Precision data-driven modeling of cortical dynamics reveals person-specific mechanisms underpinning brain electrophysiology
Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 122; no. 3; p. e2409577121 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
21.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics (“precision brain models”) and making quantitative predictions. We extensively validate the models’ performance in forecasting future brain activity and predicting individual variability in key M/EEG metrics. Last, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitatory–inhibitory balance, highlighting the explanatory power of our framework to generate mechanistic insights. |
---|---|
AbstractList | At rest, brain activity converges onto person-specific temporal patterns (dynamics). Signatures of these dynamics, such as synchronization and spectral-power, predict cognitive abilities but, at the person-level, have proven difficult to map onto biological models of the brain due to the many model parameters involved. Such models are critical to linking biological processes with dynamical outcomes and for personalized medicine. Our study develops and rigorously validates a data-driven approach to directly estimate individualized brain models containing hundreds of neural populations and thousands of model parameters from noninvasive brain recordings. By comparing models we identify a mathematical mechanism (attractor topology) that drives individual differences in spectral power and trace it back to individual differences in local inhibitory circuits.
Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics (“precision brain models”) and making quantitative predictions. We extensively validate the models’ performance in forecasting future brain activity and predicting individual variability in key M/EEG metrics. Last, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitatory–inhibitory balance, highlighting the explanatory power of our framework to generate mechanistic insights. Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions. We extensively validate the models' performance in forecasting future brain activity and predicting individual variability in key M/EEG metrics. Last, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitatory–inhibitory balance, highlighting the explanatory power of our framework to generate mechanistic insights. Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions. We extensively validate the models' performance in forecasting future brain activity and predicting individual variability in key M/EEG metrics. Last, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitatory-inhibitory balance, highlighting the explanatory power of our framework to generate mechanistic insights.Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions. We extensively validate the models' performance in forecasting future brain activity and predicting individual variability in key M/EEG metrics. Last, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitatory-inhibitory balance, highlighting the explanatory power of our framework to generate mechanistic insights. |
Author | Cole, Michael Braver, Todd S. Ching, ShiNung Singh, Matthew F. |
Author_xml | – sequence: 1 givenname: Matthew F. orcidid: 0000-0003-0051-336X surname: Singh fullname: Singh, Matthew F. – sequence: 2 givenname: Todd S. orcidid: 0000-0002-2631-3393 surname: Braver fullname: Braver, Todd S. – sequence: 3 givenname: Michael orcidid: 0000-0003-4329-438X surname: Cole fullname: Cole, Michael – sequence: 4 givenname: ShiNung surname: Ching fullname: Ching, ShiNung |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39823302$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtr3DAURkVJaSaPdXdF0E03TvSyJa1KCX1BIF1kL2TpekbBllzJHhj656shadpmdRf3cO53-c7QSUwREHpLyRUlkl_P0ZYrJohupaSMvkIbSjRtOqHJCdoQwmSjBBOn6KyUB0Iqp8gbdMq1YpwTtkG_fmRwoYQUsbeLbXwOe4h4Sh7GELc4DdilvARnR-wP0U7BFZxhD3YseIZcUmzKXBVDcHgCt7MxlKngNXrIc4jxKOmzDRHDCG7Jad4d6rkxbQ8X6PVQNXD5NM_R_ZfP9zffmtu7r99vPt02jstuaSiFmlW3g-460XInpFPaUaIUMAdKeM1433ZKQE_BDawO1faea-96ITQ_Rx8ftfPaT-AdxCXb0cw5TDYfTLLB_L-JYWe2aW8olR3lpK2GD0-GnH6uUBYzheJgHG2EtBbDaT1PqJS8ou9foA9pzbG-d6S0UJKQrlLv_o30nOVPLxW4fgRcTqVkGJ4RSsyxeXNs3vxtnv8G6KKksQ |
Cites_doi | 10.1016/j.neuroimage.2020.117467 10.1016/j.clinph.2005.06.011 10.1016/S0006-3495(72)86068-5 10.1073/pnas.0701519104 10.1016/j.neuron.2009.04.027 10.1016/j.neuroimage.2014.01.049 10.1007/s13246-017-0578-7 10.1016/0013-4694(73)90216-2 10.1016/j.clinph.2004.11.015 10.1016/j.neuroimage.2015.03.055 10.1038/nn.4135 10.1016/j.neuron.2019.01.017 10.1371/journal.pcbi.1002634 10.1007/s11571-008-9038-0 10.1016/j.clinph.2018.05.021 10.7554/eLife.85035 10.1088/0034-4885/56/12/001 10.7554/eLife.51214 10.1142/S1793536909000199 10.1073/pnas.1913092116 10.1038/nrn3241 10.1523/JNEUROSCI.0754-09.2009 10.1016/j.conb.2010.03.002 10.1016/j.neuroimage.2017.06.078 10.1016/S1053-8119(03)00202-7 10.3389/fnhum.2017.00584 10.1063/1.4979043 10.1126/sciadv.aat7854 10.1111/psyp.12043 10.1097/00001756-199812010-00030 10.1093/cercor/bhx179 10.1016/j.neuron.2018.03.035 10.1016/j.neuroimage.2013.05.056 10.1038/sj.npp.1300143 10.1016/S0167-8760(96)00066-9 10.3389/fnagi.2017.00364 10.1016/j.neuroimage.2016.04.049 10.1103/PhysRevE.56.826 10.3758/s13415-013-0196-0 10.1016/j.cub.2014.11.034 10.1016/S0304-3940(02)00745-0 10.1523/JNEUROSCI.6693-10.2011 10.1016/j.neuroimage.2005.12.055 10.1016/j.brainres.2011.06.003 10.1089/brain.2012.0120 10.1016/j.celrep.2018.12.058 10.1117/12.280797 10.1088/1741-2552/aba07d 10.1371/journal.pcbi.1008591 10.1073/pnas.0811168106 10.1016/j.neuroimage.2011.02.027 10.1016/S1388-2457(99)00122-4 10.1002/hbm.20032 10.3171/jns.2002.97.1.0084 10.1016/j.neuroimage.2020.117046 10.1159/000079981 10.1152/jn.01095.2002 10.1371/journal.pone.0156436 10.3389/fncom.2018.00023 10.1016/S0167-8760(02)00107-1 10.1016/j.neuroimage.2022.119321 10.1371/journal.pone.0161488 10.1007/BF02512476 10.1109/9.847726 10.23919/ACC53348.2022.9867232 10.1016/j.neuroscience.2017.07.037 10.3389/fnins.2014.00383 10.1080/10874208.2012.677664 10.1016/j.neuroimage.2021.118836 10.1016/j.neuroimage.2004.01.047 10.1016/j.brainresrev.2006.06.003 10.1073/pnas.1402773111 10.1162/NETN_a_00015 10.1093/cercor/bhac026 10.1016/B978-0-7020-5307-8.00002-8 10.1007/s00422-007-0191-z 10.1152/jn.00338.2011 10.1037/0033-2909.86.2.420 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jan 21, 2025 Copyright © 2025 the Author(s). Published by PNAS. 2025 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jan 21, 2025 – notice: Copyright © 2025 the Author(s). Published by PNAS. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2409577121 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | PMC11761305 39823302 10_1073_pnas_2409577121 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: 1653589 – fundername: HHS | NIH | National Institute on Drug Abuse (NIDA) grantid: T32 DA007261-29 – fundername: NIMH NIH HHS grantid: R21 MH132240 – fundername: NINDS NIH HHS grantid: R01 NS130693 – fundername: National Science Foundation (NSF) grantid: 1835209 – fundername: National Science Foundation (NSF) grantid: NSF-DGE-1143954 – fundername: HHS | NIH | National Institute of Mental Health (NIMH) grantid: R21MH132240 – fundername: NIMH NIH HHS grantid: R37 MH066078 – fundername: NIDA NIH HHS grantid: T32 DA007261 – fundername: ; grantid: R21MH132240 – fundername: ; grantid: 1835209 – fundername: ; grantid: 1653589 – fundername: ; grantid: T32 DA007261-29 – fundername: ; grantid: NSF-DGE-1143954 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 2FS 2WC 4.4 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFHIN AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR WH7 WOQ X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 29P CGR CUY CVF ECM EIF HYE NPM W8F WOW 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c376t-11e33095f966453c47c89c1088e2ce84d923b5684eb1ecf2eb185bd39dcb4493 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:24:46 EDT 2025 Fri Jul 11 11:34:42 EDT 2025 Fri Jul 25 11:59:58 EDT 2025 Wed Jul 30 01:49:30 EDT 2025 Tue Jul 01 02:37:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | attractors MEG brain dynamics resting-state individual differences |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c376t-11e33095f966453c47c89c1088e2ce84d923b5684eb1ecf2eb185bd39dcb4493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Terrence Sejnowski, Salk Institute for Biological Studies, La Jolla, CA; received May 13, 2024; accepted November 2, 2024 |
ORCID | 0000-0003-0051-336X 0000-0002-2631-3393 0000-0003-4329-438X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11761305 |
PMID | 39823302 |
PQID | 3159487006 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11761305 proquest_miscellaneous_3156801773 proquest_journals_3159487006 pubmed_primary_39823302 crossref_primary_10_1073_pnas_2409577121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-21 |
PublicationDateYYYYMMDD | 2025-01-21 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2025 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 Haarnoja T. (e_1_3_4_51_2) 2016; 29 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 38077097 - bioRxiv. 2023 Dec 02:2023.11.14.567088. doi: 10.1101/2023.11.14.567088. |
References_xml | – ident: e_1_3_4_73_2 doi: 10.1016/j.neuroimage.2020.117467 – ident: e_1_3_4_7_2 doi: 10.1016/j.clinph.2005.06.011 – ident: e_1_3_4_42_2 doi: 10.1016/S0006-3495(72)86068-5 – ident: e_1_3_4_31_2 doi: 10.1073/pnas.0701519104 – ident: e_1_3_4_35_2 doi: 10.1016/j.neuron.2009.04.027 – ident: e_1_3_4_18_2 doi: 10.1016/j.neuroimage.2014.01.049 – ident: e_1_3_4_45_2 doi: 10.1007/s13246-017-0578-7 – ident: e_1_3_4_13_2 doi: 10.1016/0013-4694(73)90216-2 – ident: e_1_3_4_17_2 doi: 10.1016/j.clinph.2004.11.015 – ident: e_1_3_4_28_2 doi: 10.1016/j.neuroimage.2015.03.055 – volume: 29 start-page: 1 year: 2016 ident: e_1_3_4_51_2 article-title: Backprop KF: Learning discriminative deterministic state estimators publication-title: Adv. Neural. Inf. Process. Syst. – ident: e_1_3_4_52_2 doi: 10.1038/nn.4135 – ident: e_1_3_4_29_2 doi: 10.1016/j.neuron.2019.01.017 – ident: e_1_3_4_72_2 doi: 10.1371/journal.pcbi.1002634 – ident: e_1_3_4_5_2 doi: 10.1007/s11571-008-9038-0 – ident: e_1_3_4_23_2 doi: 10.1016/j.clinph.2018.05.021 – ident: e_1_3_4_65_2 doi: 10.7554/eLife.85035 – ident: e_1_3_4_79_2 doi: 10.1088/0034-4885/56/12/001 – ident: e_1_3_4_30_2 doi: 10.7554/eLife.51214 – ident: e_1_3_4_8_2 doi: 10.1142/S1793536909000199 – ident: e_1_3_4_15_2 doi: 10.1073/pnas.1913092116 – ident: e_1_3_4_37_2 doi: 10.1038/nrn3241 – ident: e_1_3_4_70_2 doi: 10.1523/JNEUROSCI.0754-09.2009 – ident: e_1_3_4_10_2 doi: 10.1016/j.conb.2010.03.002 – ident: e_1_3_4_58_2 doi: 10.1016/j.neuroimage.2017.06.078 – ident: e_1_3_4_4_2 doi: 10.1016/S1053-8119(03)00202-7 – ident: e_1_3_4_11_2 doi: 10.3389/fnhum.2017.00584 – ident: e_1_3_4_59_2 doi: 10.1063/1.4979043 – ident: e_1_3_4_32_2 doi: 10.1126/sciadv.aat7854 – ident: e_1_3_4_56_2 doi: 10.1111/psyp.12043 – ident: e_1_3_4_62_2 doi: 10.1097/00001756-199812010-00030 – ident: e_1_3_4_55_2 doi: 10.1093/cercor/bhx179 – ident: e_1_3_4_1_2 doi: 10.1016/j.neuron.2018.03.035 – ident: e_1_3_4_38_2 doi: 10.1016/j.neuroimage.2013.05.056 – ident: e_1_3_4_46_2 doi: 10.1038/sj.npp.1300143 – ident: e_1_3_4_60_2 doi: 10.1016/S0167-8760(96)00066-9 – ident: e_1_3_4_22_2 doi: 10.3389/fnagi.2017.00364 – ident: e_1_3_4_3_2 doi: 10.1016/j.neuroimage.2016.04.049 – ident: e_1_3_4_75_2 doi: 10.1103/PhysRevE.56.826 – ident: e_1_3_4_54_2 doi: 10.3758/s13415-013-0196-0 – ident: e_1_3_4_19_2 doi: 10.1016/j.cub.2014.11.034 – ident: e_1_3_4_67_2 doi: 10.1016/S0304-3940(02)00745-0 – ident: e_1_3_4_71_2 doi: 10.1523/JNEUROSCI.6693-10.2011 – ident: e_1_3_4_74_2 doi: 10.1016/j.neuroimage.2005.12.055 – ident: e_1_3_4_64_2 doi: 10.1016/j.brainres.2011.06.003 – ident: e_1_3_4_2_2 doi: 10.1089/brain.2012.0120 – ident: e_1_3_4_66_2 doi: 10.1016/j.celrep.2018.12.058 – ident: e_1_3_4_49_2 doi: 10.1117/12.280797 – ident: e_1_3_4_40_2 doi: 10.1088/1741-2552/aba07d – ident: e_1_3_4_80_2 doi: 10.1371/journal.pcbi.1008591 – ident: e_1_3_4_27_2 doi: 10.1073/pnas.0811168106 – ident: e_1_3_4_43_2 doi: 10.1016/j.neuroimage.2011.02.027 – ident: e_1_3_4_9_2 doi: 10.1016/S1388-2457(99)00122-4 – ident: e_1_3_4_47_2 doi: 10.1002/hbm.20032 – ident: e_1_3_4_21_2 doi: 10.3171/jns.2002.97.1.0084 – ident: e_1_3_4_39_2 doi: 10.1016/j.neuroimage.2020.117046 – ident: e_1_3_4_16_2 doi: 10.1159/000079981 – ident: e_1_3_4_34_2 doi: 10.1152/jn.01095.2002 – ident: e_1_3_4_26_2 doi: 10.1371/journal.pone.0156436 – ident: e_1_3_4_12_2 doi: 10.3389/fncom.2018.00023 – ident: e_1_3_4_61_2 doi: 10.1016/S0167-8760(02)00107-1 – ident: e_1_3_4_33_2 doi: 10.1016/j.neuroimage.2022.119321 – ident: e_1_3_4_68_2 doi: 10.1371/journal.pone.0161488 – ident: e_1_3_4_77_2 doi: 10.1007/BF02512476 – ident: e_1_3_4_50_2 doi: 10.1109/9.847726 – ident: e_1_3_4_48_2 doi: 10.23919/ACC53348.2022.9867232 – ident: e_1_3_4_69_2 doi: 10.1016/j.neuroscience.2017.07.037 – ident: e_1_3_4_44_2 doi: 10.3389/fnins.2014.00383 – ident: e_1_3_4_24_2 doi: 10.1080/10874208.2012.677664 – ident: e_1_3_4_41_2 doi: 10.1016/j.neuroimage.2021.118836 – ident: e_1_3_4_14_2 doi: 10.1016/j.neuroimage.2004.01.047 – ident: e_1_3_4_63_2 doi: 10.1016/j.brainresrev.2006.06.003 – ident: e_1_3_4_57_2 doi: 10.1016/j.brainres.2011.06.003 – ident: e_1_3_4_36_2 doi: 10.1073/pnas.1402773111 – ident: e_1_3_4_6_2 doi: 10.1162/NETN_a_00015 – ident: e_1_3_4_20_2 doi: 10.1093/cercor/bhac026 – ident: e_1_3_4_25_2 doi: 10.1016/B978-0-7020-5307-8.00002-8 – ident: e_1_3_4_76_2 doi: 10.1007/s00422-007-0191-z – ident: e_1_3_4_53_2 doi: 10.1152/jn.00338.2011 – ident: e_1_3_4_78_2 doi: 10.1037/0033-2909.86.2.420 – reference: 38077097 - bioRxiv. 2023 Dec 02:2023.11.14.567088. doi: 10.1101/2023.11.14.567088. |
SSID | ssj0009580 |
Score | 2.480831 |
Snippet | Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of... At rest, brain activity converges onto person-specific temporal patterns (dynamics). Signatures of these dynamics, such as synchronization and spectral-power,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e2409577121 |
SubjectTerms | Algorithms Alpha Rhythm - physiology Beta Rhythm - physiology Biological Sciences Brain Brain - physiology Cerebral Cortex - physiology EEG Electroencephalography Electrophysiology Frequency variation Humans Models, Neurological Nerve Net - physiology Oscillations Predictions Topology |
Title | Precision data-driven modeling of cortical dynamics reveals person-specific mechanisms underpinning brain electrophysiology |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39823302 https://www.proquest.com/docview/3159487006 https://www.proquest.com/docview/3156801773 https://pubmed.ncbi.nlm.nih.gov/PMC11761305 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF656aWXqunTbVptpR5SoXXFLrBwTKNEVpXSSCGSb4jHIjtSsGXsHNJf03_a2RcPO4e0F2wBBsx8zIuZ-RD6EpQV-AEsIJVfytQNjUhUeBlhkWAi88EGVbI5-WccTK-9HzN_Nhr96VUtbTf5pLh_sK_kf6QK60Cuskv2HyTbHhRWwHeQLyxBwrB8lIwv14Yhx5GFnqRcS9WlyW1MMTPEljpZXWrmefmS4E7Ikckr5WoT2Wkpq4WcWyF7gBfNbaOocderhSIzcnLJIeEYthyVB-kS8Tf2MqwRbGzJQWxzjCddx4pRI41DnMu44z--gt_NdduQoh7vao2_S2okjahlWXZJ2tOlqYHulfyrCgXDz3I1X8RbY5FNQoPK2kGiu6SNDgYXhgSeZhGdiAfWWcVNaQ-hrKeGBfgpkc-5q4-7ZyZAr0lu4zprJsM9hwO541_p-fXFRZqczZIn6CmFSETVjk77c51DPfDCXJ-dHsXZt53DDx2fvWhmtyi35-UkL9BzE57gE421QzQS9Ut0aCWHj82U8q-v0O8WfLgHPmzBh5cVtuDDFnzYgA_vgA934MN98GEFPrwHvtcoOT9LTqfEMHmQAgzYhriuYAxuRAXBteezwuNFGBUuWDhBCxF6JYQZuR-EHngOoqgofIR-XrKoLHLPi9gbdFAva_EO4cLLM0F5FgTgXFaC55XLeBSISgqnpNEYHdu7nK70vJZU1VlwlkqBpJ1AxujISiE1D3WTMlfOL-Jgi8boc7sZVK58j5bVYrlV-wTg2HHOxuitFlp7LhaFFP4qHaNwIM52BznOfbilXszVWHfX5TKY998_4sQf0LPu0TlCB5v1VnwE73iTf1L4_AsndsK6 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+data-driven+modeling+of+cortical+dynamics+reveals+person-specific+mechanisms+underpinning+brain+electrophysiology&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Singh%2C+Matthew+F&rft.au=Braver%2C+Todd+S&rft.au=Cole%2C+Michael&rft.au=Ching%2C+ShiNung&rft.date=2025-01-21&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=122&rft.issue=3&rft.spage=e2409577121&rft_id=info:doi/10.1073%2Fpnas.2409577121&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |