Suppression of shear localization in nanocrystalline Al–Ni–Ce via segregation engineering
[Display omitted] Shear localization in nanocrystalline metals is a severely limiting factor precluding their use as practical engineering materials. While several strategies exist to enhance the thermal and mechanical behavior of these materials, there are still many outstanding questions regarding...
Saved in:
Published in | Acta materialia Vol. 188; pp. 63 - 78 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.04.2020
|
Online Access | Get full text |
ISSN | 1359-6454 1873-2453 |
DOI | 10.1016/j.actamat.2020.01.041 |
Cover
Loading…
Abstract | [Display omitted]
Shear localization in nanocrystalline metals is a severely limiting factor precluding their use as practical engineering materials. While several strategies exist to enhance the thermal and mechanical behavior of these materials, there are still many outstanding questions regarding the effects of chemical segregation on shear localization in FCC nanocrystalline materials. In this paper we investigate the mechanical response of a ternary aluminum alloy with a sub-10 nm nanocrystalline microstructure subject to various thermal treatments. Contrary to previous observations, our results suggest that annealing up to 0.7 Tm reduces the propensity for shear localization and increases strength, as demonstrated by a transition in deformation morphology from pronounced strain localization to more homogeneous deformation during indentation. This behavior coincides with the formation of an amorphous intergranular film during annealing, causing intragranular dislocation plasticity to be favored over other grain boundary dominated deformation mechanisms, in turn resulting in a lower propensity for long range plastic localization. |
---|---|
AbstractList | [Display omitted]
Shear localization in nanocrystalline metals is a severely limiting factor precluding their use as practical engineering materials. While several strategies exist to enhance the thermal and mechanical behavior of these materials, there are still many outstanding questions regarding the effects of chemical segregation on shear localization in FCC nanocrystalline materials. In this paper we investigate the mechanical response of a ternary aluminum alloy with a sub-10 nm nanocrystalline microstructure subject to various thermal treatments. Contrary to previous observations, our results suggest that annealing up to 0.7 Tm reduces the propensity for shear localization and increases strength, as demonstrated by a transition in deformation morphology from pronounced strain localization to more homogeneous deformation during indentation. This behavior coincides with the formation of an amorphous intergranular film during annealing, causing intragranular dislocation plasticity to be favored over other grain boundary dominated deformation mechanisms, in turn resulting in a lower propensity for long range plastic localization. |
Author | Wang, Fulin Gianola, Daniel S. Balbus, Glenn H. |
Author_xml | – sequence: 1 givenname: Glenn H. orcidid: 0000-0002-9761-2649 surname: Balbus fullname: Balbus, Glenn H. – sequence: 2 givenname: Fulin orcidid: 0000-0002-4684-3121 surname: Wang fullname: Wang, Fulin – sequence: 3 givenname: Daniel S. orcidid: 0000-0003-4660-0805 surname: Gianola fullname: Gianola, Daniel S. email: gianola@ucsb.edu |
BookMark | eNqFkE1OwzAQhS1UJNrCEZBygQQ7tutELFBV8SdVsACWyJo4k-IqdSrbVCor7sANOQkp7YoNm5nR6L2nmW9EBq5zSMg5oxmjbHKxzMBEWEHMcprTjLKMCnZEhqxQPM2F5IN-5rJMJ0KKEzIKYUkpy5WgQ_L69L5eewzBdi7pmiS8Ifik7Qy09gPibmtd4sB1xm9DhLa1DpNp-_359WD7MsNkYyEJuPC42OvRLXoNeusWp-S4gTbg2aGPycvN9fPsLp0_3t7PpvPUcCVj2kgD0FSsUlAypigtCkFNXooKi6rMSw4CRAVC1RxLXkvJi1oqMWGKiao0BR-Ty32u8V0IHhttbPy9JnqwrWZU70jppT6Q0jtSmjLdk-rd8o977e0K_PZf39Xeh_1rG4teB2PRGaytRxN13dl_En4A2GGLtg |
CitedBy_id | crossref_primary_10_1016_j_msea_2022_144477 crossref_primary_10_1016_j_actamat_2023_119192 crossref_primary_10_1016_j_mtla_2021_101076 crossref_primary_10_1016_j_mtla_2023_101940 crossref_primary_10_1016_j_pmatsci_2023_101085 crossref_primary_10_1557_s43578_022_00715_x crossref_primary_10_1016_j_surfcoat_2021_127040 crossref_primary_10_1016_j_actamat_2021_116973 crossref_primary_10_1016_j_actamat_2022_118347 crossref_primary_10_1002_adem_202400595 crossref_primary_10_1016_j_msea_2023_145584 crossref_primary_10_1016_j_actamat_2020_08_074 crossref_primary_10_2320_matertrans_MT_MF2022029 crossref_primary_10_3390_ma16072874 crossref_primary_10_1016_j_actamat_2021_117394 crossref_primary_10_1016_j_actamat_2021_117560 |
Cites_doi | 10.1016/j.actamat.2015.02.012 10.1557/jmr.2011.156 10.1007/s11837-015-1644-9 10.1557/jmr.2013.39 10.1016/S1359-6454(98)00275-4 10.1016/j.actamat.2003.08.032 10.1557/jmr.2012.55 10.1016/j.actamat.2018.03.055 10.1007/BF01152938 10.1103/PhysRevB.52.7076 10.1016/j.actamat.2014.11.034 10.1016/j.matlet.2004.02.044 10.1016/j.actamat.2007.07.020 10.1016/j.scriptamat.2018.05.034 10.1016/j.scriptamat.2012.06.031 10.1016/j.actamat.2013.10.074 10.1016/0965-9773(92)90076-A 10.1103/PhysRevB.69.012101 10.1007/s11669-015-0447-6 10.1103/PhysRevB.77.134108 10.1016/j.actamat.2012.01.011 10.1557/jmr.2004.19.1.46 10.1016/j.commatsci.2013.05.053 10.1016/j.actamat.2014.05.058 10.1038/nature14674 10.3139/146.101152 10.1038/ncomms2919 10.1016/j.matlet.2019.02.112 10.1016/j.actamat.2018.06.036 10.1016/j.ijplas.2010.09.011 10.1063/1.4922994 10.1002/adem.200400211 10.1016/j.scriptamat.2016.06.008 10.1098/rsta.1992.0111 10.1557/JMR.1996.0091 10.1016/0965-9773(93)90088-S 10.1143/JJAP.27.L736 10.1016/j.actamat.2018.06.027 10.1016/j.actamat.2007.05.047 10.1016/S1359-6454(98)00065-2 10.1016/j.actamat.2005.03.047 10.1016/j.scriptamat.2004.05.042 10.1016/j.actamat.2007.05.033 10.1016/j.commatsci.2014.07.008 10.1063/1.1501158 10.1016/0921-5093(89)90083-X 10.1126/science.1228211 10.1088/1361-651X/aaacaa 10.1016/j.actamat.2012.12.033 10.1116/1.3554265 10.1080/01418618608242849 10.1557/jmr.2004.19.1.73 10.1126/science.aal5166 10.1016/j.actamat.2007.02.021 10.1016/S1359-6454(99)00300-6 10.1016/j.actamat.2018.12.031 10.1016/S0956-716X(99)80035-1 10.1063/1.4815965 10.1016/j.actamat.2006.01.023 10.1016/j.pmatsci.2005.08.003 10.1016/j.actamat.2013.10.071 10.1016/0921-5093(94)90287-9 10.1038/ncomms11225 10.1007/BF02671262 10.1016/0956-7151(93)90147-K 10.1016/j.scriptamat.2011.06.048 10.3762/bjnano.4.64 10.1016/j.ceramint.2016.02.081 10.1016/S1359-6454(01)00338-X 10.1103/PhysRevB.79.094112 10.1103/PhysRevB.67.024113 10.1038/srep10663 10.1016/S1359-6454(96)00268-6 10.1016/j.actamat.2015.11.035 10.1002/adma.201802026 10.1038/s41467-019-13087-4 10.1016/j.actamat.2018.12.002 10.1103/PhysRevLett.110.066101 10.1016/1359-6454(95)00303-7 10.1007/s11661-011-0708-x 10.1002/andp.18892741206 10.1016/j.msea.2017.04.095 10.1126/science.1098741 10.1016/j.actamat.2010.11.026 10.1063/1.3000655 10.1016/j.pmatsci.2018.05.004 10.1016/j.ijsolstr.2019.01.020 10.1016/0001-6160(87)90294-X 10.4028/www.scientific.net/MSF.179-181.443 10.1016/S1471-5317(00)00004-3 10.1126/science.1224737 10.1557/JMR.2007.0403 10.1063/1.4753998 10.1016/j.commatsci.2012.08.037 10.1038/ncomms10802 10.1016/j.actamat.2010.04.005 10.1016/j.actamat.2017.08.042 10.1016/j.actamat.2014.12.020 10.1016/j.scriptamat.2014.09.023 10.1016/j.actamat.2007.07.029 10.1038/nmat792 10.1088/0370-1301/64/9/303 10.1023/A:1008641617937 10.1016/0020-7683(95)00033-7 10.1103/PhysRevB.64.224105 10.1016/j.actamat.2016.12.065 10.1103/PhysRevLett.118.096101 10.1557/JMR.1992.1564 10.1016/S1359-6454(01)00263-4 10.1016/j.actamat.2005.12.026 |
ContentType | Journal Article |
Copyright | 2020 Acta Materialia Inc. |
Copyright_xml | – notice: 2020 Acta Materialia Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.actamat.2020.01.041 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
EndPage | 78 |
ExternalDocumentID | 10_1016_j_actamat_2020_01_041 S1359645420300665 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB R2- SEW SSH T9H ZY4 |
ID | FETCH-LOGICAL-c375t-f5caafb1b7a9117008840c294be8b9293a4a4ba47d3e93d5538d57461714b9c83 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Thu Apr 24 23:07:08 EDT 2025 Tue Jul 01 01:20:49 EDT 2025 Fri Feb 23 02:40:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-f5caafb1b7a9117008840c294be8b9293a4a4ba47d3e93d5538d57461714b9c83 |
ORCID | 0000-0003-4660-0805 0000-0002-9761-2649 0000-0002-4684-3121 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1016_j_actamat_2020_01_041 crossref_primary_10_1016_j_actamat_2020_01_041 elsevier_sciencedirect_doi_10_1016_j_actamat_2020_01_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-15 |
PublicationDateYYYYMMDD | 2020-04-15 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Acta materialia |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Li, Chen, Yang (bib0061) 2016; 37 Kirchheim (bib0021) 2002; 50 Tsui, Oliver, Pharr (bib0072) 1996; 11 Weissmüller (bib0020) 2002 Khalajhedayati, Rupert (bib0080) 2015; 5 Detor, Schuh (bib0032) 2007; 22 Bober, Kumar, Rupert (bib0040) 2015; 86 Akopyan, Belov, Naumova, Letyagin (bib0058) 2019; 245 (Vol. 2B). ASM International. Rupert (bib0012) 2013; 114 Castrup, Kübel, Scherer, Hahn (bib0066) 2011; 29 Schuh, Nieh (bib0081) 2004; 19 Han, Thomas, Srolovitz (bib0049) 2018; 98 Kumar, Van Swygenhoven, Suresh (bib0001) 2003; 51 Kim, Chai, Yu, Cheng, Gianola (bib0070) 2016; 123 Rupert, Trelewicz, Schuh (bib0050) 2012; 27 Tabor (bib0107) 2000 Van Swygenhoven, Derlet (bib0013) 2001; 64 Trelewicz, Schuh (bib0011) 2007; 55 Voigt (bib0113) 1889; 274 Wyrzykowski, Grabski (bib0106) 1986; 53 Shan, Stach, Wiezorek, Knapp, Follstaedt, Mao (bib0005) 2004; 305 Weissmüller, Ma.rkmann (bib0098) 2005; 7 Maier, Merle, Göken, Durst (bib0074) 2013; 28 Löffler, Weissmüller (bib0018) 1995; 52 Conner, Dandliker, Johnson (bib0083) 1998; 46 He, Samudrala, Kim, Felfer, Breen, Cairney, Gianola (bib0071) 2016; 7 Balbus, Echlin, Grigorian, Rupert, Pollock, Gianola (bib0052) 2018; 156 Oliver, Pharr (bib0067) 1992; 7 Luo, Flewitt, Spearing, Fleck, Milne (bib0114) 2004; 58 Han, Vitek, Srolovitz (bib0048) 2016; 104 Ozdol, Gammer, Jin, Ercius, Ophus, Ciston, Minor (bib0078) 2015; 106 Frolov, Olmsted, Asta, Mishin (bib0039) 2013; 4 Ohring (bib0068) 2002 Rupert, Schuh (bib0004) 2010; 58 Inoue, Kimura (bib0057) 2001; 1 Zhou, Tamura, Mi, Lei, Yan, Zhang, Deng, Ke, Yue, Chen (bib0099) 2017; 118 Tucker, McDowell (bib0092) 2011; 27 Tschöpe, Birringer (bib0017) 1993; 41 Renk, Maier-Kiener, Issa, Li, Kiener, Pippan (bib0075) 2019; 165 Liu, Kirchheim (bib0022) 2004; 51 Chookajorn, Murdoch, Schuh (bib0026) 2012; 337 Krill III, Klein, Janes, Birringer (bib0019) 1995; 179–181 Inoue (bib0047) 2000; 48 Renk, Hohenwarter, Eder, Kormout, Cairney, Pippan (bib0051) 2015; 95 Pan, Rupert (bib0043) 2014; 93 Huang, Chen, Shen, Zhang, Rupert (bib0034) 2019; 166 Hua, Chu, Sun (bib0037) 2018; 154 Hall (bib0104) 1951; 64 Chen, Richeton, Motz, Berbenni (bib0111) 2019; 164 Plotkowski, Rios, Sridharan, Sims, Unocic, Ott, Dehoff, Babu (bib0060) 2017; 126 Öveçoğlu, Doerner, Nix (bib0115) 1987; 35 Frolov, Darling, Kecskes, Mishin (bib0030) 2012; 60 Pan, Rupert (bib0044) 2015; 89 Rupert, Trenkle, Schuh (bib0006) 2011; 59 Waterloo, Jones (bib0063) 1996; 31 Khalajhedayati, Rupert (bib0041) 2015; 67 Tsai, Kamiyama, Kawamura, Inoue, Masumoto (bib0062) 1997; 45 KIRCHHEIM (bib0025) 2007; 55 Meyers, Mishra, Benson (bib0009) 2006; 51 Carlton, Ferreira (bib0035) 2007; 55 Schuler, Rupert (bib0046) 2017; 140 Lohmiller, Baumbusch, Kraft, Gruber (bib0093) 2013; 110 Weissmüller (bib0016) 1993; 3 He, Felfer, Dasgupta, Samudrala, Malone, Feng, Hemker, Cairney, Gianola (bib0033) 2014; 77 Larsson, Giannakopoulos, SÖderlund, Rowcliffe, Vestergaard (bib0101) 1996; 33 Asaro, Suresh (bib0095) 2005; 53 He, Eckert, Löser, Schultz (bib0038) 2003; 2 Trelewicz, Schuh (bib0076) 2009; 79 KIRCHHEIM (bib0024) 2007; 55 Khalajhedayati, Pan, Rupert (bib0042) 2016; 7 Ketov, Sun, Nachum, Lu, Checchi, Beraldin, Bai, Wang, Louzguine-Luzgin, Carpenter, Greer (bib0088) 2015; 524 Khalajhedayati, Rupert (bib0036) 2014; 65 Maier, Durst, Mueller, Backes, Höppel, Göken (bib0073) 2011; 26 Inoue, Nakazato, Kawamura, Masumoto (bib0055) 1994; 179–180 Bronkhorst, Kalidindi, Anand (bib0097) 1992; 341 Meng, Tsuchiya, Seiichiro, Yokoyama (bib0087) 2012; 101 Inoue, Ohtera, Masumoto (bib0054) 1988; 27 Turlo, Rupert (bib0045) 2018; 151 Lohmiller, Grewer, Braun, Kobler, Kübel, Schüler, Honkimäki, Hahn, Kraft, Birringer, Gruber (bib0096) 2014; 65 Birringer (bib0014) 1989; 117 Murdoch, Schuh (bib0027) 2013; 61 Rittner, Weertman, Eastman (bib0103) 1996; 44 Uesugi, Higashi (bib0108) 2013; 67 Trelewicz, Schuh (bib0085) 2008; 93 Vo, Schäfer, Averback, Albe, Ashkenazy, Bellon (bib0028) 2011; 65 Pun, Wang, Khalajhedayati, Schuler, Trelewicz, Rupert (bib0094) 2017; 696 Gottstein, Molodov, Shvindlerman (bib0031) 1998; 6 Vo, Averback, Bellon, Odunuga, Caro (bib0091) 2008; 77 Min, Wei-min, Nai-gang, Ling-Dong (bib0102) 2004; 19 Boyce, Padilla (bib0002) 2011; 42 Guo, Ohtera (bib0059) 1998; 46 Petch (bib0105) 1953; 173 Gianola, Van Petegem, Legros, Brandstetter, Van Swygenhoven, Hemker (bib0064) 2006; 54 Vaidyanathan, Dao, Ravichandran, Suresh (bib0082) 2001; 49 Brink, Albe (bib0053) 2018; 156 Chen, Lutker, Raju, Yan, Kanitpanyacharoen, Lei, Yang, Wenk, Mao, Williams (bib0100) 2012; 338 Hu, Shi, Sauvage, Sha, Lu (bib0007) 2017; 355 Weissmüller, Krauss, Haubold, Birringer, Gleiter (bib0015) 1992; 1 Wu, Liu, Sun, Wang, Sun, Han, Kai, Luan, Liu, Cao, Lu, Cheng, Lu (bib0069) 2019; 10 Krill, Ehrhardt, Birringer (bib0023) 2005; 96 Özerinç, Tai, Vo, Bellon, Averback, King (bib0029) 2012; 67 Lund, Nieh, Schuh (bib0089) 2004; 69 Kobler, Lohmiller, Schäfer, Kerber, Castrup, Kashiwar, Gruber, Albe, Hahn, Kübel (bib0065) 2013; 4 Curry, Babuska, Furnish, Lu, Adams, Kustas, Nation, Dugger, Chandross, Clark, Boyce, Schuh, Argibay (bib0003) 2018; 30 Carsley, Milligan, Hackney, Aifantis (bib0084) 1995; 26 ASM International. Handbook Committee. (2005). Gao, Wang, Ogata (bib0109) 2013; 79 Zhang, Lu, Shibuta (bib0008) 2018; 26 Dillon, Tang, Carter, Harmer (bib0077) 2007; 55 Feichtinger, Derlet, Van Swygenhoven (bib0110) 2003; 67 Hono, Zhang, Tsai, Inoue, Sakurai (bib0056) 1995; 32 Van Swygenhoven, Derlet, Frøseth (bib0090) 2006; 54 Wei, Jia, Ramesh, Ma (bib0010) 2002; 81 Tong, Iwashita, Dmowski, Bei, Yokoyama, Egami (bib0086) 2015; 86 Wang, Ge, Li, Li, Guo, Li (bib0079) 2016; 42 Kim (10.1016/j.actamat.2020.01.041_bib0070) 2016; 123 Feichtinger (10.1016/j.actamat.2020.01.041_bib0110) 2003; 67 Renk (10.1016/j.actamat.2020.01.041_bib0051) 2015; 95 Schuler (10.1016/j.actamat.2020.01.041_bib0046) 2017; 140 He (10.1016/j.actamat.2020.01.041_bib0071) 2016; 7 Huang (10.1016/j.actamat.2020.01.041_bib0034) 2019; 166 Renk (10.1016/j.actamat.2020.01.041_bib0075) 2019; 165 Balbus (10.1016/j.actamat.2020.01.041_bib0052) 2018; 156 Ketov (10.1016/j.actamat.2020.01.041_bib0088) 2015; 524 Kobler (10.1016/j.actamat.2020.01.041_bib0065) 2013; 4 Zhou (10.1016/j.actamat.2020.01.041_bib0099) 2017; 118 Carsley (10.1016/j.actamat.2020.01.041_bib0084) 1995; 26 Turlo (10.1016/j.actamat.2020.01.041_bib0045) 2018; 151 Kumar (10.1016/j.actamat.2020.01.041_bib0001) 2003; 51 Khalajhedayati (10.1016/j.actamat.2020.01.041_bib0036) 2014; 65 Meng (10.1016/j.actamat.2020.01.041_bib0087) 2012; 101 Shan (10.1016/j.actamat.2020.01.041_bib0005) 2004; 305 Bronkhorst (10.1016/j.actamat.2020.01.041_bib0097) 1992; 341 Liu (10.1016/j.actamat.2020.01.041_bib0022) 2004; 51 Trelewicz (10.1016/j.actamat.2020.01.041_bib0085) 2008; 93 Vo (10.1016/j.actamat.2020.01.041_bib0091) 2008; 77 Inoue (10.1016/j.actamat.2020.01.041_bib0054) 1988; 27 Detor (10.1016/j.actamat.2020.01.041_bib0032) 2007; 22 Hall (10.1016/j.actamat.2020.01.041_bib0104) 1951; 64 Curry (10.1016/j.actamat.2020.01.041_bib0003) 2018; 30 Ohring (10.1016/j.actamat.2020.01.041_bib0068) 2002 Trelewicz (10.1016/j.actamat.2020.01.041_bib0011) 2007; 55 Tschöpe (10.1016/j.actamat.2020.01.041_bib0017) 1993; 41 Gianola (10.1016/j.actamat.2020.01.041_bib0064) 2006; 54 Gottstein (10.1016/j.actamat.2020.01.041_bib0031) 1998; 6 Uesugi (10.1016/j.actamat.2020.01.041_bib0108) 2013; 67 Inoue (10.1016/j.actamat.2020.01.041_bib0047) 2000; 48 Inoue (10.1016/j.actamat.2020.01.041_bib0057) 2001; 1 Castrup (10.1016/j.actamat.2020.01.041_bib0066) 2011; 29 Chookajorn (10.1016/j.actamat.2020.01.041_bib0026) 2012; 337 Krill (10.1016/j.actamat.2020.01.041_bib0023) 2005; 96 Birringer (10.1016/j.actamat.2020.01.041_bib0014) 1989; 117 Conner (10.1016/j.actamat.2020.01.041_bib0083) 1998; 46 Guo (10.1016/j.actamat.2020.01.041_bib0059) 1998; 46 Asaro (10.1016/j.actamat.2020.01.041_bib0095) 2005; 53 Luo (10.1016/j.actamat.2020.01.041_bib0114) 2004; 58 Akopyan (10.1016/j.actamat.2020.01.041_bib0058) 2019; 245 Boyce (10.1016/j.actamat.2020.01.041_bib0002) 2011; 42 Min (10.1016/j.actamat.2020.01.041_bib0102) 2004; 19 Pun (10.1016/j.actamat.2020.01.041_bib0094) 2017; 696 He (10.1016/j.actamat.2020.01.041_bib0038) 2003; 2 Rupert (10.1016/j.actamat.2020.01.041_bib0012) 2013; 114 Hu (10.1016/j.actamat.2020.01.041_bib0007) 2017; 355 Weissmüller (10.1016/j.actamat.2020.01.041_bib0016) 1993; 3 Weissmüller (10.1016/j.actamat.2020.01.041_bib0098) 2005; 7 Khalajhedayati (10.1016/j.actamat.2020.01.041_bib0042) 2016; 7 Maier (10.1016/j.actamat.2020.01.041_bib0073) 2011; 26 Wyrzykowski (10.1016/j.actamat.2020.01.041_bib0106) 1986; 53 Öveçoğlu (10.1016/j.actamat.2020.01.041_bib0115) 1987; 35 Weissmüller (10.1016/j.actamat.2020.01.041_bib0020) 2002 Meyers (10.1016/j.actamat.2020.01.041_bib0009) 2006; 51 Gao (10.1016/j.actamat.2020.01.041_bib0109) 2013; 79 Löffler (10.1016/j.actamat.2020.01.041_bib0018) 1995; 52 Rupert (10.1016/j.actamat.2020.01.041_bib0050) 2012; 27 Kirchheim (10.1016/j.actamat.2020.01.041_bib0021) 2002; 50 Zhang (10.1016/j.actamat.2020.01.041_bib0008) 2018; 26 KIRCHHEIM (10.1016/j.actamat.2020.01.041_bib0025) 2007; 55 Han (10.1016/j.actamat.2020.01.041_bib0049) 2018; 98 Inoue (10.1016/j.actamat.2020.01.041_bib0055) 1994; 179–180 10.1016/j.actamat.2020.01.041_bib0112 Tabor (10.1016/j.actamat.2020.01.041_bib0107) 2000 Özerinç (10.1016/j.actamat.2020.01.041_bib0029) 2012; 67 Hono (10.1016/j.actamat.2020.01.041_bib0056) 1995; 32 Krill III (10.1016/j.actamat.2020.01.041_bib0019) 1995; 179–181 Han (10.1016/j.actamat.2020.01.041_bib0048) 2016; 104 Plotkowski (10.1016/j.actamat.2020.01.041_bib0060) 2017; 126 Lohmiller (10.1016/j.actamat.2020.01.041_bib0096) 2014; 65 He (10.1016/j.actamat.2020.01.041_bib0033) 2014; 77 Carlton (10.1016/j.actamat.2020.01.041_bib0035) 2007; 55 Vaidyanathan (10.1016/j.actamat.2020.01.041_bib0082) 2001; 49 Petch (10.1016/j.actamat.2020.01.041_bib0105) 1953; 173 Wu (10.1016/j.actamat.2020.01.041_bib0069) 2019; 10 Trelewicz (10.1016/j.actamat.2020.01.041_bib0076) 2009; 79 Weissmüller (10.1016/j.actamat.2020.01.041_bib0015) 1992; 1 Wang (10.1016/j.actamat.2020.01.041_bib0079) 2016; 42 Maier (10.1016/j.actamat.2020.01.041_bib0074) 2013; 28 Lohmiller (10.1016/j.actamat.2020.01.041_bib0093) 2013; 110 Oliver (10.1016/j.actamat.2020.01.041_bib0067) 1992; 7 Lund (10.1016/j.actamat.2020.01.041_bib0089) 2004; 69 Frolov (10.1016/j.actamat.2020.01.041_bib0030) 2012; 60 Waterloo (10.1016/j.actamat.2020.01.041_bib0063) 1996; 31 Dillon (10.1016/j.actamat.2020.01.041_bib0077) 2007; 55 Rittner (10.1016/j.actamat.2020.01.041_bib0103) 1996; 44 Voigt (10.1016/j.actamat.2020.01.041_bib0113) 1889; 274 Chen (10.1016/j.actamat.2020.01.041_bib0111) 2019; 164 Frolov (10.1016/j.actamat.2020.01.041_bib0039) 2013; 4 Van Swygenhoven (10.1016/j.actamat.2020.01.041_bib0013) 2001; 64 Pan (10.1016/j.actamat.2020.01.041_bib0043) 2014; 93 Tong (10.1016/j.actamat.2020.01.041_bib0086) 2015; 86 Khalajhedayati (10.1016/j.actamat.2020.01.041_bib0080) 2015; 5 Rupert (10.1016/j.actamat.2020.01.041_bib0006) 2011; 59 KIRCHHEIM (10.1016/j.actamat.2020.01.041_bib0024) 2007; 55 Wang (10.1016/j.actamat.2020.01.041_bib0061) 2016; 37 Tsai (10.1016/j.actamat.2020.01.041_bib0062) 1997; 45 Van Swygenhoven (10.1016/j.actamat.2020.01.041_bib0090) 2006; 54 Wei (10.1016/j.actamat.2020.01.041_bib0010) 2002; 81 Pan (10.1016/j.actamat.2020.01.041_bib0044) 2015; 89 Khalajhedayati (10.1016/j.actamat.2020.01.041_bib0041) 2015; 67 Tsui (10.1016/j.actamat.2020.01.041_bib0072) 1996; 11 Vo (10.1016/j.actamat.2020.01.041_bib0028) 2011; 65 Larsson (10.1016/j.actamat.2020.01.041_bib0101) 1996; 33 Bober (10.1016/j.actamat.2020.01.041_bib0040) 2015; 86 Chen (10.1016/j.actamat.2020.01.041_bib0100) 2012; 338 Ozdol (10.1016/j.actamat.2020.01.041_bib0078) 2015; 106 Schuh (10.1016/j.actamat.2020.01.041_bib0081) 2004; 19 Hua (10.1016/j.actamat.2020.01.041_bib0037) 2018; 154 Rupert (10.1016/j.actamat.2020.01.041_bib0004) 2010; 58 Murdoch (10.1016/j.actamat.2020.01.041_bib0027) 2013; 61 Brink (10.1016/j.actamat.2020.01.041_bib0053) 2018; 156 Tucker (10.1016/j.actamat.2020.01.041_bib0092) 2011; 27 |
References_xml | – volume: 696 start-page: 400 year: 2017 end-page: 406 ident: bib0094 article-title: Nanocrystalline Al-Mg with extreme strength due to grain boundary doping publication-title: Mater. Sci. Eng.: A – volume: 156 start-page: 183 year: 2018 end-page: 195 ident: bib0052 article-title: Femtosecond laser rejuvenation of nanocrystalline metals publication-title: Acta Mater. – volume: 28 start-page: 1177 year: 2013 end-page: 1188 ident: bib0074 article-title: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures publication-title: J. Mater. Res. – volume: 154 start-page: 123 year: 2018 end-page: 126 ident: bib0037 article-title: Grain refinement and amorphization in nanocrystalline NiTi micropillars under uniaxial compression publication-title: Scr. Mater. – volume: 26 start-page: 1421 year: 2011 end-page: 1430 ident: bib0073 article-title: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline ni and ultrafine-grained al publication-title: J. Mater. Res. – volume: 164 start-page: 141 year: 2019 end-page: 156 ident: bib0111 article-title: Elastic fields due to dislocations in anisotropic bi- and tri-materials: applications to discrete dislocation pile-ups at grain boundaries publication-title: Int. J. Solids Struct. – volume: 96 start-page: 1134 year: 2005 end-page: 1141 ident: bib0023 article-title: Thermodynamic stabilization of nanocrystallinity publication-title: Z. Metall. – volume: 67 start-page: 720 year: 2012 end-page: 723 ident: bib0029 article-title: Grain boundary doping strengthens nanocrystalline copper alloys publication-title: Scr. Mater. – volume: 101 start-page: 121914 year: 2012 ident: bib0087 article-title: Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass publication-title: Appl. Phys. Lett. – volume: 151 start-page: 100 year: 2018 end-page: 111 ident: bib0045 article-title: Grain boundary complexions and the strength of nanocrystalline metals: dislocation emission and propagation publication-title: Acta Mater. – volume: 10 year: 2019 ident: bib0069 article-title: Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity publication-title: Nat. Commun. – volume: 69 start-page: 012101 year: 2004 ident: bib0089 article-title: Tension/compression strength asymmetry in a simulated nanocrystalline metal publication-title: Phys. Rev. B – volume: 67 start-page: 2788 year: 2015 end-page: 2801 ident: bib0041 article-title: High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy publication-title: JOM – volume: 89 start-page: 205 year: 2015 end-page: 214 ident: bib0044 article-title: Amorphous intergranular films as toughening structural features publication-title: Acta Mater. – volume: 26 start-page: 035008 year: 2018 ident: bib0008 article-title: Shear response of grain boundaries with metastable structures by molecular dynamics simulations publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 7 start-page: 10802 year: 2016 ident: bib0042 article-title: Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility publication-title: Nat. Commun. – volume: 60 start-page: 2158 year: 2012 end-page: 2168 ident: bib0030 article-title: Stabilization and strengthening of nanocrystalline copper by alloying with tantalum publication-title: Acta Mater. – volume: 7 start-page: 1564 year: 1992 end-page: 1583 ident: bib0067 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. – volume: 29 start-page: 021013 year: 2011 ident: bib0066 article-title: Microstructure and residual stress of magnetron sputtered nanocrystalline palladium and palladium gold films on polymer substrates publication-title: J. Vac Sci. Technol. A: Vac Surf. Films – volume: 77 start-page: 134108 year: 2008 ident: bib0091 article-title: Quantitative description of plastic deformation in nanocrystalline Cu: dislocation glide versus grain boundary sliding publication-title: Phys. Rev. B – volume: 33 start-page: 221 year: 1996 end-page: 248 ident: bib0101 article-title: Analysis of Berkovich indentation publication-title: Int. J. Solids Struct. – volume: 35 start-page: 2947 year: 1987 end-page: 2957 ident: bib0115 article-title: Elastic interactions of screw dislocations in thin films on substrates publication-title: Acta Metall. – volume: 117 start-page: 33 year: 1989 end-page: 43 ident: bib0014 article-title: Nanocrystalline materials publication-title: Mater. Sci. Eng.: A – volume: 1 start-page: 439 year: 1992 end-page: 447 ident: bib0015 article-title: Atomic structure and thermal stability of nanostructured Y-Fe alloys publication-title: Nanostruct. Mater. – volume: 166 start-page: 113 year: 2019 end-page: 125 ident: bib0034 article-title: Combined effects of nonmetallic impurities and planned metallic dopants on grain boundary energy and strength publication-title: Acta Mater. – volume: 114 start-page: 033527 year: 2013 ident: bib0012 article-title: Strain localization in a nanocrystalline metal: atomic mechanisms and the effect of testing conditions publication-title: J. Appl. Phys. – volume: 1 start-page: 31 year: 2001 end-page: 41 ident: bib0057 article-title: Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system publication-title: J. Light Met. – volume: 58 start-page: 4137 year: 2010 end-page: 4148 ident: bib0004 article-title: Sliding wear of nanocrystalline Ni-W: structural evolution and the apparent breakdown of archard scaling publication-title: Acta Mater. – volume: 6 start-page: 7 year: 1998 end-page: 22 ident: bib0031 article-title: Grain boundary migration in metals: recent developments publication-title: Interface Sci. – volume: 54 start-page: 1975 year: 2006 end-page: 1983 ident: bib0090 article-title: Nucleation and propagation of dislocations in nanocrystalline fcc metals publication-title: Acta Mater. – volume: 118 start-page: 096101 year: 2017 ident: bib0099 article-title: Reversal in the size dependence of grain rotation publication-title: Phys. Rev. Lett. – volume: 86 start-page: 240 year: 2015 end-page: 246 ident: bib0086 article-title: Structural rejuvenation in bulk metallic glasses publication-title: Acta Mater. – volume: 46 start-page: 6089 year: 1998 end-page: 6102 ident: bib0083 article-title: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites publication-title: Acta Mater. – volume: 37 start-page: 222 year: 2016 end-page: 228 ident: bib0061 article-title: Thermodynamic optimization of the Ni-Al-Ce ternary system publication-title: J. Phase Equilib. Diffus. – volume: 337 start-page: 951 year: 2012 end-page: 954 ident: bib0026 article-title: Design of stable nanocrystalline alloys publication-title: Science – volume: 48 start-page: 279 year: 2000 end-page: 306 ident: bib0047 article-title: Stabilization of metallic supercooled liquid and bulk amorphous alloys publication-title: Acta Mater. – volume: 22 start-page: 3233 year: 2007 end-page: 3248 ident: bib0032 article-title: Microstructural evolution during the heat treatment of nanocrystalline alloys publication-title: J. Mater. Res. – volume: 45 start-page: 1477 year: 1997 end-page: 1487 ident: bib0062 article-title: Formation and precipitation mechanism of nanoscale al particles in Al-Ni base amorphous alloys publication-title: Acta Mater. – volume: 98 start-page: 386 year: 2018 end-page: 476 ident: bib0049 article-title: Grain-boundary kinetics: a unified approach publication-title: Prog. Mater. Sci. – volume: 27 start-page: L736 year: 1988 end-page: L739 ident: bib0054 article-title: New amorphous Al-Y, Al-La and Al-Ce alloys prepared by melt spinning publication-title: Jpn. J. Appl. Phys. – volume: 2 start-page: 33 year: 2003 end-page: 37 ident: bib0038 article-title: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity publication-title: Nat. Mater. – volume: 41 start-page: 2791 year: 1993 end-page: 2796 ident: bib0017 article-title: Thermodynamics of nanocrystalline platinum publication-title: Acta Metall. Mater. – volume: 110 start-page: 066101 year: 2013 ident: bib0093 article-title: Differentiation of deformation modes in nanocrystalline pd films inferred from peak asymmetry evolution using <i>insitu</i> X-Ray diffraction publication-title: Phys. Rev. Lett. – reference: (Vol. 2B). ASM International. – volume: 65 start-page: 295 year: 2014 end-page: 307 ident: bib0096 article-title: Untangling dislocation and grain boundary mediated plasticity in nanocrystalline nickel publication-title: Acta Mater. – volume: 93 start-page: 171916 year: 2008 ident: bib0085 article-title: The Hall-Petch breakdown at high strain rates: optimizing nanocrystalline grain size for impact applications publication-title: Appl. Phys. Lett. – volume: 67 start-page: 024113 year: 2003 ident: bib0110 article-title: Atomistic simulations of spherical indentations in nanocrystalline gold publication-title: Phys. Rev. B – year: 2002 ident: bib0068 article-title: Materials Science of Thin Films: Deposition and Structure – volume: 64 start-page: 224105 year: 2001 ident: bib0013 article-title: Grain-boundary sliding in nanocrystalline fcc metals publication-title: Phys. Rev. B – volume: 44 start-page: 1271 year: 1996 end-page: 1286 ident: bib0103 article-title: Structure-property correlations in nanocrystalline Al-Zr alloy composites publication-title: Acta Mater. – volume: 341 start-page: 443 year: 1992 end-page: 477 ident: bib0097 article-title: Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals publication-title: Philos. Trans. R. Soc. Lond. Ser. A: Phys. Eng. Sci. – volume: 50 start-page: 413 year: 2002 end-page: 419 ident: bib0021 article-title: Grain coarsening inhibited by solute segregation publication-title: Acta Mater. – volume: 61 start-page: 2121 year: 2013 end-page: 2132 ident: bib0027 article-title: Stability of binary nanocrystalline alloys against grain growth and phase separation publication-title: Acta Mater. – volume: 274 start-page: 573 year: 1889 end-page: 587 ident: bib0113 article-title: Ueber die Beziehung zwischen den beiden elasticitätsconstanten isotroper körper publication-title: Ann. Phys. – volume: 524 start-page: 200 year: 2015 end-page: 203 ident: bib0088 article-title: Rejuvenation of metallic glasses by non-affine thermal strain publication-title: Nature – volume: 27 start-page: 841 year: 2011 end-page: 857 ident: bib0092 article-title: Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations publication-title: Int. J. Plast. – start-page: 1 year: 2002 end-page: 39 ident: bib0020 article-title: Thermodynamics of nanocrystalline solids. In – volume: 46 start-page: 3829 year: 1998 end-page: 3838 ident: bib0059 article-title: Microstructures and mechanical properties of rapidly solidified high strength Al-Ni based alloys publication-title: Acta Mater. – volume: 77 start-page: 269 year: 2014 end-page: 283 ident: bib0033 article-title: Understanding the mechanical behavior of nanocrystalline Al-O thin films with complex microstructures publication-title: Acta Mater. – volume: 104 start-page: 259 year: 2016 end-page: 273 ident: bib0048 article-title: Grain-boundary metastability and its statistical properties publication-title: Acta Mater. – volume: 11 start-page: 752 year: 1996 end-page: 759 ident: bib0072 article-title: Influences of stress on the measurement of mechanical properties using nanoindentation: part I. Experimental studies in an aluminum alloy publication-title: J. Mater. Res. – volume: 156 start-page: 205 year: 2018 end-page: 214 ident: bib0053 article-title: From metallic glasses to nanocrystals: molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour publication-title: Acta Mater. – volume: 305 start-page: 654 year: 2004 end-page: 657 ident: bib0005 article-title: Grain boundary-mediated plasticity in nanocrystalline nickel. publication-title: Science – volume: 355 start-page: 1292 year: 2017 end-page: 1296 ident: bib0007 article-title: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. publication-title: Science – volume: 58 start-page: 2306 year: 2004 end-page: 2309 ident: bib0114 article-title: Young’s modulus of electroplated Ni thin film for MEMS applications publication-title: Mater. Lett. – volume: 5 start-page: 10663 year: 2015 ident: bib0080 article-title: Disruption of thermally-Stable nanoscale grain structures by strain localization publication-title: Sci. Rep. – volume: 86 start-page: 43 year: 2015 end-page: 54 ident: bib0040 article-title: Nanocrystalline grain boundary engineering: increasing Σ3 boundary fraction in pure Ni with thermomechanical treatments publication-title: Acta Mater. – volume: 140 start-page: 196 year: 2017 end-page: 205 ident: bib0046 article-title: Materials selection rules for amorphous complexion formation in binary metallic alloys publication-title: Acta Mater. – volume: 7 start-page: 11225 year: 2016 ident: bib0071 article-title: Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen publication-title: Nat. Commun. – volume: 245 start-page: 110 year: 2019 end-page: 113 ident: bib0058 article-title: New in-situ Al matrix composites based on Al-Ni-La eutectic publication-title: Mater. Lett. – volume: 126 start-page: 507 year: 2017 end-page: 519 ident: bib0060 article-title: Evaluation of an Al-Ce alloy for laser additive manufacturing publication-title: Acta Mater. – volume: 55 start-page: 5129 year: 2007 end-page: 5138 ident: bib0024 article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background publication-title: Acta Mater. – volume: 64 start-page: 747 year: 1951 end-page: 753 ident: bib0104 article-title: The deformation and ageing of mild steel: III discussion of results publication-title: Proc. Phys. Soc. Lond. Sect. B – volume: 30 start-page: 1802026 year: 2018 ident: bib0003 article-title: Achieving ultralow wear with stable nanocrystalline metals publication-title: Adv. Mater. – volume: 51 start-page: 427 year: 2006 end-page: 556 ident: bib0009 article-title: Mechanical properties of nanocrystalline materials publication-title: Prog. Mater. Sci. – volume: 19 start-page: 46 year: 2004 end-page: 57 ident: bib0081 article-title: A survey of instrumented indentation studies on metallic glasses publication-title: J. Mater. Res. – volume: 59 start-page: 1619 year: 2011 end-page: 1631 ident: bib0006 article-title: Enhanced solid solution effects on the strength of nanocrystalline alloys publication-title: Acta Mater. – volume: 55 start-page: 5139 year: 2007 end-page: 5148 ident: bib0025 article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation II. Experimental evidence and consequences publication-title: Acta Mater. – volume: 338 start-page: 1448 year: 2012 end-page: 1451 ident: bib0100 article-title: Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity publication-title: Science – volume: 52 start-page: 7076 year: 1995 end-page: 7093 ident: bib0018 article-title: Grain-boundary atomic structure in nanocrystalline palladium from x-ray atomic distribution functions publication-title: Phys. Rev. B – volume: 51 start-page: 5743 year: 2003 end-page: 5774 ident: bib0001 article-title: Mechanical behavior of nanocrystalline metals and alloys publication-title: Acta Mater. – volume: 53 start-page: 505 year: 1986 end-page: 520 ident: bib0106 article-title: The Hall-Petch relation in aluminium and its dependence on the grain boundary structure publication-title: Philos. Mag. A – volume: 19 start-page: 73 year: 2004 end-page: 78 ident: bib0102 article-title: A numerical study of indentation using indenters of different geometry publication-title: J. Mater. Res. – volume: 67 start-page: 1 year: 2013 end-page: 10 ident: bib0108 article-title: First-principles studies on lattice constants and local lattice distortions in solid solution aluminum alloys publication-title: Comput. Mater. Sci – volume: 173 start-page: 25 year: 1953 end-page: 28 ident: bib0105 article-title: The cleavage strength of polycrystals publication-title: J. Iron Steel Inst. – volume: 179–180 start-page: 654 year: 1994 end-page: 658 ident: bib0055 article-title: The effect of Cu addition on the structure and mechanical properties of Al-Ni-M (M - Ce or Nd) amorphous alloys containing nanoscale f.c.c.-Al particles publication-title: Mater. Sci. Eng.: A – volume: 79 start-page: 56 year: 2013 end-page: 62 ident: bib0109 article-title: Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains publication-title: Comput. Mater. Sci – reference: ASM International. Handbook Committee. (2005). – volume: 26 start-page: 2479 year: 1995 end-page: 2481 ident: bib0084 article-title: Glasslike behavior in a nanostructured Fe/Cu alloy publication-title: Metall. Mater. Trans. A – volume: 42 start-page: 8545 year: 2016 end-page: 8551 ident: bib0079 article-title: Facile size-controlled synthesis of well-dispersed spherical amorphous alumina nanoparticles via homogeneous precipitation publication-title: Ceram. Int. – volume: 32 start-page: 191 year: 1995 end-page: 196 ident: bib0056 article-title: Solute partitioning in partially crystallized Al-Ni-Ce(-Cu) metallic glasses publication-title: Scr. Metall. Mater. – volume: 95 start-page: 27 year: 2015 end-page: 30 ident: bib0051 article-title: Increasing the strength of nanocrystalline steels by annealing: is segregation necessary? publication-title: Scr. Mater. – volume: 4 start-page: 1899 year: 2013 ident: bib0039 article-title: Structural phase transformations in metallic grain boundaries publication-title: Nat. Commun. – volume: 165 start-page: 409 year: 2019 end-page: 419 ident: bib0075 article-title: Anneal hardening and elevated temperature strain rate sensitivity of nanostructured metals: their relation to intergranular dislocation accommodation publication-title: Acta Mater. – volume: 79 start-page: 094112 year: 2009 ident: bib0076 article-title: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys publication-title: Phys. Rev. B – volume: 81 start-page: 1240 year: 2002 end-page: 1242 ident: bib0010 article-title: Evolution and microstructure of shear bands in nanostructured fe publication-title: Appl. Phys. Lett. – volume: 179–181 start-page: 443 year: 1995 end-page: 448 ident: bib0019 article-title: Thermodynamic stabilization of grain boundaries in nanocrystalline alloys publication-title: Mater. Sci. Forum – volume: 106 start-page: 253107 year: 2015 ident: bib0078 article-title: Strain mapping at nanometer resolution using advanced nano-beam electron diffraction publication-title: Appl. Phys. Lett. – volume: 65 start-page: 326 year: 2014 end-page: 337 ident: bib0036 article-title: Emergence of localized plasticity and failure through shear banding during microcompression of a nanocrystalline alloy publication-title: Acta Mater. – volume: 49 start-page: 3781 year: 2001 end-page: 3789 ident: bib0082 article-title: Study of mechanical deformation in bulk metallic glass through instrumented indentation publication-title: Acta Mater. – volume: 31 start-page: 2301 year: 1996 end-page: 2310 ident: bib0063 article-title: Microstructure and thermal stability of melt-spun Al-Nd and Al-Ce alloy ribbons publication-title: J. Mater. Sci. – volume: 55 start-page: 6208 year: 2007 end-page: 6218 ident: bib0077 article-title: Complexion: a new concept for kinetic engineering in materials science publication-title: Acta Mater. – volume: 7 start-page: 202 year: 2005 end-page: 207 ident: bib0098 article-title: Deforming nanocrystalline metals: new insights, new puzzles publication-title: Adv. Eng. Mater. – volume: 4 start-page: 554 year: 2013 end-page: 566 ident: bib0065 article-title: Deformation-induced grain growth and twinning in nanocrystalline palladium thin films publication-title: Beilstein J. Nanotechnol. – volume: 123 start-page: 113 year: 2016 end-page: 117 ident: bib0070 article-title: Interplay between grain boundary segregation and electrical resistivity in dilute nanocrystalline Cu alloys publication-title: Scr. Mater. – volume: 27 start-page: 1285 year: 2012 end-page: 1294 ident: bib0050 article-title: Grain boundary relaxation strengthening of nanocrystalline Ni-W alloys publication-title: J. Mater. Res. – volume: 54 start-page: 2253 year: 2006 end-page: 2263 ident: bib0064 article-title: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films publication-title: Acta Mater. – volume: 65 start-page: 660 year: 2011 end-page: 663 ident: bib0028 article-title: Reaching theoretical strengths in nanocrystalline Cu by grain boundary doping publication-title: Scr. Mater. – volume: 53 start-page: 3369 year: 2005 end-page: 3382 ident: bib0095 article-title: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins publication-title: Acta Mater. – volume: 55 start-page: 5948 year: 2007 end-page: 5958 ident: bib0011 article-title: The hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation publication-title: Acta Mater. – year: 2000 ident: bib0107 article-title: The Hardness of Metals – volume: 42 start-page: 1793 year: 2011 end-page: 1804 ident: bib0002 article-title: Anomalous fatigue behavior and fatigue-Induced grain growth in nanocrystalline nickel alloys publication-title: Metall. Mater. Trans. A – volume: 51 start-page: 521 year: 2004 end-page: 525 ident: bib0022 article-title: Grain boundary saturation and grain growth publication-title: Scr. Mater. – volume: 3 start-page: 261 year: 1993 end-page: 272 ident: bib0016 article-title: Alloy effects in nanostructures publication-title: Nanostruct. Mater. – volume: 55 start-page: 3749 year: 2007 end-page: 3756 ident: bib0035 article-title: What is behind the inverse Hall-Petch effect in nanocrystalline materials? publication-title: Acta Mater. – volume: 93 start-page: 206 year: 2014 end-page: 209 ident: bib0043 article-title: Damage nucleation from repeated dislocation absorption at a grain boundary publication-title: Comput. Mater. Sci – volume: 89 start-page: 205 year: 2015 ident: 10.1016/j.actamat.2020.01.041_bib0044 article-title: Amorphous intergranular films as toughening structural features publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.02.012 – volume: 173 start-page: 25 issue: 5 year: 1953 ident: 10.1016/j.actamat.2020.01.041_bib0105 article-title: The cleavage strength of polycrystals publication-title: J. Iron Steel Inst. – volume: 26 start-page: 1421 issue: 11 year: 2011 ident: 10.1016/j.actamat.2020.01.041_bib0073 article-title: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline ni and ultrafine-grained al publication-title: J. Mater. Res. doi: 10.1557/jmr.2011.156 – ident: 10.1016/j.actamat.2020.01.041_bib0112 – volume: 67 start-page: 2788 issue: 12 year: 2015 ident: 10.1016/j.actamat.2020.01.041_bib0041 article-title: High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy publication-title: JOM doi: 10.1007/s11837-015-1644-9 – volume: 28 start-page: 1177 issue: 9 year: 2013 ident: 10.1016/j.actamat.2020.01.041_bib0074 article-title: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures publication-title: J. Mater. Res. doi: 10.1557/jmr.2013.39 – volume: 46 start-page: 6089 issue: 17 year: 1998 ident: 10.1016/j.actamat.2020.01.041_bib0083 article-title: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00275-4 – volume: 51 start-page: 5743 issue: 19 year: 2003 ident: 10.1016/j.actamat.2020.01.041_bib0001 article-title: Mechanical behavior of nanocrystalline metals and alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.08.032 – volume: 27 start-page: 1285 issue: 9 year: 2012 ident: 10.1016/j.actamat.2020.01.041_bib0050 article-title: Grain boundary relaxation strengthening of nanocrystalline Ni-W alloys publication-title: J. Mater. Res. doi: 10.1557/jmr.2012.55 – volume: 151 start-page: 100 year: 2018 ident: 10.1016/j.actamat.2020.01.041_bib0045 article-title: Grain boundary complexions and the strength of nanocrystalline metals: dislocation emission and propagation publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.03.055 – volume: 31 start-page: 2301 issue: 9 year: 1996 ident: 10.1016/j.actamat.2020.01.041_bib0063 article-title: Microstructure and thermal stability of melt-spun Al-Nd and Al-Ce alloy ribbons publication-title: J. Mater. Sci. doi: 10.1007/BF01152938 – volume: 52 start-page: 7076 issue: 10 year: 1995 ident: 10.1016/j.actamat.2020.01.041_bib0018 article-title: Grain-boundary atomic structure in nanocrystalline palladium from x-ray atomic distribution functions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.52.7076 – volume: 86 start-page: 43 year: 2015 ident: 10.1016/j.actamat.2020.01.041_bib0040 article-title: Nanocrystalline grain boundary engineering: increasing Σ3 boundary fraction in pure Ni with thermomechanical treatments publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.11.034 – volume: 58 start-page: 2306 issue: 17–18 year: 2004 ident: 10.1016/j.actamat.2020.01.041_bib0114 article-title: Young’s modulus of electroplated Ni thin film for MEMS applications publication-title: Mater. Lett. doi: 10.1016/j.matlet.2004.02.044 – year: 2000 ident: 10.1016/j.actamat.2020.01.041_bib0107 – volume: 55 start-page: 5948 issue: 17 year: 2007 ident: 10.1016/j.actamat.2020.01.041_bib0011 article-title: The hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.07.020 – volume: 154 start-page: 123 year: 2018 ident: 10.1016/j.actamat.2020.01.041_bib0037 article-title: Grain refinement and amorphization in nanocrystalline NiTi micropillars under uniaxial compression publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.05.034 – volume: 67 start-page: 720 issue: 7–8 year: 2012 ident: 10.1016/j.actamat.2020.01.041_bib0029 article-title: Grain boundary doping strengthens nanocrystalline copper alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.06.031 – volume: 65 start-page: 326 year: 2014 ident: 10.1016/j.actamat.2020.01.041_bib0036 article-title: Emergence of localized plasticity and failure through shear banding during microcompression of a nanocrystalline alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.10.074 – volume: 1 start-page: 439 issue: 6 year: 1992 ident: 10.1016/j.actamat.2020.01.041_bib0015 article-title: Atomic structure and thermal stability of nanostructured Y-Fe alloys publication-title: Nanostruct. Mater. doi: 10.1016/0965-9773(92)90076-A – volume: 69 start-page: 012101 issue: 1 year: 2004 ident: 10.1016/j.actamat.2020.01.041_bib0089 article-title: Tension/compression strength asymmetry in a simulated nanocrystalline metal publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.012101 – volume: 37 start-page: 222 issue: 2 year: 2016 ident: 10.1016/j.actamat.2020.01.041_bib0061 article-title: Thermodynamic optimization of the Ni-Al-Ce ternary system publication-title: J. Phase Equilib. Diffus. doi: 10.1007/s11669-015-0447-6 – volume: 77 start-page: 134108 issue: 13 year: 2008 ident: 10.1016/j.actamat.2020.01.041_bib0091 article-title: Quantitative description of plastic deformation in nanocrystalline Cu: dislocation glide versus grain boundary sliding publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.134108 – volume: 60 start-page: 2158 issue: 5 year: 2012 ident: 10.1016/j.actamat.2020.01.041_bib0030 article-title: Stabilization and strengthening of nanocrystalline copper by alloying with tantalum publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.01.011 – volume: 19 start-page: 46 issue: 1 year: 2004 ident: 10.1016/j.actamat.2020.01.041_bib0081 article-title: A survey of instrumented indentation studies on metallic glasses publication-title: J. Mater. Res. doi: 10.1557/jmr.2004.19.1.46 – volume: 79 start-page: 56 year: 2013 ident: 10.1016/j.actamat.2020.01.041_bib0109 article-title: Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2013.05.053 – volume: 77 start-page: 269 year: 2014 ident: 10.1016/j.actamat.2020.01.041_bib0033 article-title: Understanding the mechanical behavior of nanocrystalline Al-O thin films with complex microstructures publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.05.058 – volume: 524 start-page: 200 issue: 7564 year: 2015 ident: 10.1016/j.actamat.2020.01.041_bib0088 article-title: Rejuvenation of metallic glasses by non-affine thermal strain publication-title: Nature doi: 10.1038/nature14674 – volume: 96 start-page: 1134 issue: 10 year: 2005 ident: 10.1016/j.actamat.2020.01.041_bib0023 article-title: Thermodynamic stabilization of nanocrystallinity publication-title: Z. Metall. doi: 10.3139/146.101152 – volume: 4 start-page: 1899 issue: 1 year: 2013 ident: 10.1016/j.actamat.2020.01.041_bib0039 article-title: Structural phase transformations in metallic grain boundaries publication-title: Nat. Commun. doi: 10.1038/ncomms2919 – volume: 245 start-page: 110 year: 2019 ident: 10.1016/j.actamat.2020.01.041_bib0058 article-title: New in-situ Al matrix composites based on Al-Ni-La eutectic publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.02.112 – volume: 156 start-page: 205 year: 2018 ident: 10.1016/j.actamat.2020.01.041_bib0053 article-title: From metallic glasses to nanocrystals: molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.06.036 – volume: 27 start-page: 841 issue: 6 year: 2011 ident: 10.1016/j.actamat.2020.01.041_bib0092 article-title: Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2010.09.011 – start-page: 1 year: 2002 ident: 10.1016/j.actamat.2020.01.041_bib0020 – volume: 106 start-page: 253107 issue: 25 year: 2015 ident: 10.1016/j.actamat.2020.01.041_bib0078 article-title: Strain mapping at nanometer resolution using advanced nano-beam electron diffraction publication-title: Appl. Phys. Lett. doi: 10.1063/1.4922994 – volume: 7 start-page: 202 issue: 4 year: 2005 ident: 10.1016/j.actamat.2020.01.041_bib0098 article-title: Deforming nanocrystalline metals: new insights, new puzzles publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200400211 – volume: 123 start-page: 113 year: 2016 ident: 10.1016/j.actamat.2020.01.041_bib0070 article-title: Interplay between grain boundary segregation and electrical resistivity in dilute nanocrystalline Cu alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.06.008 – volume: 341 start-page: 443 issue: 1662 year: 1992 ident: 10.1016/j.actamat.2020.01.041_bib0097 article-title: Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals publication-title: Philos. Trans. R. Soc. Lond. Ser. A: Phys. Eng. Sci. doi: 10.1098/rsta.1992.0111 – volume: 11 start-page: 752 issue: 3 year: 1996 ident: 10.1016/j.actamat.2020.01.041_bib0072 article-title: Influences of stress on the measurement of mechanical properties using nanoindentation: part I. Experimental studies in an aluminum alloy publication-title: J. Mater. Res. doi: 10.1557/JMR.1996.0091 – volume: 3 start-page: 261 issue: 1–6 year: 1993 ident: 10.1016/j.actamat.2020.01.041_bib0016 article-title: Alloy effects in nanostructures publication-title: Nanostruct. Mater. doi: 10.1016/0965-9773(93)90088-S – volume: 27 start-page: L736 issue: Part 2, No. 5 year: 1988 ident: 10.1016/j.actamat.2020.01.041_bib0054 article-title: New amorphous Al-Y, Al-La and Al-Ce alloys prepared by melt spinning publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.27.L736 – volume: 156 start-page: 183 year: 2018 ident: 10.1016/j.actamat.2020.01.041_bib0052 article-title: Femtosecond laser rejuvenation of nanocrystalline metals publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.06.027 – volume: 55 start-page: 5129 issue: 15 year: 2007 ident: 10.1016/j.actamat.2020.01.041_bib0024 article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.05.047 – volume: 46 start-page: 3829 issue: 11 year: 1998 ident: 10.1016/j.actamat.2020.01.041_bib0059 article-title: Microstructures and mechanical properties of rapidly solidified high strength Al-Ni based alloys publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00065-2 – volume: 53 start-page: 3369 issue: 12 year: 2005 ident: 10.1016/j.actamat.2020.01.041_bib0095 article-title: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.03.047 – volume: 51 start-page: 521 issue: 6 year: 2004 ident: 10.1016/j.actamat.2020.01.041_bib0022 article-title: Grain boundary saturation and grain growth publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2004.05.042 – volume: 55 start-page: 5139 issue: 15 year: 2007 ident: 10.1016/j.actamat.2020.01.041_bib0025 article-title: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation II. Experimental evidence and consequences publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.05.033 – volume: 93 start-page: 206 year: 2014 ident: 10.1016/j.actamat.2020.01.041_bib0043 article-title: Damage nucleation from repeated dislocation absorption at a grain boundary publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2014.07.008 – volume: 81 start-page: 1240 issue: 7 year: 2002 ident: 10.1016/j.actamat.2020.01.041_bib0010 article-title: Evolution and microstructure of shear bands in nanostructured fe publication-title: Appl. Phys. Lett. doi: 10.1063/1.1501158 – volume: 117 start-page: 33 year: 1989 ident: 10.1016/j.actamat.2020.01.041_bib0014 article-title: Nanocrystalline materials publication-title: Mater. Sci. Eng.: A doi: 10.1016/0921-5093(89)90083-X – volume: 338 start-page: 1448 issue: 6113 year: 2012 ident: 10.1016/j.actamat.2020.01.041_bib0100 article-title: Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity publication-title: Science doi: 10.1126/science.1228211 – volume: 26 start-page: 035008 issue: 3 year: 2018 ident: 10.1016/j.actamat.2020.01.041_bib0008 article-title: Shear response of grain boundaries with metastable structures by molecular dynamics simulations publication-title: Modell. Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/aaacaa – volume: 61 start-page: 2121 issue: 6 year: 2013 ident: 10.1016/j.actamat.2020.01.041_bib0027 article-title: Stability of binary nanocrystalline alloys against grain growth and phase separation publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.12.033 – volume: 29 start-page: 021013 issue: 2 year: 2011 ident: 10.1016/j.actamat.2020.01.041_bib0066 article-title: Microstructure and residual stress of magnetron sputtered nanocrystalline palladium and palladium gold films on polymer substrates publication-title: J. Vac Sci. Technol. A: Vac Surf. Films doi: 10.1116/1.3554265 – volume: 53 start-page: 505 issue: 4 year: 1986 ident: 10.1016/j.actamat.2020.01.041_bib0106 article-title: The Hall-Petch relation in aluminium and its dependence on the grain boundary structure publication-title: Philos. Mag. A doi: 10.1080/01418618608242849 – volume: 19 start-page: 73 issue: 1 year: 2004 ident: 10.1016/j.actamat.2020.01.041_bib0102 article-title: A numerical study of indentation using indenters of different geometry publication-title: J. Mater. Res. doi: 10.1557/jmr.2004.19.1.73 – volume: 355 start-page: 1292 issue: 6331 year: 2017 ident: 10.1016/j.actamat.2020.01.041_bib0007 article-title: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. publication-title: Science doi: 10.1126/science.aal5166 – volume: 55 start-page: 3749 issue: 11 year: 2007 ident: 10.1016/j.actamat.2020.01.041_bib0035 article-title: What is behind the inverse Hall-Petch effect in nanocrystalline materials? publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.02.021 – volume: 48 start-page: 279 issue: 1 year: 2000 ident: 10.1016/j.actamat.2020.01.041_bib0047 article-title: Stabilization of metallic supercooled liquid and bulk amorphous alloys publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00300-6 – volume: 166 start-page: 113 year: 2019 ident: 10.1016/j.actamat.2020.01.041_bib0034 article-title: Combined effects of nonmetallic impurities and planned metallic dopants on grain boundary energy and strength publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.12.031 – volume: 32 start-page: 191 issue: 2 year: 1995 ident: 10.1016/j.actamat.2020.01.041_bib0056 article-title: Solute partitioning in partially crystallized Al-Ni-Ce(-Cu) metallic glasses publication-title: Scr. Metall. Mater. doi: 10.1016/S0956-716X(99)80035-1 – volume: 114 start-page: 033527 issue: 3 year: 2013 ident: 10.1016/j.actamat.2020.01.041_bib0012 article-title: Strain localization in a nanocrystalline metal: atomic mechanisms and the effect of testing conditions publication-title: J. Appl. Phys. doi: 10.1063/1.4815965 – volume: 54 start-page: 2253 issue: 8 year: 2006 ident: 10.1016/j.actamat.2020.01.041_bib0064 article-title: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.01.023 – volume: 51 start-page: 427 issue: 4 year: 2006 ident: 10.1016/j.actamat.2020.01.041_bib0009 article-title: Mechanical properties of nanocrystalline materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2005.08.003 – volume: 65 start-page: 295 year: 2014 ident: 10.1016/j.actamat.2020.01.041_bib0096 article-title: Untangling dislocation and grain boundary mediated plasticity in nanocrystalline nickel publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.10.071 – volume: 179–180 start-page: 654 year: 1994 ident: 10.1016/j.actamat.2020.01.041_bib0055 article-title: The effect of Cu addition on the structure and mechanical properties of Al-Ni-M (M - Ce or Nd) amorphous alloys containing nanoscale f.c.c.-Al particles publication-title: Mater. Sci. Eng.: A doi: 10.1016/0921-5093(94)90287-9 – volume: 7 start-page: 11225 year: 2016 ident: 10.1016/j.actamat.2020.01.041_bib0071 article-title: Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen publication-title: Nat. Commun. doi: 10.1038/ncomms11225 – volume: 26 start-page: 2479 issue: 9 year: 1995 ident: 10.1016/j.actamat.2020.01.041_bib0084 article-title: Glasslike behavior in a nanostructured Fe/Cu alloy publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02671262 – volume: 41 start-page: 2791 issue: 9 year: 1993 ident: 10.1016/j.actamat.2020.01.041_bib0017 article-title: Thermodynamics of nanocrystalline platinum publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(93)90147-K – volume: 65 start-page: 660 issue: 8 year: 2011 ident: 10.1016/j.actamat.2020.01.041_bib0028 article-title: Reaching theoretical strengths in nanocrystalline Cu by grain boundary doping publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.06.048 – volume: 4 start-page: 554 year: 2013 ident: 10.1016/j.actamat.2020.01.041_bib0065 article-title: Deformation-induced grain growth and twinning in nanocrystalline palladium thin films publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.4.64 – volume: 42 start-page: 8545 issue: 7 year: 2016 ident: 10.1016/j.actamat.2020.01.041_bib0079 article-title: Facile size-controlled synthesis of well-dispersed spherical amorphous alumina nanoparticles via homogeneous precipitation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.02.081 – volume: 50 start-page: 413 issue: 2 year: 2002 ident: 10.1016/j.actamat.2020.01.041_bib0021 article-title: Grain coarsening inhibited by solute segregation publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00338-X – volume: 79 start-page: 094112 issue: 9 year: 2009 ident: 10.1016/j.actamat.2020.01.041_bib0076 article-title: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.094112 – volume: 67 start-page: 024113 issue: 2 year: 2003 ident: 10.1016/j.actamat.2020.01.041_bib0110 article-title: Atomistic simulations of spherical indentations in nanocrystalline gold publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.024113 – volume: 5 start-page: 10663 issue: 1 year: 2015 ident: 10.1016/j.actamat.2020.01.041_bib0080 article-title: Disruption of thermally-Stable nanoscale grain structures by strain localization publication-title: Sci. Rep. doi: 10.1038/srep10663 – volume: 45 start-page: 1477 issue: 4 year: 1997 ident: 10.1016/j.actamat.2020.01.041_bib0062 article-title: Formation and precipitation mechanism of nanoscale al particles in Al-Ni base amorphous alloys publication-title: Acta Mater. doi: 10.1016/S1359-6454(96)00268-6 – volume: 104 start-page: 259 year: 2016 ident: 10.1016/j.actamat.2020.01.041_bib0048 article-title: Grain-boundary metastability and its statistical properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.11.035 – volume: 30 start-page: 1802026 issue: 32 year: 2018 ident: 10.1016/j.actamat.2020.01.041_bib0003 article-title: Achieving ultralow wear with stable nanocrystalline metals publication-title: Adv. Mater. doi: 10.1002/adma.201802026 – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.actamat.2020.01.041_bib0069 article-title: Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity publication-title: Nat. Commun. doi: 10.1038/s41467-019-13087-4 – volume: 165 start-page: 409 year: 2019 ident: 10.1016/j.actamat.2020.01.041_bib0075 article-title: Anneal hardening and elevated temperature strain rate sensitivity of nanostructured metals: their relation to intergranular dislocation accommodation publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.12.002 – volume: 110 start-page: 066101 issue: 6 year: 2013 ident: 10.1016/j.actamat.2020.01.041_bib0093 article-title: Differentiation of deformation modes in nanocrystalline pd films inferred from peak asymmetry evolution using insitu X-Ray diffraction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.066101 – volume: 44 start-page: 1271 issue: 4 year: 1996 ident: 10.1016/j.actamat.2020.01.041_bib0103 article-title: Structure-property correlations in nanocrystalline Al-Zr alloy composites publication-title: Acta Mater. doi: 10.1016/1359-6454(95)00303-7 – volume: 42 start-page: 1793 issue: 7 year: 2011 ident: 10.1016/j.actamat.2020.01.041_bib0002 article-title: Anomalous fatigue behavior and fatigue-Induced grain growth in nanocrystalline nickel alloys publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-011-0708-x – volume: 274 start-page: 573 issue: 12 year: 1889 ident: 10.1016/j.actamat.2020.01.041_bib0113 article-title: Ueber die Beziehung zwischen den beiden elasticitätsconstanten isotroper körper publication-title: Ann. Phys. doi: 10.1002/andp.18892741206 – volume: 696 start-page: 400 year: 2017 ident: 10.1016/j.actamat.2020.01.041_bib0094 article-title: Nanocrystalline Al-Mg with extreme strength due to grain boundary doping publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2017.04.095 – volume: 305 start-page: 654 issue: 5684 year: 2004 ident: 10.1016/j.actamat.2020.01.041_bib0005 article-title: Grain boundary-mediated plasticity in nanocrystalline nickel. publication-title: Science doi: 10.1126/science.1098741 – volume: 59 start-page: 1619 issue: 4 year: 2011 ident: 10.1016/j.actamat.2020.01.041_bib0006 article-title: Enhanced solid solution effects on the strength of nanocrystalline alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.11.026 – volume: 93 start-page: 171916 issue: 17 year: 2008 ident: 10.1016/j.actamat.2020.01.041_bib0085 article-title: The Hall-Petch breakdown at high strain rates: optimizing nanocrystalline grain size for impact applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.3000655 – volume: 98 start-page: 386 year: 2018 ident: 10.1016/j.actamat.2020.01.041_bib0049 article-title: Grain-boundary kinetics: a unified approach publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.05.004 – volume: 164 start-page: 141 year: 2019 ident: 10.1016/j.actamat.2020.01.041_bib0111 article-title: Elastic fields due to dislocations in anisotropic bi- and tri-materials: applications to discrete dislocation pile-ups at grain boundaries publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2019.01.020 – volume: 35 start-page: 2947 issue: 12 year: 1987 ident: 10.1016/j.actamat.2020.01.041_bib0115 article-title: Elastic interactions of screw dislocations in thin films on substrates publication-title: Acta Metall. doi: 10.1016/0001-6160(87)90294-X – volume: 179–181 start-page: 443 year: 1995 ident: 10.1016/j.actamat.2020.01.041_bib0019 article-title: Thermodynamic stabilization of grain boundaries in nanocrystalline alloys publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.179-181.443 – volume: 1 start-page: 31 issue: 1 year: 2001 ident: 10.1016/j.actamat.2020.01.041_bib0057 article-title: Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system publication-title: J. Light Met. doi: 10.1016/S1471-5317(00)00004-3 – volume: 337 start-page: 951 issue: 6097 year: 2012 ident: 10.1016/j.actamat.2020.01.041_bib0026 article-title: Design of stable nanocrystalline alloys publication-title: Science doi: 10.1126/science.1224737 – volume: 22 start-page: 3233 issue: 11 year: 2007 ident: 10.1016/j.actamat.2020.01.041_bib0032 article-title: Microstructural evolution during the heat treatment of nanocrystalline alloys publication-title: J. Mater. Res. doi: 10.1557/JMR.2007.0403 – volume: 101 start-page: 121914 issue: 12 year: 2012 ident: 10.1016/j.actamat.2020.01.041_bib0087 article-title: Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass publication-title: Appl. Phys. Lett. doi: 10.1063/1.4753998 – volume: 67 start-page: 1 year: 2013 ident: 10.1016/j.actamat.2020.01.041_bib0108 article-title: First-principles studies on lattice constants and local lattice distortions in solid solution aluminum alloys publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2012.08.037 – volume: 7 start-page: 10802 year: 2016 ident: 10.1016/j.actamat.2020.01.041_bib0042 article-title: Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility publication-title: Nat. Commun. doi: 10.1038/ncomms10802 – volume: 58 start-page: 4137 issue: 12 year: 2010 ident: 10.1016/j.actamat.2020.01.041_bib0004 article-title: Sliding wear of nanocrystalline Ni-W: structural evolution and the apparent breakdown of archard scaling publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.04.005 – volume: 140 start-page: 196 year: 2017 ident: 10.1016/j.actamat.2020.01.041_bib0046 article-title: Materials selection rules for amorphous complexion formation in binary metallic alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.08.042 – volume: 86 start-page: 240 year: 2015 ident: 10.1016/j.actamat.2020.01.041_bib0086 article-title: Structural rejuvenation in bulk metallic glasses publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.12.020 – volume: 95 start-page: 27 year: 2015 ident: 10.1016/j.actamat.2020.01.041_bib0051 article-title: Increasing the strength of nanocrystalline steels by annealing: is segregation necessary? publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.09.023 – volume: 55 start-page: 6208 issue: 18 year: 2007 ident: 10.1016/j.actamat.2020.01.041_bib0077 article-title: Complexion: a new concept for kinetic engineering in materials science publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.07.029 – volume: 2 start-page: 33 issue: 1 year: 2003 ident: 10.1016/j.actamat.2020.01.041_bib0038 article-title: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity publication-title: Nat. Mater. doi: 10.1038/nmat792 – volume: 64 start-page: 747 issue: 9 year: 1951 ident: 10.1016/j.actamat.2020.01.041_bib0104 article-title: The deformation and ageing of mild steel: III discussion of results publication-title: Proc. Phys. Soc. Lond. Sect. B doi: 10.1088/0370-1301/64/9/303 – volume: 6 start-page: 7 issue: 1/2 year: 1998 ident: 10.1016/j.actamat.2020.01.041_bib0031 article-title: Grain boundary migration in metals: recent developments publication-title: Interface Sci. doi: 10.1023/A:1008641617937 – volume: 33 start-page: 221 issue: 2 year: 1996 ident: 10.1016/j.actamat.2020.01.041_bib0101 article-title: Analysis of Berkovich indentation publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(95)00033-7 – volume: 64 start-page: 224105 issue: 22 year: 2001 ident: 10.1016/j.actamat.2020.01.041_bib0013 article-title: Grain-boundary sliding in nanocrystalline fcc metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.224105 – volume: 126 start-page: 507 year: 2017 ident: 10.1016/j.actamat.2020.01.041_bib0060 article-title: Evaluation of an Al-Ce alloy for laser additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.12.065 – volume: 118 start-page: 096101 issue: 9 year: 2017 ident: 10.1016/j.actamat.2020.01.041_bib0099 article-title: Reversal in the size dependence of grain rotation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.096101 – volume: 7 start-page: 1564 issue: 06 year: 1992 ident: 10.1016/j.actamat.2020.01.041_bib0067 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 49 start-page: 3781 issue: 18 year: 2001 ident: 10.1016/j.actamat.2020.01.041_bib0082 article-title: Study of mechanical deformation in bulk metallic glass through instrumented indentation publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00263-4 – volume: 54 start-page: 1975 issue: 7 year: 2006 ident: 10.1016/j.actamat.2020.01.041_bib0090 article-title: Nucleation and propagation of dislocations in nanocrystalline fcc metals publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.12.026 – year: 2002 ident: 10.1016/j.actamat.2020.01.041_bib0068 |
SSID | ssj0012740 |
Score | 2.4301658 |
Snippet | [Display omitted]
Shear localization in nanocrystalline metals is a severely limiting factor precluding their use as practical engineering materials. While... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 63 |
Title | Suppression of shear localization in nanocrystalline Al–Ni–Ce via segregation engineering |
URI | https://dx.doi.org/10.1016/j.actamat.2020.01.041 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFA9jXvQg_sX5Z-TgtWvTJGtzHMMxFXfRwS5SkjSVjtGNrQpexO_gN_ST-LK22wRR8FJoySvh9fX3XpL33g-hy9ijuq0Jc6hUnsNEAv9cIgIHcFH5NCbSU3Yf8m7Q7g_ZzYiPaqhb1cLYtMoS-wtMX6J1-cQttenO0tS9J5QL24_KBzu1Bwi2gp0F1spbb6s0DwKrrqJSmAvHjl5X8bhjmHIuITCEZaLvLbt3MvKzf9rwOb09tFsGi7hTzGcf1Ux2gHY2WggeokdLy1nksmZ4muCFZajGSw9VVljiNMOZzKZ6_gqRoG3BbXBn8vn-MUjh0jX4JZV4YWDd_VSMN-v3H6Fh7-qh23dKygRH04DnTsK1lIkiKpDCcsoAhjBP-4IpEyqIhKhkkinJgpgaQWMOcBfzgLUtDboSOqTHqJ5NM3OCsCFxoGLGhB8nTHKpAgWxUkhk4nGtfNJArFJUpMt-4pbWYhJViWPjqNRvZPUbeSQC_TZQayU2Kxpq_CUQVl8h-mYZEYD-76Kn_xc9Q9v2zp4bEX6O6vn82VxA-JGr5tK-mmirc33bH3wBR9_dLg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxFO8yYFrWdMk63KcJtB4bBeGxAVFSZqiItQhGEjc-A_8Q34JzpoNkBBIXHpo6ypy3c9ObX8GOMhiZpuW8ohpE0dc5vjN5TKNEBdNwjKqY-P_Q_b6ze4lP70SVzPQmfTC-LLKgP0Vpo_ROpxpBG027ouicUGZkJ6PKkE79QmEWah7dipRg3r75KzbnyYTcONVNQsLGXmBz0aexi2ueqQxNsSdYhKPCTw5_dlFfXE7x0uwGOJF0q6WtAwzrlyBhS8sgqtw7SdzVuWsJRnm5NEPqSZjJxWaLElRklKXQ_vwgsGgZ-F2pH33_vrWL_DQceS50OTR4db7prrffT5_DS6PjwadbhSmJkSWpWIU5cJqnRtqUi39WBmEER7bRHLjWgaDIaa55kbzNGNOskwg4mUi5U0_Cd1I22LrUCuHpdsA4miWmoxzmWQ510Kb1GC41KI6j4U1Cd0EPlGUsoFS3E-2uFOT2rFbFfSrvH5VTBXqdxMOp2L3FafGXwKtyVtQ34xDIe7_Lrr1f9F9mOsOeufq_KR_tg3z_opPI1GxA7XRw5PbxWhkZPaCtX0A3rPf3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppression+of+shear+localization+in+nanocrystalline+Al%E2%80%93Ni%E2%80%93Ce+via+segregation+engineering&rft.jtitle=Acta+materialia&rft.au=Balbus%2C+Glenn+H.&rft.au=Wang%2C+Fulin&rft.au=Gianola%2C+Daniel+S.&rft.date=2020-04-15&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=188&rft.spage=63&rft.epage=78&rft_id=info:doi/10.1016%2Fj.actamat.2020.01.041&rft.externalDocID=S1359645420300665 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |