A novel noise reduction technique for underwater acoustic signals based on dual‐path recurrent neural network

A dual‐path recurrent neural network model is proposed to achieve noise reduction of underwater acoustic signals, which consists of three steps: feature extraction, mask separation, and signal recovery. For feature extraction, we use a multi‐scale convolutional neural network to extract higher‐order...

Full description

Saved in:
Bibliographic Details
Published inIET communications Vol. 17; no. 2; pp. 135 - 144
Main Authors Song, Yongqiang, Liu, Feng, Shen, Tongsheng
Format Journal Article
LanguageEnglish
Published Stevenage John Wiley & Sons, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A dual‐path recurrent neural network model is proposed to achieve noise reduction of underwater acoustic signals, which consists of three steps: feature extraction, mask separation, and signal recovery. For feature extraction, we use a multi‐scale convolutional neural network to extract higher‐order non‐linear features of the input signal and chunk the obtained non‐linear features into subvectors with fixed lengths according to the temporal dimension. In the mask separation, two recurrent neural networks based on constructing a dual‐path network, a bidirectional network for extracting intra‐features, and a directional network for extracting inter‐features is build. Finally, overlapping and permutation neural networks are used to recover the denoised acoustic signal. By comparing different denoising methods, it can be seen that this method is effective in underwater acoustic signals. By evaluating the two tasks of the ShipsEar dataset, this model can improve the signal‐to‐noise ratio by 12.02 and 9.48 dB, respectively.
AbstractList A dual‐path recurrent neural network model is proposed to achieve noise reduction of underwater acoustic signals, which consists of three steps: feature extraction, mask separation, and signal recovery. For feature extraction, we use a multi‐scale convolutional neural network to extract higher‐order non‐linear features of the input signal and chunk the obtained non‐linear features into subvectors with fixed lengths according to the temporal dimension. In the mask separation, two recurrent neural networks based on constructing a dual‐path network, a bidirectional network for extracting intra‐features, and a directional network for extracting inter‐features is build. Finally, overlapping and permutation neural networks are used to recover the denoised acoustic signal. By comparing different denoising methods, it can be seen that this method is effective in underwater acoustic signals. By evaluating the two tasks of the ShipsEar dataset, this model can improve the signal‐to‐noise ratio by 12.02 and 9.48 dB, respectively.
Author Song, Yongqiang
Liu, Feng
Shen, Tongsheng
Author_xml – sequence: 1
  givenname: Yongqiang
  orcidid: 0000-0001-9964-9456
  surname: Song
  fullname: Song, Yongqiang
  organization: PLA Academy of Military Science
– sequence: 2
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  organization: PLA Academy of Military Science
– sequence: 3
  givenname: Tongsheng
  surname: Shen
  fullname: Shen, Tongsheng
  email: 3428655748@qq.com
  organization: PLA Academy of Military Science
BookMark eNp9kMtOwzAQRS1UJEphwxdYYoeUEufh2Muq4iUVsaHryLEnNCW1ix9U3fEJfCNfgksQSzYzo9G5VzP3FI200YDQBUmnJC34tdyEbEqykrAjNCZVSRJGczr6mzN2gk6dW6dpWdKiGCMzw9q8Qx9r5wBbUEH6zmjsQa509xYAt8bioBXYnfBgsZAmON9J7LoXLXqHG-FA4ShRQfRfH59b4VfRSAZrQXusIVgR_cHvjH09Q8dtFMH5b5-g5e3N8_w-WTzdPcxni0TmFWVJVZQcSJWzglcqlawBQiVlhNGmLQklKicib1UpGQcpeFlx2jY5KFG0jMdtPkGXg-_WmviE8_XaBHu4t85TnmWcxIwidTVQ0hrnLLT11nYbYfc1SetDoPUh0Pon0AiTAd51Pez_Iev54zIbNN8l8Xx2
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e29632
crossref_primary_10_1049_cmu2_12706
crossref_primary_10_3390_app122111305
crossref_primary_10_1016_j_oceaneng_2024_117252
Cites_doi 10.1109/OCEANS.2016.7761358
10.1121/10.0002954
10.1109/ICASSP40776.2020.9054266
10.1016/j.apacoust.2016.06.008
10.1016/j.apacoust.2020.107391
10.1109/JOE.2011.2130190
10.3390/e20120918
10.1142/S0218396X17500151
10.1016/j.apacoust.2021.108140
10.1109/IEEECONF38699.2020.9389338
10.1016/j.chaos.2022.112400
10.1109/TASLP.2017.2726762
10.3390/fractalfract6070345
10.1109/ICASSP.2019.8683855
10.1109/TSP.2021.3094050
10.1109/OCEANS-Genova.2015.7271406
10.1504/IJSNET.2019.101568
10.3390/s19214622
10.1016/j.apacoust.2020.107688
10.1145/1365490.1365500
10.1016/j.dt.2019.07.020
10.1007/s10489-020-02116-1
10.1049/iet-spr.2019.0383
10.1109/ICASSP.2018.8462116
10.3390/e20080563
10.1121/10.0001130
10.1109/TWC.2013.122613.130406
10.1109/ICTIS.2017.8047920
10.1109/CAMSAP45676.2019.9022594
10.1121/1.4950187
10.1109/OCEANSE.2019.8867473
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1049/cmu2.12518
DatabaseName Wiley Open Access
Wiley Free Archive
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8636
EndPage 144
ExternalDocumentID 10_1049_cmu2_12518
CMU212518
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 41906169; 62201608
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
2QL
4.4
4IJ
5GY
6IK
6OB
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IPLJI
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
WIN
ZL0
~ZZ
AAYXX
CITATION
ITC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3768-7459e1738497d0c8be16c68186bf5161d31a3fd5c89eca95796fb3eda4f895c83
IEDL.DBID 24P
ISSN 1751-8628
IngestDate Thu Oct 10 22:27:05 EDT 2024
Thu Sep 26 18:46:28 EDT 2024
Sat Aug 24 00:52:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3768-7459e1738497d0c8be16c68186bf5161d31a3fd5c89eca95796fb3eda4f895c83
ORCID 0000-0001-9964-9456
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12518
PQID 3092291518
PQPubID 1936360
PageCount 10
ParticipantIDs proquest_journals_3092291518
crossref_primary_10_1049_cmu2_12518
wiley_primary_10_1049_cmu2_12518_CMU212518
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET communications
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 69
2019; 31
2017; 25
2020; 148
2020; 16
2019; 19
2020; 14
2020; 167
2008; 6
2011; 36
2020; 147
2018; 20
2021; 51
2021; 180
2021; 15
2020; 2020
2022; 161
2020
2022; 6
2022; 34
2016; 113
2019
2021; 173
2018
2017
2014; 13
2016
2016; 139
2015
2014
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Jiang F. (e_1_2_10_3_1) 2021; 15
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
Xia R. (e_1_2_10_17_1) 2022; 34
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 2020
  start-page: 46
  year: 2020
  end-page: 50
  article-title: Dual‐path RNN: Efficient long sequence modeling for time‐domain single‐channel speech separation
  publication-title: In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Piscataway, NJ
– volume: 173
  year: 2021
  article-title: Stochastic resonance with reinforcement learning for underwater acoustic communication signal
  publication-title: Appl. Acoust.
– volume: 139
  start-page: 2084
  issue: 4
  year: 2016
  end-page: 2084
  article-title: On the alternative objective functions for minimum variance distortionless response technique in order to restore the original source
  publication-title: J. Acoust. Soc. Am.
– start-page: 696
  year: 2018
  end-page: 700
  article-title: Tasnet: time‐domain audio separation network for real‐time, single‐channel speech separation
– start-page: 1177
  year: 2017
  end-page: 1181
  article-title: A variational approach for adaptive underwater sonar image denoising
– volume: 167
  year: 2020
  article-title: A stacked convolutional sparse denoising autoencoder model for underwater heterogeneous information data
  publication-title: Appl. Acoust.
– volume: 19
  start-page: 4622
  issue: 21
  year: 2019
  article-title: MEMS hydrophone signal denoising and baseline drift removal algorithm based on parameter‐optimized variational mode decomposition and correlation coefficient
  publication-title: Sensors (Basel, Switzerland)
– volume: 113
  start-page: 64
  year: 2016
  end-page: 69
  article-title: ShipsEar: An underwater vessel noise database
  publication-title: Appl. Acoust.
– volume: 36
  start-page: 285
  issue: 2
  year: 2011
  end-page: 297
  article-title: Frame‐based time‐scale filters for underwater acoustic noise reduction
  publication-title: IEEE J. Oceanic Eng.
– start-page: 626
  year: 2019
  end-page: 630
  article-title: SDR‐half‐baked or well done
– start-page: 1
  year: 2019
  end-page: 5
  article-title: Holographic reconstruction research on the radiated acoustic field of the underwater vehicle
– volume: 34
  start-page: 6008
  issue: 8
  year: 2022
  end-page: 6018
  article-title: Improved anti‐occlusion object tracking algorithm using Unscented Rauch‐Tung‐Striebel smoother and kernel correlation filter
  publication-title: J. King Saud Univ., Comput. Inf. Sci.
– volume: 20
  start-page: 563
  issue: 8
  year: 2018
  article-title: A new underwater acoustic signal denoising technique based on CEEMDAN, mutual information, permutation entropy, and wavelet threshold denoising
  publication-title: Entropy
– start-page: 281
  year: 2019
  end-page: 285
  article-title: Underwater acoustic detection and localization with a convolutional denoising autoencoder
– volume: 180
  year: 2021
  article-title: A sparse dictionary learning‐based denoising method for underwater acoustic sensors
  publication-title: Appl. Acoust.
– year: 2014
– volume: 6
  start-page: 345
  issue: 7
  year: 2022
  article-title: Particle swarm optimization fractional slope entropy: A new time series complexity indicator for bearing fault diagnosis
  publication-title: Fractal Fract.
– volume: 31
  start-page: 1
  issue: 1
  year: 2019
  end-page: 9
  article-title: Underwater acoustic localisation by GMM fingerprinting with noise reduction
  publication-title: Int. J. Sens. Netw.
– volume: 51
  start-page: 4367
  issue: 7
  year: 2021
  end-page: 4380
  article-title: Image super‐resolution reconstruction based on feature map attention mechanism[J]
  publication-title: Applied Intelligence
– start-page: 1
  year: 2015
  end-page: 9
  article-title: A new way for underwater acoustic signal analysis: The morphological filtering
– volume: 13
  start-page: 280
  issue: 1
  year: 2014
  end-page: 290
  article-title: Max‐Min SNR signal energy based spectrum sensing algorithms for cognitive radio networks with noise variance uncertainty
  publication-title: IEEE Trans. Wireless Commun.
– volume: 25
  issue: 02
  year: 2017
  article-title: Denoising underwater acoustic signals for applications in acoustical oceanography
  publication-title: J. Comput. Acoust.
– volume: 25
  start-page: 1901
  issue: 10
  year: 2017
  end-page: 1913
  article-title: Multitalker speech separation with utterance‐level permutation invariant training of deep recurrent neural networks
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process
– volume: 15
  start-page: 2376
  issue: 9
  year: 2021
  end-page: 2389
  article-title: An improved underwater TDOA/AOA joint localisation algorithm
  publication-title: IET Commun.
– volume: 161
  year: 2022
  article-title: Dispersion entropy‐based Lempel‐Ziv complexity: A new metric for signal analysis
  publication-title: Chaos, Solitons Fractals
– volume: 148
  start-page: 3942
  issue: 6
  year: 2020
  end-page: 3950
  article-title: An acoustic remote sensing method for high‐precision propeller rotation and speed estimation of unmanned underwater vehicles
  publication-title: J. Acoust. Soc. Am.
– volume: 20
  start-page: 918
  issue: 12
  year: 2018
  article-title: Noise reduction method of underwater acoustic signals based on uniform phase empirical mode decomposition, amplitude‐aware permutation entropy, and Pearson correlation coefficient
  publication-title: Entropy
– year: 2020
– volume: 16
  start-page: 12
  issue: 3
  year: 2020
  article-title: A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise, minimum mean square variance criterion and least mean square adaptive filter
  publication-title: Defence Technol.
– volume: 51
  start-page: 4367
  issue: 7
  year: 2021
  end-page: 4380
  article-title: Image super‐resolution reconstruction based on feature map attention mechanism
  publication-title: Appl. Intel
– volume: 147
  start-page: EL377
  issue: 4
  year: 2020
  end-page: EL383
  article-title: A denoising representation framework for underwater acoustic signal recognition
  publication-title: J. Acoust. Soc. Am.
– start-page: 1
  year: 2020
  end-page: 6
– volume: 14
  start-page: 522
  issue: 8
  year: 2020
  end-page: 532
  article-title: Hilbert‐Huang‐Hurst‐based non‐linear acoustic feature vector for emotion classification with stochastic models and learning systems
  publication-title: IET Signal Proc.
– volume: 6
  start-page: 40
  issue: 2
  year: 2008
  end-page: 53
  article-title: Scalable parallel programming with cuda: Is cuda the parallel programming model that application developers have been waiting for
  publication-title: Queue
– volume: 69
  start-page: 4371
  year: 2021
  end-page: 4384
  article-title: A novel framework for combining multiple radar waveforms using time compression overlap‐add[J]
  publication-title: IEEE Trans. Signal Process.
– start-page: 1
  year: 2016
  end-page: 15
  article-title: Performance assessment of noise reduction methods applied to underwater acoustic signals
– ident: e_1_2_10_6_1
  doi: 10.1109/OCEANS.2016.7761358
– ident: e_1_2_10_2_1
  doi: 10.1121/10.0002954
– ident: e_1_2_10_27_1
  doi: 10.1109/ICASSP40776.2020.9054266
– volume: 15
  start-page: 2376
  issue: 9
  year: 2021
  ident: e_1_2_10_3_1
  article-title: An improved underwater TDOA/AOA joint localisation algorithm
  publication-title: IET Commun.
  contributor:
    fullname: Jiang F.
– ident: e_1_2_10_30_1
  doi: 10.1016/j.apacoust.2016.06.008
– ident: e_1_2_10_33_1
– ident: e_1_2_10_21_1
  doi: 10.1016/j.apacoust.2020.107391
– ident: e_1_2_10_7_1
  doi: 10.1109/JOE.2011.2130190
– ident: e_1_2_10_5_1
  doi: 10.3390/e20120918
– ident: e_1_2_10_11_1
  doi: 10.1142/S0218396X17500151
– ident: e_1_2_10_26_1
  doi: 10.1016/j.apacoust.2021.108140
– ident: e_1_2_10_25_1
  doi: 10.1109/IEEECONF38699.2020.9389338
– ident: e_1_2_10_36_1
  doi: 10.1016/j.chaos.2022.112400
– ident: e_1_2_10_32_1
  doi: 10.1109/TASLP.2017.2726762
– ident: e_1_2_10_37_1
  doi: 10.3390/fractalfract6070345
– ident: e_1_2_10_35_1
  doi: 10.1109/ICASSP.2019.8683855
– ident: e_1_2_10_29_1
  doi: 10.1109/TSP.2021.3094050
– ident: e_1_2_10_8_1
  doi: 10.1109/OCEANS-Genova.2015.7271406
– ident: e_1_2_10_16_1
  doi: 10.1504/IJSNET.2019.101568
– ident: e_1_2_10_14_1
  doi: 10.3390/s19214622
– ident: e_1_2_10_24_1
  doi: 10.1016/j.apacoust.2020.107688
– ident: e_1_2_10_31_1
  doi: 10.1145/1365490.1365500
– ident: e_1_2_10_12_1
  doi: 10.1016/j.dt.2019.07.020
– ident: e_1_2_10_18_1
  doi: 10.1007/s10489-020-02116-1
– ident: e_1_2_10_19_1
  doi: 10.1007/s10489-020-02116-1
– ident: e_1_2_10_4_1
  doi: 10.1049/iet-spr.2019.0383
– ident: e_1_2_10_28_1
  doi: 10.1109/ICASSP.2018.8462116
– ident: e_1_2_10_13_1
  doi: 10.3390/e20080563
– volume: 34
  start-page: 6008
  issue: 8
  year: 2022
  ident: e_1_2_10_17_1
  article-title: Improved anti‐occlusion object tracking algorithm using Unscented Rauch‐Tung‐Striebel smoother and kernel correlation filter
  publication-title: J. King Saud Univ., Comput. Inf. Sci.
  contributor:
    fullname: Xia R.
– ident: e_1_2_10_20_1
  doi: 10.1121/10.0001130
– ident: e_1_2_10_34_1
  doi: 10.1109/TWC.2013.122613.130406
– ident: e_1_2_10_10_1
  doi: 10.1109/ICTIS.2017.8047920
– ident: e_1_2_10_22_1
– ident: e_1_2_10_23_1
  doi: 10.1109/CAMSAP45676.2019.9022594
– ident: e_1_2_10_9_1
  doi: 10.1121/1.4950187
– ident: e_1_2_10_15_1
  doi: 10.1109/OCEANSE.2019.8867473
SSID ssj0055644
Score 2.4009006
Snippet A dual‐path recurrent neural network model is proposed to achieve noise reduction of underwater acoustic signals, which consists of three steps: feature...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 135
SubjectTerms Acoustics
Artificial neural networks
Deep learning
Feature extraction
Fourier transforms
Neural networks
Noise levels
Noise reduction
Permutations
Recurrent neural networks
Separation
Signal reconstruction
Signal to noise ratio
Underwater acoustics
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSsQwFA06bnQhPnF0lICuhGjbJG2ykmFwFEFXDsyu5AmCdsYZH1s_wW_0S8xNWx-b2ZRSSCg36T2nSe45CJ145akKsEOKLPGEqcQS4Qwj1CVeZ4zqQkNx8u1dfj1iN2M-bhbc5s2xyjYnxkRtJwbWyM9pIrNMBnwSF9NnAq5RsLvaWGgso5U0KwqY1WJ41WZizvNo5hoQMiWBuYtWnpTJc_P0mp0BuIv_gPTLMv9y1Qg2ww203rBE3K-HdRMtuWoLrf3RDtxGkz6uJm_uMVwf5g7PQIIVgox_VFlx4KMYasRm74FQznDIfdG6C8OZjTDrMCCYxaEJ1GN9fXyCO3HoyNSSTRikLsNLVPVB8R00Gl7eD65J455ATEgaIBLKpUsLKpgsbGKEdmluchCw054Hnmdpqqi33AjpjILdutxr6qxiXsjwlO6iTjWp3B7C3Eidg46ONQVTKfwUMu28coniPLO8i47bEJbTWiSjjJvbTJYQ6DIGuot6bXTL5kOZl7_D2kWnMeILeigHt6Ms3u0v7usArYItfL1U0kOdl9mrOwzk4UUfxRnyDec1xQo
  priority: 102
  providerName: ProQuest
Title A novel noise reduction technique for underwater acoustic signals based on dual‐path recurrent neural network
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12518
https://www.proquest.com/docview/3092291518
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PS8MwFA86L3oQ_-J0joCehGrbJG0DXubYFMExxMFuJUkTELST6fTqR_Az-kl8L12nXgQvobRNCC8v7_3y5_0eIcdOOabA7QRpHLqAq7AIMmt4wGzodMyZTjUGJ98MkqsRvx6L8RI5r2NhKn6IxYYbzgxvr3GCK11lIQFQC4NoHmfxKbrnbJmsIGUM6nfMh7UdFiLxqVzBP0YB4PasJifl8uy77m939I0xfyJV72r6G2R9jhFppxrUTbJkyy2y9oM5cJtMOrScvNoHKO-fLZ0iASuKmC44WSmgUYoRYtM3gJNTCpbPJ-6ieGMDdI6i_yooVMForM_3D8xNDA2ZirCJItEldKKsronvkFG_d9e9Cua5EwIDJgMpQoW0UcoyLtMiNJm2UWISpK_TTgDKK1ikmCuEyaQ1Cs_qEqeZLRR3mYS3bJc0yklp9wgVRuoEWXQKk3IV4ZKQa-uUDZUQcSGa5KgWYf5UUWTk_mibyxwFnXtBN0mrlm4-nybPOQtlHMvIfz7xEv-jhbx7M4r90_5_fj4gq5givto2aZHGy3RmDwFIvOi21xcos_5lm6xc9AbD27ZflH8BSNTJTA
link.rule.ids 315,783,787,867,11576,12779,21402,27938,27939,33387,33758,43614,43819,46066,46490,50828,50937,74371,74638
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSsQwFA0-FupCfOL4DOhKqLZN0jYrEXEcH-PKAXclTxC0ozM-tn6C3-iXeG_a-ti4KaWQUG7Se06T3HMI2fPKMwWwE-Vp7COuYhsVzvCIudjrlDOdayxO7l9nvQG_uBW3zYLbuDlW2ebEkKjt0OAa-SGLZZpKwKfi6PEpQtco3F1tLDQmyTRnADRYKd49azOxEFkwcwWETCJg7kUrT8rloXl4SQ8Q3Iu_gPTDMn9z1QA23QUy37BEelwP6yKZcNUSmfulHbhMhse0Gr66e7jejR0doQQrBpl-q7JS4KMUa8RGb0AoRxRyX7DuonhmA2YdRQSzFJpgPdbn-we6E0NHppZsoih1CS9R1QfFV8ige3pz0osa94TIQNJAkVAhXZKzgsvcxqbQLslMhgJ22gvgeZYlinkrTCGdUbhbl3nNnFXcFxKeslUyVQ0rt0aoMFJnqKNjTc5Vgj-FXDuvXKyESK3okN02hOVjLZJRhs1tLksMdBkC3SGbbXTL5kMZlz_D2iH7IeL_9FCe9AdpuFv_v68dMtO76V-VV-fXlxtkFi3i62WTTTL1PHpxW0AknvV2mC1fNNzH7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LatwwFBXNFEq6KE3akkmnjSBdBZyxLcmWVmWYdjJtHnSRgeyMnhBIPck82m0_od_YL-m9sp1JNtkYY7AwV9I9x9LVOYR8CjowDbCTlHkaEq5Tl0hvecJ8GkzOmSkNHk4-vyimM_79Sly19U_Ltqyyy4kxUbu5xTXyIUtVnivAJzkMbVnEjy-Tz7d3CTpI4U5ra6exRZ4DKpY4SeXkpMvKQhTR2BXQMkuAxctOqpSrof25zo8R6OVjcNowzoe8NQLP5DV51TJGOmq6eIc88_UueflAR_ANmY9oPf_lb-B6vfR0gXKsGHB6r9BKgZtSPC-2-A3kckEhD0YbL4r1GzACKaKZo_AKns369-cvOhVDQ7aRb6IoewkfUTdF42_JbPL1cjxNWieFxEICQcFQoXxWMslV6VIrjc8KW6CYnQkCOJ9jmWbBCSuVtxp37opgmHeaB6ngKXtHevW89nuECqtMgZo6zpZcZ_iDyI0P2qdaiNyJPjnsQljdNoIZVdzo5qrCQFcx0H0y6KJbtZNmWW26uE-OYsSfaKEan8_yeLf_dFsH5AUMlOrs28Xpe7KNbvHNCsqA9FaLtf8AnGJlPsbB8h9cMcwh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+noise+reduction+technique+for+underwater+acoustic+signals+based+on+dual%E2%80%90path+recurrent+neural+network&rft.jtitle=IET+communications&rft.au=Song%2C+Yongqiang&rft.au=Liu%2C+Feng&rft.au=Shen%2C+Tongsheng&rft.date=2023-01-01&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=17&rft.issue=2&rft.spage=135&rft.epage=144&rft_id=info:doi/10.1049%2Fcmu2.12518&rft.externalDBID=10.1049%252Fcmu2.12518&rft.externalDocID=CMU212518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon