Bayesian nonparametric monotone regression
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application‐inferring time‐resolved aerosol concentration from a low‐co...
Saved in:
Published in | Environmetrics (London, Ont.) Vol. 31; no. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1180-4009 1099-095X |
DOI | 10.1002/env.2642 |
Cover
Loading…
Abstract | In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application‐inferring time‐resolved aerosol concentration from a low‐cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression, which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed‐formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time‐resolved aerosol concentration with a newly developed portable aerosol monitor. The R package bnmr is made available to implement the method. |
---|---|
AbstractList | In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application-inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method. In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application–inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method. In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application-inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application-inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method. |
Author | Volckens, John Tryner, Jessica L'Orange, Christian Wilson, Ander |
AuthorAffiliation | 2 Department of Mechanical Engineering, Colorado State University 1 Department of Statistics, Colorado State University |
AuthorAffiliation_xml | – name: 2 Department of Mechanical Engineering, Colorado State University – name: 1 Department of Statistics, Colorado State University |
Author_xml | – sequence: 1 givenname: Ander orcidid: 0000-0003-4774-3883 surname: Wilson fullname: Wilson, Ander email: ander.wilson@colostate.edu organization: Colorado State University – sequence: 2 givenname: Jessica orcidid: 0000-0002-0522-4551 surname: Tryner fullname: Tryner, Jessica organization: Colorado State University – sequence: 3 givenname: Christian orcidid: 0000-0003-1905-8694 surname: L'Orange fullname: L'Orange, Christian organization: Colorado State University – sequence: 4 givenname: John orcidid: 0000-0002-7563-9525 surname: Volckens fullname: Volckens, John organization: Colorado State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35923387$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kFtLAzEQhYMoaqvgL5A-irA1m2RvL4KKNxB9UfEtTLMTjewmNdlW-u9Nbb2i8zIDc-Y7w-mRVessErKT0mFKKTtAOx2yXLAVspnSqkpolT2sxjktaSIorTZIL4RnGqc8K9bJBs8qxnlZbJL9Y5hhMGAHETkGDy123qhB66zrosnA46PHEIyzW2RNQxNwe9n75O7s9PbkIrm6Ob88ObpKFC9ylqii1MjEKOdc1KAFAKLWBVLQUCtQAJyqWFBTGGnggqIqM-B1mYlciIL3yeGCO56MWqwV2s5DI8fetOBn0oGRPzfWPMlHN5UVF1nG8gjYWwK8e5lg6GRrgsKmAYtuEiTLq3L-HRNRuvvd69PkI6AvlvIuBI_6U5JSOc9exuzlPPsoHf6SKtNBF5OLX5rmr4NkcfBqGpz9C5an1_fv-jc-_JdO |
CitedBy_id | crossref_primary_10_1016_j_csda_2024_108036 crossref_primary_10_1214_23_BA1412 |
Cites_doi | 10.1214/aos/1176348117 10.1214/ss/1009213727 10.1111/1467-9868.00353 10.1080/00949650212844 10.1039/C9EM00234K 10.1111/biom.13100 10.1080/1047322X.1997.10390647 10.1080/10485252.2011.597852 10.1111/j.0006-341X.2004.00184.x 10.1214/18-BA1116 10.1097/EDE.0b013e3181cf0058 10.1111/j.1467-9469.2005.00451.x 10.1214/aos/1176342372 10.1016/0021-8502(92)90032-Q 10.1214/ss/1177012761 10.32614/CRAN.package.bcgam 10.1007/978-1-4612-6333-3 10.1002/env.2537 10.1002/env.2443 10.1080/10485252.2013.797577 10.1214/074921707000000157 10.1002/cjs.10137 10.1002/env.2369 10.1002/env.852 10.1080/01621459.1995.10476550 10.1214/08-AOAS167 10.1111/biom.12917 10.1080/01621459.1954.10483523 10.1093/biomet/83.2.275 10.1214/14-AOAS754 10.1080/15598608.2014.996690 10.1007/s13253-015-0227-0 10.1002/env.1150 10.1198/106186008X285627 10.1016/j.jeconom.2007.01.006 10.1111/ina.12318 10.1080/02664761003692423 10.1080/02664763.2016.1142940 10.18637/jss.v014.i14 10.1214/aoms/1177728420 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1002/env.2642 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1099-095X |
EndPage | n/a |
ExternalDocumentID | PMC9345526 35923387 10_1002_env_2642 ENV2642 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: ACI‐1532235; ACI‐1532236 – fundername: National Institute for Occupational Safety and Health funderid: OH010662; OH011598 – fundername: NIOSH CDC HHS grantid: K01 OH011598 – fundername: NIOSH CDC HHS grantid: R01 OH010662 – fundername: ACL HHS grantid: R01OH010662 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WWD WXSBR WYISQ XBAML XG1 XPP XV2 Y6R ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7X8 5PM |
ID | FETCH-LOGICAL-c3762-c78fe24b6334daf4aaeeff7e0afadcacaa30ccccad0abfa340ec85a3d85464473 |
IEDL.DBID | DR2 |
ISSN | 1180-4009 |
IngestDate | Thu Aug 21 17:25:24 EDT 2025 Fri Jul 11 04:23:23 EDT 2025 Mon Jul 21 06:03:54 EDT 2025 Thu Apr 24 22:55:46 EDT 2025 Tue Jul 01 01:11:06 EDT 2025 Wed Jan 22 16:31:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Dirichlet process Fine particulate matter monotone regression Bernstein polynomials Aerosol monitors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3762-c78fe24b6334daf4aaeeff7e0afadcacaa30ccccad0abfa340ec85a3d85464473 |
Notes | Funding information National Institute for Occupational Safety and Health, OH010662; OH011598; National Science Foundation, ACI‐1532235; ACI‐1532236 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7563-9525 0000-0003-4774-3883 0000-0002-0522-4551 0000-0003-1905-8694 |
PMID | 35923387 |
PQID | 2698633424 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9345526 proquest_miscellaneous_2698633424 pubmed_primary_35923387 crossref_primary_10_1002_env_2642 crossref_citationtrail_10_1002_env_2642 wiley_primary_10_1002_env_2642_ENV2642 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmetrics (London, Ont.) |
PublicationTitleAlternate | Environmetrics |
PublicationYear | 2020 |
References | 1955; 26 2018; 29 1991; 19 2013; 25 1995; 90 2004; 60 2019; 75 2011 2017; 28 2002; 72 2017; 27 2008; 19 2007; 141 2019; 14 2008; 17 2009 2007 1954; 49 1994 2011; 38 2015; 9 2008; 2 1978 2010; 21 2015; 26 1988; 3 2002; 64 2019; 21 2015; 20 1997; 12 1996; 83 2016; 43 2018 2005; 32 2018; 74 2001; 16 2011; 23 2014; 8 2012; 23 1992; 23 1973; 1 2005; 14 2012; 40 e_1_2_7_6_1 e_1_2_7_5_1 West M. (e_1_2_7_45_1) 1994 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 Mclain A. C. (e_1_2_7_28_1) 2009 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 64 start-page: 583 issue: 4 year: 2002 end-page: 616 article-title: Bayesian measures of model complexity and fit publication-title: Journal of the Royal Statistical Society: Series B – year: 2011 – year: 2009 – volume: 38 start-page: 961 issue: 5 year: 2011 end-page: 976 article-title: A variable selection approach to monotonic regression with Bernstein polynomials publication-title: Journal of Applied Statistics – volume: 20 start-page: 555 issue: 4 year: 2015 end-page: 576 article-title: A Semi‐parametric Bayesian Approach for Differential Expression Analysis of RNA‐seq Data publication-title: Journal of Agricultural, Biological, and Environmental Statistics – volume: 19 start-page: 724 issue: 2 year: 1991 end-page: 740 article-title: Estimating a smooth monotone regression function publication-title: The Annals of Statistics – start-page: 187 year: 2007 end-page: 202 – volume: 2 start-page: 1013 issue: 3 year: 2008 end-page: 1033 article-title: Inference using shape‐restricted regression splines publication-title: The Annals of Applied Statistics – volume: 72 start-page: 285 issue: 4 year: 2002 end-page: 297 article-title: A Bayesian approach to hybrid splines non‐parametric regression publication-title: Journal of Statistical Computation and Simulation – volume: 23 start-page: 228 issue: 3 year: 2012 end-page: 237 article-title: Estimating constrained concentration‐response functions between air pollution and health publication-title: Environmetrics – volume: 21 start-page: S71 issue: Supplement year: 2010 end-page: S76 article-title: Nonparametric Bayes shrinkage for assessing exposures to mixtures subject to limits of detection publication-title: Epidemiology – volume: 27 start-page: 409 issue: 2 year: 2017 end-page: 416 article-title: Development and evaluation of an ultrasonic personal aerosol sampler publication-title: Indoor Air – start-page: 363 year: 1994 end-page: 386 – volume: 23 start-page: 657 issue: 6 year: 1992 end-page: 665 article-title: The effect of solid particle mass loading on the pressure drop of HEPA filters publication-title: Journal of Aerosol Science – volume: 21 start-page: 1403 issue: 8 year: 2019 end-page: 1415 article-title: Design and evaluation of a portable PM 2.5 monitor featuring a low‐cost sensor in line with an active filter sampler publication-title: Environmental Science: Processes & Impacts – volume: 28 issue: 4 year: 2017 article-title: Analyzing ozone concentration by Bayesian spatio‐temporal quantile regression publication-title: Environmetrics – volume: 23 start-page: 867 issue: 4 year: 2011 end-page: 884 article-title: Bayesian estimation and inference for generalised partial linear models using shape‐restricted splines publication-title: Journal of Nonparametric Statistics – volume: 3 start-page: 425 issue: 4 year: 1988 end-page: 441 article-title: Monotone regression splines in action publication-title: Statistical Science – volume: 26 start-page: 515 issue: 8 year: 2015 end-page: 525 article-title: A data fusion approach for spatial analysis of speciated PM 2.5 across time publication-title: Environmetrics – volume: 60 start-page: 398 issue: 2 year: 2004 end-page: 406 article-title: Bayesian isotonic regression and trend analysis publication-title: Biometrics – year: 2018 – volume: 26 start-page: 607 issue: 4 year: 1955 end-page: 616 article-title: Maximum likelihood estimates of monotone parameters publication-title: The Annals of Mathematical Statistics – volume: 1 start-page: 353 issue: 2 year: 1973 end-page: 355 article-title: Ferguson distributions via polya urn schemes author publication-title: The Annals of Statistics – volume: 29 issue: 8 year: 2018 article-title: Real‐time PM 2.5 mapping and anomaly detection from AirBoxes in Taiwan publication-title: Environmetrics – volume: 75 start-page: 1356 issue: 4 year: 2019 end-page: 1366 article-title: Quantifying personal exposure to air pollution from smartphone‐based location data publication-title: Biometrics – volume: 32 start-page: 447 issue: 3 year: 2005 end-page: 466 article-title: Bayesian survival analysis using Bernstein polynomials publication-title: Scandinavian Journal of Statistics – volume: 141 start-page: 167 issue: 1 year: 2007 end-page: 178 article-title: Consistent estimator for basis selection based on a proxy of the Kullback‐Leibler distance publication-title: Journal of Econometrics – volume: 90 start-page: 577 issue: 430 year: 1995 end-page: 588 article-title: Bayesian density estimation and inference using mixtures publication-title: Journal of the American Statistical Association – volume: 49 start-page: 598 issue: 267 year: 1954 end-page: 619 article-title: Point estimates of ordinates of concave functions publication-title: Journal of the American Statistical Association – volume: 83 start-page: 275 issue: 2 year: 1996 end-page: 285 article-title: A semiparametric Bayesian model for randomised block designs publication-title: Biometrika – volume: 9 start-page: 712 issue: 4 year: 2015 end-page: 732 article-title: efficient sampling methods for truncated multivariate normal and Student‐t distributions subject to linear inequality constraints publication-title: Journal of Statistical Theory and Practice – volume: 14 start-page: 553 issue: 2 year: 2019 end-page: 572 article-title: A Bayesian nonparametric spiked process prior for dynamic model selection publication-title: Bayesian Analysis – volume: 74 start-page: 1331 issue: 4 year: 2018 end-page: 1340 article-title: Convex mixture regression for quantitative risk assessment publication-title: Biometrics – volume: 19 start-page: 39 issue: 1 year: 2008 end-page: 48 article-title: A dynamic process convolution approach to modeling ambient particulate matter concentrations publication-title: Environmetrics – volume: 43 start-page: 2524 issue: 14 year: 2016 end-page: 2537 article-title: Bayesian regression on non‐parametric mixed‐effect models with shape‐restricted Bernstein polynomials publication-title: Journal of Applied Statistics – volume: 25 start-page: 715 issue: 3 year: 2013 end-page: 730 article-title: Semi‐parametric additive constrained regression publication-title: Journal of Nonparametric Statistics – volume: 17 start-page: 21 issue: 1 year: 2008 end-page: 37 article-title: Isotonic smoothing spline regression publication-title: Journal of Computational and Graphical Statistics – volume: 16 start-page: 232 issue: 3 year: 2001 end-page: 248 article-title: A general projection framework for constrained smoothing publication-title: Statistical Science – volume: 40 start-page: 190 issue: 1 year: 2012 end-page: 206 article-title: Constrained penalized splines publication-title: Canadian Journal of Statistics – year: 1978 – volume: 14 start-page: 1 issue: 14 year: 2005 end-page: 24 article-title: Bayesian analysis for penalized spline regression using WinBUGS publication-title: Journal of Statistical Software – volume: 8 start-page: 1728 issue: 3 year: 2014 end-page: 1749 article-title: Modeling the effect of temperature on ozone‐related mortality publication-title: The Annals of Applied Statistics – volume: 12 start-page: 1047 issue: 12 year: 1997 end-page: 1051 article-title: Differential pressure as a means of estimating respirable dust mass on collection filters publication-title: Applied Occupational and Environmental Hygiene – ident: e_1_2_7_26_1 doi: 10.1214/aos/1176348117 – ident: e_1_2_7_27_1 doi: 10.1214/ss/1009213727 – ident: e_1_2_7_40_1 doi: 10.1111/1467-9868.00353 – ident: e_1_2_7_15_1 doi: 10.1080/00949650212844 – ident: e_1_2_7_41_1 doi: 10.1039/C9EM00234K – ident: e_1_2_7_20_1 doi: 10.1111/biom.13100 – ident: e_1_2_7_18_1 doi: 10.1080/1047322X.1997.10390647 – ident: e_1_2_7_32_1 doi: 10.1080/10485252.2011.597852 – ident: e_1_2_7_34_1 doi: 10.1111/j.0006-341X.2004.00184.x – ident: e_1_2_7_7_1 doi: 10.1214/18-BA1116 – ident: e_1_2_7_21_1 doi: 10.1097/EDE.0b013e3181cf0058 – ident: e_1_2_7_11_1 – start-page: 363 volume-title: Aspects of Uncertainty: A Tribute to D.V. Lindley year: 1994 ident: e_1_2_7_45_1 – ident: e_1_2_7_9_1 doi: 10.1111/j.1467-9469.2005.00451.x – ident: e_1_2_7_2_1 doi: 10.1214/aos/1176342372 – ident: e_1_2_7_35_1 doi: 10.1016/0021-8502(92)90032-Q – ident: e_1_2_7_38_1 doi: 10.1214/ss/1177012761 – ident: e_1_2_7_36_1 doi: 10.32614/CRAN.package.bcgam – ident: e_1_2_7_14_1 doi: 10.1007/978-1-4612-6333-3 – ident: e_1_2_7_33_1 – ident: e_1_2_7_23_1 doi: 10.1002/env.2537 – ident: e_1_2_7_13_1 doi: 10.1002/env.2443 – ident: e_1_2_7_31_1 doi: 10.1080/10485252.2013.797577 – ident: e_1_2_7_8_1 doi: 10.1214/074921707000000157 – ident: e_1_2_7_30_1 doi: 10.1002/cjs.10137 – ident: e_1_2_7_39_1 doi: 10.1002/env.2369 – ident: e_1_2_7_5_1 doi: 10.1002/env.852 – ident: e_1_2_7_19_1 doi: 10.1080/01621459.1995.10476550 – ident: e_1_2_7_29_1 doi: 10.1214/08-AOAS167 – ident: e_1_2_7_6_1 doi: 10.1111/biom.12917 – ident: e_1_2_7_22_1 doi: 10.1080/01621459.1954.10483523 – ident: e_1_2_7_4_1 doi: 10.1093/biomet/83.2.275 – ident: e_1_2_7_46_1 doi: 10.1214/14-AOAS754 – ident: e_1_2_7_24_1 doi: 10.1080/15598608.2014.996690 – ident: e_1_2_7_25_1 doi: 10.1007/s13253-015-0227-0 – volume-title: Estimation of time transformation models with Bernstein polynomials year: 2009 ident: e_1_2_7_28_1 – ident: e_1_2_7_37_1 doi: 10.1002/env.1150 – ident: e_1_2_7_43_1 – ident: e_1_2_7_44_1 doi: 10.1198/106186008X285627 – ident: e_1_2_7_16_1 doi: 10.1016/j.jeconom.2007.01.006 – ident: e_1_2_7_42_1 doi: 10.1111/ina.12318 – ident: e_1_2_7_12_1 doi: 10.1080/02664761003692423 – ident: e_1_2_7_17_1 doi: 10.1080/02664763.2016.1142940 – ident: e_1_2_7_10_1 doi: 10.18637/jss.v014.i14 – ident: e_1_2_7_3_1 doi: 10.1214/aoms/1177728420 |
SSID | ssj0009657 |
Score | 2.2688527 |
Snippet | In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | aerosol monitors Bernstein polynomials Dirichlet process fine particulate matter monotone regression |
Title | Bayesian nonparametric monotone regression |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fenv.2642 https://www.ncbi.nlm.nih.gov/pubmed/35923387 https://www.proquest.com/docview/2698633424 https://pubmed.ncbi.nlm.nih.gov/PMC9345526 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB5VPPFSrgIph4JUFalSFq-PxH6EahGq1H2ooELiIZo4DiAgW-0l0V9fT47dLoeEyEsePElsj-dwPPMNwBdpvVk0CY9iz-BIOpFHRucYMXQJnSppU2W9_-zHZxfyx6W6bKIqKRemxoeY_XAjyaj0NQk4ZqOjOWioK6cdb81J_VKoFvlDv-bIUSZWdV0VzfwWiZkWd5bxo_bBRUv0zL18HiX5v_damZ_TFbhqO15Hndx1JuOsY_8-wXR838hW4WPjlYbH9TJagw-uXIfN3jwJzjc2WmC0Ad9O8NFR8mVYDkrCDn-gslw29Ct6QNje4dBd1-G15Se4OO2dfz-LmpoLkfWqhkc20YXjMouFkDkWEtG5okgcwwJzixZRMOsvzBlmBQrJnNUKRa6V9K5VIjZhyX_bbUNou1bnXGUqkZkUTBtnbFcWWnbR0wkTwGE7_6ltAMmpLsZ9WkMpcy-405QmIoCDGeWfGoTjJZqWhamXEDr2wNINJiPfajQNh8sAtmqWzt4ilHdwhU4CSBaYPSMg9O3FlvL2pkLhNkIqxeMAvla8fLVjaa__m-6f30q4A8ucNvVVzMwuLI2HE7fnPZ9xtl-t8X8vAwK8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAXCoVCeDVICCSkbL1-JLY4Ad1qgXYPqEU9IEUTx6FVIYva3Urtr2cm2ex2KUiIXHLwJLEznoftmW8AXmhPZtFlMkmJwYkOqkycLTERGDI-VbKuyXrfG6XDA_3x0ByuwJsuF6bFh5hvuLFkNPqaBZw3pLcWqKGhPu-ROSf9e4MLenP5gu3PC-wol5q2sooVtEgSrkOeFXKre3LZFl1zMK_HSV71XxsDtLMGX7uut3EnJ73ppOj5y99QHf9zbHfg9swxjd-2M-kurIR6HTYGizw4apwpgrN78PodXgTOv4zrcc3w4T-4MpePaVKPGd47Pg3f2gjb-j4c7Az23w-TWdmFxJO2kYnPbBWkLlKldImVRgyhqrIgsMLSo0dUwtOFpcCiQqVF8NagKq3R5F1lagNW6dvhIcS-720pTWEyXWglrAvO93VldR-JTrkIXnUMyP0Mk5xLY3zPWzRlSbJ7nvOPiOD5nPJni8PxJ5qOhzkJCZ98YB3G0zNqdZaHI3UED1qezt-iDPm4ymYRZEvcnhMwAPdyS3181ABxO6WNkWkELxtm_rVj-WD0he-P_pVwE24O9_d2890Po0-P4ZbkNX4TQvMEVien0_CUHKFJ8ayZ8L8AOX0G1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEB_EQvFLa-srta0RpIKQc28fye7HPu6wao9SVAQ_hMlm0xZtTvROaP_6zuZx52kFab7kw06S3Z2dx2ZnfgOwJS2ZRZPwKCYGR9KJPDI6x4ihS_ypkjZV1vuXQbx3LPdP1WkTVelzYWp8iMkPNy8Zlb72An6ZF7tT0FBX3nTImpP6fSJjkhXvEH2bQkeZWNWFVTSjPRIzLfAs47vtk7Om6J5_eT9M8rb7Wtmf_nM4a3teh52cd8ajrGP_3AF1_L-hLcKzxi0N39fr6AXMufIlrPSmWXDU2KiB6yXY-YC_nc--DMth6cHDf_m6XDakJT304N7hlftex9eWy3Dc7x193IuaoguRJV3DI5vownGZxULIHAuJ6FxRJI5hgblFiyiYpQtzhlmBQjJntUKRayXJt0rECszTt90ahLZrdc5VphKZScG0ccZ2ZaFlF4lOmAC22_lPbYNI7gtjXKQ1ljInyb1J_UQEsDmhvKxROP5F07IwJRHx5x5YuuH4mlqN9sPhMoDVmqWTtwhFHq7QSQDJDLMnBB5-e7al_PmjguE2QirF4wDeVbx8sGNpb3Di768eS7gBT79-6qeHnwcH67DA_Qa_ip95DfOjq7F7Q17QKHtbLfe_TdEFjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Nonparametric+Monotone+Regression&rft.jtitle=Environmetrics+%28London%2C+Ont.%29&rft.au=Wilson%2C+Ander&rft.au=Tryner%2C+Jessica&rft.au=L%27Orange%2C+Christian&rft.au=Volckens%2C+John&rft.date=2020-12-01&rft.issn=1180-4009&rft.volume=31&rft.issue=8&rft_id=info:doi/10.1002%2Fenv.2642&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1180-4009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1180-4009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1180-4009&client=summon |