Optimal process mining of timed event logs

The problem of determining the optimal process model of an event log of traces of events with temporal information is presented. A formal description of the event log and relevant complexity measures are detailed. Then the process model and its replayability score that measures model fitness with re...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 528; pp. 58 - 78
Main Authors De Oliveira, Hugo, Augusto, Vincent, Jouaneton, Baptiste, Lamarsalle, Ludovic, Prodel, Martin, Xie, Xiaolan
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.08.2020
Elsevier
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2020.04.020

Cover

Loading…
Abstract The problem of determining the optimal process model of an event log of traces of events with temporal information is presented. A formal description of the event log and relevant complexity measures are detailed. Then the process model and its replayability score that measures model fitness with respect to the event log are defined. Two process models are formulated, taking into account temporal information. The first, called grid process model, is reminiscent of Petri net unfolding and is a graph with multiple layers of labeled nodes and arcs connecting lower to upper layer nodes. Our second model is an extension of the first. Denoted the time grid process model, it associates a time interval to each arc. Subsequently, a Tabu search algorithm is constructed to determine the optimal process model that maximizes the replayability score subject to the constraints of the maximal number of nodes and arcs. Numerical experiments are conducted to assess the performance of the proposed Tabu search algorithm. Lastly, a healthcare case study was conducted to demonstrate the applicability of our approach for clinical pathway modeling. Special attention was paid on readability, so that final users could interpret the process mining results.
AbstractList The problem of determining the optimal process model of an event log of traces of events with temporal information is presented. A formal description of the event log and relevant complexity measures are detailed. Then the process model and its replayability score that measures model fitness with respect to the event log are defined. Two process models are formulated, taking into account temporal information. The first, called grid process model, is reminiscent of Petri net unfolding and is a graph with multiple layers of labeled nodes and arcs connecting lower to upper layer nodes. Our second model is an extension of the first. Denoted the time grid process model, it associates a time interval to each arc. Subsequently, a Tabu search algorithm is constructed to determine the optimal process model that maximizes the replayability score subject to the constraints of the maximal number of nodes and arcs. Numerical experiments are conducted to assess the performance of the proposed Tabu search algorithm. Lastly, a healthcare case study was conducted to demonstrate the applicability of our approach for clinical pathway modeling. Special attention was paid on readability, so that final users could beneficially use the process mining results.
The problem of determining the optimal process model of an event log of traces of events with temporal information is presented. A formal description of the event log and relevant complexity measures are detailed. Then the process model and its replayability score that measures model fitness with respect to the event log are defined. Two process models are formulated, taking into account temporal information. The first, called grid process model, is reminiscent of Petri net unfolding and is a graph with multiple layers of labeled nodes and arcs connecting lower to upper layer nodes. Our second model is an extension of the first. Denoted the time grid process model, it associates a time interval to each arc. Subsequently, a Tabu search algorithm is constructed to determine the optimal process model that maximizes the replayability score subject to the constraints of the maximal number of nodes and arcs. Numerical experiments are conducted to assess the performance of the proposed Tabu search algorithm. Lastly, a healthcare case study was conducted to demonstrate the applicability of our approach for clinical pathway modeling. Special attention was paid on readability, so that final users could interpret the process mining results.
Author Jouaneton, Baptiste
Prodel, Martin
Augusto, Vincent
Lamarsalle, Ludovic
De Oliveira, Hugo
Xie, Xiaolan
Author_xml – sequence: 1
  givenname: Hugo
  orcidid: 0000-0001-8409-8292
  surname: De Oliveira
  fullname: De Oliveira, Hugo
  email: hdeoliveira@hevaweb.com
  organization: Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CIS, F - 42023 Saint-Etienne, France
– sequence: 2
  givenname: Vincent
  surname: Augusto
  fullname: Augusto, Vincent
  organization: Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CIS, F - 42023 Saint-Etienne, France
– sequence: 3
  givenname: Baptiste
  surname: Jouaneton
  fullname: Jouaneton, Baptiste
  organization: HEVA, 186 avenue Thiers, F-69465 Lyon, France
– sequence: 4
  givenname: Ludovic
  surname: Lamarsalle
  fullname: Lamarsalle, Ludovic
  organization: HEVA, 186 avenue Thiers, F-69465 Lyon, France
– sequence: 5
  givenname: Martin
  orcidid: 0000-0002-4092-422X
  surname: Prodel
  fullname: Prodel, Martin
  organization: HEVA, 186 avenue Thiers, F-69465 Lyon, France
– sequence: 6
  givenname: Xiaolan
  surname: Xie
  fullname: Xie, Xiaolan
  organization: Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CIS, F - 42023 Saint-Etienne, France
BackLink https://hal-emse.ccsd.cnrs.fr/emse-03128586$$DView record in HAL
BookMark eNp9kEtLAzEUhYNUsK3-AHezLsyYx0wyg6tS1AqFbnQdMslNTZkmJRkK_ntTqhsXXZ3L5Xz3cWZo4oMHhB4Jrggm_GlfOZ8qiimucF1luUFT0gpactqRCZri3CoxbZo7NEtpjzGuBedTtNgeR3dQQ3GMQUNKxcF553dFsEXugyngBH4shrBL9-jWqiHBw6_O0efry8dqXW62b--r5abUTDRjaTW1rOst7moOnMO5Mqqx1mCuWyo0MQ0TwtR13bZd3xMmjBZWAOu4IqJnc7S4zP1SgzzGfF38lkE5uV5uJBwSSMwIbZuWn0g2i4tZx5BSBCu1G9Xogh-jcoMkWJ7zkXuZ85HnfCSuZZZMkn_k365rzPOFgfz_yUGUSTvwGoyLoEdpgrtC_wBKRn6o
CitedBy_id crossref_primary_10_1093_jamiaopen_ooaa039
crossref_primary_10_1109_JBHI_2020_3021790
crossref_primary_10_1109_TASE_2023_3295947
crossref_primary_10_1371_journal_pone_0277135
crossref_primary_10_3390_a16010057
crossref_primary_10_1007_s10472_024_09950_w
crossref_primary_10_1016_j_simpat_2022_102602
crossref_primary_10_1002_hpm_3593
crossref_primary_10_1007_s13198_021_01599_6
crossref_primary_10_1016_j_ins_2023_119958
crossref_primary_10_1080_00207543_2024_2427888
crossref_primary_10_1016_j_eswa_2021_115696
Cites_doi 10.1080/17517575.2017.1402371
10.1109/TASE.2017.2784436
10.1109/ACCESS.2018.2831244
10.1016/j.csbj.2016.12.005
10.1109/TSMCA.2010.2087017
10.1007/s10626-005-4057-z
10.4239/wjd.v6.i6.850
10.1136/bmjopen-2017-019947
10.1109/TKDE.2004.47
ContentType Journal Article
Copyright 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.ins.2020.04.020
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
Computer Science
EISSN 1872-6291
EndPage 78
ExternalDocumentID oai_HAL_emse_03128586v1
10_1016_j_ins_2020_04_020
S0020025520303200
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-c375t-fc2f39bf0946e66ebf09da5ffd06c827c1d5377d444889bb137dc7f7e396a17b3
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Fri May 09 12:23:29 EDT 2025
Tue Jul 01 01:26:40 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Fri Feb 23 02:47:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Process mining
Time modeling
Healthcare data
Tabu search
Patient pathways
Event log
patient pathways
time modeling
healthcare data
event log
tabu search
process mining
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-fc2f39bf0946e66ebf09da5ffd06c827c1d5377d444889bb137dc7f7e396a17b3
ORCID 0000-0002-4092-422X
0000-0001-8409-8292
0000-0002-6579-1523
0000-0002-5063-0831
OpenAccessLink https://hal-emse.ccsd.cnrs.fr/emse-03128586
PageCount 21
ParticipantIDs hal_primary_oai_HAL_emse_03128586v1
crossref_citationtrail_10_1016_j_ins_2020_04_020
crossref_primary_10_1016_j_ins_2020_04_020
elsevier_sciencedirect_doi_10_1016_j_ins_2020_04_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References van der Aalst (bib0007) 2011
Litchfield, Hoye, Shukla, Backman, Turner, Lee, Weber (bib0009) 2018; 8
Giua, Xie (bib0005) 2005; 15
Silverman (bib0012) 1986
Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (bib0014) 2017; 15
van der Aalst, Weijters, Maruster (bib0001) 2004; 16
Prodel, Augusto, Jouaneton, Lamarsalle, Xie (bib0011) 2016
Kharroubi, Darwish (bib0013) 2015; 6
Reijers, Mendling (bib0004) 2011; 41
Kusuma, Hall, Gale, Johnson (bib0008) 2018; 8
Prodel, Augusto, Xie, Jouaneto, Lamarsalle (bib0010) 2015
Prodel, Augusto, Jouaneton, Lamarsalle, Xie (bib0006) 2018; 15
Maita, Martins, Paz, Rafferty, Hung, Peres, Fantinato (bib0002) 2018; 12
Erdogan, Ayca (bib0003) 2018; 6
Litchfield (10.1016/j.ins.2020.04.020_bib0009) 2018; 8
Kusuma (10.1016/j.ins.2020.04.020_bib0008) 2018; 8
Kharroubi (10.1016/j.ins.2020.04.020_bib0013) 2015; 6
Silverman (10.1016/j.ins.2020.04.020_bib0012) 1986
Erdogan (10.1016/j.ins.2020.04.020_sbref0003) 2018; 6
Prodel (10.1016/j.ins.2020.04.020_bib0010) 2015
van der Aalst (10.1016/j.ins.2020.04.020_bib0007) 2011
Kavakiotis (10.1016/j.ins.2020.04.020_bib0014) 2017; 15
Reijers (10.1016/j.ins.2020.04.020_bib0004) 2011; 41
Prodel (10.1016/j.ins.2020.04.020_bib0006) 2018; 15
Prodel (10.1016/j.ins.2020.04.020_bib0011) 2016
Maita (10.1016/j.ins.2020.04.020_bib0002) 2018; 12
Giua (10.1016/j.ins.2020.04.020_bib0005) 2005; 15
van der Aalst (10.1016/j.ins.2020.04.020_bib0001) 2004; 16
References_xml – start-page: 1409
  year: 2015
  end-page: 1414
  ident: bib0010
  article-title: Discovery of patient pathways from a national hospital database using process mining and integer linear programming
  publication-title: CASE
– volume: 12
  start-page: 505
  year: 2018
  end-page: 549
  ident: bib0002
  article-title: A systematic mapping study of process mining
  publication-title: Enterp. Inform. Syst.
– volume: 41
  start-page: 449
  year: 2011
  end-page: 462
  ident: bib0004
  article-title: A study into the factors that influence the understandability of business process models
  publication-title: IEEE Trans. Syst. Man Cybern. Part A
– volume: 15
  start-page: 1309
  year: 2018
  end-page: 1325
  ident: bib0006
  article-title: Optimal process mining for large and complex event logs
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 8
  start-page: 226
  year: 2018
  end-page: 236
  ident: bib0008
  article-title: Process mining in cardiology: a literature review
  publication-title: Int. J. Biosci. Biochem. Bioinform.
– volume: 6
  start-page: 850
  year: 2015
  end-page: 867
  ident: bib0013
  article-title: Diabetes mellitus: the epidemic of the century
  publication-title: World J. Diabetes
– volume: 15
  start-page: 349
  year: 2005
  end-page: 373
  ident: bib0005
  article-title: Control of safe ordinary petri nets using unfolding
  publication-title: Discret. Event Dyn. Syst.
– volume: 8
  year: 2018
  ident: bib0009
  article-title: Can process mining automatically describe care pathways of patients with long-term conditions in UK primary care? A study protocol
  publication-title: BMJ Open
– start-page: 1
  year: 2011
  end-page: 25
  ident: bib0007
  article-title: Introduction
  publication-title: Process Mining: Discovery, Conformance and Enhancement of Business Processes
– volume: 6
  year: 2018
  ident: bib0003
  article-title: Systematic mapping of process mining studies in healthcare
  publication-title: IEEE Access
– year: 1986
  ident: bib0012
  article-title: Density Estimation for Statistics and Data Analysis
– volume: 16
  start-page: 1128
  year: 2004
  end-page: 1142
  ident: bib0001
  article-title: Workflow mining: discovering process models from event logs
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2016
  ident: bib0011
  article-title: Evaluation of discovered clinical pathways using process mining and joint agent-based discrete-event simulation
  publication-title: Proceedings of the Winter Simulation Conference 2016
– volume: 15
  start-page: 104
  year: 2017
  end-page: 116
  ident: bib0014
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 12
  start-page: 505
  issue: 5
  year: 2018
  ident: 10.1016/j.ins.2020.04.020_bib0002
  article-title: A systematic mapping study of process mining
  publication-title: Enterp. Inform. Syst.
  doi: 10.1080/17517575.2017.1402371
– year: 2016
  ident: 10.1016/j.ins.2020.04.020_bib0011
  article-title: Evaluation of discovered clinical pathways using process mining and joint agent-based discrete-event simulation
– volume: 15
  start-page: 1309
  issue: 3
  year: 2018
  ident: 10.1016/j.ins.2020.04.020_bib0006
  article-title: Optimal process mining for large and complex event logs
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2017.2784436
– volume: 6
  year: 2018
  ident: 10.1016/j.ins.2020.04.020_sbref0003
  article-title: Systematic mapping of process mining studies in healthcare
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2831244
– volume: 15
  start-page: 104
  year: 2017
  ident: 10.1016/j.ins.2020.04.020_bib0014
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2016.12.005
– volume: 41
  start-page: 449
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2020.04.020_bib0004
  article-title: A study into the factors that influence the understandability of business process models
  publication-title: IEEE Trans. Syst. Man Cybern. Part A
  doi: 10.1109/TSMCA.2010.2087017
– volume: 8
  start-page: 226
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2020.04.020_bib0008
  article-title: Process mining in cardiology: a literature review
  publication-title: Int. J. Biosci. Biochem. Bioinform.
– volume: 15
  start-page: 349
  issue: 4
  year: 2005
  ident: 10.1016/j.ins.2020.04.020_bib0005
  article-title: Control of safe ordinary petri nets using unfolding
  publication-title: Discret. Event Dyn. Syst.
  doi: 10.1007/s10626-005-4057-z
– year: 1986
  ident: 10.1016/j.ins.2020.04.020_bib0012
– volume: 6
  start-page: 850
  year: 2015
  ident: 10.1016/j.ins.2020.04.020_bib0013
  article-title: Diabetes mellitus: the epidemic of the century
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v6.i6.850
– volume: 8
  issue: 12
  year: 2018
  ident: 10.1016/j.ins.2020.04.020_bib0009
  article-title: Can process mining automatically describe care pathways of patients with long-term conditions in UK primary care? A study protocol
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-019947
– start-page: 1
  year: 2011
  ident: 10.1016/j.ins.2020.04.020_bib0007
  article-title: Introduction
– volume: 16
  start-page: 1128
  issue: 9
  year: 2004
  ident: 10.1016/j.ins.2020.04.020_bib0001
  article-title: Workflow mining: discovering process models from event logs
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2004.47
– start-page: 1409
  year: 2015
  ident: 10.1016/j.ins.2020.04.020_bib0010
  article-title: Discovery of patient pathways from a national hospital database using process mining and integer linear programming
SSID ssj0004766
Score 2.4188983
Snippet The problem of determining the optimal process model of an event log of traces of events with temporal information is presented. A formal description of the...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 58
SubjectTerms Bioengineering
Computer Science
Event log
Healthcare data
Life Sciences
Operations Research
Patient pathways
Process mining
Tabu search
Time modeling
Title Optimal process mining of timed event logs
URI https://dx.doi.org/10.1016/j.ins.2020.04.020
https://hal-emse.ccsd.cnrs.fr/emse-03128586
Volume 528
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61XvQgWhVflYDiQVjtZrNJ9liKpb7qxYK30LywYmux1aO_3Uk2WxXEg6cNSzIss7NfZjYz3yB07HKlhS1EYhihEKAYnhTEmiRNFVPg79M89cXJt33WG9Crh_yhhjpVLYxPq4zYX2J6QOt45zxq83w6GvkaXxI8YgJ2msHQV7BT7vnzzz6-0jwoL88rfZjkZ1cnmyHHazTxjN2kFdhOfcvv3_empcfqL2vYdbrraC26i7hdPtEGqtlJA61-IxFsoGYsPcAnONYWeV3j-NFuotM7QIUxCJmWNQF4HHpC4BeHfWN5gwOHEwYMnG2hQffivtNLYoeERGc8nydOE5cVykGMxixj1o_MMHfOtJgWhOvU5BnnhkIQJgql0owbzR23WcGGKVfZNqpPXiZ2B2EmMkWsc9wITg1hQjgKwY0bDrUmELLuolalG6kjfbjvYvEsqzyxJwnqlF6dskUlXHbR6WLJtOTO-GsyrRQufxiABGz_a9kRvJyFeE-W3WvfSDueWQl4RUQu2Hu69z_h-2iFBLvx-X4HqD5_fbNN8EHm6jAY2SFabl9e9_qf6YTYdQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSD-MS3AcWDUN2maZIeRZRVV70oeAubF66466KrR3-7kzT1AeLBU0NJhvJ1OplpZr4B2PWlNtJVMrOcMgxQrMgq6myW55pr9PdZmYfi5Msr3r5l53fl3RgcN7UwIa0y2f7apkdrne4cJjQPh71eqPGl0SOmqKcFDsdhkpWFCKp98P6V58FEfWAZ4qQwvTnajElevUGg7KatSHcaen7_vjmN3ze_WeO2czoHs8lfJEf1I83DmBsswMw3FsEF2Ey1B2SPpOKiADZJX-0i7F-jWeijkGFdFED6sSkEefIkdJa3JJI4ETSCL0twe3pyc9zOUouEzBSiHGXeUF9U2mOQxh3nLoxst_TetriRVJjcIiTCMozCZKV1XghrhBeuqHg3F7pYhonB08CtAOGy0NR5L6wUzFIupWcY3fhu1xiKMesqtBpslEn84aGNxaNqEsUeFMKpApyqxRReVmH_c8mwJs_4azJrAFc_NEChcf9r2Q6-nE_xgS27fdRRrv_iFBosKkvJ3_K1_wnfhqn2zWVHdc6uLtZhmkYdCsl_GzAxen51m-iQjPRWVLgPFAbaCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Process+Mining+of+Timed+Event+Logs&rft.jtitle=Information+sciences&rft.au=de+Oliveira%2C+Hugo&rft.au=Augusto%2C+Vincent&rft.au=Jouaneton%2C+Baptiste&rft.au=Lamarsalle%2C+Ludovic&rft.date=2020-08-01&rft.pub=Elsevier&rft.issn=0020-0255&rft.volume=528&rft.spage=58&rft.epage=78&rft_id=info:doi/10.1016%2Fj.ins.2020.04.020&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_emse_03128586v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon