Influence of interface wettability on normal and explosive boiling of ultra-thin liquid films on a heated substrate in nanoscale: a molecular dynamics study

Wettability, as one of the important properties of solid surface, may influence heat and mass transfer in boiling process. Molecular dynamics method is employed to investigate the effects of wettability on normal and explosive boiling of ultra-thin liquid argon film absorbed on a heated solid alumin...

Full description

Saved in:
Bibliographic Details
Published inMicro & nano letters Vol. 12; no. 11; pp. 843 - 848
Main Authors Zhang, Haiyan, Li, Cunhui, Zhao, Meiwen, Zhu, Yingmin, Wang, Weidong
Format Journal Article
LanguageEnglish
Published Stevenage The Institution of Engineering and Technology 01.11.2017
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1750-0443
1750-0443
DOI10.1049/mnl.2017.0425

Cover

More Information
Summary:Wettability, as one of the important properties of solid surface, may influence heat and mass transfer in boiling process. Molecular dynamics method is employed to investigate the effects of wettability on normal and explosive boiling of ultra-thin liquid argon film absorbed on a heated solid aluminium surface in a confined space in present work. The initial three-phase molecular system is comprised of solid aluminium wall, liquid argon and vapour argon and is run for three different solid–liquid interfacial wettability (lyophilic, lyophobic and neutral surfaces), which achieves a balance at 90 K. After equilibrium period, two different jump temperatures degree, 150 and 350 K, are set on heat source layers separately to characterise the boiling phenomena, namely, low-temperature degree for normal boiling and high-temperature degree for explosive boiling in which temperature of solid wall is far beyond the critical temperature of liquid argon. The simulation results indicate that the wetting condition of solid–liquid interfacial surface have significant effects on both cases of boiling phenomena. Furthermore, the heat transfer rate with good wettability (lyophilic) is much higher than bad wettability (lyophobic) with same jump temperature degree.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1750-0443
1750-0443
DOI:10.1049/mnl.2017.0425