, Doulache, Trari (b0255) 2015; 119 Boruah, Majji, Misra (b0025) 2017; 9 Lee, Park, Subramaniam, Lee, Lee, Lee, Kang (b0195) 2012; 12 Wang, Ai, Yu (b0390) 2017; 7 Babu, Hong, Vo, Jeong, Cho (b0010) 2015; 11 Chen, Wang, Li, Pootrakulchote, Alibabaei, Ngoc-le, Decoppet, Tsai, Grätzel, Wu, Zakeeruddin, Grätzel (b0050) 2009; 3 Yim, Lee, Lee, Lee, Cho, Lee, Nahm, Han (b0415) 2017; 7 Yousefi, Jamali-Sheini (b0420) 2012; 38 Luo, Wang, Zhang (b0220) 2018; 163 Karmakar, Sarkar, Mandal, Khan (b0180) 2016; 4 Muskens, Rivas, Algra, Bakkers, Lagendijk (b0235) 2008; 8 Ravichandran, Sathish, Snega, Karthika, Rajkumar, Subha, Sakthivel (b0280) 2015; 274 . Wang, Lv, Zhang, Li, Gong (b0385) 2015; 7 Wei, Pan, Huang (b0405) 2011; 176 Choi, Kang, Lee, Park (b0065) 2015; 3 No, Akademisk (b0245) 2011 Sohila, Rajendran, Yaakob, Teridi, Sopian (b0330) 2016; 27 Cui, Soo, Chen, Gibson (b0075) 2008; 112 Rasouli, Rouhollahi, Ghahramanifard (b0270) 2019; 125 Chikoidze, Nolan, Modreanu, Sallet, Galtier (b0060) 2008; 516 Fan, Zamani, Fábrega, Shavel, Flox, Ibáñez, Andreu, López, Arbiol, Morante, Cabot (b0115) 2012; 45 Luo, Mueller, McCleskey, Burrell, Bauer, Jia (b0215) 2008; 112 Prakash, Sun, Swart, Kumar (b0260) 2018; 11 Hou, Li, Zhao, Quan, Chen (b0160) 2010; 20 Stern (b0335) 1963 Tyagi, Tripathi, Singh, Choudhary, Gupta (b0365) 2016; 6 Yousefi, Zak, Mahmoudian (b0425) 2011; 184 Rousset, Saucedo, Lincot (b0295) 2009; 21 Deka Boruah, Misra (b0090) 2016; 8 Gautam, Singh, Bhatnagar, Peta (b0125) 2016; 662 Chandrasekaran, Chung, Kim, Hur (b0045) 2016; 290 Singh, Prakash, Misra, Sharma, Gupta (b0320) 2017; 9 Kar, Jain, Kumar, Gupta (b0175) 2019; 7 Gonzalez-Valls, Lira-Cantu (b0135) 2009; 2 Singh, Mondal, Misra, Sharma, Gupta (b0310) 2016; 6 Bonomo, Naponiello, Venditti, Zardetto, Carlo, Dini (b0020) 2017; 164 Guc, Tsin, Rousset, Romanyuk, Izquierdo-Roca, Pérez-Rodríguez (b0145) 2017; 121 Nozik (b0250) 1978; 29 Jiamprasertboon, Powell, Dixon, Quesada-Cabrera, Alotaibi, Lu, Zhuang, Sathasivam, Siritanon, Parkin, Carmalt (b0170) 2018; 6 Takahara, Kondo, Takata, Lu, Domen (b0350) 2001; 13 Ng, Xu, Zhang, Yang, Sun (b0240) 2010; 20 Sharma, Chakraborty, Thangavel, Udayabhanu (b0305) 2018; 85 Li, Hsieh, Dalal, Newton, Stott, Hiralal, Nathan, Warburton, Unalan, Beecher, Flewitt, Robinson, Amaratunga, Milne (b0200) 2008; 55 Chandiran, Abdi-Jalebi, Nazeeruddin, Grätzel (b0040) 2014; 8 Ge, Cao, Li, Tang, Wang, Qi, Huang, Zhang, Al-Deyab, Lai (b0130) 2016; 8 Cha, Song, Kim, Shin, Yoon, Kang (b0030) 2011; 47 Chakraborty, Roy, Sharma, Thangavel (b0035) 2019; 200 Lee, Subramaniam, Lee, Lee, Kang (b0190) 2013; 210 Fan, Shavel, Zamani, Fábrega, Rousset, Haller, Güell, Carrete, Andreu, Arbiol, Morante, Cabot (b0110) 2011; 59 Ren, Sangle, Zhang, Yuan, Zhao, Shi, Hoye, Cho, Li, Macmanus-Driscoll (b0285) 2016; 4 Yang, Yan, Fardy (b0410) 2010; 10 Gunasekaran, Ezhilan, Mani, Shankar, Kulandaisamy, Rayappan, Babu (b0150) 2018; 33 Fan, Gell, Fbrega, Shavel, Carrete, Andreu, Ramn Morante, Cabot (b0105) 2011; 99 Li, Yang, Ling, Qiu, Wang, Liu, Song, Liu, Fang, Tong, Li (b0205) 2017; 17 Chu, Li, Yan, Hamann, Shih, Wang, Mi (b0070) 2017; 1 Vidyarthi, Hofmann, Savan, Sliozberg, König, Beranek, Schuhmann, Ludwig (b0370) 2011; 36 Walter, M.G., Warren, E.L., Mckone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., Lewis, N.S., 2010. Solar Water Splitting Cells pp. 6446–6473. Wang (b0400) 2004; 16 Antony, Poornesh, Ozga, Rakus, Wojciechowski, Kityk, Sanjeev, Petwal, Verma, Dwivedi (b0005) 2019; 115 Rokade, Rondiya, Sharma, Prasad, Pathan, Jadkar (b0290) 2017; 21 Tian, Voigt, Liu, Mckenzie, Mcdermott, Rodriguez, Konishi, Xu (b0360) 2003; 2 Zhang, Qin, Xue, Yu, Zhang, Wang, Liu (b0430) 2015; 4 Das, Malakar, Nair (b0080) 2018; 219 Govatsi, Seferlis, Yannopoulos, Neophytides (b0140) 2019; 298 Hamid, Teh, Lai (b0155) 2017; 7 Liu, Gu, Liu, Huang, Ni (b0210) 2013; 171 Misra, Gupta, Paul, Singla (b0225) 2015; 294 Wang, Liow, Bisht, Liu, Sum, Chen, Li (b0395) 2015; 27 Ratheesh Kumar, Sudha Kartha, Vijayakumar, Singh, Avasthi (b0275) 2005; 117 Misra, Singh, Gupta (b0230) 2017; 7 Su, Sun, Han, Cui, Liu, Lai, Li, Hao, Liu, Green (b0340) 2014; 2 Fujishima, Honda (b0120) 1972; 238 Shao, Gao, Xin, Wang, Li, Shi, Lian, Koratkar, Sawyer (b0300) 2015; 11 Yang (10.1016/j.solener.2019.09.045_b0410) 2010; 10 Sharma (10.1016/j.solener.2019.09.045_b0305) 2018; 85 Muskens (10.1016/j.solener.2019.09.045_b0235) 2008; 8 Lee (10.1016/j.solener.2019.09.045_b0190) 2013; 210 Smith (10.1016/j.solener.2019.09.045_b0325) 1999; 345 Fan (10.1016/j.solener.2019.09.045_b0115) 2012; 45 Prakash (10.1016/j.solener.2019.09.045_b0260) 2018; 11 Babu (10.1016/j.solener.2019.09.045_b0010) 2015; 11 Fan (10.1016/j.solener.2019.09.045_b0105) 2011; 99 Ge (10.1016/j.solener.2019.09.045_b0130) 2016; 8 Liu (10.1016/j.solener.2019.09.045_b0210) 2013; 171 Cha (10.1016/j.solener.2019.09.045_b0030) 2011; 47 Fan (10.1016/j.solener.2019.09.045_b0100) 2013; 555 10.1016/j.solener.2019.09.045_b0375 Deka Boruah (10.1016/j.solener.2019.09.045_b0085) 2016; 8 Hamid (10.1016/j.solener.2019.09.045_b0155) 2017; 7 Rokade (10.1016/j.solener.2019.09.045_b0290) 2017; 21 Cui (10.1016/j.solener.2019.09.045_b0075) 2008; 112 Vidyarthi (10.1016/j.solener.2019.09.045_b0370) 2011; 36 Singh (10.1016/j.solener.2019.09.045_b0315) 2017; 2 Gautam (10.1016/j.solener.2019.09.045_b0125) 2016; 662 Das (10.1016/j.solener.2019.09.045_b0080) 2018; 219 Takahara (10.1016/j.solener.2019.09.045_b0350) 2001; 13 Hou (10.1016/j.solener.2019.09.045_b0160) 2010; 20 Shao (10.1016/j.solener.2019.09.045_b0300) 2015; 11 Rousset (10.1016/j.solener.2019.09.045_b0295) 2009; 21 Wang (10.1016/j.solener.2019.09.045_b0380) 2014; 6 Qiu (10.1016/j.solener.2019.09.045_b0265) 2012; 12 Wang (10.1016/j.solener.2019.09.045_b0385) 2015; 7 Sohila (10.1016/j.solener.2019.09.045_b0330) 2016; 27 Kar (10.1016/j.solener.2019.09.045_b0175) 2019; 7 Lee (10.1016/j.solener.2019.09.045_b0195) 2012; 12 No (10.1016/j.solener.2019.09.045_b0245) 2011 Wang (10.1016/j.solener.2019.09.045_b0400) 2004; 16 Chandrasekaran (10.1016/j.solener.2019.09.045_b0045) 2016; 290 Misra (10.1016/j.solener.2019.09.045_b0225) 2015; 294 Ravichandran (10.1016/j.solener.2019.09.045_b0280) 2015; 274 Fujishima (10.1016/j.solener.2019.09.045_b0120) 1972; 238 Outemzabet (10.1016/j.solener.2019.09.045_b0255) 2015; 119 Ratheesh Kumar (10.1016/j.solener.2019.09.045_b0275) 2005; 117 Tyagi (10.1016/j.solener.2019.09.045_b0365) 2016; 6 Karmakar (10.1016/j.solener.2019.09.045_b0180) 2016; 4 Lee (10.1016/j.solener.2019.09.045_b0185) 2016; 6 Suwanboon (10.1016/j.solener.2019.09.045_b0345) 2011; 37 Chen (10.1016/j.solener.2019.09.045_b0050) 2009; 3 Antony (10.1016/j.solener.2019.09.045_b0005) 2019; 115 Jiamprasertboon (10.1016/j.solener.2019.09.045_b0170) 2018; 6 Guc (10.1016/j.solener.2019.09.045_b0145) 2017; 121 Yim (10.1016/j.solener.2019.09.045_b0415) 2017; 7 Govatsi (10.1016/j.solener.2019.09.045_b0140) 2019; 298 Wang (10.1016/j.solener.2019.09.045_b0395) 2015; 27 Boruah (10.1016/j.solener.2019.09.045_b0025) 2017; 9 Gonzalez-Valls (10.1016/j.solener.2019.09.045_b0135) 2009; 2 Su (10.1016/j.solener.2019.09.045_b0340) 2014; 2 Ren (10.1016/j.solener.2019.09.045_b0285) 2016; 4 Yousefi (10.1016/j.solener.2019.09.045_b0425) 2011; 184 Luo (10.1016/j.solener.2019.09.045_b0220) 2018; 163 Misra (10.1016/j.solener.2019.09.045_b0230) 2017; 7 Rasouli (10.1016/j.solener.2019.09.045_b0270) 2019; 125 Zhang (10.1016/j.solener.2019.09.045_b0430) 2015; 4 Chu (10.1016/j.solener.2019.09.045_b0070) 2017; 1 Bonomo (10.1016/j.solener.2019.09.045_b0020) 2017; 164 Wang (10.1016/j.solener.2019.09.045_b0390) 2017; 7 Singh (10.1016/j.solener.2019.09.045_b0320) 2017; 9 Fan (10.1016/j.solener.2019.09.045_b0110) 2011; 59 Chakraborty (10.1016/j.solener.2019.09.045_b0035) 2019; 200 Choi (10.1016/j.solener.2019.09.045_b0065) 2015; 3 Dutoit (10.1016/j.solener.2019.09.045_b0095) 1975; 79 Tian (10.1016/j.solener.2019.09.045_b0360) 2003; 2 Luo (10.1016/j.solener.2019.09.045_b0215) 2008; 112 Singh (10.1016/j.solener.2019.09.045_b0310) 2016; 6 Chandiran (10.1016/j.solener.2019.09.045_b0040) 2014; 8 Chen (10.1016/j.solener.2019.09.045_b0055) 2010; 49 Chikoidze (10.1016/j.solener.2019.09.045_b0060) 2008; 516 Gunasekaran (10.1016/j.solener.2019.09.045_b0150) 2018; 33 Yousefi (10.1016/j.solener.2019.09.045_b0420) 2012; 38 Wei (10.1016/j.solener.2019.09.045_b0405) 2011; 176 Hsu (10.1016/j.solener.2019.09.045_b0165) 2011; 13 Li (10.1016/j.solener.2019.09.045_b0205) 2017; 17 Ng (10.1016/j.solener.2019.09.045_b0240) 2010; 20 Nozik (10.1016/j.solener.2019.09.045_b0250) 1978; 29 Stern (10.1016/j.solener.2019.09.045_b0335) 1963 Deka Boruah (10.1016/j.solener.2019.09.045_b0090) 2016; 8 Tang (10.1016/j.solener.2019.09.045_b0355) 2008; 8 Li (10.1016/j.solener.2019.09.045_b0200) 2008; 55 |
References_xml | – reference: Walter, M.G., Warren, E.L., Mckone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., Lewis, N.S., 2010. Solar Water Splitting Cells pp. 6446–6473. – volume: 11 start-page: 65 year: 2015 end-page: 72 ident: b0010 article-title: Photoelectrochemical water splitting properties of hydrothermally-grown ZnO nanorods with controlled diameters publication-title: Electron. Mater. Lett. – volume: 9 start-page: 28495 year: 2017 end-page: 28507 ident: b0320 article-title: Dual functional Ta-doped electrospun TiO publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1 year: 2016 end-page: 11 ident: b0185 article-title: Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement publication-title: Sci. Rep. – volume: 115 start-page: 519 year: 2019 end-page: 530 ident: b0005 article-title: An electron beam induced study in fluorine doped ZnO nanostructures for optical filtering and frequency conversion application publication-title: Opt. Laser Technol. – volume: 36 start-page: 4724 year: 2011 end-page: 4731 ident: b0370 article-title: Enhanced photoelectrochemical properties of WO3 thin films fabricated by reactive magnetron sputtering publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 12682 year: 2018 end-page: 12692 ident: b0170 article-title: Photocatalytic and electrically conductive transparent Cl-doped ZnO thin films via aerosol-assisted chemical vapour deposition publication-title: J. Mater. Chem. A – volume: 125 start-page: 177 year: 2019 end-page: 189 ident: b0270 article-title: Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting publication-title: Superlattices Microstruct. – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: b0120 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature – volume: 27 start-page: 2846 year: 2016 end-page: 2851 ident: b0330 article-title: Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method publication-title: J. Mater. Sci. Mater. Electron. – volume: 112 start-page: 4475 year: 2008 end-page: 4479 ident: b0075 article-title: Low-temperature growth and characterization of Cl-doped ZnO nanowire arrays publication-title: J. Phys. Chem. C – volume: 37 start-page: 1359 year: 2011 end-page: 1365 ident: b0345 article-title: Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M=Al, Mg, Ti) publication-title: Ceram. Int. – volume: 7 start-page: 1 year: 2017 end-page: 10 ident: b0415 article-title: Property database for single-element doping in ZnO obtained by automated first-principles calculations publication-title: Sci. Rep. – volume: 10 start-page: 1529 year: 2010 end-page: 1536 ident: b0410 article-title: Semiconductor nanowire: Whats Next? publication-title: Nano Lett. – volume: 8 start-page: 18182 year: 2016 end-page: 18188 ident: b0085 article-title: Energy-efficient hydrogenated zinc oxide nanoflakes for high-performance self-powered ultraviolet photodetector publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 72423 year: 2016 end-page: 72432 ident: b0365 article-title: Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis publication-title: RSC Adv. – volume: 7 start-page: 1 year: 2017 end-page: 11 ident: b0390 article-title: Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method publication-title: Sci. Rep. – volume: 298 start-page: 587 year: 2019 end-page: 598 ident: b0140 article-title: The photo-electrokinetics of the O publication-title: Electrochim. Acta – volume: 7 start-page: 93 year: 2017 ident: b0155 article-title: Photocatalytic water oxidation on ZnO: a review publication-title: Catalysts – volume: 4 start-page: 10203 year: 2016 end-page: 10211 ident: b0285 article-title: Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures publication-title: J. Mater. Chem. A – volume: 662 start-page: 196 year: 2016 end-page: 200 ident: b0125 article-title: Role of Cl doping on the growth and relaxation dynamics of ZnO nanorods synthesized by hydrothermal method publication-title: Chem. Phys. Lett. – volume: 45 year: 2012 ident: b0115 article-title: Solution-growth and optoelectronic performance of ZnO:Cl/TiO publication-title: J. Phys. D. Appl. Phys. – volume: 11 start-page: 4785 year: 2015 end-page: 4792 ident: b0300 article-title: Cl-doped ZnO nanowire arrays on 3D graphene foam with highly efficient field emission and photocatalytic properties publication-title: Small – volume: 176 start-page: 1409 year: 2011 end-page: 1421 ident: b0405 article-title: Recent progress in the ZnO nanostructure-based sensors publication-title: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. – volume: 7 start-page: 570 year: 2017 end-page: 580 ident: b0230 article-title: Enhanced visible-light-driven photocatalytic activity of Au@Ag core–shell bimetallic nanoparticles immobilized on electrospun TiO publication-title: Catal. Sci. Technol. – volume: 7 start-page: 102843 year: 2019 ident: b0175 article-title: Interfacial engineering of Fe publication-title: J. Environ. Chem. Eng. – volume: 4 start-page: 5693 year: 2016 end-page: 5702 ident: b0180 article-title: Stable and enhanced visible-light water electrolysis using C, N, and S surface functionalized ZnO nanorod photoanodes: engineering the absorption and electronic structure publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 2638 year: 2008 end-page: 2642 ident: b0235 article-title: Design of light scattering in nanowire materials for photovoltaic applications publication-title: Nano Lett. – volume: 55 start-page: 3001 year: 2008 end-page: 3011 ident: b0200 article-title: Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors publication-title: IEEE Trans. Electron Dev. – volume: 184 start-page: 2678 year: 2011 end-page: 2682 ident: b0425 article-title: Growth and characterization of Cl-doped ZnO hexagonal nanodisks publication-title: J. Solid State Chem. – volume: 49 start-page: 5966 year: 2010 end-page: 5969 ident: b0055 article-title: Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting publication-title: Angew. Chem. – Int. Ed. – volume: 13 start-page: 1194 year: 2001 end-page: 1199 ident: b0350 article-title: Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition publication-title: Chem. Mater. – volume: 516 start-page: 8146 year: 2008 end-page: 8149 ident: b0060 article-title: Effect of chlorine doping on electrical and optical properties of ZnO thin films publication-title: Thin Solid Films – volume: 20 start-page: 4287 year: 2010 end-page: 4294 ident: b0240 article-title: Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO publication-title: Adv. Funct. Mater. – volume: 3 start-page: 3103 year: 2009 end-page: 3109 ident: b0050 article-title: Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells publication-title: ACS Nano – volume: 121 start-page: 3212 year: 2017 end-page: 3218 ident: b0145 article-title: Nondestructive raman scattering assessment of solution-processed ZnO-doped layers for photovoltaic applications publication-title: J. Phys. Chem. C – volume: 164 start-page: H137 year: 2017 end-page: H147 ident: b0020 article-title: Electrochemical and photoelectrochemical properties of screen-printed nickel oxide thin films obtained from precursor pastes with different compositions publication-title: J. Electrochem. Soc. – volume: 8 start-page: 4191 year: 2008 end-page: 4195 ident: b0355 article-title: Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells publication-title: Nano Lett. – volume: 219 start-page: 76 year: 2018 end-page: 80 ident: b0080 article-title: Engineering of ZnO nanostructures for efficient solar photocatalysis publication-title: Mater. Lett. – volume: 12 start-page: S80 year: 2012 end-page: S84 ident: b0195 article-title: Non-metallic element (chlorine) doped Zinc oxide grown by pulsed laser deposition for application in transparent electrode publication-title: Curr. Appl. Phys. – volume: 290 start-page: 465 year: 2016 end-page: 476 ident: b0045 article-title: Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting publication-title: Chem. Eng. J. – volume: 16 start-page: 829 year: 2004 end-page: 858 ident: b0400 article-title: Zinc oxide nanostructures: growth, properties and applications publication-title: J. Phys. Condens. Matter – volume: 79 start-page: 1206 year: 1975 end-page: 1213 ident: b0095 article-title: Investigation on the frequency-dependence of the impedance of the nearly ideally polarizable semiconductor electrodes CdSe, CdS and TiO publication-title: Berichte der Bunsengesellschaft für Phys. Chemie – year: 2011 ident: b0245 article-title: Luminescence properties of ZnO nanostructures and their implementation as white Light Emitting Diodes (LEDs) publication-title: Sci. Technol. – volume: 200 start-page: 109975 year: 2019 ident: b0035 article-title: Post-treatment with ZnFe2O4 nanoparticles to improve photo-electrochemical performance of ZnO nanorods based photoelectrodes publication-title: Sol. Energy Mater. Sol. Cells – volume: 345 start-page: 192 year: 1999 end-page: 196 ident: b0325 article-title: Morphological differences in ZnO films deposited by the pyrosol technique: Effect of HCl publication-title: Thin Solid Films – volume: 2 start-page: 19 year: 2009 end-page: 34 ident: b0135 article-title: Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review publication-title: Energy Environ. Sci. – volume: 11 start-page: 82 year: 2018 end-page: 135 ident: b0260 article-title: Noble metals-TiO publication-title: Appl. Mater. Today – volume: 7 start-page: 77 year: 2015 end-page: 81 ident: b0385 article-title: Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting publication-title: Nanoscale – volume: 117 start-page: 307 year: 2005 end-page: 312 ident: b0275 article-title: Effect of fluorine doping on structural, electrical and optical properties of ZnO thin films publication-title: Mater. Sci. Eng. B – volume: 163 start-page: 289 year: 2018 end-page: 306 ident: b0220 article-title: Progress in perovskite solar cells based on ZnO nanostructures publication-title: Sol. Energy – volume: 59 start-page: 6790 year: 2011 end-page: 6800 ident: b0110 article-title: Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires publication-title: Acta Mater. – start-page: 299 year: 1963 end-page: 408 ident: b0335 article-title: Elementary theory of the optical properties of solids publication-title: Solid State Phys. – volume: 2 start-page: 821 year: 2003 end-page: 826 ident: b0360 article-title: Complex and oriented ZnO nanostructures publication-title: Nat. Mater. – volume: 12 start-page: 407 year: 2012 end-page: 413 ident: b0265 article-title: Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting publication-title: Nano Lett. – volume: 8 start-page: 2261 year: 2014 end-page: 2268 ident: b0040 article-title: Analysis of electron transfer properties of ZnO and TiO publication-title: ACS Nano – volume: 274 start-page: 250 year: 2015 end-page: 257 ident: b0280 article-title: Improving the antibacterial efficiency of ZnO nanopowders through simultaneous anionic (F) and cationic (Ag) doping publication-title: Powder Technol. – volume: 27 start-page: 2207 year: 2015 end-page: 2214 ident: b0395 article-title: Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion publication-title: Adv. Mater. – volume: 8 start-page: 5226 year: 2016 end-page: 5234 ident: b0130 article-title: In situ plasmonic Ag nanoparticle anchored TiO publication-title: Nanoscale – volume: 2 start-page: 422 year: 2017 end-page: 439 ident: b0315 article-title: Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites publication-title: Mol. Syst. Des. Eng. – volume: 21 start-page: 534 year: 2009 end-page: 540 ident: b0295 article-title: Extrinsic doping of electrodeposited zinc oxide films by chlorine for transparent conductive oxide applications publication-title: Chem. Mater. – volume: 20 start-page: 2165 year: 2010 end-page: 2174 ident: b0160 article-title: Electrochemical method for synthesis of a ZnFe publication-title: Adv. Funct. Mater. – volume: 294 start-page: 580 year: 2015 end-page: 587 ident: b0225 article-title: Influence of gold core concentration on visible photocatalytic activity of gold–zinc sulfide core–shell nanoparticle publication-title: J. Power Sources – volume: 1 start-page: 022001 year: 2017 ident: b0070 article-title: Roadmap on solar water splitting: current status and future prospects publication-title: Nano Futur. – volume: 119 start-page: 589 year: 2015 end-page: 596 ident: b0255 article-title: Physical and photoelectrochemical properties of Sb-doped SnO publication-title: Appl. Phys. A – volume: 8 start-page: 4771 year: 2016 end-page: 4780 ident: b0090 article-title: Effect of magnetic field on photoresponse of cobalt integrated zinc oxide nanorods publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 4596 year: 2015 ident: b0430 article-title: Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods publication-title: Sci. Rep. – volume: 3 start-page: 8336 year: 2015 end-page: 8343 ident: b0065 article-title: Non-laminated growth of chlorine-doped zinc oxide films by atomic layer deposition at low temperatures publication-title: J. Mater. Chem. C – volume: 171 start-page: 30 year: 2013 end-page: 33 ident: b0210 article-title: Defect formation in chlorine-doped zinc oxide publication-title: Solid State Commun. – volume: 29 start-page: 189 year: 1978 end-page: 222 ident: b0250 article-title: Photoelectrochemistry: applications to solar energy conversion publication-title: Annu. Rev. Phys. Chem. – volume: 85 start-page: 1 year: 2018 end-page: 11 ident: b0305 article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications publication-title: J. Sol-Gel Sci. Technol. – volume: 210 start-page: 2638 year: 2013 end-page: 2643 ident: b0190 article-title: Evaluation of optimal chlorine doping concentration in zinc oxide on glass for application as new transparent conductive oxide publication-title: Phys. Status Solidi Appl. Mater. Sci. – volume: 13 start-page: 1383 year: 2011 end-page: 1386 ident: b0165 article-title: Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting publication-title: Electrochem. commun. – volume: 2 start-page: 500 year: 2014 end-page: 509 ident: b0340 article-title: Fabrication of Cu publication-title: J. Mater. Chem. A – volume: 6 start-page: 48109 year: 2016 end-page: 48119 ident: b0310 article-title: Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications publication-title: RSC Adv. – reference: . – volume: 47 start-page: 2441 year: 2011 end-page: 2443 ident: b0030 article-title: Facile preparation of Fe publication-title: Chem. Commun. – volume: 6 start-page: 1288 year: 2014 end-page: 1293 ident: b0380 article-title: Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 2490 year: 2017 end-page: 2495 ident: b0205 article-title: Morphology and doping engineering of Sn-doped hematite nanowire photoanodes publication-title: Nano Lett. – volume: 38 start-page: 5821 year: 2012 end-page: 5825 ident: b0420 article-title: Effect of chlorine ion concentration on morphology and optical properties of Cl-doped ZnO nanostructures publication-title: Ceram. Int. – volume: 21 start-page: 2639 year: 2017 end-page: 2648 ident: b0290 article-title: Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water publication-title: J. Solid State Electrochem. – volume: 112 start-page: 6099 year: 2008 end-page: 6102 ident: b0215 article-title: Structural and photoelectrochemical properties of BiVO publication-title: J. Phys. Chem. C – volume: 555 start-page: 213 year: 2013 end-page: 218 ident: b0100 article-title: Solution-growth and optoelectronic properties of ZnO:Cl@ZnS core–shell nanowires with tunable shell thickness publication-title: J. Alloys Compd. – volume: 99 start-page: 262102 year: 2011 ident: b0105 article-title: Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile publication-title: Appl. Phys. Lett. – volume: 9 start-page: 4536 year: 2017 end-page: 4543 ident: b0025 article-title: Surface photo-charge effect in doped-ZnO nanorods for high-performance self-powered ultraviolet photodetectors publication-title: Nanoscale – volume: 33 start-page: 095005 year: 2018 ident: b0150 article-title: Fluorine doped ZnO thin film as acetaldehyde sensor publication-title: Semicond. Sci. Technol. – volume: 4 start-page: 4596 year: 2015 ident: 10.1016/j.solener.2019.09.045_b0430 article-title: Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods publication-title: Sci. Rep. doi: 10.1038/srep04596 – volume: 21 start-page: 2639 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0290 article-title: Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-016-3427-9 – volume: 121 start-page: 3212 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0145 article-title: Nondestructive raman scattering assessment of solution-processed ZnO-doped layers for photovoltaic applications publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b11525 – volume: 7 start-page: 93 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0155 article-title: Photocatalytic water oxidation on ZnO: a review publication-title: Catalysts doi: 10.3390/catal7030093 – volume: 171 start-page: 30 year: 2013 ident: 10.1016/j.solener.2019.09.045_b0210 article-title: Defect formation in chlorine-doped zinc oxide publication-title: Solid State Commun. doi: 10.1016/j.ssc.2013.06.026 – volume: 516 start-page: 8146 year: 2008 ident: 10.1016/j.solener.2019.09.045_b0060 article-title: Effect of chlorine doping on electrical and optical properties of ZnO thin films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2008.04.076 – volume: 119 start-page: 589 year: 2015 ident: 10.1016/j.solener.2019.09.045_b0255 article-title: Physical and photoelectrochemical properties of Sb-doped SnO2 thin films deposited by chemical vapor deposition: application to chromate reduction under solar light publication-title: Appl. Phys. A doi: 10.1007/s00339-015-8996-4 – volume: 9 start-page: 4536 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0025 article-title: Surface photo-charge effect in doped-ZnO nanorods for high-performance self-powered ultraviolet photodetectors publication-title: Nanoscale doi: 10.1039/C6NR07670J – volume: 7 start-page: 77 year: 2015 ident: 10.1016/j.solener.2019.09.045_b0385 article-title: Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting publication-title: Nanoscale doi: 10.1039/C4NR03735A – start-page: 299 year: 1963 ident: 10.1016/j.solener.2019.09.045_b0335 article-title: Elementary theory of the optical properties of solids publication-title: Solid State Phys. doi: 10.1016/S0081-1947(08)60594-9 – volume: 8 start-page: 18182 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0085 article-title: Energy-efficient hydrogenated zinc oxide nanoflakes for high-performance self-powered ultraviolet photodetector publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04954 – volume: 294 start-page: 580 year: 2015 ident: 10.1016/j.solener.2019.09.045_b0225 article-title: Influence of gold core concentration on visible photocatalytic activity of gold–zinc sulfide core–shell nanoparticle publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.06.099 – volume: 4 start-page: 5693 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0180 article-title: Stable and enhanced visible-light water electrolysis using C, N, and S surface functionalized ZnO nanorod photoanodes: engineering the absorption and electronic structure publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01604 – volume: 20 start-page: 4287 year: 2010 ident: 10.1016/j.solener.2019.09.045_b0240 article-title: Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000931 – volume: 1 start-page: 022001 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0070 article-title: Roadmap on solar water splitting: current status and future prospects publication-title: Nano Futur. doi: 10.1088/2399-1984/aa88a1 – volume: 21 start-page: 534 year: 2009 ident: 10.1016/j.solener.2019.09.045_b0295 article-title: Extrinsic doping of electrodeposited zinc oxide films by chlorine for transparent conductive oxide applications publication-title: Chem. Mater. doi: 10.1021/cm802765c – volume: 112 start-page: 4475 year: 2008 ident: 10.1016/j.solener.2019.09.045_b0075 article-title: Low-temperature growth and characterization of Cl-doped ZnO nanowire arrays publication-title: J. Phys. Chem. C doi: 10.1021/jp710855z – volume: 12 start-page: 407 year: 2012 ident: 10.1016/j.solener.2019.09.045_b0265 article-title: Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting publication-title: Nano Lett. doi: 10.1021/nl2037326 – volume: 17 start-page: 2490 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0205 article-title: Morphology and doping engineering of Sn-doped hematite nanowire photoanodes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00184 – volume: 38 start-page: 5821 year: 2012 ident: 10.1016/j.solener.2019.09.045_b0420 article-title: Effect of chlorine ion concentration on morphology and optical properties of Cl-doped ZnO nanostructures publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.04.030 – volume: 10 start-page: 1529 year: 2010 ident: 10.1016/j.solener.2019.09.045_b0410 article-title: Semiconductor nanowire: Whats Next? publication-title: Nano Lett. doi: 10.1021/nl100665r – volume: 210 start-page: 2638 year: 2013 ident: 10.1016/j.solener.2019.09.045_b0190 article-title: Evaluation of optimal chlorine doping concentration in zinc oxide on glass for application as new transparent conductive oxide publication-title: Phys. Status Solidi Appl. Mater. Sci. doi: 10.1002/pssa.201330042 – volume: 184 start-page: 2678 year: 2011 ident: 10.1016/j.solener.2019.09.045_b0425 article-title: Growth and characterization of Cl-doped ZnO hexagonal nanodisks publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2011.08.001 – volume: 163 start-page: 289 year: 2018 ident: 10.1016/j.solener.2019.09.045_b0220 article-title: Progress in perovskite solar cells based on ZnO nanostructures publication-title: Sol. Energy doi: 10.1016/j.solener.2018.01.035 – volume: 49 start-page: 5966 year: 2010 ident: 10.1016/j.solener.2019.09.045_b0055 article-title: Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting publication-title: Angew. Chem. – Int. Ed. doi: 10.1002/anie.201001827 – volume: 7 start-page: 570 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0230 article-title: Enhanced visible-light-driven photocatalytic activity of Au@Ag core–shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY02085B – year: 2011 ident: 10.1016/j.solener.2019.09.045_b0245 article-title: Luminescence properties of ZnO nanostructures and their implementation as white Light Emitting Diodes (LEDs) publication-title: Sci. Technol. – volume: 2 start-page: 500 year: 2014 ident: 10.1016/j.solener.2019.09.045_b0340 article-title: Fabrication of Cu2 ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13533K – volume: 27 start-page: 2846 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0330 article-title: Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-015-4100-2 – volume: 112 start-page: 6099 year: 2008 ident: 10.1016/j.solener.2019.09.045_b0215 article-title: Structural and photoelectrochemical properties of BiVO4 thin films publication-title: J. Phys. Chem. C doi: 10.1021/jp7113187 – volume: 8 start-page: 2261 year: 2014 ident: 10.1016/j.solener.2019.09.045_b0040 article-title: Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells publication-title: ACS Nano doi: 10.1021/nn405535j – volume: 99 start-page: 262102 year: 2011 ident: 10.1016/j.solener.2019.09.045_b0105 article-title: Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile publication-title: Appl. Phys. Lett. doi: 10.1063/1.3673287 – volume: 8 start-page: 4191 year: 2008 ident: 10.1016/j.solener.2019.09.045_b0355 article-title: Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells publication-title: Nano Lett. doi: 10.1021/nl801728d – volume: 274 start-page: 250 year: 2015 ident: 10.1016/j.solener.2019.09.045_b0280 article-title: Improving the antibacterial efficiency of ZnO nanopowders through simultaneous anionic (F) and cationic (Ag) doping publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.12.053 – volume: 45 year: 2012 ident: 10.1016/j.solener.2019.09.045_b0115 article-title: Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core-shell nanowires with tunable shell thickness publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/45/41/415301 – volume: 8 start-page: 2638 year: 2008 ident: 10.1016/j.solener.2019.09.045_b0235 article-title: Design of light scattering in nanowire materials for photovoltaic applications publication-title: Nano Lett. doi: 10.1021/nl0808076 – volume: 125 start-page: 177 year: 2019 ident: 10.1016/j.solener.2019.09.045_b0270 article-title: Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2018.08.026 – volume: 2 start-page: 821 year: 2003 ident: 10.1016/j.solener.2019.09.045_b0360 article-title: Complex and oriented ZnO nanostructures publication-title: Nat. Mater. doi: 10.1038/nmat1014 – volume: 2 start-page: 19 year: 2009 ident: 10.1016/j.solener.2019.09.045_b0135 article-title: Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review publication-title: Energy Environ. Sci. doi: 10.1039/B811536B – volume: 115 start-page: 519 year: 2019 ident: 10.1016/j.solener.2019.09.045_b0005 article-title: An electron beam induced study in fluorine doped ZnO nanostructures for optical filtering and frequency conversion application publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.03.003 – volume: 12 start-page: S80 year: 2012 ident: 10.1016/j.solener.2019.09.045_b0195 article-title: Non-metallic element (chlorine) doped Zinc oxide grown by pulsed laser deposition for application in transparent electrode publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2012.05.019 – volume: 176 start-page: 1409 year: 2011 ident: 10.1016/j.solener.2019.09.045_b0405 article-title: Recent progress in the ZnO nanostructure-based sensors publication-title: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. doi: 10.1016/j.mseb.2011.09.005 – volume: 27 start-page: 2207 year: 2015 ident: 10.1016/j.solener.2019.09.045_b0395 article-title: Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion publication-title: Adv. Mater. doi: 10.1002/adma.201405674 – volume: 298 start-page: 587 year: 2019 ident: 10.1016/j.solener.2019.09.045_b0140 article-title: The photo-electrokinetics of the O2 evolution reaction on ZnO nanorods publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.082 – volume: 7 start-page: 102843 year: 2019 ident: 10.1016/j.solener.2019.09.045_b0175 article-title: Interfacial engineering of Fe2O3@BOC heterojunction for efficient detoxification of toxic metal and dye under visible light illumination publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.102843 – volume: 6 start-page: 72423 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0365 article-title: Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis publication-title: RSC Adv. doi: 10.1039/C6RA10488F – volume: 6 start-page: 1288 year: 2014 ident: 10.1016/j.solener.2019.09.045_b0380 article-title: Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405141s – volume: 219 start-page: 76 year: 2018 ident: 10.1016/j.solener.2019.09.045_b0080 article-title: Engineering of ZnO nanostructures for efficient solar photocatalysis publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.02.057 – volume: 6 start-page: 48109 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0310 article-title: Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications publication-title: RSC Adv. doi: 10.1039/C6RA04305D – volume: 47 start-page: 2441 year: 2011 ident: 10.1016/j.solener.2019.09.045_b0030 article-title: Facile preparation of Fe2O3 thin film with photoelectrochemical properties publication-title: Chem. Commun. doi: 10.1039/C0CC04775A – volume: 662 start-page: 196 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0125 article-title: Role of Cl doping on the growth and relaxation dynamics of ZnO nanorods synthesized by hydrothermal method publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.09.026 – volume: 20 start-page: 2165 year: 2010 ident: 10.1016/j.solener.2019.09.045_b0160 article-title: Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902390 – volume: 13 start-page: 1194 year: 2001 ident: 10.1016/j.solener.2019.09.045_b0350 article-title: Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition publication-title: Chem. Mater. doi: 10.1021/cm000572i – volume: 8 start-page: 5226 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0130 article-title: In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting publication-title: Nanoscale doi: 10.1039/C5NR08341A – volume: 79 start-page: 1206 year: 1975 ident: 10.1016/j.solener.2019.09.045_b0095 article-title: Investigation on the frequency-dependence of the impedance of the nearly ideally polarizable semiconductor electrodes CdSe, CdS and TiO2 publication-title: Berichte der Bunsengesellschaft für Phys. Chemie doi: 10.1002/bbpc.19750791208 – volume: 8 start-page: 4771 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0090 article-title: Effect of magnetic field on photoresponse of cobalt integrated zinc oxide nanorods publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11387 – volume: 345 start-page: 192 year: 1999 ident: 10.1016/j.solener.2019.09.045_b0325 article-title: Morphological differences in ZnO films deposited by the pyrosol technique: Effect of HCl publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00167-4 – volume: 2 start-page: 422 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0315 article-title: Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C7ME00038C – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0390 article-title: Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method publication-title: Sci. Rep. – volume: 59 start-page: 6790 year: 2011 ident: 10.1016/j.solener.2019.09.045_b0110 article-title: Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.07.037 – volume: 29 start-page: 189 year: 1978 ident: 10.1016/j.solener.2019.09.045_b0250 article-title: Photoelectrochemistry: applications to solar energy conversion publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.29.100178.001201 – volume: 117 start-page: 307 year: 2005 ident: 10.1016/j.solener.2019.09.045_b0275 article-title: Effect of fluorine doping on structural, electrical and optical properties of ZnO thin films publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2004.12.040 – volume: 290 start-page: 465 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0045 article-title: Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.01.029 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0185 article-title: Controlled defects of fluorine-incorporated ZnO nanorods for photovoltaic enhancement publication-title: Sci. Rep. – volume: 3 start-page: 8336 year: 2015 ident: 10.1016/j.solener.2019.09.045_b0065 article-title: Non-laminated growth of chlorine-doped zinc oxide films by atomic layer deposition at low temperatures publication-title: J. Mater. Chem. C doi: 10.1039/C5TC01763G – ident: 10.1016/j.solener.2019.09.045_b0375 doi: 10.1021/cr1002326 – volume: 11 start-page: 65 year: 2015 ident: 10.1016/j.solener.2019.09.045_b0010 article-title: Photoelectrochemical water splitting properties of hydrothermally-grown ZnO nanorods with controlled diameters publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-014-4227-y – volume: 33 start-page: 095005 year: 2018 ident: 10.1016/j.solener.2019.09.045_b0150 article-title: Fluorine doped ZnO thin film as acetaldehyde sensor publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aad2ab – volume: 37 start-page: 1359 year: 2011 ident: 10.1016/j.solener.2019.09.045_b0345 article-title: Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M=Al, Mg, Ti) publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2010.12.010 – volume: 6 start-page: 12682 year: 2018 ident: 10.1016/j.solener.2019.09.045_b0170 article-title: Photocatalytic and electrically conductive transparent Cl-doped ZnO thin films via aerosol-assisted chemical vapour deposition publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01420E – volume: 200 start-page: 109975 year: 2019 ident: 10.1016/j.solener.2019.09.045_b0035 article-title: Post-treatment with ZnFe2O4 nanoparticles to improve photo-electrochemical performance of ZnO nanorods based photoelectrodes publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.109975 – volume: 55 start-page: 3001 year: 2008 ident: 10.1016/j.solener.2019.09.045_b0200 article-title: Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors publication-title: IEEE Trans. Electron Dev. doi: 10.1109/TED.2008.2005180 – volume: 238 start-page: 37 year: 1972 ident: 10.1016/j.solener.2019.09.045_b0120 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 11 start-page: 4785 year: 2015 ident: 10.1016/j.solener.2019.09.045_b0300 article-title: Cl-doped ZnO nanowire arrays on 3D graphene foam with highly efficient field emission and photocatalytic properties publication-title: Small doi: 10.1002/smll.201501411 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0415 article-title: Property database for single-element doping in ZnO obtained by automated first-principles calculations publication-title: Sci. Rep. doi: 10.1038/srep40907 – volume: 3 start-page: 3103 year: 2009 ident: 10.1016/j.solener.2019.09.045_b0050 article-title: Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells publication-title: ACS Nano doi: 10.1021/nn900756s – volume: 4 start-page: 10203 year: 2016 ident: 10.1016/j.solener.2019.09.045_b0285 article-title: Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02788A – volume: 85 start-page: 1 year: 2018 ident: 10.1016/j.solener.2019.09.045_b0305 article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-017-4536-3 – volume: 11 start-page: 82 year: 2018 ident: 10.1016/j.solener.2019.09.045_b0260 article-title: Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.02.002 – volume: 13 start-page: 1383 year: 2011 ident: 10.1016/j.solener.2019.09.045_b0165 article-title: Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting publication-title: Electrochem. commun. doi: 10.1016/j.elecom.2011.08.016 – volume: 16 start-page: 829 year: 2004 ident: 10.1016/j.solener.2019.09.045_b0400 article-title: Zinc oxide nanostructures: growth, properties and applications publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/16/25/R01 – volume: 164 start-page: H137 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0020 article-title: Electrochemical and photoelectrochemical properties of screen-printed nickel oxide thin films obtained from precursor pastes with different compositions publication-title: J. Electrochem. Soc. doi: 10.1149/2.0051704jes – volume: 555 start-page: 213 year: 2013 ident: 10.1016/j.solener.2019.09.045_b0100 article-title: Solution-growth and optoelectronic properties of ZnO:Cl@ZnS core–shell nanowires with tunable shell thickness publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.11.166 – volume: 36 start-page: 4724 year: 2011 ident: 10.1016/j.solener.2019.09.045_b0370 article-title: Enhanced photoelectrochemical properties of WO3 thin films fabricated by reactive magnetron sputtering publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.01.087 – volume: 9 start-page: 28495 year: 2017 ident: 10.1016/j.solener.2019.09.045_b0320 article-title: Dual functional Ta-doped electrospun TiO2 nanofibers with enhanced photocatalysis and SERS detection for organic compounds publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07571 |
SSID | ssj0017187 |
Score | 2.4935064 |
Snippet | [Display omitted]
•A photocurrent density of 2.16 mA cm−2 was observed for Cl-ZnO NRs.•LHE of ~97% has been achieved for the doped samples.•Low recombination... Vertically aligned pristine ZnO and Cl-doped ZnO nanorod arrays were grown by a simple, cost-effective sol-gel and hydrothermal method. These nanorods (NRs)... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 148 |
SubjectTerms | Absorption spectroscopy Arrays Density Energy harvesting Flat band potential Illumination Light harvesting efficiency Nanorods Photoanodes Photoelectric effect Photoelectric emission Photostability Photovoltaic cells Silver chloride Sol-gel processes Solar energy Solar hydrogen generation Splitting Water splitting Zinc oxide ZnO nanorods |
Title | UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications |
URI | https://dx.doi.org/10.1016/j.solener.2019.09.045 https://www.proquest.com/docview/2323406463 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLam7QIHxAaIwZh84Oo1sR0SH6uKqRvauFBU7WL5x8vaKSRVW0Bc-Hv2Z-69NCljQppElEMS2Yl_fu-z8t5nxt4HKLWJEIT0mRMaQiqMT4MA5T3IxCMuU-zwxeWH8USfT7PpDhv1sTDkVtlh_wbTW7Tungy61hws5nOK8VVFYuQUKQgaPUOKn1rnNMpPfm_dPFLE3o1upqLf_HL6J4pncIOL2IrEncnDy7RypxTV9G_79ACpW_Nz-pw963gjH26Kts92oD5gT--pCb5gt5OvAqkw9VvkP5FDLvkKKWbr2MybkiMP9BXwUSVis8AkV_VnXru6QQjli1mzbvA6wopf08qc_5g7XrqAoMGx_OIaKj77FZdtwNY3LMlW_JUj7eVQz1pXAkrr6JYiCvnMLVsVD_z-_R_lL9nk9OOX0Vh0GzGIgPhD29WD1r5ASy4DLmljAWDK0uhgoMSjUJDExEmXpD4FhTO6zJ0yRQxRKqfyXL1iu3VTw2vGYyll4TTp1mXa5dIh_1EBgQRX-DoGech03_w2dCrltFlGZXt3tBvb9ZqlXrMJnjo7ZCfbbIuNTMdjGYq-b-1f482iKXks61E_Fmw34VcWianCWmFl3vz_m9-yJ3RHoY5pdsR218vv8A45z9oft4P6mO0Nzz6NL-8Ab1EITA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxFNtaYsPXN1NbIeNj2jVaumLSxetuFh-TLpbhWS1u7Tqhd_Dz2QmmywFIVVqlENeTuzY_uazPPOZsQ8BCm0iBCF95oSGkArj0yBAeQ8y8YjLFDt8dv5xONLH42y8wQZdLAy5VbbYv8L0Bq3bK732b_Zm0ynF-Ko8MXKMFASNnlGP2GON3ZeWMTj4ufbzSBF8V8KZiub55fhPGE_vCkexJak7k4uXafROKazp_wbqH6hu7M_RC_a8JY780ypvL9kGVK_Ysztygq_Zr9FXgVyYKi7yGySRc75Ajtl4NvO64EgEfQl8UIpYz_CRb9UXXrmqRgzls0m9rPE4woJf0tCcX08dL1xA1OCYf3EJJZ_cxnkTsfUdc7JWf-XIezlUk8aXgJ51dEohhXzi5o2MB37_7kz5GzY6OrwYDEW7EoMICEC0Xj1o7XM05TLgmDbmAKYojA4GCtxyBUlMnHRJ6lNQ2KWLvlMmjyFK5VS_r96yzaquYIvxWEiZO03CdZl2femQAKmASIJDfB2D3Ga6-_02tDLltFpGaTt_tCvb1pqlWrMJ7jrbZgfrZLOVTsd9CfKubu1fDc6iLbkv6W7XFmzb4xcWmanCUmFhdh7-5vfsyfDi7NSefj4_ecee0h2Ke0yzXba5nP-APSRAS7_fNPDfXNAJ2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV-assisted+water+splitting+of+stable+Cl-doped+ZnO+nanorod+photoanodes+grown+via+facile+sol-gel+hydrothermal+technique+for+enhanced+solar+energy+harvesting+applications&rft.jtitle=Solar+energy&rft.au=Sahoo%2C+Pooja&rft.au=Sharma%2C+Akash&rft.au=Padhan%2C+Subash&rft.au=Udayabhanu%2C+G.&rft.date=2019-11-15&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=193&rft.spage=148&rft.epage=163&rft_id=info:doi/10.1016%2Fj.solener.2019.09.045&rft.externalDocID=S0038092X19309193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |