Optimal process mining of timed event logs
The problem of determining the optimal process model of an event log of traces of events with temporal information is presented. A formal description of the event log and relevant complexity measures are detailed. Then the process model and its replayability score that measures model fitness with re...
Saved in:
Published in | Information sciences Vol. 528; pp. 58 - 78 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.08.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0020-0255 1872-6291 |
DOI | 10.1016/j.ins.2020.04.020 |
Cover
Loading…
Abstract | The problem of determining the optimal process model of an event log of traces of events with temporal information is presented. A formal description of the event log and relevant complexity measures are detailed. Then the process model and its replayability score that measures model fitness with respect to the event log are defined. Two process models are formulated, taking into account temporal information. The first, called grid process model, is reminiscent of Petri net unfolding and is a graph with multiple layers of labeled nodes and arcs connecting lower to upper layer nodes. Our second model is an extension of the first. Denoted the time grid process model, it associates a time interval to each arc. Subsequently, a Tabu search algorithm is constructed to determine the optimal process model that maximizes the replayability score subject to the constraints of the maximal number of nodes and arcs. Numerical experiments are conducted to assess the performance of the proposed Tabu search algorithm. Lastly, a healthcare case study was conducted to demonstrate the applicability of our approach for clinical pathway modeling. Special attention was paid on readability, so that final users could interpret the process mining results. |
---|---|
AbstractList | The problem of determining the optimal process model of an event log of traces of events with temporal information is presented. A formal description of the event log and relevant complexity measures are detailed. Then the process model and its replayability score that measures model fitness with respect to the event log are defined. Two process models are formulated, taking into account temporal information. The first, called grid process model, is reminiscent of Petri net unfolding and is a graph with multiple layers of labeled nodes and arcs connecting lower to upper layer nodes. Our second model is an extension of the first. Denoted the time grid process model, it associates a time interval to each arc. Subsequently, a Tabu search algorithm is constructed to determine the optimal process model that maximizes the replayability score subject to the constraints of the maximal number of nodes and arcs. Numerical experiments are conducted to assess the performance of the proposed Tabu search algorithm. Lastly, a healthcare case study was conducted to demonstrate the applicability of our approach for clinical pathway modeling. Special attention was paid on readability, so that final users could beneficially use the process mining results. The problem of determining the optimal process model of an event log of traces of events with temporal information is presented. A formal description of the event log and relevant complexity measures are detailed. Then the process model and its replayability score that measures model fitness with respect to the event log are defined. Two process models are formulated, taking into account temporal information. The first, called grid process model, is reminiscent of Petri net unfolding and is a graph with multiple layers of labeled nodes and arcs connecting lower to upper layer nodes. Our second model is an extension of the first. Denoted the time grid process model, it associates a time interval to each arc. Subsequently, a Tabu search algorithm is constructed to determine the optimal process model that maximizes the replayability score subject to the constraints of the maximal number of nodes and arcs. Numerical experiments are conducted to assess the performance of the proposed Tabu search algorithm. Lastly, a healthcare case study was conducted to demonstrate the applicability of our approach for clinical pathway modeling. Special attention was paid on readability, so that final users could interpret the process mining results. |
Author | Jouaneton, Baptiste Prodel, Martin Augusto, Vincent Lamarsalle, Ludovic De Oliveira, Hugo Xie, Xiaolan |
Author_xml | – sequence: 1 givenname: Hugo orcidid: 0000-0001-8409-8292 surname: De Oliveira fullname: De Oliveira, Hugo email: hdeoliveira@hevaweb.com organization: Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CIS, F - 42023 Saint-Etienne, France – sequence: 2 givenname: Vincent surname: Augusto fullname: Augusto, Vincent organization: Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CIS, F - 42023 Saint-Etienne, France – sequence: 3 givenname: Baptiste surname: Jouaneton fullname: Jouaneton, Baptiste organization: HEVA, 186 avenue Thiers, F-69465 Lyon, France – sequence: 4 givenname: Ludovic surname: Lamarsalle fullname: Lamarsalle, Ludovic organization: HEVA, 186 avenue Thiers, F-69465 Lyon, France – sequence: 5 givenname: Martin orcidid: 0000-0002-4092-422X surname: Prodel fullname: Prodel, Martin organization: HEVA, 186 avenue Thiers, F-69465 Lyon, France – sequence: 6 givenname: Xiaolan surname: Xie fullname: Xie, Xiaolan organization: Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CIS, F - 42023 Saint-Etienne, France |
BackLink | https://hal-emse.ccsd.cnrs.fr/emse-03128586$$DView record in HAL |
BookMark | eNp9kEtLAzEUhYNUsK3-AHezLsyYx0wyg6tS1AqFbnQdMslNTZkmJRkK_ntTqhsXXZ3L5Xz3cWZo4oMHhB4Jrggm_GlfOZ8qiimucF1luUFT0gpactqRCZri3CoxbZo7NEtpjzGuBedTtNgeR3dQQ3GMQUNKxcF553dFsEXugyngBH4shrBL9-jWqiHBw6_O0efry8dqXW62b--r5abUTDRjaTW1rOst7moOnMO5Mqqx1mCuWyo0MQ0TwtR13bZd3xMmjBZWAOu4IqJnc7S4zP1SgzzGfF38lkE5uV5uJBwSSMwIbZuWn0g2i4tZx5BSBCu1G9Xogh-jcoMkWJ7zkXuZ85HnfCSuZZZMkn_k365rzPOFgfz_yUGUSTvwGoyLoEdpgrtC_wBKRn6o |
CitedBy_id | crossref_primary_10_1093_jamiaopen_ooaa039 crossref_primary_10_1109_JBHI_2020_3021790 crossref_primary_10_1109_TASE_2023_3295947 crossref_primary_10_1371_journal_pone_0277135 crossref_primary_10_3390_a16010057 crossref_primary_10_1007_s10472_024_09950_w crossref_primary_10_1016_j_simpat_2022_102602 crossref_primary_10_1002_hpm_3593 crossref_primary_10_1007_s13198_021_01599_6 crossref_primary_10_1016_j_ins_2023_119958 crossref_primary_10_1080_00207543_2024_2427888 crossref_primary_10_1016_j_eswa_2021_115696 |
Cites_doi | 10.1080/17517575.2017.1402371 10.1109/TASE.2017.2784436 10.1109/ACCESS.2018.2831244 10.1016/j.csbj.2016.12.005 10.1109/TSMCA.2010.2087017 10.1007/s10626-005-4057-z 10.4239/wjd.v6.i6.850 10.1136/bmjopen-2017-019947 10.1109/TKDE.2004.47 |
ContentType | Journal Article |
Copyright | 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.ins.2020.04.020 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science Computer Science |
EISSN | 1872-6291 |
EndPage | 78 |
ExternalDocumentID | oai_HAL_emse_03128586v1 10_1016_j_ins_2020_04_020 S0020025520303200 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC VOOES |
ID | FETCH-LOGICAL-c375t-fc2f39bf0946e66ebf09da5ffd06c827c1d5377d444889bb137dc7f7e396a17b3 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Fri May 09 12:23:29 EDT 2025 Tue Jul 01 01:26:40 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Fri Feb 23 02:47:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Process mining Time modeling Healthcare data Tabu search Patient pathways Event log patient pathways time modeling healthcare data event log tabu search process mining |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-fc2f39bf0946e66ebf09da5ffd06c827c1d5377d444889bb137dc7f7e396a17b3 |
ORCID | 0000-0002-4092-422X 0000-0001-8409-8292 0000-0002-6579-1523 0000-0002-5063-0831 |
OpenAccessLink | https://hal-emse.ccsd.cnrs.fr/emse-03128586 |
PageCount | 21 |
ParticipantIDs | hal_primary_oai_HAL_emse_03128586v1 crossref_citationtrail_10_1016_j_ins_2020_04_020 crossref_primary_10_1016_j_ins_2020_04_020 elsevier_sciencedirect_doi_10_1016_j_ins_2020_04_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Information sciences |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | van der Aalst (bib0007) 2011 Litchfield, Hoye, Shukla, Backman, Turner, Lee, Weber (bib0009) 2018; 8 Giua, Xie (bib0005) 2005; 15 Silverman (bib0012) 1986 Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (bib0014) 2017; 15 van der Aalst, Weijters, Maruster (bib0001) 2004; 16 Prodel, Augusto, Jouaneton, Lamarsalle, Xie (bib0011) 2016 Kharroubi, Darwish (bib0013) 2015; 6 Reijers, Mendling (bib0004) 2011; 41 Kusuma, Hall, Gale, Johnson (bib0008) 2018; 8 Prodel, Augusto, Xie, Jouaneto, Lamarsalle (bib0010) 2015 Prodel, Augusto, Jouaneton, Lamarsalle, Xie (bib0006) 2018; 15 Maita, Martins, Paz, Rafferty, Hung, Peres, Fantinato (bib0002) 2018; 12 Erdogan, Ayca (bib0003) 2018; 6 Litchfield (10.1016/j.ins.2020.04.020_bib0009) 2018; 8 Kusuma (10.1016/j.ins.2020.04.020_bib0008) 2018; 8 Kharroubi (10.1016/j.ins.2020.04.020_bib0013) 2015; 6 Silverman (10.1016/j.ins.2020.04.020_bib0012) 1986 Erdogan (10.1016/j.ins.2020.04.020_sbref0003) 2018; 6 Prodel (10.1016/j.ins.2020.04.020_bib0010) 2015 van der Aalst (10.1016/j.ins.2020.04.020_bib0007) 2011 Kavakiotis (10.1016/j.ins.2020.04.020_bib0014) 2017; 15 Reijers (10.1016/j.ins.2020.04.020_bib0004) 2011; 41 Prodel (10.1016/j.ins.2020.04.020_bib0006) 2018; 15 Prodel (10.1016/j.ins.2020.04.020_bib0011) 2016 Maita (10.1016/j.ins.2020.04.020_bib0002) 2018; 12 Giua (10.1016/j.ins.2020.04.020_bib0005) 2005; 15 van der Aalst (10.1016/j.ins.2020.04.020_bib0001) 2004; 16 |
References_xml | – start-page: 1409 year: 2015 end-page: 1414 ident: bib0010 article-title: Discovery of patient pathways from a national hospital database using process mining and integer linear programming publication-title: CASE – volume: 12 start-page: 505 year: 2018 end-page: 549 ident: bib0002 article-title: A systematic mapping study of process mining publication-title: Enterp. Inform. Syst. – volume: 41 start-page: 449 year: 2011 end-page: 462 ident: bib0004 article-title: A study into the factors that influence the understandability of business process models publication-title: IEEE Trans. Syst. Man Cybern. Part A – volume: 15 start-page: 1309 year: 2018 end-page: 1325 ident: bib0006 article-title: Optimal process mining for large and complex event logs publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 8 start-page: 226 year: 2018 end-page: 236 ident: bib0008 article-title: Process mining in cardiology: a literature review publication-title: Int. J. Biosci. Biochem. Bioinform. – volume: 6 start-page: 850 year: 2015 end-page: 867 ident: bib0013 article-title: Diabetes mellitus: the epidemic of the century publication-title: World J. Diabetes – volume: 15 start-page: 349 year: 2005 end-page: 373 ident: bib0005 article-title: Control of safe ordinary petri nets using unfolding publication-title: Discret. Event Dyn. Syst. – volume: 8 year: 2018 ident: bib0009 article-title: Can process mining automatically describe care pathways of patients with long-term conditions in UK primary care? A study protocol publication-title: BMJ Open – start-page: 1 year: 2011 end-page: 25 ident: bib0007 article-title: Introduction publication-title: Process Mining: Discovery, Conformance and Enhancement of Business Processes – volume: 6 year: 2018 ident: bib0003 article-title: Systematic mapping of process mining studies in healthcare publication-title: IEEE Access – year: 1986 ident: bib0012 article-title: Density Estimation for Statistics and Data Analysis – volume: 16 start-page: 1128 year: 2004 end-page: 1142 ident: bib0001 article-title: Workflow mining: discovering process models from event logs publication-title: IEEE Trans. Knowl. Data Eng. – year: 2016 ident: bib0011 article-title: Evaluation of discovered clinical pathways using process mining and joint agent-based discrete-event simulation publication-title: Proceedings of the Winter Simulation Conference 2016 – volume: 15 start-page: 104 year: 2017 end-page: 116 ident: bib0014 article-title: Machine learning and data mining methods in diabetes research publication-title: Comput. Struct. Biotechnol. J. – volume: 12 start-page: 505 issue: 5 year: 2018 ident: 10.1016/j.ins.2020.04.020_bib0002 article-title: A systematic mapping study of process mining publication-title: Enterp. Inform. Syst. doi: 10.1080/17517575.2017.1402371 – year: 2016 ident: 10.1016/j.ins.2020.04.020_bib0011 article-title: Evaluation of discovered clinical pathways using process mining and joint agent-based discrete-event simulation – volume: 15 start-page: 1309 issue: 3 year: 2018 ident: 10.1016/j.ins.2020.04.020_bib0006 article-title: Optimal process mining for large and complex event logs publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2017.2784436 – volume: 6 year: 2018 ident: 10.1016/j.ins.2020.04.020_sbref0003 article-title: Systematic mapping of process mining studies in healthcare publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2831244 – volume: 15 start-page: 104 year: 2017 ident: 10.1016/j.ins.2020.04.020_bib0014 article-title: Machine learning and data mining methods in diabetes research publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2016.12.005 – volume: 41 start-page: 449 issue: 3 year: 2011 ident: 10.1016/j.ins.2020.04.020_bib0004 article-title: A study into the factors that influence the understandability of business process models publication-title: IEEE Trans. Syst. Man Cybern. Part A doi: 10.1109/TSMCA.2010.2087017 – volume: 8 start-page: 226 issue: 4 year: 2018 ident: 10.1016/j.ins.2020.04.020_bib0008 article-title: Process mining in cardiology: a literature review publication-title: Int. J. Biosci. Biochem. Bioinform. – volume: 15 start-page: 349 issue: 4 year: 2005 ident: 10.1016/j.ins.2020.04.020_bib0005 article-title: Control of safe ordinary petri nets using unfolding publication-title: Discret. Event Dyn. Syst. doi: 10.1007/s10626-005-4057-z – year: 1986 ident: 10.1016/j.ins.2020.04.020_bib0012 – volume: 6 start-page: 850 year: 2015 ident: 10.1016/j.ins.2020.04.020_bib0013 article-title: Diabetes mellitus: the epidemic of the century publication-title: World J. Diabetes doi: 10.4239/wjd.v6.i6.850 – volume: 8 issue: 12 year: 2018 ident: 10.1016/j.ins.2020.04.020_bib0009 article-title: Can process mining automatically describe care pathways of patients with long-term conditions in UK primary care? A study protocol publication-title: BMJ Open doi: 10.1136/bmjopen-2017-019947 – start-page: 1 year: 2011 ident: 10.1016/j.ins.2020.04.020_bib0007 article-title: Introduction – volume: 16 start-page: 1128 issue: 9 year: 2004 ident: 10.1016/j.ins.2020.04.020_bib0001 article-title: Workflow mining: discovering process models from event logs publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2004.47 – start-page: 1409 year: 2015 ident: 10.1016/j.ins.2020.04.020_bib0010 article-title: Discovery of patient pathways from a national hospital database using process mining and integer linear programming |
SSID | ssj0004766 |
Score | 2.4188983 |
Snippet | The problem of determining the optimal process model of an event log of traces of events with temporal information is presented. A formal description of the... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 58 |
SubjectTerms | Bioengineering Computer Science Event log Healthcare data Life Sciences Operations Research Patient pathways Process mining Tabu search Time modeling |
Title | Optimal process mining of timed event logs |
URI | https://dx.doi.org/10.1016/j.ins.2020.04.020 https://hal-emse.ccsd.cnrs.fr/emse-03128586 |
Volume | 528 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61XvQgWhVflYDiQVjtZrNJ9liKpb7qxYK30LywYmux1aO_3Uk2WxXEg6cNSzIss7NfZjYz3yB07HKlhS1EYhihEKAYnhTEmiRNFVPg79M89cXJt33WG9Crh_yhhjpVLYxPq4zYX2J6QOt45zxq83w6GvkaXxI8YgJ2msHQV7BT7vnzzz6-0jwoL88rfZjkZ1cnmyHHazTxjN2kFdhOfcvv3_empcfqL2vYdbrraC26i7hdPtEGqtlJA61-IxFsoGYsPcAnONYWeV3j-NFuotM7QIUxCJmWNQF4HHpC4BeHfWN5gwOHEwYMnG2hQffivtNLYoeERGc8nydOE5cVykGMxixj1o_MMHfOtJgWhOvU5BnnhkIQJgql0owbzR23WcGGKVfZNqpPXiZ2B2EmMkWsc9wITg1hQjgKwY0bDrUmELLuolalG6kjfbjvYvEsqzyxJwnqlF6dskUlXHbR6WLJtOTO-GsyrRQufxiABGz_a9kRvJyFeE-W3WvfSDueWQl4RUQu2Hu69z_h-2iFBLvx-X4HqD5_fbNN8EHm6jAY2SFabl9e9_qf6YTYdQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSD-MS3AcWDUN2maZIeRZRVV70oeAubF66466KrR3-7kzT1AeLBU0NJhvJ1OplpZr4B2PWlNtJVMrOcMgxQrMgq6myW55pr9PdZmYfi5Msr3r5l53fl3RgcN7UwIa0y2f7apkdrne4cJjQPh71eqPGl0SOmqKcFDsdhkpWFCKp98P6V58FEfWAZ4qQwvTnajElevUGg7KatSHcaen7_vjmN3ze_WeO2czoHs8lfJEf1I83DmBsswMw3FsEF2Ey1B2SPpOKiADZJX-0i7F-jWeijkGFdFED6sSkEefIkdJa3JJI4ETSCL0twe3pyc9zOUouEzBSiHGXeUF9U2mOQxh3nLoxst_TetriRVJjcIiTCMozCZKV1XghrhBeuqHg3F7pYhonB08CtAOGy0NR5L6wUzFIupWcY3fhu1xiKMesqtBpslEn84aGNxaNqEsUeFMKpApyqxRReVmH_c8mwJs_4azJrAFc_NEChcf9r2Q6-nE_xgS27fdRRrv_iFBosKkvJ3_K1_wnfhqn2zWVHdc6uLtZhmkYdCsl_GzAxen51m-iQjPRWVLgPFAbaCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Process+Mining+of+Timed+Event+Logs&rft.jtitle=Information+sciences&rft.au=de+Oliveira%2C+Hugo&rft.au=Augusto%2C+Vincent&rft.au=Jouaneton%2C+Baptiste&rft.au=Lamarsalle%2C+Ludovic&rft.date=2020-08-01&rft.pub=Elsevier&rft.issn=0020-0255&rft.volume=528&rft.spage=58&rft.epage=78&rft_id=info:doi/10.1016%2Fj.ins.2020.04.020&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_emse_03128586v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |