A novel noise reduction technique for underwater acoustic signals based on dual‐path recurrent neural network
A dual‐path recurrent neural network model is proposed to achieve noise reduction of underwater acoustic signals, which consists of three steps: feature extraction, mask separation, and signal recovery. For feature extraction, we use a multi‐scale convolutional neural network to extract higher‐order...
Saved in:
Published in | IET communications Vol. 17; no. 2; pp. 135 - 144 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Stevenage
John Wiley & Sons, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A dual‐path recurrent neural network model is proposed to achieve noise reduction of underwater acoustic signals, which consists of three steps: feature extraction, mask separation, and signal recovery. For feature extraction, we use a multi‐scale convolutional neural network to extract higher‐order non‐linear features of the input signal and chunk the obtained non‐linear features into subvectors with fixed lengths according to the temporal dimension. In the mask separation, two recurrent neural networks based on constructing a dual‐path network, a bidirectional network for extracting intra‐features, and a directional network for extracting inter‐features is build. Finally, overlapping and permutation neural networks are used to recover the denoised acoustic signal. By comparing different denoising methods, it can be seen that this method is effective in underwater acoustic signals. By evaluating the two tasks of the ShipsEar dataset, this model can improve the signal‐to‐noise ratio by 12.02 and 9.48 dB, respectively. |
---|---|
AbstractList | A dual‐path recurrent neural network model is proposed to achieve noise reduction of underwater acoustic signals, which consists of three steps: feature extraction, mask separation, and signal recovery. For feature extraction, we use a multi‐scale convolutional neural network to extract higher‐order non‐linear features of the input signal and chunk the obtained non‐linear features into subvectors with fixed lengths according to the temporal dimension. In the mask separation, two recurrent neural networks based on constructing a dual‐path network, a bidirectional network for extracting intra‐features, and a directional network for extracting inter‐features is build. Finally, overlapping and permutation neural networks are used to recover the denoised acoustic signal. By comparing different denoising methods, it can be seen that this method is effective in underwater acoustic signals. By evaluating the two tasks of the ShipsEar dataset, this model can improve the signal‐to‐noise ratio by 12.02 and 9.48 dB, respectively. |
Author | Song, Yongqiang Liu, Feng Shen, Tongsheng |
Author_xml | – sequence: 1 givenname: Yongqiang orcidid: 0000-0001-9964-9456 surname: Song fullname: Song, Yongqiang organization: PLA Academy of Military Science – sequence: 2 givenname: Feng surname: Liu fullname: Liu, Feng organization: PLA Academy of Military Science – sequence: 3 givenname: Tongsheng surname: Shen fullname: Shen, Tongsheng email: 3428655748@qq.com organization: PLA Academy of Military Science |
BookMark | eNp9kMtOwzAQRS1UJEphwxdYYoeUEufh2Muq4iUVsaHryLEnNCW1ix9U3fEJfCNfgksQSzYzo9G5VzP3FI200YDQBUmnJC34tdyEbEqykrAjNCZVSRJGczr6mzN2gk6dW6dpWdKiGCMzw9q8Qx9r5wBbUEH6zmjsQa509xYAt8bioBXYnfBgsZAmON9J7LoXLXqHG-FA4ShRQfRfH59b4VfRSAZrQXusIVgR_cHvjH09Q8dtFMH5b5-g5e3N8_w-WTzdPcxni0TmFWVJVZQcSJWzglcqlawBQiVlhNGmLQklKicib1UpGQcpeFlx2jY5KFG0jMdtPkGXg-_WmviE8_XaBHu4t85TnmWcxIwidTVQ0hrnLLT11nYbYfc1SetDoPUh0Pon0AiTAd51Pez_Iev54zIbNN8l8Xx2 |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e29632 crossref_primary_10_1049_cmu2_12706 crossref_primary_10_3390_app122111305 crossref_primary_10_1016_j_oceaneng_2024_117252 |
Cites_doi | 10.1109/OCEANS.2016.7761358 10.1121/10.0002954 10.1109/ICASSP40776.2020.9054266 10.1016/j.apacoust.2016.06.008 10.1016/j.apacoust.2020.107391 10.1109/JOE.2011.2130190 10.3390/e20120918 10.1142/S0218396X17500151 10.1016/j.apacoust.2021.108140 10.1109/IEEECONF38699.2020.9389338 10.1016/j.chaos.2022.112400 10.1109/TASLP.2017.2726762 10.3390/fractalfract6070345 10.1109/ICASSP.2019.8683855 10.1109/TSP.2021.3094050 10.1109/OCEANS-Genova.2015.7271406 10.1504/IJSNET.2019.101568 10.3390/s19214622 10.1016/j.apacoust.2020.107688 10.1145/1365490.1365500 10.1016/j.dt.2019.07.020 10.1007/s10489-020-02116-1 10.1049/iet-spr.2019.0383 10.1109/ICASSP.2018.8462116 10.3390/e20080563 10.1121/10.0001130 10.1109/TWC.2013.122613.130406 10.1109/ICTIS.2017.8047920 10.1109/CAMSAP45676.2019.9022594 10.1121/1.4950187 10.1109/OCEANSE.2019.8867473 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PQEST PQQKQ PQUKI PRINS PTHSS S0W |
DOI | 10.1049/cmu2.12518 |
DatabaseName | Wiley Open Access Wiley Free Archive CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8636 |
EndPage | 144 |
ExternalDocumentID | 10_1049_cmu2_12518 CMU212518 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 41906169; 62201608 |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 2QL 4.4 4IJ 5GY 6IK 6OB 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACESK ACGFO ACGFS ACIWK ACXQS ADEYR AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ESX F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFIPE IPLJI JAVBF K1G L6V LAI M43 M7S MCNEO MS~ NADUK NXXTH O9- OCL OK1 P62 PTHSS QWB RIE RNS ROL RUI S0W U5U UNMZH WIN ZL0 ~ZZ AAYXX CITATION ITC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3768-7459e1738497d0c8be16c68186bf5161d31a3fd5c89eca95796fb3eda4f895c83 |
IEDL.DBID | 24P |
ISSN | 1751-8628 |
IngestDate | Thu Oct 10 22:27:05 EDT 2024 Thu Sep 26 18:46:28 EDT 2024 Sat Aug 24 00:52:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3768-7459e1738497d0c8be16c68186bf5161d31a3fd5c89eca95796fb3eda4f895c83 |
ORCID | 0000-0001-9964-9456 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12518 |
PQID | 3092291518 |
PQPubID | 1936360 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3092291518 crossref_primary_10_1049_cmu2_12518 wiley_primary_10_1049_cmu2_12518_CMU212518 |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | Stevenage |
PublicationPlace_xml | – name: Stevenage |
PublicationTitle | IET communications |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2021; 69 2019; 31 2017; 25 2020; 148 2020; 16 2019; 19 2020; 14 2020; 167 2008; 6 2011; 36 2020; 147 2018; 20 2021; 51 2021; 180 2021; 15 2020; 2020 2022; 161 2020 2022; 6 2022; 34 2016; 113 2019 2021; 173 2018 2017 2014; 13 2016 2016; 139 2015 2014 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Jiang F. (e_1_2_10_3_1) 2021; 15 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 Xia R. (e_1_2_10_17_1) 2022; 34 e_1_2_10_5_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 2020 start-page: 46 year: 2020 end-page: 50 article-title: Dual‐path RNN: Efficient long sequence modeling for time‐domain single‐channel speech separation publication-title: In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Piscataway, NJ – volume: 173 year: 2021 article-title: Stochastic resonance with reinforcement learning for underwater acoustic communication signal publication-title: Appl. Acoust. – volume: 139 start-page: 2084 issue: 4 year: 2016 end-page: 2084 article-title: On the alternative objective functions for minimum variance distortionless response technique in order to restore the original source publication-title: J. Acoust. Soc. Am. – start-page: 696 year: 2018 end-page: 700 article-title: Tasnet: time‐domain audio separation network for real‐time, single‐channel speech separation – start-page: 1177 year: 2017 end-page: 1181 article-title: A variational approach for adaptive underwater sonar image denoising – volume: 167 year: 2020 article-title: A stacked convolutional sparse denoising autoencoder model for underwater heterogeneous information data publication-title: Appl. Acoust. – volume: 19 start-page: 4622 issue: 21 year: 2019 article-title: MEMS hydrophone signal denoising and baseline drift removal algorithm based on parameter‐optimized variational mode decomposition and correlation coefficient publication-title: Sensors (Basel, Switzerland) – volume: 113 start-page: 64 year: 2016 end-page: 69 article-title: ShipsEar: An underwater vessel noise database publication-title: Appl. Acoust. – volume: 36 start-page: 285 issue: 2 year: 2011 end-page: 297 article-title: Frame‐based time‐scale filters for underwater acoustic noise reduction publication-title: IEEE J. Oceanic Eng. – start-page: 626 year: 2019 end-page: 630 article-title: SDR‐half‐baked or well done – start-page: 1 year: 2019 end-page: 5 article-title: Holographic reconstruction research on the radiated acoustic field of the underwater vehicle – volume: 34 start-page: 6008 issue: 8 year: 2022 end-page: 6018 article-title: Improved anti‐occlusion object tracking algorithm using Unscented Rauch‐Tung‐Striebel smoother and kernel correlation filter publication-title: J. King Saud Univ., Comput. Inf. Sci. – volume: 20 start-page: 563 issue: 8 year: 2018 article-title: A new underwater acoustic signal denoising technique based on CEEMDAN, mutual information, permutation entropy, and wavelet threshold denoising publication-title: Entropy – start-page: 281 year: 2019 end-page: 285 article-title: Underwater acoustic detection and localization with a convolutional denoising autoencoder – volume: 180 year: 2021 article-title: A sparse dictionary learning‐based denoising method for underwater acoustic sensors publication-title: Appl. Acoust. – year: 2014 – volume: 6 start-page: 345 issue: 7 year: 2022 article-title: Particle swarm optimization fractional slope entropy: A new time series complexity indicator for bearing fault diagnosis publication-title: Fractal Fract. – volume: 31 start-page: 1 issue: 1 year: 2019 end-page: 9 article-title: Underwater acoustic localisation by GMM fingerprinting with noise reduction publication-title: Int. J. Sens. Netw. – volume: 51 start-page: 4367 issue: 7 year: 2021 end-page: 4380 article-title: Image super‐resolution reconstruction based on feature map attention mechanism[J] publication-title: Applied Intelligence – start-page: 1 year: 2015 end-page: 9 article-title: A new way for underwater acoustic signal analysis: The morphological filtering – volume: 13 start-page: 280 issue: 1 year: 2014 end-page: 290 article-title: Max‐Min SNR signal energy based spectrum sensing algorithms for cognitive radio networks with noise variance uncertainty publication-title: IEEE Trans. Wireless Commun. – volume: 25 issue: 02 year: 2017 article-title: Denoising underwater acoustic signals for applications in acoustical oceanography publication-title: J. Comput. Acoust. – volume: 25 start-page: 1901 issue: 10 year: 2017 end-page: 1913 article-title: Multitalker speech separation with utterance‐level permutation invariant training of deep recurrent neural networks publication-title: IEEE/ACM Trans. Audio Speech Lang. Process – volume: 15 start-page: 2376 issue: 9 year: 2021 end-page: 2389 article-title: An improved underwater TDOA/AOA joint localisation algorithm publication-title: IET Commun. – volume: 161 year: 2022 article-title: Dispersion entropy‐based Lempel‐Ziv complexity: A new metric for signal analysis publication-title: Chaos, Solitons Fractals – volume: 148 start-page: 3942 issue: 6 year: 2020 end-page: 3950 article-title: An acoustic remote sensing method for high‐precision propeller rotation and speed estimation of unmanned underwater vehicles publication-title: J. Acoust. Soc. Am. – volume: 20 start-page: 918 issue: 12 year: 2018 article-title: Noise reduction method of underwater acoustic signals based on uniform phase empirical mode decomposition, amplitude‐aware permutation entropy, and Pearson correlation coefficient publication-title: Entropy – year: 2020 – volume: 16 start-page: 12 issue: 3 year: 2020 article-title: A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise, minimum mean square variance criterion and least mean square adaptive filter publication-title: Defence Technol. – volume: 51 start-page: 4367 issue: 7 year: 2021 end-page: 4380 article-title: Image super‐resolution reconstruction based on feature map attention mechanism publication-title: Appl. Intel – volume: 147 start-page: EL377 issue: 4 year: 2020 end-page: EL383 article-title: A denoising representation framework for underwater acoustic signal recognition publication-title: J. Acoust. Soc. Am. – start-page: 1 year: 2020 end-page: 6 – volume: 14 start-page: 522 issue: 8 year: 2020 end-page: 532 article-title: Hilbert‐Huang‐Hurst‐based non‐linear acoustic feature vector for emotion classification with stochastic models and learning systems publication-title: IET Signal Proc. – volume: 6 start-page: 40 issue: 2 year: 2008 end-page: 53 article-title: Scalable parallel programming with cuda: Is cuda the parallel programming model that application developers have been waiting for publication-title: Queue – volume: 69 start-page: 4371 year: 2021 end-page: 4384 article-title: A novel framework for combining multiple radar waveforms using time compression overlap‐add[J] publication-title: IEEE Trans. Signal Process. – start-page: 1 year: 2016 end-page: 15 article-title: Performance assessment of noise reduction methods applied to underwater acoustic signals – ident: e_1_2_10_6_1 doi: 10.1109/OCEANS.2016.7761358 – ident: e_1_2_10_2_1 doi: 10.1121/10.0002954 – ident: e_1_2_10_27_1 doi: 10.1109/ICASSP40776.2020.9054266 – volume: 15 start-page: 2376 issue: 9 year: 2021 ident: e_1_2_10_3_1 article-title: An improved underwater TDOA/AOA joint localisation algorithm publication-title: IET Commun. contributor: fullname: Jiang F. – ident: e_1_2_10_30_1 doi: 10.1016/j.apacoust.2016.06.008 – ident: e_1_2_10_33_1 – ident: e_1_2_10_21_1 doi: 10.1016/j.apacoust.2020.107391 – ident: e_1_2_10_7_1 doi: 10.1109/JOE.2011.2130190 – ident: e_1_2_10_5_1 doi: 10.3390/e20120918 – ident: e_1_2_10_11_1 doi: 10.1142/S0218396X17500151 – ident: e_1_2_10_26_1 doi: 10.1016/j.apacoust.2021.108140 – ident: e_1_2_10_25_1 doi: 10.1109/IEEECONF38699.2020.9389338 – ident: e_1_2_10_36_1 doi: 10.1016/j.chaos.2022.112400 – ident: e_1_2_10_32_1 doi: 10.1109/TASLP.2017.2726762 – ident: e_1_2_10_37_1 doi: 10.3390/fractalfract6070345 – ident: e_1_2_10_35_1 doi: 10.1109/ICASSP.2019.8683855 – ident: e_1_2_10_29_1 doi: 10.1109/TSP.2021.3094050 – ident: e_1_2_10_8_1 doi: 10.1109/OCEANS-Genova.2015.7271406 – ident: e_1_2_10_16_1 doi: 10.1504/IJSNET.2019.101568 – ident: e_1_2_10_14_1 doi: 10.3390/s19214622 – ident: e_1_2_10_24_1 doi: 10.1016/j.apacoust.2020.107688 – ident: e_1_2_10_31_1 doi: 10.1145/1365490.1365500 – ident: e_1_2_10_12_1 doi: 10.1016/j.dt.2019.07.020 – ident: e_1_2_10_18_1 doi: 10.1007/s10489-020-02116-1 – ident: e_1_2_10_19_1 doi: 10.1007/s10489-020-02116-1 – ident: e_1_2_10_4_1 doi: 10.1049/iet-spr.2019.0383 – ident: e_1_2_10_28_1 doi: 10.1109/ICASSP.2018.8462116 – ident: e_1_2_10_13_1 doi: 10.3390/e20080563 – volume: 34 start-page: 6008 issue: 8 year: 2022 ident: e_1_2_10_17_1 article-title: Improved anti‐occlusion object tracking algorithm using Unscented Rauch‐Tung‐Striebel smoother and kernel correlation filter publication-title: J. King Saud Univ., Comput. Inf. Sci. contributor: fullname: Xia R. – ident: e_1_2_10_20_1 doi: 10.1121/10.0001130 – ident: e_1_2_10_34_1 doi: 10.1109/TWC.2013.122613.130406 – ident: e_1_2_10_10_1 doi: 10.1109/ICTIS.2017.8047920 – ident: e_1_2_10_22_1 – ident: e_1_2_10_23_1 doi: 10.1109/CAMSAP45676.2019.9022594 – ident: e_1_2_10_9_1 doi: 10.1121/1.4950187 – ident: e_1_2_10_15_1 doi: 10.1109/OCEANSE.2019.8867473 |
SSID | ssj0055644 |
Score | 2.4009006 |
Snippet | A dual‐path recurrent neural network model is proposed to achieve noise reduction of underwater acoustic signals, which consists of three steps: feature... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 135 |
SubjectTerms | Acoustics Artificial neural networks Deep learning Feature extraction Fourier transforms Neural networks Noise levels Noise reduction Permutations Recurrent neural networks Separation Signal reconstruction Signal to noise ratio Underwater acoustics Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSsQwFA06bnQhPnF0lICuhGjbJG2ykmFwFEFXDsyu5AmCdsYZH1s_wW_0S8xNWx-b2ZRSSCg36T2nSe45CJ145akKsEOKLPGEqcQS4Qwj1CVeZ4zqQkNx8u1dfj1iN2M-bhbc5s2xyjYnxkRtJwbWyM9pIrNMBnwSF9NnAq5RsLvaWGgso5U0KwqY1WJ41WZizvNo5hoQMiWBuYtWnpTJc_P0mp0BuIv_gPTLMv9y1Qg2ww203rBE3K-HdRMtuWoLrf3RDtxGkz6uJm_uMVwf5g7PQIIVgox_VFlx4KMYasRm74FQznDIfdG6C8OZjTDrMCCYxaEJ1GN9fXyCO3HoyNSSTRikLsNLVPVB8R00Gl7eD65J455ATEgaIBLKpUsLKpgsbGKEdmluchCw054Hnmdpqqi33AjpjILdutxr6qxiXsjwlO6iTjWp3B7C3Eidg46ONQVTKfwUMu28coniPLO8i47bEJbTWiSjjJvbTJYQ6DIGuot6bXTL5kOZl7_D2kWnMeILeigHt6Ms3u0v7usArYItfL1U0kOdl9mrOwzk4UUfxRnyDec1xQo priority: 102 providerName: ProQuest |
Title | A novel noise reduction technique for underwater acoustic signals based on dual‐path recurrent neural network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12518 https://www.proquest.com/docview/3092291518 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PS8MwFA86L3oQ_-J0joCehGrbJG0DXubYFMExxMFuJUkTELST6fTqR_Az-kl8L12nXgQvobRNCC8v7_3y5_0eIcdOOabA7QRpHLqAq7AIMmt4wGzodMyZTjUGJ98MkqsRvx6L8RI5r2NhKn6IxYYbzgxvr3GCK11lIQFQC4NoHmfxKbrnbJmsIGUM6nfMh7UdFiLxqVzBP0YB4PasJifl8uy77m939I0xfyJV72r6G2R9jhFppxrUTbJkyy2y9oM5cJtMOrScvNoHKO-fLZ0iASuKmC44WSmgUYoRYtM3gJNTCpbPJ-6ieGMDdI6i_yooVMForM_3D8xNDA2ZirCJItEldKKsronvkFG_d9e9Cua5EwIDJgMpQoW0UcoyLtMiNJm2UWISpK_TTgDKK1ikmCuEyaQ1Cs_qEqeZLRR3mYS3bJc0yklp9wgVRuoEWXQKk3IV4ZKQa-uUDZUQcSGa5KgWYf5UUWTk_mibyxwFnXtBN0mrlm4-nybPOQtlHMvIfz7xEv-jhbx7M4r90_5_fj4gq5givto2aZHGy3RmDwFIvOi21xcos_5lm6xc9AbD27ZflH8BSNTJTA |
link.rule.ids | 315,783,787,867,11576,12779,21402,27938,27939,33387,33758,43614,43819,46066,46490,50828,50937,74371,74638 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSsQwFA0-FupCfOL4DOhKqLZN0jYrEXEcH-PKAXclTxC0ozM-tn6C3-iXeG_a-ti4KaWQUG7Se06T3HMI2fPKMwWwE-Vp7COuYhsVzvCIudjrlDOdayxO7l9nvQG_uBW3zYLbuDlW2ebEkKjt0OAa-SGLZZpKwKfi6PEpQtco3F1tLDQmyTRnADRYKd49azOxEFkwcwWETCJg7kUrT8rloXl4SQ8Q3Iu_gPTDMn9z1QA23QUy37BEelwP6yKZcNUSmfulHbhMhse0Gr66e7jejR0doQQrBpl-q7JS4KMUa8RGb0AoRxRyX7DuonhmA2YdRQSzFJpgPdbn-we6E0NHppZsoih1CS9R1QfFV8ige3pz0osa94TIQNJAkVAhXZKzgsvcxqbQLslMhgJ22gvgeZYlinkrTCGdUbhbl3nNnFXcFxKeslUyVQ0rt0aoMFJnqKNjTc5Vgj-FXDuvXKyESK3okN02hOVjLZJRhs1tLksMdBkC3SGbbXTL5kMZlz_D2iH7IeL_9FCe9AdpuFv_v68dMtO76V-VV-fXlxtkFi3i62WTTTL1PHpxW0AknvV2mC1fNNzH7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LatwwFBXNFEq6KE3akkmnjSBdBZyxLcmWVmWYdjJtHnSRgeyMnhBIPck82m0_od_YL-m9sp1JNtkYY7AwV9I9x9LVOYR8CjowDbCTlHkaEq5Tl0hvecJ8GkzOmSkNHk4-vyimM_79Sly19U_Ltqyyy4kxUbu5xTXyIUtVnivAJzkMbVnEjy-Tz7d3CTpI4U5ra6exRZ4DKpY4SeXkpMvKQhTR2BXQMkuAxctOqpSrof25zo8R6OVjcNowzoe8NQLP5DV51TJGOmq6eIc88_UueflAR_ANmY9oPf_lb-B6vfR0gXKsGHB6r9BKgZtSPC-2-A3kckEhD0YbL4r1GzACKaKZo_AKns369-cvOhVDQ7aRb6IoewkfUTdF42_JbPL1cjxNWieFxEICQcFQoXxWMslV6VIrjc8KW6CYnQkCOJ9jmWbBCSuVtxp37opgmHeaB6ngKXtHevW89nuECqtMgZo6zpZcZ_iDyI0P2qdaiNyJPjnsQljdNoIZVdzo5qrCQFcx0H0y6KJbtZNmWW26uE-OYsSfaKEan8_yeLf_dFsH5AUMlOrs28Xpe7KNbvHNCsqA9FaLtf8AnGJlPsbB8h9cMcwh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+noise+reduction+technique+for+underwater+acoustic+signals+based+on+dual%E2%80%90path+recurrent+neural+network&rft.jtitle=IET+communications&rft.au=Song%2C+Yongqiang&rft.au=Liu%2C+Feng&rft.au=Shen%2C+Tongsheng&rft.date=2023-01-01&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=17&rft.issue=2&rft.spage=135&rft.epage=144&rft_id=info:doi/10.1049%2Fcmu2.12518&rft.externalDBID=10.1049%252Fcmu2.12518&rft.externalDocID=CMU212518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon |