Climate Change and Future Wildfire in the Western United States: An Ecological Approach to Nonstationarity

We developed ecologically based climate‐fire projections for the western United States. Using a finer ecological classification and fire‐relevant climate predictors, we created statistical models linking climate and wildfire area burned for ecosections, which are geographic delineations based on bio...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 6; no. 8; pp. 1097 - 1111
Main Authors Littell, Jeremy S., McKenzie, Donald, Wan, Ho Yi, Cushman, Samuel A.
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We developed ecologically based climate‐fire projections for the western United States. Using a finer ecological classification and fire‐relevant climate predictors, we created statistical models linking climate and wildfire area burned for ecosections, which are geographic delineations based on biophysical variables. The results indicate a gradient from purely fuel‐limited (antecedent positive water balance anomalies or negative energy balance anomalies) to purely flammability‐limited (negative water balance anomalies or positive energy balance anomalies) fire regimes across ecosections. Although there are other influences (such as human ignitions and management) on fire occurrence and area burned, seasonal climate significantly explains interannual fire area burned. Differences in the role of climate across ecosections are not random, and the relative dominance of climate predictors allows objective classification of ecosection climate‐fire relationships. Expected future trends in area burned range from massive increases, primarily in flammability limited systems near the middle of the water balance deficit distribution, to substantial decreases, in fuel‐limited nonforested systems. We predict increasing area burned in most flammability‐limited systems but predict decreasing area burned in primarily fuel‐limited systems with a flammability‐limited (“hybrid”) component. Compared to 2030–2059 (2040s), projected area burned for 2070–2099 (2080s) increases much more in the flammability and flammability‐dominated hybrid systems than those with equal control and continues to decrease in fuel‐limited hybrid systems. Exceedance probabilities for historical 95th percentile fire years are larger in exclusively flammability‐limited ecosections than in those with fuel controls. Filtering the projected results using a fire‐rotation constraint minimizes overprojection due to static vegetation assumptions, making projections more conservative. Plain Language Summary Most people, including many familiar with fire ecology and future climate, assume that the area burned by wildfire will increase in a warmer climate. This depends a lot on what kind of ecosystem we mean. In all ecosystems, fuels must be available to fire for fires to get very big, but the climate controls on those fuels vary widely with vegetation. In wetter forests, it takes an abnormally warm, dry year to make normally wet fuels available. But in many drier ecosystems, fuels are dry enough to burn most years—whether fires get big depends also on whether there is sufficient fuel available to carry fires over large areas. In this kind of vegetation, abnormally wet years in the year prior to fire can create larger or more connected fuels that then lead to larger fires. In this study, we use this concept to investigate how future area burned might be affected by climate change. We found that some ecosystems will burn much more, just as expected. But some will actually burn less. We characterized these futures for 70 different ecosystems around the West. The similarities and differences illustrate the range of futures that might be expected under climate change. Key Points Climatic drivers of area burned vary along a gradient from fuel‐limited to flammability‐limited ecosystems. Most have elements of both Climate change is likely to increase area burned more and earlier in flammability‐limited systems, less and later in fuel‐limited systems Climatic projections of area burned are useful for evaluating climate impacts, but excluding humans limits forecasting
AbstractList We developed ecologically based climate‐fire projections for the western United States. Using a finer ecological classification and fire‐relevant climate predictors, we created statistical models linking climate and wildfire area burned for ecosections, which are geographic delineations based on biophysical variables. The results indicate a gradient from purely fuel‐limited (antecedent positive water balance anomalies or negative energy balance anomalies) to purely flammability‐limited (negative water balance anomalies or positive energy balance anomalies) fire regimes across ecosections. Although there are other influences (such as human ignitions and management) on fire occurrence and area burned, seasonal climate significantly explains interannual fire area burned. Differences in the role of climate across ecosections are not random, and the relative dominance of climate predictors allows objective classification of ecosection climate‐fire relationships. Expected future trends in area burned range from massive increases, primarily in flammability limited systems near the middle of the water balance deficit distribution, to substantial decreases, in fuel‐limited nonforested systems. We predict increasing area burned in most flammability‐limited systems but predict decreasing area burned in primarily fuel‐limited systems with a flammability‐limited (“hybrid”) component. Compared to 2030–2059 (2040s), projected area burned for 2070–2099 (2080s) increases much more in the flammability and flammability‐dominated hybrid systems than those with equal control and continues to decrease in fuel‐limited hybrid systems. Exceedance probabilities for historical 95th percentile fire years are larger in exclusively flammability‐limited ecosections than in those with fuel controls. Filtering the projected results using a fire‐rotation constraint minimizes overprojection due to static vegetation assumptions, making projections more conservative. Plain Language Summary Most people, including many familiar with fire ecology and future climate, assume that the area burned by wildfire will increase in a warmer climate. This depends a lot on what kind of ecosystem we mean. In all ecosystems, fuels must be available to fire for fires to get very big, but the climate controls on those fuels vary widely with vegetation. In wetter forests, it takes an abnormally warm, dry year to make normally wet fuels available. But in many drier ecosystems, fuels are dry enough to burn most years—whether fires get big depends also on whether there is sufficient fuel available to carry fires over large areas. In this kind of vegetation, abnormally wet years in the year prior to fire can create larger or more connected fuels that then lead to larger fires. In this study, we use this concept to investigate how future area burned might be affected by climate change. We found that some ecosystems will burn much more, just as expected. But some will actually burn less. We characterized these futures for 70 different ecosystems around the West. The similarities and differences illustrate the range of futures that might be expected under climate change. Key Points Climatic drivers of area burned vary along a gradient from fuel‐limited to flammability‐limited ecosystems. Most have elements of both Climate change is likely to increase area burned more and earlier in flammability‐limited systems, less and later in fuel‐limited systems Climatic projections of area burned are useful for evaluating climate impacts, but excluding humans limits forecasting
We developed ecologically based climate‐fire projections for the western United States. Using a finer ecological classification and fire‐relevant climate predictors, we created statistical models linking climate and wildfire area burned for ecosections, which are geographic delineations based on biophysical variables. The results indicate a gradient from purely fuel‐limited (antecedent positive water balance anomalies or negative energy balance anomalies) to purely flammability‐limited (negative water balance anomalies or positive energy balance anomalies) fire regimes across ecosections. Although there are other influences (such as human ignitions and management) on fire occurrence and area burned, seasonal climate significantly explains interannual fire area burned. Differences in the role of climate across ecosections are not random, and the relative dominance of climate predictors allows objective classification of ecosection climate‐fire relationships. Expected future trends in area burned range from massive increases, primarily in flammability limited systems near the middle of the water balance deficit distribution, to substantial decreases, in fuel‐limited nonforested systems. We predict increasing area burned in most flammability‐limited systems but predict decreasing area burned in primarily fuel‐limited systems with a flammability‐limited ("hybrid") component. Compared to 2030–2059 (2040s), projected area burned for 2070–2099 (2080s) increases much more in the flammability and flammability‐dominated hybrid systems than those with equal control and continues to decrease in fuel‐limited hybrid systems. Exceedance probabilities for historical 95th percentile fire years are larger in exclusively flammability‐limited ecosections than in those with fuel controls. Filtering the projected results using a fire‐rotation constraint minimizes overprojection due to static vegetation assumptions, making projections more conservative.
We developed ecologically based climate‐fire projections for the western United States. Using a finer ecological classification and fire‐relevant climate predictors, we created statistical models linking climate and wildfire area burned for ecosections, which are geographic delineations based on biophysical variables. The results indicate a gradient from purely fuel‐limited (antecedent positive water balance anomalies or negative energy balance anomalies) to purely flammability‐limited (negative water balance anomalies or positive energy balance anomalies) fire regimes across ecosections. Although there are other influences (such as human ignitions and management) on fire occurrence and area burned, seasonal climate significantly explains interannual fire area burned. Differences in the role of climate across ecosections are not random, and the relative dominance of climate predictors allows objective classification of ecosection climate‐fire relationships. Expected future trends in area burned range from massive increases, primarily in flammability limited systems near the middle of the water balance deficit distribution, to substantial decreases, in fuel‐limited nonforested systems. We predict increasing area burned in most flammability‐limited systems but predict decreasing area burned in primarily fuel‐limited systems with a flammability‐limited (“hybrid”) component. Compared to 2030–2059 (2040s), projected area burned for 2070–2099 (2080s) increases much more in the flammability and flammability‐dominated hybrid systems than those with equal control and continues to decrease in fuel‐limited hybrid systems. Exceedance probabilities for historical 95th percentile fire years are larger in exclusively flammability‐limited ecosections than in those with fuel controls. Filtering the projected results using a fire‐rotation constraint minimizes overprojection due to static vegetation assumptions, making projections more conservative. Most people, including many familiar with fire ecology and future climate, assume that the area burned by wildfire will increase in a warmer climate. This depends a lot on what kind of ecosystem we mean. In all ecosystems, fuels must be available to fire for fires to get very big, but the climate controls on those fuels vary widely with vegetation. In wetter forests, it takes an abnormally warm, dry year to make normally wet fuels available. But in many drier ecosystems, fuels are dry enough to burn most years—whether fires get big depends also on whether there is sufficient fuel available to carry fires over large areas. In this kind of vegetation, abnormally wet years in the year prior to fire can create larger or more connected fuels that then lead to larger fires. In this study, we use this concept to investigate how future area burned might be affected by climate change. We found that some ecosystems will burn much more, just as expected. But some will actually burn less. We characterized these futures for 70 different ecosystems around the West. The similarities and differences illustrate the range of futures that might be expected under climate change. Climatic drivers of area burned vary along a gradient from fuel‐limited to flammability‐limited ecosystems. Most have elements of both Climate change is likely to increase area burned more and earlier in flammability‐limited systems, less and later in fuel‐limited systems Climatic projections of area burned are useful for evaluating climate impacts, but excluding humans limits forecasting
Author Cushman, Samuel A.
McKenzie, Donald
Wan, Ho Yi
Littell, Jeremy S.
Author_xml – sequence: 1
  givenname: Jeremy S.
  orcidid: 0000-0002-5302-8280
  surname: Littell
  fullname: Littell, Jeremy S.
  email: jlittell@usgs.gov
  organization: U.S. Geological Survey
– sequence: 2
  givenname: Donald
  orcidid: 0000-0002-6039-5513
  surname: McKenzie
  fullname: McKenzie, Donald
  organization: Pacific Northwest Research Station
– sequence: 3
  givenname: Ho Yi
  orcidid: 0000-0002-2146-8257
  surname: Wan
  fullname: Wan, Ho Yi
  organization: Northern Arizona University
– sequence: 4
  givenname: Samuel A.
  surname: Cushman
  fullname: Cushman, Samuel A.
  organization: Rocky Mountain Research Station
BookMark eNp9kU9rGzEQxUVIoK6TWz-AIJce6lT_te7NGLsNmOSQhBwXWTsby8iSK2kJ_vaVcQ_B0J7mDfze8GbmM7oMMQBCXyi5o4RNvzNCm8WSENLo5gKNGGfNRDCtLz_oT-gm521lyFQTLvUIbefe7UwBPN-Y8AbYhA4vhzIkwK_Od72rwgVcNrWHXCAF_BJcgQ4_lWrLP_As4IWNPr45azye7fcpGrvBJeKHGHKFXAwmuXK4Rle98Rlu_tYxelkunue_JqvHn_fz2WpiuVZqwkQHVou17mXXW2r1UYkpACVr4GvZaNE1wnLgykguFWVWqSlXjRSs6YjmY_T1NLcm-T3U0O3OZQvemwBxyC1TXAmldb3AGN2eods4pFDTtYwSSqWg8jiQnSibYs4J-ta6014lGedbStrjB9qPH6imb2emfaqXTod_4fSEvzsPh_-y7WL5zIRU_A-HIpUH
CitedBy_id crossref_primary_10_1002_ecs2_3657
crossref_primary_10_1021_acs_estlett_9b00599
crossref_primary_10_1029_2020GH000349
crossref_primary_10_1029_2024EA003939
crossref_primary_10_1016_j_foreco_2020_118190
crossref_primary_10_5194_acp_19_15157_2019
crossref_primary_10_1111_ele_14282
crossref_primary_10_1016_j_rama_2024_04_012
crossref_primary_10_1029_2021EF002518
crossref_primary_10_1088_1748_9326_abae9e
crossref_primary_10_3389_fevo_2019_00037
crossref_primary_10_1002_fee_2450
crossref_primary_10_1021_acs_est_2c09061
crossref_primary_10_1002_ecs2_4875
crossref_primary_10_1029_2023JD039154
crossref_primary_10_1038_s43017_021_00219_y
crossref_primary_10_1073_pnas_2114069119
crossref_primary_10_1016_j_crm_2021_100385
crossref_primary_10_1016_j_rse_2021_112649
crossref_primary_10_3390_environments11120277
crossref_primary_10_2139_ssrn_4153771
crossref_primary_10_1007_s10980_022_01457_1
crossref_primary_10_1029_2023JG007722
crossref_primary_10_1016_j_scitotenv_2023_163414
crossref_primary_10_1016_j_scitotenv_2023_164987
crossref_primary_10_1029_2020EF001910
crossref_primary_10_1007_s12145_025_01795_z
crossref_primary_10_1016_j_agrformet_2024_109893
crossref_primary_10_1016_j_envsoft_2022_105473
crossref_primary_10_1016_j_jaridenv_2022_104737
crossref_primary_10_1029_2023EF004088
crossref_primary_10_1071_WF22020
crossref_primary_10_1038_s43247_025_02202_7
crossref_primary_10_1007_s40725_022_00170_1
crossref_primary_10_1088_1748_9326_ab83a7
crossref_primary_10_3390_rs17010054
crossref_primary_10_1016_j_catena_2025_108802
crossref_primary_10_1007_s10980_022_01418_8
crossref_primary_10_1088_1748_9326_ac03da
crossref_primary_10_1038_s43247_021_00299_0
crossref_primary_10_1016_j_rse_2021_112467
crossref_primary_10_3390_atmos12080981
crossref_primary_10_1186_s42408_019_0062_8
crossref_primary_10_3390_fire5050133
crossref_primary_10_1002_rra_3938
crossref_primary_10_1051_bioconf_20225200038
crossref_primary_10_3390_f12081119
crossref_primary_10_1029_2021GL097131
crossref_primary_10_1038_s43247_024_01228_7
crossref_primary_10_5194_gmd_16_3103_2023
crossref_primary_10_1186_s42408_020_0068_2
crossref_primary_10_1029_2019RG000692
crossref_primary_10_1029_2024JD041155
crossref_primary_10_1016_j_rse_2023_113753
crossref_primary_10_1071_WF19160
crossref_primary_10_3390_en15228538
crossref_primary_10_1016_j_ecolmodel_2023_110277
crossref_primary_10_1007_s11069_022_05472_y
crossref_primary_10_3389_fevo_2020_569997
crossref_primary_10_3389_fevo_2019_00241
crossref_primary_10_1007_s40823_022_00075_6
crossref_primary_10_1016_j_foreco_2024_122011
crossref_primary_10_1016_j_foreco_2023_121283
crossref_primary_10_1177_0959683620941068
crossref_primary_10_1007_s10533_021_00861_0
crossref_primary_10_1002_eap_2433
crossref_primary_10_24057_2071_9388_2023_2706
crossref_primary_10_1073_pnas_2111372119
crossref_primary_10_3389_fevo_2019_00239
crossref_primary_10_1002_ecs2_4159
crossref_primary_10_1016_j_foreco_2023_121430
crossref_primary_10_1002_eap_2030
crossref_primary_10_1007_s10980_019_00791_1
crossref_primary_10_1088_1748_9326_abe82b
crossref_primary_10_1073_pnas_2310076121
crossref_primary_10_1002_esp_5982
crossref_primary_10_1073_pnas_2009717118
crossref_primary_10_1080_01490400_2025_2468402
crossref_primary_10_1093_biosci_biaa061
crossref_primary_10_1088_1748_9326_ad80ad
crossref_primary_10_1139_cjfr_2020_0480
crossref_primary_10_1007_s11629_020_6036_0
crossref_primary_10_3389_ffgc_2021_731267
crossref_primary_10_1016_j_ecolmodel_2019_108880
crossref_primary_10_1111_gcb_17023
crossref_primary_10_1016_j_landurbplan_2021_104212
crossref_primary_10_1111_1365_2435_14423
crossref_primary_10_1016_j_dendro_2022_126044
crossref_primary_10_1038_s43247_023_00954_8
crossref_primary_10_1088_1748_9326_abd78e
crossref_primary_10_1016_j_agrformet_2021_108549
crossref_primary_10_3390_app121910077
crossref_primary_10_1016_j_apgeog_2019_102059
crossref_primary_10_1029_2018GL080959
crossref_primary_10_1214_25_BA1514
crossref_primary_10_1007_s10584_023_03495_3
crossref_primary_10_1029_2021GL094238
crossref_primary_10_1002_hyp_15334
crossref_primary_10_1029_2021EA001828
crossref_primary_10_1016_j_foreco_2021_119814
crossref_primary_10_1038_s41559_021_01654_2
crossref_primary_10_3389_fevo_2019_00293
crossref_primary_10_1038_s41598_020_67530_4
crossref_primary_10_1073_pnas_2103135118
crossref_primary_10_1371_journal_pone_0270025
crossref_primary_10_5194_bg_21_2207_2024
crossref_primary_10_1080_21681376_2024_2407404
crossref_primary_10_1111_1365_2745_13559
crossref_primary_10_1002_ecs2_3394
crossref_primary_10_1016_j_gloenvcha_2019_03_007
crossref_primary_10_1088_1748_9326_abb9df
crossref_primary_10_1029_2019EF001210
crossref_primary_10_3389_fevo_2019_00440
crossref_primary_10_1002_ecs2_3312
Cites_doi 10.1002/2013EF000180
10.1073/pnas.1110199108
10.1111/j.1523-1739.2004.00492.x
10.1890/ES11-00345.1
10.1007/s10584-010-9848-z
10.1038/nclimate1716
10.1002/2014GL059576
10.1111/geb.12043
10.1890/07-1183.1
10.1371/journal.pone.0127563
10.1371/journal.pone.0005102
10.1002/fee.1283
10.1016/0160-4120(91)90099-C
10.2139/ssrn.2255827
10.1016/j.scitotenv.2015.10.093
10.1073/pnas.1718850115
10.18637/jss.v017.i01
10.1080/07055900.2013.819555
10.1007/978-94-007-0301-8_5
10.1007/s10584-010-9855-0
10.1111/ecog.02205
10.1111/gcb.13275
10.1007/s40641-016-0031-0
10.1071/WF16102
10.1371/journal.pone.0188486
10.1007/s10584-010-9858-x
10.1073/pnas.1607171113
10.1073/pnas.1617394114
10.1111/geb.12180
10.1007/s10980-015-0282-5
10.1111/j.1466-8238.2006.00283.x
10.1073/pnas.1617464114
10.1002/eap.1420
10.1175/BAMS-84-5-595
10.1111/ecog.03378
10.1126/science.1151915
10.1890/09-1843.1
10.1073/pnas.1713885114
10.1073/pnas.1112839109
10.1071/WF13019
ContentType Journal Article
Copyright 2018. The Authors.
2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. The Authors.
– notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOI 10.1029/2018EF000878
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central (New)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Ecology
EISSN 2328-4277
EndPage 1111
ExternalDocumentID 10_1029_2018EF000878
EFT2456
Genre article
GeographicLocations Western states
United States--US
GeographicLocations_xml – name: Western states
– name: United States--US
GrantInformation_xml – fundername: National Fire Plan
– fundername: Joint Fire Science Program
– fundername: USGS Western Mountain Initiative
– fundername: Rocky Mountain Research Station
– fundername: Joint Fire Sciences Program
  funderid: NA
– fundername: USGS Alaska Climate Science Center
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
ITC
LK5
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAYXX
CITATION
PHGZM
PHGZT
7ST
7TG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
ID FETCH-LOGICAL-c3766-24dec74b7f5dfc1c7b7f549ee10be3b5874d84c3e36a535612c6693685428d073
IEDL.DBID BENPR
ISSN 2328-4277
IngestDate Fri Jul 11 09:11:16 EDT 2025
Fri Jul 25 23:34:47 EDT 2025
Tue Jul 01 02:48:21 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Wed Jan 22 16:52:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3766-24dec74b7f5dfc1c7b7f549ee10be3b5874d84c3e36a535612c6693685428d073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5302-8280
0000-0002-6039-5513
0000-0002-2146-8257
OpenAccessLink https://www.proquest.com/docview/2101154157?pq-origsite=%requestingapplication%
PQID 2101154157
PQPubID 2034575
PageCount 15
ParticipantIDs proquest_miscellaneous_2636467770
proquest_journals_2101154157
crossref_citationtrail_10_1029_2018EF000878
crossref_primary_10_1029_2018EF000878
wiley_primary_10_1029_2018EF000878_EFT2456
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earth's future
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 40
2017; 41
2013; 3
1991; 17
2013; 22
2017; 26
2011
2017; 27
2006; 17
2010; 102
2015; 10
2016; 542
2016; 31
1995
2005
2014; 41
2017; 114
2014; 23
2016; 14
2012; 109
2007; 16
2012; 3
2011; 108
2016; 2
2014; 2
2004; 18
2013; 51
2011; 92
2018; 115
2017; 12
2008; 319
2016; 113
2017
2014
2009; 4
2009; 19
2003; 84
2016; 22
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – year: 2011
– volume: 18
  start-page: 890
  year: 2004
  end-page: 902
  article-title: Climatic change, wildfire, and conservation
  publication-title: Conservation Biology
– volume: 17
  start-page: 169
  issue: 2–3
  year: 1991
  end-page: 178
  article-title: Vegetation and wildland fire: Implications of global climate change
  publication-title: Environment International
– volume: 23
  start-page: 821
  issue: 7
  year: 2014
  end-page: 824
  article-title: Pyrogeographic models, feedbacks and the future of global fire regimes
  publication-title: Global Ecology and Biogeography
– volume: 31
  start-page: 181
  issue: 1
  year: 2016
  end-page: 194
  article-title: Toward accounting for ecoclimate teleconnections: Intra‐ and inter‐continental consequences of altered energy balance after vegetation change
  publication-title: Landscape Ecology
– volume: 40
  start-page: 606
  issue: 5
  year: 2017
  end-page: 617
  article-title: Climatic thresholds shape northern high‐latitude fire regimes and imply vulnerability to future climate change
  publication-title: Ecography
– volume: 92
  start-page: 121
  issue: 1
  year: 2011
  end-page: 132
  article-title: Constraints on global fire activity vary across a resource gradient
  publication-title: Ecology
– year: 2005
– volume: 26
  start-page: 253
  issue: 4
  year: 2017
  article-title: Different historical fire–climate patterns in California
  publication-title: International Journal of Wildland Fire
– volume: 3
  issue: 6
  year: 2012
  article-title: Climate change and disruptions to global fire activity
  publication-title: Ecosphere
– volume: 319
  start-page: 573
  issue: 5863
  year: 2008
  end-page: 574
  article-title: Climate change. Stationarity is dead: Whither water management?
  publication-title: Science
– volume: 114
  start-page: 4582
  issue: 18
  year: 2017
  end-page: 4590
  article-title: Adapt to more wildfire in western North American forests as climate changes
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: 1003
  issue: 4
  year: 2009
  end-page: 1021
  article-title: Climate and wildfire area burned in western U.S. ecoprovinces, 1916‐2003
  publication-title: Ecological Applications
– volume: 14
  start-page: 276
  issue: 5
  year: 2016
  end-page: 284
  article-title: Wildfire risk as a socioecological pathology
  publication-title: Frontiers in Ecology and the Environment
– volume: 102
  start-page: 225
  issue: 1–2
  year: 2010
  end-page: 260
  article-title: Implications of 21st century climate change for the hydrology of Washington State
  publication-title: Climatic Change
– volume: 102
  start-page: 29
  year: 2010
  end-page: 50
  article-title: Future climate in the Pacific Northwest
  publication-title: Climatic Change
– volume: 22
  start-page: 728
  issue: 6
  year: 2013
  end-page: 736
  article-title: The global fire‐productivity relationship
  publication-title: Global Ecology and Biogeography
– volume: 114
  start-page: 13,750
  issue: 52
  year: 2017
  end-page: 13,755
  article-title: Human presence diminishes the importance of climate in driving fire activity across the United States
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 108
  start-page: 13,165
  issue: 32
  year: 2011
  end-page: 13,170
  article-title: Continued warming could transform Greater Yellowstone fire regimes by mid‐21st century
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 109
  start-page: E535
  issue: 9
  year: 2012
  end-page: E543
  article-title: Long‐term perspective on wildfires in the western USA
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 2
  start-page: 35
  year: 2014
  end-page: 59
  article-title: Smoke consequences of new fire regimes driven by climate change
  publication-title: Earth's Future
– volume: 51
  start-page: 392
  issue: 4
  year: 2013
  end-page: 415
  article-title: An overview of the Columbia Basin Climate Change Scenarios Project: Approach, methods, and summary of key results
  publication-title: Atmosphere‐Ocean
– year: 2014
– volume: 4
  issue: 4
  year: 2009
  article-title: Global pyrogeography: The current and future distribution of wildfire
  publication-title: PLoS One
– volume: 16
  start-page: 330
  issue: 3
  year: 2007
  end-page: 340
  article-title: Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south‐east Australia
  publication-title: Global Ecology and Biogeography
– volume: 17
  start-page: 139
  issue: 1
  year: 2006
  end-page: 147
  article-title: R package relaimpo: Relative importance for linear regression
  publication-title: Journal of Statistical Software
– volume: 22
  start-page: 2353
  year: 2016
  end-page: 2369
  article-title: A review of the relationships between drought and forest fire in the United States
  publication-title: Global Change Biology
– volume: 22
  start-page: 1003
  issue: 7
  year: 2013
  end-page: 1020
  article-title: Relationships between climate and macroscale area burned in the western United States
  publication-title: International Journal of Wildland Fire
– volume: 3
  start-page: 369
  issue: 4
  year: 2013
  end-page: 373
  article-title: Robustness and uncertainties in the new CMIP5 climate model projections
  publication-title: Nature Climate Change
– volume: 41
  start-page: 910
  year: 2017
  end-page: 921
  article-title: Analog‐based fire regime and vegetation shifts in mountainous regions of the western US
  publication-title: Ecography
– volume: 113
  start-page: 11,770
  issue: 42
  year: 2016
  end-page: 11,775
  article-title: Impact of anthropogenic climate change on wildfire across western US forests
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 114
  start-page: 2946
  issue: 11
  year: 2017
  end-page: 2951
  article-title: Human‐started wildfires expand the fire niche across the United States
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 115
  start-page: 3314
  issue: 13
  year: 2018
  end-page: 3319
  article-title: Rapid growth of the US wildland‐urban interface raises wildfire risk
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 12
  issue: 12
  year: 2017
  article-title: Direct and indirect climate controls predict heterogeneous early‐mid 21st century wildfire burned area across western and boreal North America
  publication-title: PLoS One
– year: 1995
– volume: 2
  start-page: 1
  issue: 1
  year: 2016
  end-page: 14
  article-title: Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity
  publication-title: Current Climate Change Reports
– volume: 102
  start-page: 129
  issue: 1–2
  year: 2010
  end-page: 158
  article-title: Forest ecosystems, disturbance, and climatic change in Washington State, USA
  publication-title: Climatic Change
– volume: 27
  start-page: 26
  issue: 1
  year: 2017
  end-page: 36
  article-title: Climate change and the eco‐hydrology of fire: Will area burned increase in a warming western USA
  publication-title: Ecological Applications
– volume: 41
  start-page: 2928
  year: 2014
  end-page: 2933
  article-title: Large wildfire trends in the western United States, 1984‐2011
  publication-title: Geophysical Research Letters
– year: 2017
– volume: 542
  start-page: 65
  year: 2016
  end-page: 75
  article-title: Direct and indirect effects of climate change on projected future fire regimes in the western United States
  publication-title: Science of the Total Environment
– volume: 10
  issue: 6
  year: 2015
  article-title: The changing strength and nature of fire‐climate relationships in the northern Rocky Mountains, U.S.A., 1902‐2008
  publication-title: PLoS One
– volume: 84
  start-page: 595
  issue: 5
  year: 2003
  end-page: 604
  article-title: Climate and wildfire in the Western United States
  publication-title: Bulletin of the American Meteorological Society
– ident: e_1_2_7_31_1
  doi: 10.1002/2013EF000180
– ident: e_1_2_7_46_1
  doi: 10.1073/pnas.1110199108
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1523-1739.2004.00492.x
– ident: e_1_2_7_34_1
  doi: 10.1890/ES11-00345.1
– ident: e_1_2_7_35_1
  doi: 10.1007/s10584-010-9848-z
– ident: e_1_2_7_18_1
  doi: 10.1038/nclimate1716
– ident: e_1_2_7_7_1
  doi: 10.1002/2014GL059576
– ident: e_1_2_7_38_1
  doi: 10.1111/geb.12043
– ident: e_1_2_7_24_1
  doi: 10.1890/07-1183.1
– ident: e_1_2_7_14_1
  doi: 10.1371/journal.pone.0127563
– ident: e_1_2_7_20_1
  doi: 10.1371/journal.pone.0005102
– ident: e_1_2_7_10_1
  doi: 10.1002/fee.1283
– ident: e_1_2_7_11_1
– ident: e_1_2_7_41_1
  doi: 10.1016/0160-4120(91)90099-C
– ident: e_1_2_7_9_1
  doi: 10.2139/ssrn.2255827
– ident: e_1_2_7_22_1
– ident: e_1_2_7_27_1
  doi: 10.1016/j.scitotenv.2015.10.093
– ident: e_1_2_7_40_1
  doi: 10.1073/pnas.1718850115
– ident: e_1_2_7_12_1
  doi: 10.18637/jss.v017.i01
– ident: e_1_2_7_13_1
  doi: 10.1080/07055900.2013.819555
– ident: e_1_2_7_21_1
  doi: 10.1007/978-94-007-0301-8_5
– ident: e_1_2_7_8_1
  doi: 10.1007/s10584-010-9855-0
– ident: e_1_2_7_4_1
– ident: e_1_2_7_48_1
  doi: 10.1111/ecog.02205
– ident: e_1_2_7_26_1
  doi: 10.1111/gcb.13275
– ident: e_1_2_7_47_1
  doi: 10.1007/s40641-016-0031-0
– ident: e_1_2_7_16_1
  doi: 10.1071/WF16102
– ident: e_1_2_7_39_1
– ident: e_1_2_7_17_1
  doi: 10.1371/journal.pone.0188486
– ident: e_1_2_7_25_1
  doi: 10.1007/s10584-010-9858-x
– ident: e_1_2_7_3_1
  doi: 10.1073/pnas.1607171113
– ident: e_1_2_7_5_1
  doi: 10.1073/pnas.1617394114
– ident: e_1_2_7_6_1
  doi: 10.1111/geb.12180
– ident: e_1_2_7_43_1
  doi: 10.1007/s10980-015-0282-5
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1466-8238.2006.00283.x
– ident: e_1_2_7_42_1
  doi: 10.1073/pnas.1617464114
– ident: e_1_2_7_30_1
  doi: 10.1002/eap.1420
– ident: e_1_2_7_32_1
– ident: e_1_2_7_45_1
  doi: 10.1175/BAMS-84-5-595
– ident: e_1_2_7_36_1
  doi: 10.1111/ecog.03378
– ident: e_1_2_7_33_1
  doi: 10.1126/science.1151915
– ident: e_1_2_7_19_1
  doi: 10.1890/09-1843.1
– ident: e_1_2_7_44_1
  doi: 10.1073/pnas.1713885114
– ident: e_1_2_7_23_1
– ident: e_1_2_7_28_1
  doi: 10.1073/pnas.1112839109
– ident: e_1_2_7_2_1
  doi: 10.1071/WF13019
– ident: e_1_2_7_15_1
SSID ssj0000970357
Score 2.425778
Snippet We developed ecologically based climate‐fire projections for the western United States. Using a finer ecological classification and fire‐relevant climate...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1097
SubjectTerms Anomalies
Classification
climate
Climate change
Climate control
climate impacts
Climate models
Climatic classifications
Ecology
Ecosystems
Energy balance
Filtration
fire climatology
Fires
Flammability
Forest & brush fires
Fuels
humans
Hybrid systems
Mathematical models
nonstationarity
Statistical analysis
Statistical models
Vegetation
Water balance
water balance deficit
Wildfires
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-Ll7EJ9YXEfSiLLab7CT1VmSLCIoHRW_L5gWKbMW2_9-ZbFrrQcHbshmysJOZ-TLJfMPYKRgjoOsgq33IM2kKnRmb20yAB1cIq1ygauS7e7h5krcvxUtKuFEtTMsPMU-4kWVEf00GXptxIhsgjkyMXLqku3Fa6WW2StW1xJ2fy4d5jqXbx_UcyT4RN-hM5kqlu-84xeXiBD-j0jfUXASsMeIMN9h6gop80Op2ky35Zovtlt-VaTiYTHO8zd6u318RfXre1gvwunF8GAlDOFq-C-ja-GvDEe_x55Ydgbd4k7d484oPGl7amS_kg0Q2zicjfh9BZMwaUq-7HfY0LB-vb7LUSCGz6D8gy6XzVkmjQuGC7VlFT7Lvfa9rvED9KOm0tMILqAtB_TItQJ-o6XFz4tAJ7LKVZtT4PcZDrrXxvggAuLeAoA0CogDGGlEHsKLDLmY_srKJZZyaXbxX8bQ771eLv73DzubSHy27xi9yhzOdVMnGxhVuVolLqFeoDjuZD6N10JFH3fjRFGVAAIYCpboddh51-ed3qnL4SCfB-_8RPmBr9Lq9FXjIViafU3-ESGVijuNy_ALqrd8i
  priority: 102
  providerName: Wiley-Blackwell
Title Climate Change and Future Wildfire in the Western United States: An Ecological Approach to Nonstationarity
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018EF000878
https://www.proquest.com/docview/2101154157
https://www.proquest.com/docview/2636467770
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC7WEcGLuD5wdBx6QS9KMJNOqpO9LLOSQRZ2EFH0FtIvUCSjznjw31vd6Xlc9BZIhYZUV_VXj_4K4ASl5BhrjGpjkyiVWR5JlaiIo0GdcSW0dbeR_4_x6i7995A9hITbNLRVzn2id9R6olyO_IJCE8ccM8jEn5fXyE2NctXVMEJjDdbJBecUfK3_LcfXN4ssS1zQjs5E6HiPk4KC_UFeupa63E1WWz2LlgBzFab6c2a0DVsBILJhq9Gf8MM0O7BRenLpjx3YL5c300gsmOZ0F54unx8JfRrW3hdgdaPZyBOGMLJ8bcm1sceGEd5j9y07AmvxJmvx5m82bFi7jNMbGwaycTabsLEHkT5r6Gbd7cHdqLy9vIrCIIVIkf_AKEm1USKVwmbaqoES7iktjBnE0nDSj0h1nipuONYZd_MyFWLhqOkpONHkBPah00wacwDMJnkujcksIsUWaHNJgMiiVJLXFhXvwvn8l1YqsIy7YRfPla92J0W1qoAunC6kX1p2jS_kenPtVMHGptVyR3Th1-I1WYcredSNmbyTDHKko0CIuAtnXqvfrlOVo1tXCT78fr0j2HRftX2APejM3t7NMWGTmezDWpJe98M27PsI_xMcOuNH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFD5YRepL8VLpttqegr5YgtlMMpMUStnaLOttkbJS39LMDRTJ2u5K8U_1N_ZMJtndF33zLZBhJplz-2bODWCPS8l4qHlQGhsFsUzSQKpIBYwbrhOmhLYuG_l8yAeX8clVcrUE_9pcGBdW2erEWlHrsXJ35Id0NHGVY7qJ-Hr3O3Bdo5x3tW2h4dni1Dz8pSPb5Mvxd6LvfhT189HRIGi6CgSKhIkHUayNErEUNtFWdZVwT3FmTDeUhtHHilinsWKG8TJhrnmk4jxzddoJqWuSCJr3BazE9IukCFa-5cOLH7NbnTAjCUpEE2EfRtkhGdg0dyF8qevktmj75oB2ERbXdq2_Dq8aQIo9z0EbsGSqTVjN62LWD5uwnc8z4WhYowomW3BzdHtNaNegz0_AstLYrwuUIGkabUmV4nWFhC_xp6_GgB7fose3n7FXoV_G8Qn2muLmOB3jsAat9S2l6633Gi6fZYu3YbkaV-YNoI3SVBqTWM7pLMNtKgmAWS6VZKXlinXgU7ulhWqqmrvmGrdF7V2PsmKRAB3Yn42-89U8Hhm301KnaGR6Usw5sAMfZ69JGp2LpazM-J7GcMbJ9AgRduCgpuqT6xR5f-Q8z2-fXu8DvByMzs-Ks-Ph6TtYczP4GMQdWJ7-uTe7hIum8n3DjAi_npv__wPyoR0l
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULYovotXi1qpHsC9KaDaTzCSCyNomtFaXIi32LWZuUCnZ1t0i_Wv-Os9kJrv7Yt_6FsgwE3Ju35lzA3jLpWQ81jxqjE2iVGZ5JFWiIsYN1xlTQltXjfxtwg9O0y9n2dka_O1rYVxaZa8TO0Wtp8rdke-Sa-I6x4zIgbchLeJ4v_p0eRW5CVIu0tqP0_AscmRu_pD7Nvt4uE-03kmSqjzZO4jChIFIkWDxKEm1USKVwmbaqpES7iktjBnF0jD6cJHqPFXMMN5kzA2SVJwXrmc7oXZN0kH73oN1QV5RPID1z-Xk-PvihicuSJoyEbLt46TYJWObly6dL3dT3Vbt4BLcrkLkzsZVj-FRAKc49tz0BNZMuwH3y66x9c0GbJbLqjhaFtTC7Cn82rs4J-Rr0NcqYNNqrLpmJUhaR1tSq3jeImFN_OE7M6DHuuix7gcct-iPcTyD49DoHOdTnHQAtruxdHP2nsHpnfziTRi009Y8B7RJnktjMss5-TXc5pLAmOVSSdZYrtgQ3ve_tFahw7kbtHFRd5H2pKhXCTCEncXqS9_Z4z_rtnvq1EG-Z_WSG4fwZvGaJNOFW5rWTK9pDWeczJAQ8RDedVS99Zy6rE5cFHrr9vNewwPi-_rr4eToBTx0G_h0xG0YzH9fm5cEkebyVeBFhJ93zf7_AD9bIVo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+Change+and+Future+Wildfire+in+the+Western+United+States%3A+An+Ecological+Approach+to+Nonstationarity&rft.jtitle=Earth%27s+future&rft.au=Littell%2C+Jeremy+S&rft.au=McKenzie%2C+Donald&rft.au=Ho%2C+Yi+Wan&rft.au=Cushman%2C+Samuel+A&rft.date=2018-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2328-4277&rft.volume=6&rft.issue=8&rft.spage=1097&rft.epage=1111&rft_id=info:doi/10.1029%2F2018EF000878&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon