Bayesian nonparametric monotone regression

In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application‐inferring time‐resolved aerosol concentration from a low‐co...

Full description

Saved in:
Bibliographic Details
Published inEnvironmetrics (London, Ont.) Vol. 31; no. 8
Main Authors Wilson, Ander, Tryner, Jessica, L'Orange, Christian, Volckens, John
Format Journal Article
LanguageEnglish
Published England 01.12.2020
Subjects
Online AccessGet full text
ISSN1180-4009
1099-095X
DOI10.1002/env.2642

Cover

Loading…
Abstract In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application‐inferring time‐resolved aerosol concentration from a low‐cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression, which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed‐formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time‐resolved aerosol concentration with a newly developed portable aerosol monitor. The R package bnmr is made available to implement the method.
AbstractList In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application-inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application–inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application-inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application-inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.
Author Volckens, John
Tryner, Jessica
L'Orange, Christian
Wilson, Ander
AuthorAffiliation 2 Department of Mechanical Engineering, Colorado State University
1 Department of Statistics, Colorado State University
AuthorAffiliation_xml – name: 2 Department of Mechanical Engineering, Colorado State University
– name: 1 Department of Statistics, Colorado State University
Author_xml – sequence: 1
  givenname: Ander
  orcidid: 0000-0003-4774-3883
  surname: Wilson
  fullname: Wilson, Ander
  email: ander.wilson@colostate.edu
  organization: Colorado State University
– sequence: 2
  givenname: Jessica
  orcidid: 0000-0002-0522-4551
  surname: Tryner
  fullname: Tryner, Jessica
  organization: Colorado State University
– sequence: 3
  givenname: Christian
  orcidid: 0000-0003-1905-8694
  surname: L'Orange
  fullname: L'Orange, Christian
  organization: Colorado State University
– sequence: 4
  givenname: John
  orcidid: 0000-0002-7563-9525
  surname: Volckens
  fullname: Volckens, John
  organization: Colorado State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35923387$$D View this record in MEDLINE/PubMed
BookMark eNp1kFtLAzEQhYMoaqvgL5A-irA1m2RvL4KKNxB9UfEtTLMTjewmNdlW-u9Nbb2i8zIDc-Y7w-mRVessErKT0mFKKTtAOx2yXLAVspnSqkpolT2sxjktaSIorTZIL4RnGqc8K9bJBs8qxnlZbJL9Y5hhMGAHETkGDy123qhB66zrosnA46PHEIyzW2RNQxNwe9n75O7s9PbkIrm6Ob88ObpKFC9ylqii1MjEKOdc1KAFAKLWBVLQUCtQAJyqWFBTGGnggqIqM-B1mYlciIL3yeGCO56MWqwV2s5DI8fetOBn0oGRPzfWPMlHN5UVF1nG8gjYWwK8e5lg6GRrgsKmAYtuEiTLq3L-HRNRuvvd69PkI6AvlvIuBI_6U5JSOc9exuzlPPsoHf6SKtNBF5OLX5rmr4NkcfBqGpz9C5an1_fv-jc-_JdO
CitedBy_id crossref_primary_10_1016_j_csda_2024_108036
crossref_primary_10_1214_23_BA1412
Cites_doi 10.1214/aos/1176348117
10.1214/ss/1009213727
10.1111/1467-9868.00353
10.1080/00949650212844
10.1039/C9EM00234K
10.1111/biom.13100
10.1080/1047322X.1997.10390647
10.1080/10485252.2011.597852
10.1111/j.0006-341X.2004.00184.x
10.1214/18-BA1116
10.1097/EDE.0b013e3181cf0058
10.1111/j.1467-9469.2005.00451.x
10.1214/aos/1176342372
10.1016/0021-8502(92)90032-Q
10.1214/ss/1177012761
10.32614/CRAN.package.bcgam
10.1007/978-1-4612-6333-3
10.1002/env.2537
10.1002/env.2443
10.1080/10485252.2013.797577
10.1214/074921707000000157
10.1002/cjs.10137
10.1002/env.2369
10.1002/env.852
10.1080/01621459.1995.10476550
10.1214/08-AOAS167
10.1111/biom.12917
10.1080/01621459.1954.10483523
10.1093/biomet/83.2.275
10.1214/14-AOAS754
10.1080/15598608.2014.996690
10.1007/s13253-015-0227-0
10.1002/env.1150
10.1198/106186008X285627
10.1016/j.jeconom.2007.01.006
10.1111/ina.12318
10.1080/02664761003692423
10.1080/02664763.2016.1142940
10.18637/jss.v014.i14
10.1214/aoms/1177728420
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1002/env.2642
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1099-095X
EndPage n/a
ExternalDocumentID PMC9345526
35923387
10_1002_env_2642
ENV2642
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: ACI‐1532235; ACI‐1532236
– fundername: National Institute for Occupational Safety and Health
  funderid: OH010662; OH011598
– fundername: NIOSH CDC HHS
  grantid: K01 OH011598
– fundername: NIOSH CDC HHS
  grantid: R01 OH010662
– fundername: ACL HHS
  grantid: R01OH010662
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7X8
5PM
ID FETCH-LOGICAL-c3762-c78fe24b6334daf4aaeeff7e0afadcacaa30ccccad0abfa340ec85a3d85464473
IEDL.DBID DR2
ISSN 1180-4009
IngestDate Thu Aug 21 17:25:24 EDT 2025
Fri Jul 11 04:23:23 EDT 2025
Mon Jul 21 06:03:54 EDT 2025
Thu Apr 24 22:55:46 EDT 2025
Tue Jul 01 01:11:06 EDT 2025
Wed Jan 22 16:31:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Dirichlet process
Fine particulate matter
monotone regression
Bernstein polynomials
Aerosol monitors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3762-c78fe24b6334daf4aaeeff7e0afadcacaa30ccccad0abfa340ec85a3d85464473
Notes Funding information
National Institute for Occupational Safety and Health, OH010662; OH011598; National Science Foundation, ACI‐1532235; ACI‐1532236
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7563-9525
0000-0003-4774-3883
0000-0002-0522-4551
0000-0003-1905-8694
PMID 35923387
PQID 2698633424
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9345526
proquest_miscellaneous_2698633424
pubmed_primary_35923387
crossref_primary_10_1002_env_2642
crossref_citationtrail_10_1002_env_2642
wiley_primary_10_1002_env_2642_ENV2642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmetrics (London, Ont.)
PublicationTitleAlternate Environmetrics
PublicationYear 2020
References 1955; 26
2018; 29
1991; 19
2013; 25
1995; 90
2004; 60
2019; 75
2011
2017; 28
2002; 72
2017; 27
2008; 19
2007; 141
2019; 14
2008; 17
2009
2007
1954; 49
1994
2011; 38
2015; 9
2008; 2
1978
2010; 21
2015; 26
1988; 3
2002; 64
2019; 21
2015; 20
1997; 12
1996; 83
2016; 43
2018
2005; 32
2018; 74
2001; 16
2011; 23
2014; 8
2012; 23
1992; 23
1973; 1
2005; 14
2012; 40
e_1_2_7_6_1
e_1_2_7_5_1
West M. (e_1_2_7_45_1) 1994
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
Mclain A. C. (e_1_2_7_28_1) 2009
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 64
  start-page: 583
  issue: 4
  year: 2002
  end-page: 616
  article-title: Bayesian measures of model complexity and fit
  publication-title: Journal of the Royal Statistical Society: Series B
– year: 2011
– year: 2009
– volume: 38
  start-page: 961
  issue: 5
  year: 2011
  end-page: 976
  article-title: A variable selection approach to monotonic regression with Bernstein polynomials
  publication-title: Journal of Applied Statistics
– volume: 20
  start-page: 555
  issue: 4
  year: 2015
  end-page: 576
  article-title: A Semi‐parametric Bayesian Approach for Differential Expression Analysis of RNA‐seq Data
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
– volume: 19
  start-page: 724
  issue: 2
  year: 1991
  end-page: 740
  article-title: Estimating a smooth monotone regression function
  publication-title: The Annals of Statistics
– start-page: 187
  year: 2007
  end-page: 202
– volume: 2
  start-page: 1013
  issue: 3
  year: 2008
  end-page: 1033
  article-title: Inference using shape‐restricted regression splines
  publication-title: The Annals of Applied Statistics
– volume: 72
  start-page: 285
  issue: 4
  year: 2002
  end-page: 297
  article-title: A Bayesian approach to hybrid splines non‐parametric regression
  publication-title: Journal of Statistical Computation and Simulation
– volume: 23
  start-page: 228
  issue: 3
  year: 2012
  end-page: 237
  article-title: Estimating constrained concentration‐response functions between air pollution and health
  publication-title: Environmetrics
– volume: 21
  start-page: S71
  issue: Supplement
  year: 2010
  end-page: S76
  article-title: Nonparametric Bayes shrinkage for assessing exposures to mixtures subject to limits of detection
  publication-title: Epidemiology
– volume: 27
  start-page: 409
  issue: 2
  year: 2017
  end-page: 416
  article-title: Development and evaluation of an ultrasonic personal aerosol sampler
  publication-title: Indoor Air
– start-page: 363
  year: 1994
  end-page: 386
– volume: 23
  start-page: 657
  issue: 6
  year: 1992
  end-page: 665
  article-title: The effect of solid particle mass loading on the pressure drop of HEPA filters
  publication-title: Journal of Aerosol Science
– volume: 21
  start-page: 1403
  issue: 8
  year: 2019
  end-page: 1415
  article-title: Design and evaluation of a portable PM 2.5 monitor featuring a low‐cost sensor in line with an active filter sampler
  publication-title: Environmental Science: Processes & Impacts
– volume: 28
  issue: 4
  year: 2017
  article-title: Analyzing ozone concentration by Bayesian spatio‐temporal quantile regression
  publication-title: Environmetrics
– volume: 23
  start-page: 867
  issue: 4
  year: 2011
  end-page: 884
  article-title: Bayesian estimation and inference for generalised partial linear models using shape‐restricted splines
  publication-title: Journal of Nonparametric Statistics
– volume: 3
  start-page: 425
  issue: 4
  year: 1988
  end-page: 441
  article-title: Monotone regression splines in action
  publication-title: Statistical Science
– volume: 26
  start-page: 515
  issue: 8
  year: 2015
  end-page: 525
  article-title: A data fusion approach for spatial analysis of speciated PM 2.5 across time
  publication-title: Environmetrics
– volume: 60
  start-page: 398
  issue: 2
  year: 2004
  end-page: 406
  article-title: Bayesian isotonic regression and trend analysis
  publication-title: Biometrics
– year: 2018
– volume: 26
  start-page: 607
  issue: 4
  year: 1955
  end-page: 616
  article-title: Maximum likelihood estimates of monotone parameters
  publication-title: The Annals of Mathematical Statistics
– volume: 1
  start-page: 353
  issue: 2
  year: 1973
  end-page: 355
  article-title: Ferguson distributions via polya urn schemes author
  publication-title: The Annals of Statistics
– volume: 29
  issue: 8
  year: 2018
  article-title: Real‐time PM 2.5 mapping and anomaly detection from AirBoxes in Taiwan
  publication-title: Environmetrics
– volume: 75
  start-page: 1356
  issue: 4
  year: 2019
  end-page: 1366
  article-title: Quantifying personal exposure to air pollution from smartphone‐based location data
  publication-title: Biometrics
– volume: 32
  start-page: 447
  issue: 3
  year: 2005
  end-page: 466
  article-title: Bayesian survival analysis using Bernstein polynomials
  publication-title: Scandinavian Journal of Statistics
– volume: 141
  start-page: 167
  issue: 1
  year: 2007
  end-page: 178
  article-title: Consistent estimator for basis selection based on a proxy of the Kullback‐Leibler distance
  publication-title: Journal of Econometrics
– volume: 90
  start-page: 577
  issue: 430
  year: 1995
  end-page: 588
  article-title: Bayesian density estimation and inference using mixtures
  publication-title: Journal of the American Statistical Association
– volume: 49
  start-page: 598
  issue: 267
  year: 1954
  end-page: 619
  article-title: Point estimates of ordinates of concave functions
  publication-title: Journal of the American Statistical Association
– volume: 83
  start-page: 275
  issue: 2
  year: 1996
  end-page: 285
  article-title: A semiparametric Bayesian model for randomised block designs
  publication-title: Biometrika
– volume: 9
  start-page: 712
  issue: 4
  year: 2015
  end-page: 732
  article-title: efficient sampling methods for truncated multivariate normal and Student‐t distributions subject to linear inequality constraints
  publication-title: Journal of Statistical Theory and Practice
– volume: 14
  start-page: 553
  issue: 2
  year: 2019
  end-page: 572
  article-title: A Bayesian nonparametric spiked process prior for dynamic model selection
  publication-title: Bayesian Analysis
– volume: 74
  start-page: 1331
  issue: 4
  year: 2018
  end-page: 1340
  article-title: Convex mixture regression for quantitative risk assessment
  publication-title: Biometrics
– volume: 19
  start-page: 39
  issue: 1
  year: 2008
  end-page: 48
  article-title: A dynamic process convolution approach to modeling ambient particulate matter concentrations
  publication-title: Environmetrics
– volume: 43
  start-page: 2524
  issue: 14
  year: 2016
  end-page: 2537
  article-title: Bayesian regression on non‐parametric mixed‐effect models with shape‐restricted Bernstein polynomials
  publication-title: Journal of Applied Statistics
– volume: 25
  start-page: 715
  issue: 3
  year: 2013
  end-page: 730
  article-title: Semi‐parametric additive constrained regression
  publication-title: Journal of Nonparametric Statistics
– volume: 17
  start-page: 21
  issue: 1
  year: 2008
  end-page: 37
  article-title: Isotonic smoothing spline regression
  publication-title: Journal of Computational and Graphical Statistics
– volume: 16
  start-page: 232
  issue: 3
  year: 2001
  end-page: 248
  article-title: A general projection framework for constrained smoothing
  publication-title: Statistical Science
– volume: 40
  start-page: 190
  issue: 1
  year: 2012
  end-page: 206
  article-title: Constrained penalized splines
  publication-title: Canadian Journal of Statistics
– year: 1978
– volume: 14
  start-page: 1
  issue: 14
  year: 2005
  end-page: 24
  article-title: Bayesian analysis for penalized spline regression using WinBUGS
  publication-title: Journal of Statistical Software
– volume: 8
  start-page: 1728
  issue: 3
  year: 2014
  end-page: 1749
  article-title: Modeling the effect of temperature on ozone‐related mortality
  publication-title: The Annals of Applied Statistics
– volume: 12
  start-page: 1047
  issue: 12
  year: 1997
  end-page: 1051
  article-title: Differential pressure as a means of estimating respirable dust mass on collection filters
  publication-title: Applied Occupational and Environmental Hygiene
– ident: e_1_2_7_26_1
  doi: 10.1214/aos/1176348117
– ident: e_1_2_7_27_1
  doi: 10.1214/ss/1009213727
– ident: e_1_2_7_40_1
  doi: 10.1111/1467-9868.00353
– ident: e_1_2_7_15_1
  doi: 10.1080/00949650212844
– ident: e_1_2_7_41_1
  doi: 10.1039/C9EM00234K
– ident: e_1_2_7_20_1
  doi: 10.1111/biom.13100
– ident: e_1_2_7_18_1
  doi: 10.1080/1047322X.1997.10390647
– ident: e_1_2_7_32_1
  doi: 10.1080/10485252.2011.597852
– ident: e_1_2_7_34_1
  doi: 10.1111/j.0006-341X.2004.00184.x
– ident: e_1_2_7_7_1
  doi: 10.1214/18-BA1116
– ident: e_1_2_7_21_1
  doi: 10.1097/EDE.0b013e3181cf0058
– ident: e_1_2_7_11_1
– start-page: 363
  volume-title: Aspects of Uncertainty: A Tribute to D.V. Lindley
  year: 1994
  ident: e_1_2_7_45_1
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1467-9469.2005.00451.x
– ident: e_1_2_7_2_1
  doi: 10.1214/aos/1176342372
– ident: e_1_2_7_35_1
  doi: 10.1016/0021-8502(92)90032-Q
– ident: e_1_2_7_38_1
  doi: 10.1214/ss/1177012761
– ident: e_1_2_7_36_1
  doi: 10.32614/CRAN.package.bcgam
– ident: e_1_2_7_14_1
  doi: 10.1007/978-1-4612-6333-3
– ident: e_1_2_7_33_1
– ident: e_1_2_7_23_1
  doi: 10.1002/env.2537
– ident: e_1_2_7_13_1
  doi: 10.1002/env.2443
– ident: e_1_2_7_31_1
  doi: 10.1080/10485252.2013.797577
– ident: e_1_2_7_8_1
  doi: 10.1214/074921707000000157
– ident: e_1_2_7_30_1
  doi: 10.1002/cjs.10137
– ident: e_1_2_7_39_1
  doi: 10.1002/env.2369
– ident: e_1_2_7_5_1
  doi: 10.1002/env.852
– ident: e_1_2_7_19_1
  doi: 10.1080/01621459.1995.10476550
– ident: e_1_2_7_29_1
  doi: 10.1214/08-AOAS167
– ident: e_1_2_7_6_1
  doi: 10.1111/biom.12917
– ident: e_1_2_7_22_1
  doi: 10.1080/01621459.1954.10483523
– ident: e_1_2_7_4_1
  doi: 10.1093/biomet/83.2.275
– ident: e_1_2_7_46_1
  doi: 10.1214/14-AOAS754
– ident: e_1_2_7_24_1
  doi: 10.1080/15598608.2014.996690
– ident: e_1_2_7_25_1
  doi: 10.1007/s13253-015-0227-0
– volume-title: Estimation of time transformation models with Bernstein polynomials
  year: 2009
  ident: e_1_2_7_28_1
– ident: e_1_2_7_37_1
  doi: 10.1002/env.1150
– ident: e_1_2_7_43_1
– ident: e_1_2_7_44_1
  doi: 10.1198/106186008X285627
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jeconom.2007.01.006
– ident: e_1_2_7_42_1
  doi: 10.1111/ina.12318
– ident: e_1_2_7_12_1
  doi: 10.1080/02664761003692423
– ident: e_1_2_7_17_1
  doi: 10.1080/02664763.2016.1142940
– ident: e_1_2_7_10_1
  doi: 10.18637/jss.v014.i14
– ident: e_1_2_7_3_1
  doi: 10.1214/aoms/1177728420
SSID ssj0009657
Score 2.2688527
Snippet In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms aerosol monitors
Bernstein polynomials
Dirichlet process
fine particulate matter
monotone regression
Title Bayesian nonparametric monotone regression
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fenv.2642
https://www.ncbi.nlm.nih.gov/pubmed/35923387
https://www.proquest.com/docview/2698633424
https://pubmed.ncbi.nlm.nih.gov/PMC9345526
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB5VPPFSrgIph4JUFalSFq-PxH6EahGq1H2ooELiIZo4DiAgW-0l0V9fT47dLoeEyEsePElsj-dwPPMNwBdpvVk0CY9iz-BIOpFHRucYMXQJnSppU2W9_-zHZxfyx6W6bKIqKRemxoeY_XAjyaj0NQk4ZqOjOWioK6cdb81J_VKoFvlDv-bIUSZWdV0VzfwWiZkWd5bxo_bBRUv0zL18HiX5v_damZ_TFbhqO15Hndx1JuOsY_8-wXR838hW4WPjlYbH9TJagw-uXIfN3jwJzjc2WmC0Ad9O8NFR8mVYDkrCDn-gslw29Ct6QNje4dBd1-G15Se4OO2dfz-LmpoLkfWqhkc20YXjMouFkDkWEtG5okgcwwJzixZRMOsvzBlmBQrJnNUKRa6V9K5VIjZhyX_bbUNou1bnXGUqkZkUTBtnbFcWWnbR0wkTwGE7_6ltAMmpLsZ9WkMpcy-405QmIoCDGeWfGoTjJZqWhamXEDr2wNINJiPfajQNh8sAtmqWzt4ilHdwhU4CSBaYPSMg9O3FlvL2pkLhNkIqxeMAvla8fLVjaa__m-6f30q4A8ucNvVVzMwuLI2HE7fnPZ9xtl-t8X8vAwK8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAXCoVCeDVICCSkbL1-JLY4Ad1qgXYPqEU9IEUTx6FVIYva3Urtr2cm2ex2KUiIXHLwJLEznoftmW8AXmhPZtFlMkmJwYkOqkycLTERGDI-VbKuyXrfG6XDA_3x0ByuwJsuF6bFh5hvuLFkNPqaBZw3pLcWqKGhPu-ROSf9e4MLenP5gu3PC-wol5q2sooVtEgSrkOeFXKre3LZFl1zMK_HSV71XxsDtLMGX7uut3EnJ73ppOj5y99QHf9zbHfg9swxjd-2M-kurIR6HTYGizw4apwpgrN78PodXgTOv4zrcc3w4T-4MpePaVKPGd47Pg3f2gjb-j4c7Az23w-TWdmFxJO2kYnPbBWkLlKldImVRgyhqrIgsMLSo0dUwtOFpcCiQqVF8NagKq3R5F1lagNW6dvhIcS-720pTWEyXWglrAvO93VldR-JTrkIXnUMyP0Mk5xLY3zPWzRlSbJ7nvOPiOD5nPJni8PxJ5qOhzkJCZ98YB3G0zNqdZaHI3UED1qezt-iDPm4ymYRZEvcnhMwAPdyS3181ABxO6WNkWkELxtm_rVj-WD0he-P_pVwE24O9_d2890Po0-P4ZbkNX4TQvMEVien0_CUHKFJ8ayZ8L8AOX0G1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEB_EQvFLa-srta0RpIKQc28fye7HPu6wao9SVAQ_hMlm0xZtTvROaP_6zuZx52kFab7kw06S3Z2dx2ZnfgOwJS2ZRZPwKCYGR9KJPDI6x4ihS_ypkjZV1vuXQbx3LPdP1WkTVelzYWp8iMkPNy8Zlb72An6ZF7tT0FBX3nTImpP6fSJjkhXvEH2bQkeZWNWFVTSjPRIzLfAs47vtk7Om6J5_eT9M8rb7Wtmf_nM4a3teh52cd8ajrGP_3AF1_L-hLcKzxi0N39fr6AXMufIlrPSmWXDU2KiB6yXY-YC_nc--DMth6cHDf_m6XDakJT304N7hlftex9eWy3Dc7x193IuaoguRJV3DI5vownGZxULIHAuJ6FxRJI5hgblFiyiYpQtzhlmBQjJntUKRayXJt0rECszTt90ahLZrdc5VphKZScG0ccZ2ZaFlF4lOmAC22_lPbYNI7gtjXKQ1ljInyb1J_UQEsDmhvKxROP5F07IwJRHx5x5YuuH4mlqN9sPhMoDVmqWTtwhFHq7QSQDJDLMnBB5-e7al_PmjguE2QirF4wDeVbx8sGNpb3Di768eS7gBT79-6qeHnwcH67DA_Qa_ip95DfOjq7F7Q17QKHtbLfe_TdEFjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Nonparametric+Monotone+Regression&rft.jtitle=Environmetrics+%28London%2C+Ont.%29&rft.au=Wilson%2C+Ander&rft.au=Tryner%2C+Jessica&rft.au=L%27Orange%2C+Christian&rft.au=Volckens%2C+John&rft.date=2020-12-01&rft.issn=1180-4009&rft.volume=31&rft.issue=8&rft_id=info:doi/10.1002%2Fenv.2642&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1180-4009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1180-4009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1180-4009&client=summon