Precision data-driven modeling of cortical dynamics reveals person-specific mechanisms underpinning brain electrophysiology

Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 122; no. 3; p. e2409577121
Main Authors Singh, Matthew F., Braver, Todd S., Cole, Michael, Ching, ShiNung
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 21.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics (“precision brain models”) and making quantitative predictions. We extensively validate the models’ performance in forecasting future brain activity and predicting individual variability in key M/EEG metrics. Last, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitatory–inhibitory balance, highlighting the explanatory power of our framework to generate mechanistic insights.
AbstractList At rest, brain activity converges onto person-specific temporal patterns (dynamics). Signatures of these dynamics, such as synchronization and spectral-power, predict cognitive abilities but, at the person-level, have proven difficult to map onto biological models of the brain due to the many model parameters involved. Such models are critical to linking biological processes with dynamical outcomes and for personalized medicine. Our study develops and rigorously validates a data-driven approach to directly estimate individualized brain models containing hundreds of neural populations and thousands of model parameters from noninvasive brain recordings. By comparing models we identify a mathematical mechanism (attractor topology) that drives individual differences in spectral power and trace it back to individual differences in local inhibitory circuits. Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics (“precision brain models”) and making quantitative predictions. We extensively validate the models’ performance in forecasting future brain activity and predicting individual variability in key M/EEG metrics. Last, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitatory–inhibitory balance, highlighting the explanatory power of our framework to generate mechanistic insights.
Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions. We extensively validate the models' performance in forecasting future brain activity and predicting individual variability in key M/EEG metrics. Last, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitatory–inhibitory balance, highlighting the explanatory power of our framework to generate mechanistic insights.
Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions. We extensively validate the models' performance in forecasting future brain activity and predicting individual variability in key M/EEG metrics. Last, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitatory-inhibitory balance, highlighting the explanatory power of our framework to generate mechanistic insights.Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions. We extensively validate the models' performance in forecasting future brain activity and predicting individual variability in key M/EEG metrics. Last, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitatory-inhibitory balance, highlighting the explanatory power of our framework to generate mechanistic insights.
Author Cole, Michael
Braver, Todd S.
Ching, ShiNung
Singh, Matthew F.
Author_xml – sequence: 1
  givenname: Matthew F.
  orcidid: 0000-0003-0051-336X
  surname: Singh
  fullname: Singh, Matthew F.
– sequence: 2
  givenname: Todd S.
  orcidid: 0000-0002-2631-3393
  surname: Braver
  fullname: Braver, Todd S.
– sequence: 3
  givenname: Michael
  orcidid: 0000-0003-4329-438X
  surname: Cole
  fullname: Cole, Michael
– sequence: 4
  givenname: ShiNung
  surname: Ching
  fullname: Ching, ShiNung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39823302$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtr3DAURkVJaSaPdXdF0E03TvSyJa1KCX1BIF1kL2TpekbBllzJHhj656shadpmdRf3cO53-c7QSUwREHpLyRUlkl_P0ZYrJohupaSMvkIbSjRtOqHJCdoQwmSjBBOn6KyUB0Iqp8gbdMq1YpwTtkG_fmRwoYQUsbeLbXwOe4h4Sh7GELc4DdilvARnR-wP0U7BFZxhD3YseIZcUmzKXBVDcHgCt7MxlKngNXrIc4jxKOmzDRHDCG7Jad4d6rkxbQ8X6PVQNXD5NM_R_ZfP9zffmtu7r99vPt02jstuaSiFmlW3g-460XInpFPaUaIUMAdKeM1433ZKQE_BDawO1faea-96ITQ_Rx8ftfPaT-AdxCXb0cw5TDYfTLLB_L-JYWe2aW8olR3lpK2GD0-GnH6uUBYzheJgHG2EtBbDaT1PqJS8ou9foA9pzbG-d6S0UJKQrlLv_o30nOVPLxW4fgRcTqVkGJ4RSsyxeXNs3vxtnv8G6KKksQ
Cites_doi 10.1016/j.neuroimage.2020.117467
10.1016/j.clinph.2005.06.011
10.1016/S0006-3495(72)86068-5
10.1073/pnas.0701519104
10.1016/j.neuron.2009.04.027
10.1016/j.neuroimage.2014.01.049
10.1007/s13246-017-0578-7
10.1016/0013-4694(73)90216-2
10.1016/j.clinph.2004.11.015
10.1016/j.neuroimage.2015.03.055
10.1038/nn.4135
10.1016/j.neuron.2019.01.017
10.1371/journal.pcbi.1002634
10.1007/s11571-008-9038-0
10.1016/j.clinph.2018.05.021
10.7554/eLife.85035
10.1088/0034-4885/56/12/001
10.7554/eLife.51214
10.1142/S1793536909000199
10.1073/pnas.1913092116
10.1038/nrn3241
10.1523/JNEUROSCI.0754-09.2009
10.1016/j.conb.2010.03.002
10.1016/j.neuroimage.2017.06.078
10.1016/S1053-8119(03)00202-7
10.3389/fnhum.2017.00584
10.1063/1.4979043
10.1126/sciadv.aat7854
10.1111/psyp.12043
10.1097/00001756-199812010-00030
10.1093/cercor/bhx179
10.1016/j.neuron.2018.03.035
10.1016/j.neuroimage.2013.05.056
10.1038/sj.npp.1300143
10.1016/S0167-8760(96)00066-9
10.3389/fnagi.2017.00364
10.1016/j.neuroimage.2016.04.049
10.1103/PhysRevE.56.826
10.3758/s13415-013-0196-0
10.1016/j.cub.2014.11.034
10.1016/S0304-3940(02)00745-0
10.1523/JNEUROSCI.6693-10.2011
10.1016/j.neuroimage.2005.12.055
10.1016/j.brainres.2011.06.003
10.1089/brain.2012.0120
10.1016/j.celrep.2018.12.058
10.1117/12.280797
10.1088/1741-2552/aba07d
10.1371/journal.pcbi.1008591
10.1073/pnas.0811168106
10.1016/j.neuroimage.2011.02.027
10.1016/S1388-2457(99)00122-4
10.1002/hbm.20032
10.3171/jns.2002.97.1.0084
10.1016/j.neuroimage.2020.117046
10.1159/000079981
10.1152/jn.01095.2002
10.1371/journal.pone.0156436
10.3389/fncom.2018.00023
10.1016/S0167-8760(02)00107-1
10.1016/j.neuroimage.2022.119321
10.1371/journal.pone.0161488
10.1007/BF02512476
10.1109/9.847726
10.23919/ACC53348.2022.9867232
10.1016/j.neuroscience.2017.07.037
10.3389/fnins.2014.00383
10.1080/10874208.2012.677664
10.1016/j.neuroimage.2021.118836
10.1016/j.neuroimage.2004.01.047
10.1016/j.brainresrev.2006.06.003
10.1073/pnas.1402773111
10.1162/NETN_a_00015
10.1093/cercor/bhac026
10.1016/B978-0-7020-5307-8.00002-8
10.1007/s00422-007-0191-z
10.1152/jn.00338.2011
10.1037/0033-2909.86.2.420
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jan 21, 2025
Copyright © 2025 the Author(s). Published by PNAS. 2025
Copyright_xml – notice: Copyright National Academy of Sciences Jan 21, 2025
– notice: Copyright © 2025 the Author(s). Published by PNAS. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2409577121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID PMC11761305
39823302
10_1073_pnas_2409577121
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: 1653589
– fundername: HHS | NIH | National Institute on Drug Abuse (NIDA)
  grantid: T32 DA007261-29
– fundername: NIMH NIH HHS
  grantid: R21 MH132240
– fundername: NINDS NIH HHS
  grantid: R01 NS130693
– fundername: National Science Foundation (NSF)
  grantid: 1835209
– fundername: National Science Foundation (NSF)
  grantid: NSF-DGE-1143954
– fundername: HHS | NIH | National Institute of Mental Health (NIMH)
  grantid: R21MH132240
– fundername: NIMH NIH HHS
  grantid: R37 MH066078
– fundername: NIDA NIH HHS
  grantid: T32 DA007261
– fundername: ;
  grantid: R21MH132240
– fundername: ;
  grantid: 1835209
– fundername: ;
  grantid: 1653589
– fundername: ;
  grantid: T32 DA007261-29
– fundername: ;
  grantid: NSF-DGE-1143954
GroupedDBID ---
-DZ
-~X
.55
0R~
123
2FS
2WC
4.4
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFHIN
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
WH7
WOQ
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
29P
CGR
CUY
CVF
ECM
EIF
HYE
NPM
W8F
WOW
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c376t-11e33095f966453c47c89c1088e2ce84d923b5684eb1ecf2eb185bd39dcb4493
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:24:46 EDT 2025
Fri Jul 11 11:34:42 EDT 2025
Fri Jul 25 11:59:58 EDT 2025
Wed Jul 30 01:49:30 EDT 2025
Tue Jul 01 02:37:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords attractors
MEG
brain dynamics
resting-state
individual differences
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-11e33095f966453c47c89c1088e2ce84d923b5684eb1ecf2eb185bd39dcb4493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Terrence Sejnowski, Salk Institute for Biological Studies, La Jolla, CA; received May 13, 2024; accepted November 2, 2024
ORCID 0000-0003-0051-336X
0000-0002-2631-3393
0000-0003-4329-438X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11761305
PMID 39823302
PQID 3159487006
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11761305
proquest_miscellaneous_3156801773
proquest_journals_3159487006
pubmed_primary_39823302
crossref_primary_10_1073_pnas_2409577121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-21
PublicationDateYYYYMMDD 2025-01-21
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2025
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
Haarnoja T. (e_1_3_4_51_2) 2016; 29
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
38077097 - bioRxiv. 2023 Dec 02:2023.11.14.567088. doi: 10.1101/2023.11.14.567088.
References_xml – ident: e_1_3_4_73_2
  doi: 10.1016/j.neuroimage.2020.117467
– ident: e_1_3_4_7_2
  doi: 10.1016/j.clinph.2005.06.011
– ident: e_1_3_4_42_2
  doi: 10.1016/S0006-3495(72)86068-5
– ident: e_1_3_4_31_2
  doi: 10.1073/pnas.0701519104
– ident: e_1_3_4_35_2
  doi: 10.1016/j.neuron.2009.04.027
– ident: e_1_3_4_18_2
  doi: 10.1016/j.neuroimage.2014.01.049
– ident: e_1_3_4_45_2
  doi: 10.1007/s13246-017-0578-7
– ident: e_1_3_4_13_2
  doi: 10.1016/0013-4694(73)90216-2
– ident: e_1_3_4_17_2
  doi: 10.1016/j.clinph.2004.11.015
– ident: e_1_3_4_28_2
  doi: 10.1016/j.neuroimage.2015.03.055
– volume: 29
  start-page: 1
  year: 2016
  ident: e_1_3_4_51_2
  article-title: Backprop KF: Learning discriminative deterministic state estimators
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: e_1_3_4_52_2
  doi: 10.1038/nn.4135
– ident: e_1_3_4_29_2
  doi: 10.1016/j.neuron.2019.01.017
– ident: e_1_3_4_72_2
  doi: 10.1371/journal.pcbi.1002634
– ident: e_1_3_4_5_2
  doi: 10.1007/s11571-008-9038-0
– ident: e_1_3_4_23_2
  doi: 10.1016/j.clinph.2018.05.021
– ident: e_1_3_4_65_2
  doi: 10.7554/eLife.85035
– ident: e_1_3_4_79_2
  doi: 10.1088/0034-4885/56/12/001
– ident: e_1_3_4_30_2
  doi: 10.7554/eLife.51214
– ident: e_1_3_4_8_2
  doi: 10.1142/S1793536909000199
– ident: e_1_3_4_15_2
  doi: 10.1073/pnas.1913092116
– ident: e_1_3_4_37_2
  doi: 10.1038/nrn3241
– ident: e_1_3_4_70_2
  doi: 10.1523/JNEUROSCI.0754-09.2009
– ident: e_1_3_4_10_2
  doi: 10.1016/j.conb.2010.03.002
– ident: e_1_3_4_58_2
  doi: 10.1016/j.neuroimage.2017.06.078
– ident: e_1_3_4_4_2
  doi: 10.1016/S1053-8119(03)00202-7
– ident: e_1_3_4_11_2
  doi: 10.3389/fnhum.2017.00584
– ident: e_1_3_4_59_2
  doi: 10.1063/1.4979043
– ident: e_1_3_4_32_2
  doi: 10.1126/sciadv.aat7854
– ident: e_1_3_4_56_2
  doi: 10.1111/psyp.12043
– ident: e_1_3_4_62_2
  doi: 10.1097/00001756-199812010-00030
– ident: e_1_3_4_55_2
  doi: 10.1093/cercor/bhx179
– ident: e_1_3_4_1_2
  doi: 10.1016/j.neuron.2018.03.035
– ident: e_1_3_4_38_2
  doi: 10.1016/j.neuroimage.2013.05.056
– ident: e_1_3_4_46_2
  doi: 10.1038/sj.npp.1300143
– ident: e_1_3_4_60_2
  doi: 10.1016/S0167-8760(96)00066-9
– ident: e_1_3_4_22_2
  doi: 10.3389/fnagi.2017.00364
– ident: e_1_3_4_3_2
  doi: 10.1016/j.neuroimage.2016.04.049
– ident: e_1_3_4_75_2
  doi: 10.1103/PhysRevE.56.826
– ident: e_1_3_4_54_2
  doi: 10.3758/s13415-013-0196-0
– ident: e_1_3_4_19_2
  doi: 10.1016/j.cub.2014.11.034
– ident: e_1_3_4_67_2
  doi: 10.1016/S0304-3940(02)00745-0
– ident: e_1_3_4_71_2
  doi: 10.1523/JNEUROSCI.6693-10.2011
– ident: e_1_3_4_74_2
  doi: 10.1016/j.neuroimage.2005.12.055
– ident: e_1_3_4_64_2
  doi: 10.1016/j.brainres.2011.06.003
– ident: e_1_3_4_2_2
  doi: 10.1089/brain.2012.0120
– ident: e_1_3_4_66_2
  doi: 10.1016/j.celrep.2018.12.058
– ident: e_1_3_4_49_2
  doi: 10.1117/12.280797
– ident: e_1_3_4_40_2
  doi: 10.1088/1741-2552/aba07d
– ident: e_1_3_4_80_2
  doi: 10.1371/journal.pcbi.1008591
– ident: e_1_3_4_27_2
  doi: 10.1073/pnas.0811168106
– ident: e_1_3_4_43_2
  doi: 10.1016/j.neuroimage.2011.02.027
– ident: e_1_3_4_9_2
  doi: 10.1016/S1388-2457(99)00122-4
– ident: e_1_3_4_47_2
  doi: 10.1002/hbm.20032
– ident: e_1_3_4_21_2
  doi: 10.3171/jns.2002.97.1.0084
– ident: e_1_3_4_39_2
  doi: 10.1016/j.neuroimage.2020.117046
– ident: e_1_3_4_16_2
  doi: 10.1159/000079981
– ident: e_1_3_4_34_2
  doi: 10.1152/jn.01095.2002
– ident: e_1_3_4_26_2
  doi: 10.1371/journal.pone.0156436
– ident: e_1_3_4_12_2
  doi: 10.3389/fncom.2018.00023
– ident: e_1_3_4_61_2
  doi: 10.1016/S0167-8760(02)00107-1
– ident: e_1_3_4_33_2
  doi: 10.1016/j.neuroimage.2022.119321
– ident: e_1_3_4_68_2
  doi: 10.1371/journal.pone.0161488
– ident: e_1_3_4_77_2
  doi: 10.1007/BF02512476
– ident: e_1_3_4_50_2
  doi: 10.1109/9.847726
– ident: e_1_3_4_48_2
  doi: 10.23919/ACC53348.2022.9867232
– ident: e_1_3_4_69_2
  doi: 10.1016/j.neuroscience.2017.07.037
– ident: e_1_3_4_44_2
  doi: 10.3389/fnins.2014.00383
– ident: e_1_3_4_24_2
  doi: 10.1080/10874208.2012.677664
– ident: e_1_3_4_41_2
  doi: 10.1016/j.neuroimage.2021.118836
– ident: e_1_3_4_14_2
  doi: 10.1016/j.neuroimage.2004.01.047
– ident: e_1_3_4_63_2
  doi: 10.1016/j.brainresrev.2006.06.003
– ident: e_1_3_4_57_2
  doi: 10.1016/j.brainres.2011.06.003
– ident: e_1_3_4_36_2
  doi: 10.1073/pnas.1402773111
– ident: e_1_3_4_6_2
  doi: 10.1162/NETN_a_00015
– ident: e_1_3_4_20_2
  doi: 10.1093/cercor/bhac026
– ident: e_1_3_4_25_2
  doi: 10.1016/B978-0-7020-5307-8.00002-8
– ident: e_1_3_4_76_2
  doi: 10.1007/s00422-007-0191-z
– ident: e_1_3_4_53_2
  doi: 10.1152/jn.00338.2011
– ident: e_1_3_4_78_2
  doi: 10.1037/0033-2909.86.2.420
– reference: 38077097 - bioRxiv. 2023 Dec 02:2023.11.14.567088. doi: 10.1101/2023.11.14.567088.
SSID ssj0009580
Score 2.480831
Snippet Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of...
At rest, brain activity converges onto person-specific temporal patterns (dynamics). Signatures of these dynamics, such as synchronization and spectral-power,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e2409577121
SubjectTerms Algorithms
Alpha Rhythm - physiology
Beta Rhythm - physiology
Biological Sciences
Brain
Brain - physiology
Cerebral Cortex - physiology
EEG
Electroencephalography
Electrophysiology
Frequency variation
Humans
Models, Neurological
Nerve Net - physiology
Oscillations
Predictions
Topology
Title Precision data-driven modeling of cortical dynamics reveals person-specific mechanisms underpinning brain electrophysiology
URI https://www.ncbi.nlm.nih.gov/pubmed/39823302
https://www.proquest.com/docview/3159487006
https://www.proquest.com/docview/3156801773
https://pubmed.ncbi.nlm.nih.gov/PMC11761305
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF656aWXqunTbVptpR5SoXXFLrBwTKNEVpXSSCGSb4jHIjtSsGXsHNJf03_a2RcPO4e0F2wBBsx8zIuZ-RD6EpQV-AEsIJVfytQNjUhUeBlhkWAi88EGVbI5-WccTK-9HzN_Nhr96VUtbTf5pLh_sK_kf6QK60Cuskv2HyTbHhRWwHeQLyxBwrB8lIwv14Yhx5GFnqRcS9WlyW1MMTPEljpZXWrmefmS4E7Ikckr5WoT2Wkpq4WcWyF7gBfNbaOocderhSIzcnLJIeEYthyVB-kS8Tf2MqwRbGzJQWxzjCddx4pRI41DnMu44z--gt_NdduQoh7vao2_S2okjahlWXZJ2tOlqYHulfyrCgXDz3I1X8RbY5FNQoPK2kGiu6SNDgYXhgSeZhGdiAfWWcVNaQ-hrKeGBfgpkc-5q4-7ZyZAr0lu4zprJsM9hwO541_p-fXFRZqczZIn6CmFSETVjk77c51DPfDCXJ-dHsXZt53DDx2fvWhmtyi35-UkL9BzE57gE421QzQS9Ut0aCWHj82U8q-v0O8WfLgHPmzBh5cVtuDDFnzYgA_vgA934MN98GEFPrwHvtcoOT9LTqfEMHmQAgzYhriuYAxuRAXBteezwuNFGBUuWDhBCxF6JYQZuR-EHngOoqgofIR-XrKoLHLPi9gbdFAva_EO4cLLM0F5FgTgXFaC55XLeBSISgqnpNEYHdu7nK70vJZU1VlwlkqBpJ1AxujISiE1D3WTMlfOL-Jgi8boc7sZVK58j5bVYrlV-wTg2HHOxuitFlp7LhaFFP4qHaNwIM52BznOfbilXszVWHfX5TKY998_4sQf0LPu0TlCB5v1VnwE73iTf1L4_AsndsK6
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+data-driven+modeling+of+cortical+dynamics+reveals+person-specific+mechanisms+underpinning+brain+electrophysiology&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Singh%2C+Matthew+F&rft.au=Braver%2C+Todd+S&rft.au=Cole%2C+Michael&rft.au=Ching%2C+ShiNung&rft.date=2025-01-21&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=122&rft.issue=3&rft.spage=e2409577121&rft_id=info:doi/10.1073%2Fpnas.2409577121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon