CRISPR/Cas9-based application for cancer therapy: Challenges and solutions for non-viral delivery
CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cance...
Saved in:
Published in | Journal of controlled release Vol. 361; pp. 727 - 749 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment.
[Display omitted]
•Qualities of non-viral vectors and anti-tumor effects for CRISPR/Cas9 delivery.•Breaking physiological barrier to improve gene editing efficiency.•Rationally design CRISPR/Cas9 releasing mechanism applicable to tumor site.•Enhanced anti-tumor efficacy through carrier modification.•Application of CRISPR/Cas9 in tumor therapy and current status of clinical treatment. |
---|---|
AbstractList | CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment.CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment. CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment. [Display omitted] •Qualities of non-viral vectors and anti-tumor effects for CRISPR/Cas9 delivery.•Breaking physiological barrier to improve gene editing efficiency.•Rationally design CRISPR/Cas9 releasing mechanism applicable to tumor site.•Enhanced anti-tumor efficacy through carrier modification.•Application of CRISPR/Cas9 in tumor therapy and current status of clinical treatment. CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment. |
Author | Lin, Ying-Qi Feng, Ke-Ke Le, Jing-Qing Li, Wu-Lin Li, Cheng-Lei Shao, Jing-Wei Zhang, Bing-Chen Lu, Jie-Ying Song, Xun-Huan Tong, Ling-Wu |
Author_xml | – sequence: 1 givenname: Ying-Qi surname: Lin fullname: Lin, Ying-Qi organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China – sequence: 2 givenname: Ke-Ke surname: Feng fullname: Feng, Ke-Ke organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China – sequence: 3 givenname: Jie-Ying surname: Lu fullname: Lu, Jie-Ying organization: Faculty of Foreign Studies, Guangdong Baiyun University, Guangzhou 510450, China – sequence: 4 givenname: Jing-Qing surname: Le fullname: Le, Jing-Qing organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China – sequence: 5 givenname: Wu-Lin surname: Li fullname: Li, Wu-Lin organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China – sequence: 6 givenname: Bing-Chen surname: Zhang fullname: Zhang, Bing-Chen organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China – sequence: 7 givenname: Cheng-Lei surname: Li fullname: Li, Cheng-Lei organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China – sequence: 8 givenname: Xun-Huan surname: Song fullname: Song, Xun-Huan organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China – sequence: 9 givenname: Ling-Wu surname: Tong fullname: Tong, Ling-Wu organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China – sequence: 10 givenname: Jing-Wei surname: Shao fullname: Shao, Jing-Wei email: shaojingwei@fzu.edu.cn organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China |
BookMark | eNqFkU1r3DAQhkVJoZttf0LBx17sjD781RxCMWkTCCSk7VmM5VGjRbFcybuw_z7ebE65LHOYy_O-DPOcs7MxjMTYVw4FB15dbIqNCWMkXwgQsoCmANF8YCve1DJXbVuesdXCNbmsyvYTO09pAwClVPWKYfd4-_vh8aLD1OY9JhoynCbvDM4ujJkNMTM4GorZ_EQRp_33rHtC72n8RynDcchS8NsDm17h5bR85yL6bCDvdhT3n9lHiz7Rl7e9Zn9_Xv_pbvK7-1-33Y-73Mi6nHMrjJVIshYtCq5U3cuhldCXaLAaSksWOEpbUd_UlQUQApWtW0De18YaLtfs27F3iuH_ltKsn10y5D2OFLZJS1CglFjmJCqaUraKq2Wt2eURNTGkFMlq4-bX38wRndcc9MGB3ug3B_rgQEOjFwdLunyXnqJ7xrg_mbs65mh52M5R1Mk4WjQMLpKZ9RDciYYXpDenGQ |
CitedBy_id | crossref_primary_10_1186_s12951_023_02259_6 crossref_primary_10_1016_j_cclet_2024_110282 crossref_primary_10_1088_1361_6528_ad5f33 crossref_primary_10_3390_pharmaceutics16010062 crossref_primary_10_1021_acs_nanolett_5c00285 crossref_primary_10_1002_ijc_35241 crossref_primary_10_1002_smll_202410535 crossref_primary_10_1016_j_addr_2025_115522 crossref_primary_10_3390_ijms25147715 crossref_primary_10_1039_D4CB00116H crossref_primary_10_1186_s12951_024_02627_w crossref_primary_10_1088_2043_6262_ad6e5c crossref_primary_10_1016_j_jconrel_2024_12_062 crossref_primary_10_1002_advs_202403858 |
Cites_doi | 10.1021/acsnano.0c04707 10.1002/smll.202102557 10.1016/j.addr.2019.06.007 10.1126/sciadv.abb0020 10.1166/jbn.2019.2712 10.1016/j.jconrel.2023.03.042 10.1126/sciadv.abc9450 10.1128/jb.169.12.5429-5433.1987 10.1186/s12951-021-01201-y 10.1039/D1TB02688G 10.1021/jacs.7b11754 10.1039/D0TB01925A 10.1039/C7CC09257A 10.1039/D0BM00427H 10.1002/anie.201506030 10.1016/j.semcancer.2018.04.001 10.1016/j.gde.2020.02.021 10.1126/science.1138140 10.1021/acsnano.2c01885 10.1016/j.cell.2015.11.024 10.1016/j.ejps.2017.10.036 10.1038/ncomms7244 10.2147/IJN.S248538 10.1056/NEJMoa2031054 10.1021/acsami.0c17660 10.1016/j.bioactmat.2021.10.007 10.3389/fonc.2020.01451 10.1021/acs.accounts.8b00493 10.1016/j.jconrel.2017.09.012 10.1021/acssynbio.8b00202 10.1126/sciadv.abb7107 10.2147/IJN.S176991 10.1101/cshperspect.a035907 10.1038/cdd.2015.33 10.1002/anie.201708689 10.1186/s12951-019-0564-1 10.1002/adhm.202102365 10.1021/acsami.9b21667 10.1016/j.jconrel.2014.05.055 10.1016/j.biomaterials.2019.01.001 10.1016/j.cej.2020.124688 10.1016/j.apsb.2020.04.011 10.1002/anie.201806941 10.1002/adhm.202201038 10.1038/s41467-021-27184-w 10.1158/1541-7786.MCR-18-0313 10.1080/15548627.2017.1332550 10.1038/s41591-020-0840-5 10.1016/j.omtn.2020.04.005 10.1021/acsami.9b12335 10.1038/nprot.2013.143 10.7150/thno.14937 10.1038/nrd.2016.280 10.1039/C5BM00003C 10.1002/anie.201903618 10.1016/j.biomaterials.2017.09.015 10.1002/marc.201800068 10.1016/j.ymthe.2020.09.028 10.1002/cbic.202100359 10.1080/14686996.2016.1194167 10.1038/nature14299 10.7150/thno.47007 10.1021/acs.accounts.9b00106 10.1002/adma.201606134 10.1073/pnas.1904697116 10.1016/j.phrs.2017.07.010 10.1016/j.tibtech.2017.11.006 10.1016/j.biomaterials.2016.12.033 10.2147/IJN.S61880 10.1021/acs.chemrev.6b00799 10.1039/D1NR02872C 10.1186/s12943-021-01431-6 10.1016/j.apsb.2021.03.014 10.1038/s41563-020-00886-0 10.3390/pharmaceutics11070311 10.4161/auto.27901 10.1021/jacs.9b11638 10.18632/aging.102657 10.1126/science.1231143 10.1038/s41401-019-0322-9 10.1080/17425247.2018.1517746 10.1111/pbi.12256 10.1021/jacs.8b11996 10.1016/j.jconrel.2017.09.013 10.1002/advs.201700611 10.1038/nrc3950 10.1016/j.celrep.2014.04.004 10.1039/D1TB00577D 10.1002/wnan.1609 10.1016/j.bioactmat.2021.05.051 10.1021/acscentsci.1c01143 10.1016/j.virol.2012.10.003 10.1016/j.nano.2018.06.009 10.1007/s11033-019-05093-y 10.1016/j.omtn.2019.09.004 10.3390/ijms22116072 10.1016/j.tibtech.2018.01.014 10.1038/nature.2016.20988 10.1016/j.biomaterials.2018.04.031 10.1002/jcp.30064 10.1002/adma.202006003 10.1016/j.addr.2021.113891 10.1126/sciadv.aav7199 10.1016/j.jconrel.2015.12.031 10.1038/s41586-022-05531-1 10.1021/acsami.2c22584 10.1021/ja5088024 10.3390/ijms22189667 10.1186/s12951-020-0586-8 10.1016/j.biomaterials.2008.10.003 10.1016/j.omtn.2018.09.012 10.1002/anie.202107036 10.1002/smll.202206981 10.3389/fonc.2020.595187 10.26508/lsa.202000875 10.1016/j.actbio.2022.09.046 10.1016/j.biomaterials.2015.06.045 10.1126/sciadv.abm8011 10.1039/D0CC06241C 10.1038/s41565-020-0669-6 10.1172/JCI87885 10.1021/acs.molpharmaceut.5b00054 10.1039/C7NR07999K 10.1186/s12951-022-01593-5 10.1089/hum.2019.312 10.1126/sciadv.abb4005 10.1016/j.canlet.2019.01.017 10.3390/cancers10060154 10.1016/j.ymeth.2021.06.004 10.1002/adma.201901570 10.1016/j.cell.2017.06.012 10.1016/j.jconrel.2022.09.046 10.1016/j.addr.2019.11.005 10.1186/s12951-021-01101-1 10.1038/s41417-019-0141-7 10.3322/caac.21660 10.1021/acsami.9b23084 10.1038/s41568-020-0290-x |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jconrel.2023.08.028 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 749 |
ExternalDocumentID | 10_1016_j_jconrel_2023_08_028 S0168365923005266 |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYOK ABFNM ABFRF ABJNI ABMAC ABOCM ABWVN ABXDB ABZDS ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SPT SSH SSM SSP SSZ T5K TEORI WUQ ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c375t-f2cf3ae3729a21447b3d930b5aca6d5fef01a3f6eb876f0022a4f790a1b7cfc13 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Fri Aug 22 21:00:36 EDT 2025 Fri Jul 11 07:07:34 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Tue Jul 01 04:10:11 EDT 2025 Sun Apr 06 06:56:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | cancer therapy Non-viral vectors CRISPR/Cas9 editing efficient |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-f2cf3ae3729a21447b3d930b5aca6d5fef01a3f6eb876f0022a4f790a1b7cfc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2853941485 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_3040442424 proquest_miscellaneous_2853941485 crossref_citationtrail_10_1016_j_jconrel_2023_08_028 crossref_primary_10_1016_j_jconrel_2023_08_028 elsevier_sciencedirect_doi_10_1016_j_jconrel_2023_08_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of controlled release |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhan, Xie, Zhou, Liu, Huang (bb0700) 2018; 7 Tang, Xu, Chen, Xin, Wan, Li, Pan, Li, Ping (bb0190) 2021; 33 Rosenblum, Gutkin, Kedmi, Ramishetti, Veiga, Jacobi, Schubert, Friedmann-Morvinski, Cohen, Behlke, Lieberman, Peer (bb0295) 2020; 6 Jiang, Wang, Sun, Yuan, Tian, Xiang, Li, Li, Li, Wu (bb0360) 2019; 197 Tagliafierro, Ilich, Moncalvo, Gu, Sriskanda, Grenier, Murphy, Chiba-Falek, Kantor (bb0105) 2019; 145 Ju, Li, Ramos da Silva, Gao (bb0215) 2019; 11 Wang, Li, Chen, Oupický (bb0340) 2015; 3 Zhang, Wang, Xie, Wang, Deng, Qin, Zhang, Yu, Zheng, Jiang (bb0405) 2019; 58 Wang, Zhang, Zheng, Cong, Guo, Xie, Wang, Tang, Feng, Hamada, Gonda, Hu, Wu, Jiang (bb0415) 2018; 57 Batır, Şahin, Çam (bb0715) 2019; 46 Zhen, Liu, Lu, Tuo, Yang, Chen, Chen, Li (bb0550) 2020; 31 Zheng, Zhao, Xu, Shen, Chen, Shao (bb0615) 2018; 111 Li, Pan, Chen, Gao, Liu, Yang, Luan, Zhou, Zeng, Han, Song (bb0410) 2021; 60 Kanvinde, Kulkarni, Deodhar, Bhattacharya, Dasgupta (bb0165) 2022; 11 Zhang, Wan, Chen, Chen, Sun, Cao, Songyang, Tang, Wu, Ping, Xu, Huang (bb0335) 2019; 40 Xiao, Luo, Hayes, Kim, Ng, Ding, Liao, Ke (bb0195) 2017; 170 Barati, Shariati, Moeinzadeh, Melero-Martin, Khademhosseini, Jabbari (bb0515) 2016; 223 Liu, Zhang, Liu, Cheng (bb0110) 2017; 266 Yan, Duan, Li, Wu, Zhou, Pan, Liu, Liu, Zheng (bb0585) 2016; 6 Tang, Luo, Li, Zheng, Zhu, Szalaj, Trzaskoma, Magalska, Wlodarczyk, Ruszczycki, Michalski, Piecuch, Wang, Wang, Tian, Penrad-Mobayed, Sachs, Ruan, Wei, Liu, Wilczynski, Plewczynski, Li, Ruan (bb0680) 2015; 163 Ma, Fu, Yu, Cui, Wang, Guo, Mao (bb0270) 2017; 121 Ishino, Shinagawa, Makino, Amemura, Nakata (bb0005) 1987; 169 Zhang, Luo, Zou, Wu, Jiang, Le, Zhao, Chen, Shao (bb0610) 2020; 12 Bi, Xia, Li, Lee, Xie, Liu, Qiu, Teng (bb0250) 2019; 11 Nakagawa, Gonda, Kamei, Cong, Hamada, Kitamura, Tada, Ishida, Aimiya, Furusawa, Nakano, Ohuchi (bb0230) 2016; 17 Liu, Li, Guo, Ni, Gao, Cao, Xia, Shi, Guo (bb0315) 2023; 15 Ostdiek, Ivey, Grant, Gopaldas, Grant (bb0395) 2015; 65 Zhu, Pan, Bei, Li, Liang, Xu, Fu (bb0695) 2020; 10 Chen, Mao, Xu, Weng, Mao, Ji (bb0200) 2019; 447 Cheng, Wei, Farbiak, Johnson, Dilliard, Siegwart (bb0300) 2020; 15 McAndrews, Xiao, Chronopoulos, LeBleu, Kugeratski, Kalluri (bb0480) 2021; 4 Chang, Chen, Glass, Gao, Mao, Wang, Xu (bb0130) 2019; 52 Du, Hou, Huang, Pang, Ruan, Wu, Xu, Zhang, Yin, He (bb0635) 2021; 11 Cyranoski (bb0065) 2016; 539 Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini, Zhang (bb0050) 2013; 339 Zhen, Li (bb0245) 2020; 27 Fineran, Charpentier (bb0030) 2012; 434 Kemp, Moore, Moser, Bernard, Teater, Smith, Rabaia, Gurley, Guinney, Busch, Shaknovich, Lobanenkov, Liggitt, Shmulevich, Melnick, Filippova (bb0685) 2014; 7 Rui, Varanasi, Mendes, Yamagata, Wilson, Green (bb0135) 2020; 20 Ye, Zhang, Xie, Xu, Xie, Yang, Shi, Zhang, Zhang, Chen, Jiang, Li (bb0645) 2020; 8 Zhang (bb0170) 2021; 236 Wu, Yang (bb0355) 2017; 29 Ruan, Zheng, An, Liu, Lovejoy, Hao, Zou, Lee, Yang, Lu, Morsch, Chung, Shi (bb0420) 2018; 54 Yim, Shim, Shin, Jeong, Kang, Kim, Eun, Lee, Conner, Factor, Moore, Johnson, Thorgeirsson, Lee (bb0605) 2018; 16 Ran, Cong, Yan, Scott, Gootenberg, Kriz, Zetsche, Shalem, Wu, Makarova, Koonin, Sharp, Zhang (bb0100) 2015; 520 Alsaiari, Patil, Alyami, Alamoudi, Aleisa, Merzaban, Li, Khashab (bb0365) 2018; 140 Luo, Xie, Wang, Huang, Tan, Sun, Li, Li, Liu, Zhang, Xu, Su, Ni, Jiang, Chang, Chen, Chen, Xu, Deng, Wang, Du, Chen (bb0590) 2018; 13 Veiseh, Kievit, Gunn, Ratner, Zhang (bb0310) 2009; 30 Duan, Ouyang, Wang, Xu, Xu, Wen, Xie, Liang, Xia (bb0375) 2021; 22 Yin, Sun, Pu, Yu, Feng, Dong, Zhou, Du, Zhang, Chen, Xu (bb0450) 2021; 7 Chen, Alphonse, Liu (bb0185) 2020; 12 Jo, Ringel-Scaia, McDaniel, Thomas, Zhang, Riffle, Allen, Davis (bb0305) 2020; 18 Alyami, Alsaiari, Li, Qutub, Aleisa, Sougrat, Merzaban, Khashab (bb0370) 2020; 142 Ryu, Kim, Park, Lee, Kim, Kim, Baek, Kim, Lee, Kim (bb0330) 2018; 14 Ran, Hsu, Wright, Agarwala, Scott, Zhang (bb0240) 2013; 8 Brown (bb0720) 2021; 22 Fontana, Martin, Lee, Schill, Hematti, Murphy (bb0235) 2019; 18 Wei, Cheng, Farbiak, Anderson, Langer, Siegwart (bb0020) 2020; 14 Guo, Smutok, Johnston, Walden, Ungerer, Peat, Newman, Parker, Nebl, Hepburn, Melman, Suderman, Katz, Alexandrov (bb0640) 2021; 12 Taharabaru, Yokoyama, Higashi, Mohammed, Inoue, Maeda, Niidome, Onodera, Motoyama (bb0140) 2020; 12 Lai, Xu, Zhu, Hua (bb0265) 2018; 13 Gao, Wu, Assaraf, Chen, Wang (bb0690) 2021; 57 Liu, Cheng, Wei, Yu, Johnson, Farbiak, Siegwart (bb0535) 2021; 20 Kanapathipillai (bb0725) 2018; 10 Yang, Tang, Jiang, Zhang, Wang, Mao (bb0350) 2019; 141 Ding, Wang, Han, Tian, Cheng, Luo, Zhao, Wang, Feng, Wang, Meng, Meng (bb0560) 2021; 9 Frangoul, Altshuler, Cappellini, Chen, Domm, Eustace, Foell, de la Fuente, Grupp, Handgretinger, Ho, Kattamis, Kernytsky, Lekstrom-Himes, Li, Locatelli, Mapara, de Montalembert, Rondelli, Sharma, Sheth, Soni, Steinberg, Wall, Yen, Corbacioglu (bb0080) 2021; 384 Lin, He, Liu, Feng, Huang, Sun, Deng (bb0580) 2020; 15 Zhang, Wang, Liu, Ren, Li, Jiang, Liu, Lovell, Zhang (bb0485) 2023; 357 Meisel (bb0085) 2021; 384 Huang, Zhou, Abbas, Li, Cui, Zhang, Wang (bb0470) 2022; 11 Foy, Jacoby, Bota, Hunter, Pan, Stawiski, Ma, Lu, Peng, Wang, Yuen, Dalmas, Heeringa, Sennino, Conroy, Bethune, Mende, White, Kukreja, Gunturu, Humphrey, Hussaini, An, Litterman, Quach, Ng, Lu, Smith, Campbell, Anaya, Skrdlant, Huang, Mendoza, Mathur, Dengler, Purandare, Moot, Yi, Funke, Sibley, Stallings-Schmitt, Oh, Chmielowski, Abedi, Yuan, Sosman, Lee, Schoenfeld, Baltimore, Heath, Franzusoff, Ribas, Rao, Mandl (bb0745) 2023; 615 Glass, Lee, Li, Xu (bb0115) 2018; 36 Li, Dai, Huang, Jin, Ning, Shen (bb0755) 2020; 12 Brendel, Guda, Renella, Bauer, Canver, Kim, Heeney, Klatt, Fogel, Milsom, Orkin, Gregory, Williams (bb0075) 2016; 126 Duan, Bao, Xie, Guo, Liu, Li, Liu, Li, Bai, Yan, Mu, Li, Wang, Lu (bb0545) 2022; 11 Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (bb0010) 2021; 71 Yang, Chou, Li, Hui, Liu, Sun, Zhang, Zhu, Tsai, Lai, Smalley, Zhang, Chen, Romero, Liu, Ke, Zou, Lee, Jonas, Ban, Weiss, Kohn, Chen, Chiou, Tseng (bb0225) 2020; 6 Deng, Li, Liu, Chen, Li, Chew, Leong, Cheng (bb0455) 2020; 6 Li, Yang, Weng, Zhang, Zhao, Guo, Hu, Shao, Wang, Hussain, Liang, Huang (bb0555) 2022; 9 Li, Zhang, Liu, Chen, Zhong, Ye, Wei, Zhao, Tang (bb0155) 2019; 31 Horodecka, Düchler (bb0380) 2021; 22 Yue, Zhou, Cheng, Xing (bb0440) 2018; 10 Liang, Li, Wang, Zhang, Wang, He, Li, Chen, Shaikh, Liu, Wu, Peng, Dang, Guo, He, Au, Lu, Zhu, Zhang, Lu, Zhang (bb0345) 2017; 147 Zhu, Liu, Lu, Zhang, Zhang, Chen, Deng (bb0730) 2020; 10 Mehta (bb0070) 2021; 384 Wang, Li, Lee, Chakraborty, Kim, Bao, Leong (bb0035) 2017; 117 Sun, Jiang, Lu, Reiff, Mo, Gu (bb0430) 2014; 136 Barrangou, Fremaux, Deveau, Richards, Boyaval, Moineau, Romero, Horvath (bb0025) 2007; 315 Martínez-Jiménez, Muiños, Sentís, Deu-Pons, Reyes-Salazar, Arnedo-Pac, Mularoni, Pich, Bonet, Kranas, Gonzalez-Perez, Lopez-Bigas (bb0660) 2020; 20 Zhang, Eshraghian, Jammal, Zhang, Zhu (bb0095) 2021; 133 Wang, Zhang, Xie, Wang, Tang, Zheng, Jiang (bb0145) 2017; 4 Zhang, Shen, Li, Cheng (bb0120) 2021; 11 Lipsick (bb0670) 2020; 12 Li, Hu, Chen (bb0015) 2018; 171 Wilbie, Walther, Mastrobattista (bb0060) 2019; 52 Wei, Shao, Liu, Xiong, Cui, Liu, Li (bb0320) 2022; 10 Islam, Park, Singh, Maharjan, Firdous, Cho, Kang, Yun, Choi, Cho (bb0540) 2014; 193 Lao, Li, Gao, Shao, Chi, Huang, Chakraborty, Ho, Jiang, Wang, Wang, Leong (bb0520) 2018; 5 Debaugny, Skok (bb0675) 2020; 61 Iyombe-Engembe, Ouellet, Barbeau, Rousseau, Chapdelaine, Lagüe, Tremblay (bb0735) 2016; 5 Yin, Kauffman, Anderson (bb0040) 2017; 16 Guo, Yang, Huang, Auguste, Moses (bb0280) 2019; 116 He, Zhang, Zhu, Song (bb0285) 2014; 9 Tao, Yi, Hu, Shao, Li (bb0390) 2021; 9 Zhao, Zhang, Yue, Li, Liu, Yu, Belyi, Yang, Feng, Hu (bb0710) 2015; 22 Wang, Zhang, Zhao, Zhang, Zhan, Chen, He, Cao, Hao, Wang, Quan, Ou (bb0595) 2022; 20 Lu, Xue, Deng, Zhou, Yu, Deng, Huang, Yi, Liang, Wang, Shen, Tong, Wang, Li, Song, Li, Su, Ding, Gong, Zhu, Wang, Zou, Zhang, Li, Zhou, Liu, Yu, Wang, Zhang, Yin, Xia, Zeng, Zhou, Ying, Chen, Wei, Li, Mok (bb0750) 2020; 26 Ma, Tian, Baryza, Luft, DeSimone (bb0275) 2015; 12 Sun, Ji, Hall, Hu, Wang, Beisel, Gu (bb0425) 2015; 54 Xu, Zheng, Cheng, Hu, Zhang, Zhou, Sun, Wang, Su, Zou, Song, Xia, Yi, Gao (bb0505) 2021; 19 Ousterout, Kabadi, Thakore, Majoros, Reddy, Gersbach (bb0220) 2015; 6 Tu, Deng, Kong, Wang, Yang, Hu, Hu, Yang, Zhang (bb0465) 2020; 12 Xu, Chen, Luo, Zhang, Zhao, Lu, Czarna, Gu, Wang (bb0175) 2021; 168 Zhang, Ren, Liu, Li, Wang, Zhang (bb0490) 2022; 11 Zhang, Wang, Liu, Ren, Liu, Jiang, Zhang (bb0500) 2023; 19 Lu, Yang, He, Gong, Lai, Xie, Tao, Xu, Wang, Zhang, Cao, Zhou, Zhong, Zhao (bb0125) 2019; 15 Liu, Xu, Koivisto, Zhou, Jacquemet, Rosenholm, Zhang (bb0150) 2021; 13 Gao, Liu, Yang, Cheng, Chu, Xu, Meng, Fan, Shi, Liu (bb0510) 2013; 8 Sánchez-Rivera, Jacks (bb0665) 2015; 15 Xing, Meng (bb0055) 2020; 41 Kim, Yang, Oh, Hong, Seo, Jang (bb0385) 2017; 266 Pellegrini, Strambi, Zipoli, Hägg-Olofsson, Buoncervello, Linder, De Milito (bb0575) 2014; 10 Hong, Zheng, Zhang, Huang, Cheng, Zhang (bb0400) 2020; 6 Li, Yu, Chen, Lin, Zhu, Liu, He, Chen, He (bb0625) 2022; 20 Zou, Sun, Yang, Zheng, Shimoni, Ruan, Wang, Zhang, Yin, Huang, Tao, Park, Liang, Leong, Shi (bb0090) 2022; 8 Zhou, Cui, Ying, Yu (bb0445) 2018; 57 Wang, Wu, Tucker, Shah, Lu, Lu (bb0325) 2020; 18 Zhao, Li, Zhang, Huang, Zhang, Chen, Xu, Chu, Zhang, Yang (bb0460) 2022; 16 Sharma, Sharma, Bhattacharya, Lee, Chakraborty (bb0740) 2021; 29 Chen, Liu, Chen, Liu, Wang, Chen, Deng, Zhang, Liu, Hong, Zhou (bb0260) 2017 Chira, Gulei, Hajitou, Berindan-Neagoe (bb0705) 2018; 36 Mahfouz, Piatek, Stewart (bb0180) 2014; 12 Xu, Liu, Wang, Koivisto, Zhou, Shu, Zhang (bb0205) 2021; 176 Lin, Wu, Gu, Huang, Tong, Huang, Tan (bb0650) 2018; 5 Yu, Liu, Cheng, Kuang, Zhang, Yan (bb0210) 2021; 194 Zhang, Qin, An, Zheng, Wen, Chen, Liu, Lv, Yang, Xu, Gao, Wu (bb0655) 2021; 20 Zhan, Rindtorff, Betge, Ebert, Boutros (bb0045) 2019; 55 Yu, Wang, Zhou, Li, Wang, Chi, Wang, Lin, He, Wang (bb0255) 2020; 10 Martin, Dudek-Peric, Garg, Roose, Dem Wang (10.1016/j.jconrel.2023.08.028_bb0035) 2017; 117 Sharma (10.1016/j.jconrel.2023.08.028_bb0740) 2021; 29 Liu (10.1016/j.jconrel.2023.08.028_bb0535) 2021; 20 Meisel (10.1016/j.jconrel.2023.08.028_bb0085) 2021; 384 Zhan (10.1016/j.jconrel.2023.08.028_bb0045) 2019; 55 Liu (10.1016/j.jconrel.2023.08.028_bb0150) 2021; 13 Zhu (10.1016/j.jconrel.2023.08.028_bb0695) 2020; 10 Wang (10.1016/j.jconrel.2023.08.028_bb0145) 2017; 4 Ju (10.1016/j.jconrel.2023.08.028_bb0215) 2019; 11 Tao (10.1016/j.jconrel.2023.08.028_bb0390) 2021; 9 Li (10.1016/j.jconrel.2023.08.028_bb0410) 2021; 60 Sung (10.1016/j.jconrel.2023.08.028_bb0010) 2021; 71 Chang (10.1016/j.jconrel.2023.08.028_bb0130) 2019; 52 Xu (10.1016/j.jconrel.2023.08.028_bb0505) 2021; 19 Xu (10.1016/j.jconrel.2023.08.028_bb0205) 2021; 176 Zhang (10.1016/j.jconrel.2023.08.028_bb0500) 2023; 19 Tang (10.1016/j.jconrel.2023.08.028_bb0680) 2015; 163 Taharabaru (10.1016/j.jconrel.2023.08.028_bb0140) 2020; 12 Li (10.1016/j.jconrel.2023.08.028_bb0755) 2020; 12 Duan (10.1016/j.jconrel.2023.08.028_bb0375) 2021; 22 Peng (10.1016/j.jconrel.2023.08.028_bb0525) 2019; 143 Foy (10.1016/j.jconrel.2023.08.028_bb0745) 2023; 615 Huang (10.1016/j.jconrel.2023.08.028_bb0470) 2022; 11 Li (10.1016/j.jconrel.2023.08.028_bb0625) 2022; 20 Lao (10.1016/j.jconrel.2023.08.028_bb0520) 2018; 5 Sánchez-Rivera (10.1016/j.jconrel.2023.08.028_bb0665) 2015; 15 Bi (10.1016/j.jconrel.2023.08.028_bb0250) 2019; 11 Alsaiari (10.1016/j.jconrel.2023.08.028_bb0365) 2018; 140 Tagliafierro (10.1016/j.jconrel.2023.08.028_bb0105) 2019; 145 Wilbie (10.1016/j.jconrel.2023.08.028_bb0060) 2019; 52 Zhou (10.1016/j.jconrel.2023.08.028_bb0445) 2018; 57 Barati (10.1016/j.jconrel.2023.08.028_bb0515) 2016; 223 Gao (10.1016/j.jconrel.2023.08.028_bb0510) 2013; 8 Chira (10.1016/j.jconrel.2023.08.028_bb0705) 2018; 36 Zou (10.1016/j.jconrel.2023.08.028_bb0090) 2022; 8 Lin (10.1016/j.jconrel.2023.08.028_bb0650) 2018; 5 Kanapathipillai (10.1016/j.jconrel.2023.08.028_bb0725) 2018; 10 Lin (10.1016/j.jconrel.2023.08.028_bb0580) 2020; 15 Zhen (10.1016/j.jconrel.2023.08.028_bb0550) 2020; 31 Liu (10.1016/j.jconrel.2023.08.028_bb0110) 2017; 266 Chen (10.1016/j.jconrel.2023.08.028_bb0185) 2020; 12 Ma (10.1016/j.jconrel.2023.08.028_bb0270) 2017; 121 Yan (10.1016/j.jconrel.2023.08.028_bb0585) 2016; 6 Rosenblum (10.1016/j.jconrel.2023.08.028_bb0295) 2020; 6 Zhang (10.1016/j.jconrel.2023.08.028_bb0655) 2021; 20 Li (10.1016/j.jconrel.2023.08.028_bb0155) 2019; 31 Yu (10.1016/j.jconrel.2023.08.028_bb0210) 2021; 194 Yin (10.1016/j.jconrel.2023.08.028_bb0450) 2021; 7 Ma (10.1016/j.jconrel.2023.08.028_bb0435) 2021; 17 Cheng (10.1016/j.jconrel.2023.08.028_bb0300) 2020; 15 Wang (10.1016/j.jconrel.2023.08.028_bb0415) 2018; 57 Chen (10.1016/j.jconrel.2023.08.028_bb0200) 2019; 447 Wang (10.1016/j.jconrel.2023.08.028_bb0595) 2022; 20 Du (10.1016/j.jconrel.2023.08.028_bb0635) 2021; 11 Zhang (10.1016/j.jconrel.2023.08.028_bb0170) 2021; 236 Tu (10.1016/j.jconrel.2023.08.028_bb0465) 2020; 12 Ousterout (10.1016/j.jconrel.2023.08.028_bb0220) 2015; 6 Veiseh (10.1016/j.jconrel.2023.08.028_bb0310) 2009; 30 Wu (10.1016/j.jconrel.2023.08.028_bb0355) 2017; 29 Zhan (10.1016/j.jconrel.2023.08.028_bb0700) 2018; 7 Hong (10.1016/j.jconrel.2023.08.028_bb0400) 2020; 6 Zhen (10.1016/j.jconrel.2023.08.028_bb0245) 2020; 27 Cong (10.1016/j.jconrel.2023.08.028_bb0050) 2013; 339 Zhang (10.1016/j.jconrel.2023.08.028_bb0095) 2021; 133 Horodecka (10.1016/j.jconrel.2023.08.028_bb0380) 2021; 22 Kim (10.1016/j.jconrel.2023.08.028_bb0385) 2017; 266 Kanvinde (10.1016/j.jconrel.2023.08.028_bb0165) 2022; 11 Duan (10.1016/j.jconrel.2023.08.028_bb0545) 2022; 11 Guo (10.1016/j.jconrel.2023.08.028_bb0640) 2021; 12 Brown (10.1016/j.jconrel.2023.08.028_bb0720) 2021; 22 Cyranoski (10.1016/j.jconrel.2023.08.028_bb0065) 2016; 539 Guo (10.1016/j.jconrel.2023.08.028_bb0280) 2019; 116 Pan (10.1016/j.jconrel.2023.08.028_bb0495) 2019; 5 Zhang (10.1016/j.jconrel.2023.08.028_bb0405) 2019; 58 Zhang (10.1016/j.jconrel.2023.08.028_bb0620) 2020; 393 Fineran (10.1016/j.jconrel.2023.08.028_bb0030) 2012; 434 Ostdiek (10.1016/j.jconrel.2023.08.028_bb0395) 2015; 65 Ruan (10.1016/j.jconrel.2023.08.028_bb0600) 2022; 351 Zhang (10.1016/j.jconrel.2023.08.028_bb0630) 2020; 393 Zheng (10.1016/j.jconrel.2023.08.028_bb0615) 2018; 111 Sun (10.1016/j.jconrel.2023.08.028_bb0430) 2014; 136 Yin (10.1016/j.jconrel.2023.08.028_bb0040) 2017; 16 Luo (10.1016/j.jconrel.2023.08.028_bb0590) 2018; 13 Li (10.1016/j.jconrel.2023.08.028_bb0015) 2018; 171 Ye (10.1016/j.jconrel.2023.08.028_bb0645) 2020; 8 Jo (10.1016/j.jconrel.2023.08.028_bb0305) 2020; 18 Zhang (10.1016/j.jconrel.2023.08.028_bb0490) 2022; 11 Zhu (10.1016/j.jconrel.2023.08.028_bb0730) 2020; 10 Yu (10.1016/j.jconrel.2023.08.028_bb0255) 2020; 10 Luther (10.1016/j.jconrel.2023.08.028_bb0160) 2018; 15 Ryu (10.1016/j.jconrel.2023.08.028_bb0330) 2018; 14 Yang (10.1016/j.jconrel.2023.08.028_bb0350) 2019; 141 Zhang (10.1016/j.jconrel.2023.08.028_bb0335) 2019; 40 Liang (10.1016/j.jconrel.2023.08.028_bb0345) 2017; 147 McAndrews (10.1016/j.jconrel.2023.08.028_bb0480) 2021; 4 Zhang (10.1016/j.jconrel.2023.08.028_bb0485) 2023; 357 Ran (10.1016/j.jconrel.2023.08.028_bb0100) 2015; 520 Wei (10.1016/j.jconrel.2023.08.028_bb0020) 2020; 14 Lu (10.1016/j.jconrel.2023.08.028_bb0125) 2019; 15 Mehta (10.1016/j.jconrel.2023.08.028_bb0070) 2021; 384 He (10.1016/j.jconrel.2023.08.028_bb0285) 2014; 9 Wang (10.1016/j.jconrel.2023.08.028_bb0325) 2020; 18 Gao (10.1016/j.jconrel.2023.08.028_bb0690) 2021; 57 Deng (10.1016/j.jconrel.2023.08.028_bb0455) 2020; 6 Ruan (10.1016/j.jconrel.2023.08.028_bb0420) 2018; 54 Kemp (10.1016/j.jconrel.2023.08.028_bb0685) 2014; 7 Wang (10.1016/j.jconrel.2023.08.028_bb0290) 2022; 153 Wang (10.1016/j.jconrel.2023.08.028_bb0340) 2015; 3 Rok (10.1016/j.jconrel.2023.08.028_bb0565) 2022 Zhang (10.1016/j.jconrel.2023.08.028_bb0120) 2021; 11 Iyombe-Engembe (10.1016/j.jconrel.2023.08.028_bb0735) 2016; 5 Ma (10.1016/j.jconrel.2023.08.028_bb0275) 2015; 12 Yue (10.1016/j.jconrel.2023.08.028_bb0440) 2018; 10 Zhao (10.1016/j.jconrel.2023.08.028_bb0460) 2022; 16 Xing (10.1016/j.jconrel.2023.08.028_bb0055) 2020; 41 Alyami (10.1016/j.jconrel.2023.08.028_bb0370) 2020; 142 Zhang (10.1016/j.jconrel.2023.08.028_bb0610) 2020; 12 Yang (10.1016/j.jconrel.2023.08.028_bb0225) 2020; 6 Wei (10.1016/j.jconrel.2023.08.028_bb0320) 2022; 10 Li (10.1016/j.jconrel.2023.08.028_bb0555) 2022; 9 Brendel (10.1016/j.jconrel.2023.08.028_bb0075) 2016; 126 Rui (10.1016/j.jconrel.2023.08.028_bb0135) 2020; 20 Poddar (10.1016/j.jconrel.2023.08.028_bb0475) 2020; 56 Xiao (10.1016/j.jconrel.2023.08.028_bb0195) 2017; 170 Batır (10.1016/j.jconrel.2023.08.028_bb0715) 2019; 46 Ding (10.1016/j.jconrel.2023.08.028_bb0560) 2021; 9 Lu (10.1016/j.jconrel.2023.08.028_bb0750) 2020; 26 Xu (10.1016/j.jconrel.2023.08.028_bb0175) 2021; 168 Nakagawa (10.1016/j.jconrel.2023.08.028_bb0230) 2016; 17 Glass (10.1016/j.jconrel.2023.08.028_bb0115) 2018; 36 Tang (10.1016/j.jconrel.2023.08.028_bb0190) 2021; 33 Lipsick (10.1016/j.jconrel.2023.08.028_bb0670) 2020; 12 Mahfouz (10.1016/j.jconrel.2023.08.028_bb0180) 2014; 12 Martin (10.1016/j.jconrel.2023.08.028_bb0570) 2017; 13 Chen (10.1016/j.jconrel.2023.08.028_bb0260) 2017 Zhao (10.1016/j.jconrel.2023.08.028_bb0710) 2015; 22 Jiang (10.1016/j.jconrel.2023.08.028_bb0360) 2019; 197 Lai (10.1016/j.jconrel.2023.08.028_bb0265) 2018; 13 Ran (10.1016/j.jconrel.2023.08.028_bb0240) 2013; 8 Ishino (10.1016/j.jconrel.2023.08.028_bb0005) 1987; 169 Kolosnjaj-Tabi (10.1016/j.jconrel.2023.08.028_bb0530) 2017; 126 Debaugny (10.1016/j.jconrel.2023.08.028_bb0675) 2020; 61 Yim (10.1016/j.jconrel.2023.08.028_bb0605) 2018; 16 Pellegrini (10.1016/j.jconrel.2023.08.028_bb0575) 2014; 10 Martínez-Jiménez (10.1016/j.jconrel.2023.08.028_bb0660) 2020; 20 Liu (10.1016/j.jconrel.2023.08.028_bb0315) 2023; 15 Islam (10.1016/j.jconrel.2023.08.028_bb0540) 2014; 193 Fontana (10.1016/j.jconrel.2023.08.028_bb0235) 2019; 18 Sun (10.1016/j.jconrel.2023.08.028_bb0425) 2015; 54 Barrangou (10.1016/j.jconrel.2023.08.028_bb0025) 2007; 315 Frangoul (10.1016/j.jconrel.2023.08.028_bb0080) 2021; 384 |
References_xml | – volume: 11 start-page: 614 year: 2021 end-page: 648 ident: bb0120 article-title: Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing publication-title: Theranostics – volume: 30 start-page: 649 year: 2009 end-page: 657 ident: bb0310 article-title: A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells publication-title: Biomaterials – volume: 11 start-page: 34717 year: 2019 end-page: 34724 ident: bb0215 article-title: Gold Nanocluster-Mediated Efficient Delivery of Cas9 Protein through pH-Induced Assembly-Disassembly for Inactivation of Virus Oncogenes publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 57362 year: 2020 end-page: 57372 ident: bb0610 article-title: Co-delivery of Sorafenib and CRISPR/Cas9 Based on Targeted Core-Shell Hollow Mesoporous Organosilica Nanoparticles for Synergistic HCC Therapy publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 905 year: 2018 end-page: 913 ident: bb0160 article-title: Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges publication-title: Expert Opin. Drug Deliv. – volume: 143 start-page: 37 year: 2019 end-page: 67 ident: bb0525 article-title: Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy publication-title: Adv. Drug Deliv. Rev. – volume: 46 start-page: 6471 year: 2019 end-page: 6484 ident: bb0715 article-title: Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3 publication-title: Mol. Biol. Rep. – volume: 15 start-page: 12809 year: 2023 end-page: 12821 ident: bb0315 article-title: Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 1491 year: 2018 end-page: 1496 ident: bb0415 article-title: Thermo-triggered Release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy publication-title: Angew. Chem. Int. Ed. Eng. – volume: 12 start-page: 7137 year: 2021 ident: bb0640 article-title: Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices publication-title: Nat. Commun. – volume: 20 start-page: 401 year: 2022 ident: bb0625 article-title: Engineering cancer cell membrane-camouflaged metal complex for efficient targeting therapy of breast cancer publication-title: J. Nanobiotechnol. – volume: 5 start-page: 1700540 year: 2018 ident: bb0520 article-title: HPV Oncogene Manipulation Using Nonvirally Delivered CRISPR/Cas9 or Natronobacterium gregoryi Argonaute publication-title: Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany) – volume: 163 start-page: 1611 year: 2015 end-page: 1627 ident: bb0680 article-title: CTCF-Mediated human 3D genome architecture reveals chromatin topology for transcription publication-title: Cell – volume: 19 start-page: 355 year: 2021 ident: bb0505 article-title: Chemo-photodynamic therapy with light-triggered disassembly of theranostic nanoplatform in combination with checkpoint blockade for immunotherapy of hepatocellular carcinoma publication-title: J. Nanobiotechnol. – volume: 9 start-page: 590 year: 2022 end-page: 601 ident: bb0555 article-title: Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy publication-title: Bioact. Mater. – volume: 615 start-page: 687 year: 2023 end-page: 696 ident: bb0745 article-title: Non-viral precision T publication-title: Nature – volume: 22 year: 2021 ident: bb0720 article-title: Oncogenes, Proto-Oncogenes, and Lineage Restriction of Cancer Stem Cells publication-title: Int. J. Mol. Sci. – volume: 539 start-page: 479 year: 2016 ident: bb0065 article-title: CRISPR gene-editing tested in a person for the first time publication-title: Nature – volume: 52 start-page: 665 year: 2019 end-page: 675 ident: bb0130 article-title: Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing publication-title: Acc. Chem. Res. – volume: 18 start-page: 34 year: 2020 ident: bb0325 article-title: Triazine-cored polymeric vectors for antisense oligonucleotide delivery in vitro and in vivo publication-title: J. Nanobiotechnol. – volume: 520 start-page: 186 year: 2015 end-page: 191 ident: bb0100 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature – volume: 33 start-page: e2006003 year: 2021 ident: bb0190 article-title: Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy publication-title: Adv. Mater. (Deerfield Beach, Fla.) – volume: 12 start-page: 21386 year: 2020 end-page: 21397 ident: bb0140 article-title: Genome Editing in a Wide Area of the Brain Using Dendrimer-Based Ternary Polyplexes of Cas9 Ribonucleoprotein publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2020 ident: bb0695 article-title: Mutant p53 in Cancer Progression and Targeted Therapies publication-title: Front. Oncol. – volume: 6 year: 2020 ident: bb0225 article-title: Supramolecular nanosubstrate-mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies publication-title: Sci. Adv. – volume: 141 start-page: 3782 year: 2019 end-page: 3786 ident: bb0350 article-title: Nanoscale ATP-Responsive Zeolitic Imidazole Framework-90 as a General Platform for Cytosolic Protein Delivery and Genome Editing publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 1824 year: 2015 end-page: 1836 ident: bb0710 article-title: Pontin, a new mutant p53-binding protein, promotes gain-of-function of mutant p53 publication-title: Cell Death Differ. – volume: 12 start-page: 3518 year: 2015 end-page: 3526 ident: bb0275 article-title: Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo publication-title: Mol. Pharm. – volume: 15 start-page: 387 year: 2015 end-page: 395 ident: bb0665 article-title: Applications of the CRISPR-Cas9 system in cancer biology publication-title: Nat. Rev. Cancer – volume: 18 start-page: 455 year: 2019 end-page: 464 ident: bb0235 article-title: Mineral-Coated Microparticles Enhance mRNA-Based Transfection of Human Bone Marrow Cells publication-title: Mol. Therap. Nucl. Acids – volume: 266 start-page: 8 year: 2017 end-page: 16 ident: bb0385 article-title: Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. – volume: 11 year: 2022 ident: bb0165 article-title: Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer publication-title: Biotech (Basel (Switzerland)) – volume: 5 year: 2016 ident: bb0735 article-title: Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method publication-title: Mol. Therap. Nucl. Acids – volume: 12 start-page: 1006 year: 2014 end-page: 1014 ident: bb0180 article-title: Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives publication-title: Plant Biotechnol. J. – volume: 29 start-page: 571 year: 2021 end-page: 586 ident: bb0740 article-title: CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases publication-title: Mol. Ther. – volume: 117 start-page: 9874 year: 2017 end-page: 9906 ident: bb0035 article-title: CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery publication-title: Chem. Rev. – start-page: (2) year: 2022 ident: bb0565 article-title: The Anticancer Potential of Doxycycline and Minocycline-A Comparative Study on Amelanotic Melanoma Cell Lines publication-title: Int. J. Mol. Sci. – volume: 15 start-page: 313 year: 2020 end-page: 320 ident: bb0300 article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing publication-title: Nat. Nanotechnol. – volume: 3 start-page: 1114 year: 2015 end-page: 1123 ident: bb0340 article-title: Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes publication-title: Biomater. Sci. – volume: 133 year: 2021 ident: bb0095 article-title: CRISPR technology: The engine that drives cancer therapy publication-title: Biomed. & Pharmacotherap. = Biomed. & Pharmacotherap. – volume: 54 start-page: 12029 year: 2015 end-page: 12033 ident: bb0425 article-title: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing publication-title: Angew. Chem. Int. Ed. Eng. – volume: 393 year: 2020 ident: bb0620 article-title: Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect publication-title: Chem. Eng. J. – volume: 31 start-page: e1901570 year: 2019 ident: bb0155 article-title: Encapsulation of plasmid DNA by nanoscale metal-organic frameworks for efficient gene transportation and expression publication-title: Adv. Mater. (Deerfield Beach, Fla.) – volume: 40 year: 2019 ident: bb0335 article-title: Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing publication-title: Macromol. Rapid Commun. – volume: 71 start-page: 209 year: 2021 end-page: 249 ident: bb0010 article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries publication-title: CA Cancer J. Clin. – volume: 10 start-page: 1451 year: 2020 ident: bb0730 article-title: Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer publication-title: Front. Oncol. – volume: 140 start-page: 143 year: 2018 end-page: 146 ident: bb0365 article-title: Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 83 year: 2022 ident: bb0595 article-title: Homologous targeting nanoparticles for enhanced PDT against osteosarcoma HOS cells and the related molecular mechanisms publication-title: J. Nanobiotechnol. – volume: 14 start-page: 9243 year: 2020 end-page: 9262 ident: bb0020 article-title: Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for In Vivo CRISPR/Cas-Based Genome Editing publication-title: ACS Nano – volume: 11 start-page: 1 year: 2022 end-page: 14 ident: bb0545 article-title: Targeted core-shell nanoparticles for precise CTCF gene insert in treatment of metastatic breast cancer publication-title: Bioact. Mater. – volume: 19 year: 2023 ident: bb0500 article-title: CRISPR/Cas9 and Chlorophyll Coordination Micelles for Cancer Treatment by Genome Editing and Photodynamic Therapy publication-title: Small – volume: 10 start-page: 562 year: 2014 end-page: 571 ident: bb0575 article-title: Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies publication-title: Autophagy – volume: 36 start-page: 653 year: 2018 end-page: 660 ident: bb0705 article-title: Restoring the p53 'Guardian' Phenotype in p53-deficient tumor cells with CRISPR/Cas9 publication-title: Trends Biotechnol. – volume: 55 start-page: 106 year: 2019 end-page: 119 ident: bb0045 article-title: CRISPR/Cas9 for cancer research and therapy publication-title: Semin. Cancer Biol. – volume: 142 start-page: 1715 year: 2020 end-page: 1720 ident: bb0370 article-title: Cell-Type-Specific CRISPR/Cas9 Delivery by Biomimetic Metal Organic Frameworks publication-title: J. Am. Chem. Soc. – volume: 12 year: 2020 ident: bb0185 article-title: Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – start-page: 27 year: 2017 ident: bb0260 article-title: Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles publication-title: Adv. Funct. Mater. – volume: 447 start-page: 48 year: 2019 end-page: 55 ident: bb0200 article-title: CRISPR-Cas9 for cancer therapy: Opportunities and challenges publication-title: Cancer Lett. – volume: 315 start-page: 1709 year: 2007 end-page: 1712 ident: bb0025 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science (New York, N.Y.) – volume: 171 start-page: 207 year: 2018 end-page: 218 ident: bb0015 article-title: Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities publication-title: Biomaterials – volume: 111 start-page: 492 year: 2018 end-page: 502 ident: bb0615 article-title: Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy publication-title: Eur. J. Pharm. Sci. – volume: 41 start-page: 583 year: 2020 end-page: 587 ident: bb0055 article-title: CRISPR-cas9: a powerful tool towards precision medicine in cancer treatment publication-title: Acta Pharmacol. Sin. – volume: 236 start-page: 2459 year: 2021 end-page: 2481 ident: bb0170 article-title: CRISPR/Cas gene therapy publication-title: J. Cell. Physiol. – volume: 26 start-page: 732 year: 2020 end-page: 740 ident: bb0750 article-title: Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer publication-title: Nat. Med. – volume: 58 start-page: 12404 year: 2019 end-page: 12408 ident: bb0405 article-title: Triple-Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases publication-title: Angew. Chem. Int. Ed. Eng. – volume: 8 start-page: 2966 year: 2020 end-page: 2976 ident: bb0645 article-title: An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells publication-title: Biomater. Sci. – volume: 194 start-page: 48 year: 2021 end-page: 55 ident: bb0210 article-title: Latest progress in the study of nanoparticle-based delivery of the CRISPR/Cas9 system publication-title: Methods (San Diego, Calif.) – volume: 384 start-page: 252 year: 2021 end-page: 260 ident: bb0080 article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia publication-title: N. Engl. J. Med. – volume: 18 start-page: 16 year: 2020 ident: bb0305 article-title: Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR-Cas9 plasmid publication-title: J. Nanobiotechnol. – volume: 20 start-page: 555 year: 2020 end-page: 572 ident: bb0660 article-title: A compendium of mutational cancer driver genes publication-title: Nat. Rev. Cancer – volume: 7 start-page: 1798 year: 2018 end-page: 1807 ident: bb0700 article-title: Synthesizing a genetic sensor based on CRISPR-Cas9 for Specifically Killing p53-Deficient Cancer Cells publication-title: ACS Synth. Biol. – volume: 147 start-page: 68 year: 2017 end-page: 85 ident: bb0345 article-title: Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma publication-title: Biomaterials – volume: 9 start-page: 94 year: 2021 end-page: 100 ident: bb0390 article-title: Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing publication-title: J. Mater. Chem. B – volume: 15 start-page: 593 year: 2019 end-page: 601 ident: bb0125 article-title: Generation of Cancer-Specific Cytotoxic PD-1(-) T Cells Using Liposome-Encapsulated CRISPR/Cas System with Dendritic/Tumor Fusion Cells publication-title: J. Biomed. Nanotechnol. – volume: 121 start-page: 55 year: 2017 end-page: 63 ident: bb0270 article-title: Targeted delivery of in situ PCR-amplified Sleeping Beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells publication-title: Biomaterials – volume: 351 start-page: 739 year: 2022 end-page: 751 ident: bb0600 article-title: Brain-targeted CRISPR/Cas9 nanomedicine for effective glioblastoma therapy publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. – volume: 7 start-page: 2049 year: 2021 end-page: 2062 ident: bb0450 article-title: Ultrasound-controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma publication-title: ACS Cent. Sci. – volume: 4 start-page: 1700175 year: 2017 ident: bb0145 article-title: Genome editing for cancer therapy: delivery of Cas9 Protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier publication-title: Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany) – volume: 12 start-page: 16018 year: 2020 end-page: 16030 ident: bb0465 article-title: Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death publication-title: ACS Appl. Mater. Interfaces – volume: 193 start-page: 74 year: 2014 end-page: 89 ident: bb0540 article-title: Major degradable polycations as carriers for DNA and siRNA publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. – volume: 168 start-page: 3 year: 2021 end-page: 29 ident: bb0175 article-title: Rational designs of in vivo CRISPR-Cas delivery systems publication-title: Adv. Drug Deliv. Rev. – volume: 5 start-page: 1700611 year: 2018 ident: bb0650 article-title: Exosome-Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs publication-title: Adv. Sci. (Weinh) – volume: 12 year: 2020 ident: bb0670 article-title: A History of Cancer Research: Tumor Suppressor Genes publication-title: Cold Spring Harb. Perspect. Biol. – volume: 52 start-page: 1555 year: 2019 end-page: 1564 ident: bb0060 article-title: Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing publication-title: Acc. Chem. Res. – volume: 57 start-page: 10268 year: 2018 end-page: 10272 ident: bb0445 article-title: Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing publication-title: Angew. Chem. Int. Ed. Eng. – volume: 8 start-page: eabm8011 year: 2022 ident: bb0090 article-title: Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy publication-title: Sci. Adv. – volume: 17 year: 2021 ident: bb0435 article-title: Recent advances in 2D material-mediated immuno-combined cancer therapy publication-title: Small (Weinheim an der Bergstrasse, Germany) – volume: 60 start-page: 21200 year: 2021 end-page: 21204 ident: bb0410 article-title: Hypoxia-responsive gene editing to reduce tumor thermal tolerance for mild-photothermal therapy publication-title: Angew. Chem. Int. Ed. Eng. – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: bb0050 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science (New York, N.Y.) – volume: 116 start-page: 18295 year: 2019 end-page: 18303 ident: bb0280 article-title: Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 4229 year: 2013 end-page: 4246 ident: bb0510 article-title: The impact of PEGylation patterns on the in vivo biodistribution of mixed shell micelles publication-title: Int. J. Nanomedicine – volume: 14 start-page: 2095 year: 2018 end-page: 2102 ident: bb0330 article-title: Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy publication-title: Nanomedicine – volume: 16 start-page: 1713 year: 2018 end-page: 1723 ident: bb0605 article-title: Integrated Genomic Comparison of Mouse Models Reveals Their Clinical Resemblance to Human Liver Cancer publication-title: Mol. Cancer Res. : MCR – volume: 11 year: 2019 ident: bb0250 article-title: Liposomal Vitamin D(3) as an Anti-aging Agent for the Skin publication-title: Pharmaceutics – volume: 11 start-page: 3272 year: 2021 end-page: 3285 ident: bb0635 article-title: Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response publication-title: Acta Pharm. Sin. B – volume: 10 start-page: 1291 year: 2022 end-page: 1300 ident: bb0320 article-title: Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy publication-title: J. Mater. Chem. B – volume: 17 start-page: 387 year: 2016 end-page: 397 ident: bb0230 article-title: X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface publication-title: Sci. Technol. Adv. Mater. – volume: 13 start-page: 6603 year: 2018 end-page: 6623 ident: bb0265 article-title: Highly efficient siRNA transfection in macrophages using apoptotic body-mimic Ca-PS lipopolyplex publication-title: Int. J. Nanomedicine – volume: 56 start-page: 15406 year: 2020 end-page: 15409 ident: bb0475 article-title: ZIF-C for targeted RNA interference and CRISPR/Cas9 based gene editing in prostate cancer publication-title: Chem. Commun. (Camb.) – volume: 357 start-page: 210 year: 2023 end-page: 221 ident: bb0485 article-title: Metal coordination micelles for anti-cancer treatment by gene-editing and phototherapy publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. – volume: 15 start-page: 5377 year: 2020 end-page: 5387 ident: bb0580 article-title: Hybrid Hydrogels for Synergistic Periodontal Antibacterial Treatment with Sustained Drug Release and NIR-Responsive Photothermal Effect publication-title: Int. J. Nanomedicine – volume: 13 start-page: 1512 year: 2017 end-page: 1527 ident: bb0570 article-title: An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF(V600E) inhibitor-resistant metastatic melanoma cells publication-title: Autophagy – volume: 13 start-page: 291 year: 2018 end-page: 302 ident: bb0590 article-title: Adeno-associated Virus-Mediated RNAi against Mutant alleles attenuates abnormal calvarial phenotypes in an apert syndrome mouse model publication-title: Mol. Therap. Nucl. Acids – volume: 10 year: 2018 ident: bb0725 article-title: Treating p53 Mutant Aggregation-Associated Cancer publication-title: Cancers – volume: 126 start-page: 123 year: 2017 end-page: 137 ident: bb0530 article-title: Nanoparticle-based hyperthermia, a local treatment modulating the tumor extracellular matrix publication-title: Pharmacol. Res. – volume: 384 year: 2021 ident: bb0070 article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia publication-title: N. Engl. J. Med. – volume: 20 start-page: 126 year: 2021 ident: bb0655 article-title: Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer publication-title: Mol. Cancer – volume: 136 start-page: 14722 year: 2014 end-page: 14725 ident: bb0430 article-title: Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery publication-title: J. Am. Chem. Soc. – volume: 223 start-page: 126 year: 2016 end-page: 136 ident: bb0515 article-title: Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. – volume: 393 year: 2020 ident: bb0630 article-title: Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect publication-title: Chem. Eng. J. – volume: 6 start-page: 6244 year: 2015 ident: bb0220 article-title: Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy publication-title: Nat. Commun. – volume: 29 year: 2017 ident: bb0355 article-title: Metal-Organic Framework (MOF)-Based Drug/Cargo delivery and cancer therapy publication-title: Adv. Mater. (Deerfield Beach, Fla.) – volume: 5 start-page: eaav7199 year: 2019 ident: bb0495 article-title: Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform publication-title: Sci. Adv. – volume: 126 start-page: 3868 year: 2016 end-page: 3878 ident: bb0075 article-title: Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype publication-title: J. Clin. Invest. – volume: 11 year: 2022 ident: bb0470 article-title: A Cancer Cell Membrane-Derived Biomimetic Nanocarrier for Synergistic Photothermal/Gene Therapy by Efficient Delivery of CRISPR/Cas9 and Gold Nanorods publication-title: Adv. Healthc. Mater. – volume: 12 start-page: 808 year: 2020 end-page: 824 ident: bb0755 article-title: Low-abundance mutations in colorectal cancer patients and healthy adults publication-title: Aging – volume: 22 year: 2021 ident: bb0380 article-title: CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles publication-title: Int. J. Mol. Sci. – volume: 16 start-page: 13821 year: 2022 end-page: 13833 ident: bb0460 article-title: HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy publication-title: ACS Nano – volume: 9 start-page: 6347 year: 2021 end-page: 6356 ident: bb0560 article-title: Substance P containing peptide gene delivery vectors for specifically transfecting glioma cells mediated by a neurokinin-1 receptor publication-title: J. Mater. Chem. B – volume: 6 start-page: 2337 year: 2016 end-page: 2351 ident: bb0585 article-title: NIR-laser-controlled drug release from DOX/IR-780-Loaded temperature-sensitive-liposomes for chemo-photothermal synergistic tumor therapy publication-title: Theranostics – volume: 22 start-page: 3360 year: 2021 end-page: 3368 ident: bb0375 article-title: Exosomes as Targeted Delivery Platform of CRISPR/Cas9 for Therapeutic Genome Editing publication-title: Chembiochem : Eur. J. Chem. Biol. – volume: 16 start-page: 387 year: 2017 end-page: 399 ident: bb0040 article-title: Delivery technologies for genome editing publication-title: Nat. Rev. Drug Discov. – volume: 266 start-page: 17 year: 2017 end-page: 26 ident: bb0110 article-title: Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. – volume: 153 start-page: 481 year: 2022 end-page: 493 ident: bb0290 article-title: A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy publication-title: Acta Biomater. – volume: 4 year: 2021 ident: bb0480 article-title: Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer publication-title: Life Sci. Allian. – volume: 11 year: 2022 ident: bb0490 article-title: Effective Genome Editing Using CRISPR-Cas9 Nanoflowers publication-title: Adv. Healthc. Mater. – volume: 6 start-page: eabb4005 year: 2020 ident: bb0455 article-title: Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects publication-title: Sci. Adv. – volume: 10 start-page: 1730 year: 2020 end-page: 1740 ident: bb0255 article-title: Remote loading paclitaxel-doxorubicin prodrug into liposomes for cancer combination therapy publication-title: Acta Pharm. Sin. B – volume: 384 year: 2021 ident: bb0085 article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia publication-title: N. Engl. J. Med. – volume: 7 start-page: 1020 year: 2014 end-page: 1029 ident: bb0685 article-title: CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer publication-title: Cell Rep. – volume: 145 year: 2019 ident: bb0105 article-title: Lentiviral Vector Platform for the Efficient Delivery of Epigenome-editing Tools into Human Induced Pluripotent Stem Cell-derived Disease Models publication-title: J. Visualiz. Experiment. : JoVE – volume: 57 year: 2021 ident: bb0690 article-title: Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function publication-title: Drug Resistan. Updates : Rev. Comment. Antimicrobial. Antican. Chemotherap. – volume: 61 start-page: 44 year: 2020 end-page: 52 ident: bb0675 article-title: CTCF and CTCFL in cancer publication-title: Curr. Opin. Genet. Dev. – volume: 10 start-page: 1063 year: 2018 end-page: 1071 ident: bb0440 article-title: Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing publication-title: Nanoscale – volume: 170 start-page: 48 year: 2017 end-page: 60.e11 ident: bb0195 article-title: Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System publication-title: Cell – volume: 54 start-page: 3609 year: 2018 end-page: 3612 ident: bb0420 article-title: DNA nanoclew templated spherical nucleic acids for siRNA delivery publication-title: Chem. Commun. (Camb.) – volume: 434 start-page: 202 year: 2012 end-page: 209 ident: bb0030 article-title: Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information publication-title: Virology – volume: 176 year: 2021 ident: bb0205 article-title: Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment publication-title: Adv. Drug Deliv. Rev. – volume: 13 start-page: 16525 year: 2021 end-page: 16532 ident: bb0150 article-title: Improving the knock-in efficiency of the MOF-encapsulated CRISPR/Cas9 system through controllable embedding structures publication-title: Nanoscale – volume: 36 start-page: 173 year: 2018 end-page: 185 ident: bb0115 article-title: Engineering the Delivery System for CRISPR-Based Genome Editing publication-title: Trends Biotechnol. – volume: 197 start-page: 41 year: 2019 end-page: 50 ident: bb0360 article-title: Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo publication-title: Biomaterials – volume: 31 start-page: 309 year: 2020 end-page: 324 ident: bb0550 article-title: Human Papillomavirus Oncogene Manipulation Using Clustered Regularly Interspersed Short Palindromic Repeats/Cas9 Delivered by pH-Sensitive Cationic Liposomes publication-title: Hum. Gene Ther. – volume: 6 year: 2020 ident: bb0295 article-title: CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy publication-title: Sci. Adv. – volume: 27 start-page: 515 year: 2020 end-page: 527 ident: bb0245 article-title: Liposomal delivery of CRISPR/Cas9 publication-title: Cancer Gene Ther. – volume: 6 start-page: eabb0020 year: 2020 ident: bb0400 article-title: Vascular disrupting agent induced aggregation of gold nanoparticles for photothermally enhanced tumor vascular disruption publication-title: Sci. Adv. – volume: 9 start-page: 4055 year: 2014 end-page: 4066 ident: bb0285 article-title: Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy publication-title: Int. J. Nanomedicine – volume: 20 start-page: 701 year: 2021 end-page: 710 ident: bb0535 article-title: Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing publication-title: Nat. Mater. – volume: 20 start-page: 661 year: 2020 end-page: 672 ident: bb0135 article-title: Poly(Beta-Amino Ester) Nanoparticles Enable Nonviral Delivery of CRISPR-Cas9 Plasmids for Gene Knockout and Gene Deletion publication-title: Mol. Therap. Nucl. Acids – volume: 65 start-page: 175 year: 2015 end-page: 183 ident: bb0395 article-title: An in vivo study of a gold nanocomposite biomaterial for vascular repair publication-title: Biomaterials – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: bb0240 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. – volume: 169 start-page: 5429 year: 1987 end-page: 5433 ident: bb0005 article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product publication-title: J. Bacteriol. – volume: 14 start-page: 9243 issue: 8 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0020 article-title: Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for In Vivo CRISPR/Cas-Based Genome Editing publication-title: ACS Nano doi: 10.1021/acsnano.0c04707 – volume: 11 issue: 1 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0165 article-title: Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer publication-title: Biotech (Basel (Switzerland)) – volume: 17 issue: 46 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0435 article-title: Recent advances in 2D material-mediated immuno-combined cancer therapy publication-title: Small (Weinheim an der Bergstrasse, Germany) doi: 10.1002/smll.202102557 – volume: 143 start-page: 37 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0525 article-title: Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2019.06.007 – volume: 57 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0690 article-title: Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function publication-title: Drug Resistan. Updates : Rev. Comment. Antimicrobial. Antican. Chemotherap. – volume: 6 start-page: eabb0020 issue: 23 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0400 article-title: Vascular disrupting agent induced aggregation of gold nanoparticles for photothermally enhanced tumor vascular disruption publication-title: Sci. Adv. doi: 10.1126/sciadv.abb0020 – volume: 15 start-page: 593 issue: 3 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0125 article-title: Generation of Cancer-Specific Cytotoxic PD-1(-) T Cells Using Liposome-Encapsulated CRISPR/Cas System with Dendritic/Tumor Fusion Cells publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2019.2712 – volume: 357 start-page: 210 year: 2023 ident: 10.1016/j.jconrel.2023.08.028_bb0485 article-title: Metal coordination micelles for anti-cancer treatment by gene-editing and phototherapy publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. doi: 10.1016/j.jconrel.2023.03.042 – volume: 6 issue: 47 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0295 article-title: CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy publication-title: Sci. Adv. doi: 10.1126/sciadv.abc9450 – volume: 169 start-page: 5429 issue: 12 year: 1987 ident: 10.1016/j.jconrel.2023.08.028_bb0005 article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product publication-title: J. Bacteriol. doi: 10.1128/jb.169.12.5429-5433.1987 – volume: 20 start-page: 83 issue: 1 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0595 article-title: Homologous targeting nanoparticles for enhanced PDT against osteosarcoma HOS cells and the related molecular mechanisms publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-021-01201-y – volume: 8 start-page: 4229 year: 2013 ident: 10.1016/j.jconrel.2023.08.028_bb0510 article-title: The impact of PEGylation patterns on the in vivo biodistribution of mixed shell micelles publication-title: Int. J. Nanomedicine – volume: 10 start-page: 1291 issue: 8 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0320 article-title: Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy publication-title: J. Mater. Chem. B doi: 10.1039/D1TB02688G – volume: 140 start-page: 143 issue: 1 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0365 article-title: Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11754 – volume: 9 start-page: 94 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0390 article-title: Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing publication-title: J. Mater. Chem. B doi: 10.1039/D0TB01925A – volume: 54 start-page: 3609 issue: 29 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0420 article-title: DNA nanoclew templated spherical nucleic acids for siRNA delivery publication-title: Chem. Commun. (Camb.) doi: 10.1039/C7CC09257A – volume: 8 start-page: 2966 issue: 10 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0645 article-title: An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells publication-title: Biomater. Sci. doi: 10.1039/D0BM00427H – volume: 54 start-page: 12029 issue: 41 year: 2015 ident: 10.1016/j.jconrel.2023.08.028_bb0425 article-title: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201506030 – volume: 55 start-page: 106 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0045 article-title: CRISPR/Cas9 for cancer research and therapy publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2018.04.001 – volume: 61 start-page: 44 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0675 article-title: CTCF and CTCFL in cancer publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2020.02.021 – volume: 315 start-page: 1709 issue: 5819 year: 2007 ident: 10.1016/j.jconrel.2023.08.028_bb0025 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science (New York, N.Y.) doi: 10.1126/science.1138140 – volume: 16 start-page: 13821 issue: 9 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0460 article-title: HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy publication-title: ACS Nano doi: 10.1021/acsnano.2c01885 – volume: 5 start-page: 1700540 issue: 7 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0520 article-title: HPV Oncogene Manipulation Using Nonvirally Delivered CRISPR/Cas9 or Natronobacterium gregoryi Argonaute publication-title: Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany) – volume: 163 start-page: 1611 issue: 7 year: 2015 ident: 10.1016/j.jconrel.2023.08.028_bb0680 article-title: CTCF-Mediated human 3D genome architecture reveals chromatin topology for transcription publication-title: Cell doi: 10.1016/j.cell.2015.11.024 – volume: 111 start-page: 492 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0615 article-title: Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2017.10.036 – volume: 6 start-page: 6244 year: 2015 ident: 10.1016/j.jconrel.2023.08.028_bb0220 article-title: Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy publication-title: Nat. Commun. doi: 10.1038/ncomms7244 – volume: 15 start-page: 5377 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0580 article-title: Hybrid Hydrogels for Synergistic Periodontal Antibacterial Treatment with Sustained Drug Release and NIR-Responsive Photothermal Effect publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S248538 – volume: 384 start-page: 252 issue: 3 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0080 article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2031054 – volume: 12 start-page: 57362 issue: 51 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0610 article-title: Co-delivery of Sorafenib and CRISPR/Cas9 Based on Targeted Core-Shell Hollow Mesoporous Organosilica Nanoparticles for Synergistic HCC Therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c17660 – volume: 11 start-page: 1 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0545 article-title: Targeted core-shell nanoparticles for precise CTCF gene insert in treatment of metastatic breast cancer publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2021.10.007 – volume: 10 start-page: 1451 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0730 article-title: Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer publication-title: Front. Oncol. doi: 10.3389/fonc.2020.01451 – volume: 52 start-page: 665 issue: 3 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0130 article-title: Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00493 – volume: 266 start-page: 17 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0110 article-title: Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. doi: 10.1016/j.jconrel.2017.09.012 – volume: 7 start-page: 1798 issue: 7 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0700 article-title: Synthesizing a genetic sensor based on CRISPR-Cas9 for Specifically Killing p53-Deficient Cancer Cells publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00202 – volume: 6 issue: 43 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0225 article-title: Supramolecular nanosubstrate-mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies publication-title: Sci. Adv. doi: 10.1126/sciadv.abb7107 – volume: 13 start-page: 6603 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0265 article-title: Highly efficient siRNA transfection in macrophages using apoptotic body-mimic Ca-PS lipopolyplex publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S176991 – volume: 12 issue: 2 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0670 article-title: A History of Cancer Research: Tumor Suppressor Genes publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a035907 – volume: 22 start-page: 1824 issue: 11 year: 2015 ident: 10.1016/j.jconrel.2023.08.028_bb0710 article-title: Pontin, a new mutant p53-binding protein, promotes gain-of-function of mutant p53 publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.33 – volume: 57 start-page: 1491 issue: 6 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0415 article-title: Thermo-triggered Release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201708689 – volume: 18 start-page: 16 issue: 1 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0305 article-title: Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR-Cas9 plasmid publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-019-0564-1 – volume: 11 issue: 10 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0490 article-title: Effective Genome Editing Using CRISPR-Cas9 Nanoflowers publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202102365 – volume: 12 start-page: 21386 issue: 19 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0140 article-title: Genome Editing in a Wide Area of the Brain Using Dendrimer-Based Ternary Polyplexes of Cas9 Ribonucleoprotein publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21667 – volume: 193 start-page: 74 year: 2014 ident: 10.1016/j.jconrel.2023.08.028_bb0540 article-title: Major degradable polycations as carriers for DNA and siRNA publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. doi: 10.1016/j.jconrel.2014.05.055 – volume: 197 start-page: 41 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0360 article-title: Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.01.001 – volume: 393 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0630 article-title: Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124688 – volume: 10 start-page: 1730 issue: 9 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0255 article-title: Remote loading paclitaxel-doxorubicin prodrug into liposomes for cancer combination therapy publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2020.04.011 – volume: 57 start-page: 10268 issue: 32 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0445 article-title: Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201806941 – volume: 11 issue: 16 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0470 article-title: A Cancer Cell Membrane-Derived Biomimetic Nanocarrier for Synergistic Photothermal/Gene Therapy by Efficient Delivery of CRISPR/Cas9 and Gold Nanorods publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202201038 – volume: 12 start-page: 7137 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0640 article-title: Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices publication-title: Nat. Commun. doi: 10.1038/s41467-021-27184-w – volume: 16 start-page: 1713 issue: 11 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0605 article-title: Integrated Genomic Comparison of Mouse Models Reveals Their Clinical Resemblance to Human Liver Cancer publication-title: Mol. Cancer Res. : MCR doi: 10.1158/1541-7786.MCR-18-0313 – volume: 13 start-page: 1512 issue: 9 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0570 article-title: An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF(V600E) inhibitor-resistant metastatic melanoma cells publication-title: Autophagy doi: 10.1080/15548627.2017.1332550 – volume: 26 start-page: 732 issue: 5 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0750 article-title: Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer publication-title: Nat. Med. doi: 10.1038/s41591-020-0840-5 – volume: 20 start-page: 661 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0135 article-title: Poly(Beta-Amino Ester) Nanoparticles Enable Nonviral Delivery of CRISPR-Cas9 Plasmids for Gene Knockout and Gene Deletion publication-title: Mol. Therap. Nucl. Acids doi: 10.1016/j.omtn.2020.04.005 – volume: 5 issue: 1 year: 2016 ident: 10.1016/j.jconrel.2023.08.028_bb0735 article-title: Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method publication-title: Mol. Therap. Nucl. Acids – volume: 11 start-page: 34717 issue: 38 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0215 article-title: Gold Nanocluster-Mediated Efficient Delivery of Cas9 Protein through pH-Induced Assembly-Disassembly for Inactivation of Virus Oncogenes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12335 – volume: 8 start-page: 2281 issue: 11 year: 2013 ident: 10.1016/j.jconrel.2023.08.028_bb0240 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 6 start-page: 2337 issue: 13 year: 2016 ident: 10.1016/j.jconrel.2023.08.028_bb0585 article-title: NIR-laser-controlled drug release from DOX/IR-780-Loaded temperature-sensitive-liposomes for chemo-photothermal synergistic tumor therapy publication-title: Theranostics doi: 10.7150/thno.14937 – volume: 16 start-page: 387 issue: 6 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0040 article-title: Delivery technologies for genome editing publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.280 – volume: 3 start-page: 1114 issue: 7 year: 2015 ident: 10.1016/j.jconrel.2023.08.028_bb0340 article-title: Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes publication-title: Biomater. Sci. doi: 10.1039/C5BM00003C – volume: 58 start-page: 12404 issue: 36 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0405 article-title: Triple-Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201903618 – volume: 147 start-page: 68 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0345 article-title: Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.09.015 – volume: 40 issue: 5 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0335 article-title: Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201800068 – volume: 29 start-page: 571 issue: 2 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0740 article-title: CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2020.09.028 – volume: 384 issue: 23 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0070 article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia publication-title: N. Engl. J. Med. – volume: 22 start-page: 3360 issue: 24 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0375 article-title: Exosomes as Targeted Delivery Platform of CRISPR/Cas9 for Therapeutic Genome Editing publication-title: Chembiochem : Eur. J. Chem. Biol. doi: 10.1002/cbic.202100359 – volume: 17 start-page: 387 issue: 1 year: 2016 ident: 10.1016/j.jconrel.2023.08.028_bb0230 article-title: X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2016.1194167 – volume: 520 start-page: 186 issue: 7546 year: 2015 ident: 10.1016/j.jconrel.2023.08.028_bb0100 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature doi: 10.1038/nature14299 – volume: 11 start-page: 614 issue: 2 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0120 article-title: Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing publication-title: Theranostics doi: 10.7150/thno.47007 – volume: 52 start-page: 1555 issue: 6 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0060 article-title: Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00106 – volume: 29 issue: 23 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0355 article-title: Metal-Organic Framework (MOF)-Based Drug/Cargo delivery and cancer therapy publication-title: Adv. Mater. (Deerfield Beach, Fla.) doi: 10.1002/adma.201606134 – volume: 384 issue: 23 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0085 article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia publication-title: N. Engl. J. Med. – start-page: 23 (2) year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0565 article-title: The Anticancer Potential of Doxycycline and Minocycline-A Comparative Study on Amelanotic Melanoma Cell Lines publication-title: Int. J. Mol. Sci. – volume: 116 start-page: 18295 issue: 37 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0280 article-title: Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1904697116 – volume: 133 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0095 article-title: CRISPR technology: The engine that drives cancer therapy publication-title: Biomed. & Pharmacotherap. = Biomed. & Pharmacotherap. – volume: 126 start-page: 123 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0530 article-title: Nanoparticle-based hyperthermia, a local treatment modulating the tumor extracellular matrix publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2017.07.010 – volume: 36 start-page: 173 issue: 2 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0115 article-title: Engineering the Delivery System for CRISPR-Based Genome Editing publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2017.11.006 – volume: 121 start-page: 55 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0270 article-title: Targeted delivery of in situ PCR-amplified Sleeping Beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.12.033 – volume: 9 start-page: 4055 year: 2014 ident: 10.1016/j.jconrel.2023.08.028_bb0285 article-title: Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S61880 – volume: 117 start-page: 9874 issue: 15 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0035 article-title: CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00799 – volume: 13 start-page: 16525 issue: 39 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0150 article-title: Improving the knock-in efficiency of the MOF-encapsulated CRISPR/Cas9 system through controllable embedding structures publication-title: Nanoscale doi: 10.1039/D1NR02872C – volume: 20 start-page: 126 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0655 article-title: Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer publication-title: Mol. Cancer doi: 10.1186/s12943-021-01431-6 – volume: 11 start-page: 3272 issue: 10 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0635 article-title: Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2021.03.014 – volume: 20 start-page: 701 issue: 5 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0535 article-title: Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing publication-title: Nat. Mater. doi: 10.1038/s41563-020-00886-0 – volume: 11 issue: 7 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0250 article-title: Liposomal Vitamin D(3) as an Anti-aging Agent for the Skin publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11070311 – volume: 10 start-page: 562 issue: 4 year: 2014 ident: 10.1016/j.jconrel.2023.08.028_bb0575 article-title: Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies publication-title: Autophagy doi: 10.4161/auto.27901 – volume: 142 start-page: 1715 issue: 4 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0370 article-title: Cell-Type-Specific CRISPR/Cas9 Delivery by Biomimetic Metal Organic Frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11638 – volume: 12 start-page: 808 issue: 1 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0755 article-title: Low-abundance mutations in colorectal cancer patients and healthy adults publication-title: Aging doi: 10.18632/aging.102657 – volume: 339 start-page: 819 issue: 6121 year: 2013 ident: 10.1016/j.jconrel.2023.08.028_bb0050 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science (New York, N.Y.) doi: 10.1126/science.1231143 – volume: 41 start-page: 583 issue: 5 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0055 article-title: CRISPR-cas9: a powerful tool towards precision medicine in cancer treatment publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-019-0322-9 – volume: 15 start-page: 905 issue: 9 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0160 article-title: Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2018.1517746 – volume: 12 start-page: 1006 issue: 8 year: 2014 ident: 10.1016/j.jconrel.2023.08.028_bb0180 article-title: Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12256 – volume: 141 start-page: 3782 issue: 9 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0350 article-title: Nanoscale ATP-Responsive Zeolitic Imidazole Framework-90 as a General Platform for Cytosolic Protein Delivery and Genome Editing publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11996 – volume: 266 start-page: 8 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0385 article-title: Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. doi: 10.1016/j.jconrel.2017.09.013 – volume: 5 start-page: 1700611 issue: 4 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0650 article-title: Exosome-Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs publication-title: Adv. Sci. (Weinh) doi: 10.1002/advs.201700611 – volume: 15 start-page: 387 issue: 7 year: 2015 ident: 10.1016/j.jconrel.2023.08.028_bb0665 article-title: Applications of the CRISPR-Cas9 system in cancer biology publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3950 – volume: 7 start-page: 1020 issue: 4 year: 2014 ident: 10.1016/j.jconrel.2023.08.028_bb0685 article-title: CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.04.004 – volume: 9 start-page: 6347 issue: 32 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0560 article-title: Substance P containing peptide gene delivery vectors for specifically transfecting glioma cells mediated by a neurokinin-1 receptor publication-title: J. Mater. Chem. B doi: 10.1039/D1TB00577D – volume: 12 issue: 3 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0185 article-title: Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1609 – volume: 9 start-page: 590 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0555 article-title: Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2021.05.051 – volume: 7 start-page: 2049 issue: 12 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0450 article-title: Ultrasound-controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.1c01143 – volume: 434 start-page: 202 issue: 2 year: 2012 ident: 10.1016/j.jconrel.2023.08.028_bb0030 article-title: Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information publication-title: Virology doi: 10.1016/j.virol.2012.10.003 – volume: 14 start-page: 2095 issue: 7 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0330 article-title: Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy publication-title: Nanomedicine doi: 10.1016/j.nano.2018.06.009 – volume: 46 start-page: 6471 issue: 6 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0715 article-title: Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3 publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-019-05093-y – volume: 18 start-page: 455 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0235 article-title: Mineral-Coated Microparticles Enhance mRNA-Based Transfection of Human Bone Marrow Cells publication-title: Mol. Therap. Nucl. Acids doi: 10.1016/j.omtn.2019.09.004 – volume: 22 issue: 11 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0380 article-title: CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22116072 – volume: 36 start-page: 653 issue: 7 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0705 article-title: Restoring the p53 'Guardian' Phenotype in p53-deficient tumor cells with CRISPR/Cas9 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.01.014 – volume: 539 start-page: 479 issue: 7630 year: 2016 ident: 10.1016/j.jconrel.2023.08.028_bb0065 article-title: CRISPR gene-editing tested in a person for the first time publication-title: Nature doi: 10.1038/nature.2016.20988 – volume: 171 start-page: 207 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0015 article-title: Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.04.031 – volume: 393 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0620 article-title: Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124688 – volume: 236 start-page: 2459 issue: 4 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0170 article-title: CRISPR/Cas gene therapy publication-title: J. Cell. Physiol. doi: 10.1002/jcp.30064 – volume: 33 start-page: e2006003 issue: 12 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0190 article-title: Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy publication-title: Adv. Mater. (Deerfield Beach, Fla.) doi: 10.1002/adma.202006003 – volume: 176 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0205 article-title: Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113891 – volume: 5 start-page: eaav7199 issue: 4 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0495 article-title: Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform publication-title: Sci. Adv. doi: 10.1126/sciadv.aav7199 – volume: 223 start-page: 126 year: 2016 ident: 10.1016/j.jconrel.2023.08.028_bb0515 article-title: Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. doi: 10.1016/j.jconrel.2015.12.031 – volume: 615 start-page: 687 issue: 7953 year: 2023 ident: 10.1016/j.jconrel.2023.08.028_bb0745 article-title: Non-viral precision Tcell receptor replacement for personalized cell therapy publication-title: Nature doi: 10.1038/s41586-022-05531-1 – volume: 15 start-page: 12809 issue: 10 year: 2023 ident: 10.1016/j.jconrel.2023.08.028_bb0315 article-title: Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c22584 – volume: 136 start-page: 14722 issue: 42 year: 2014 ident: 10.1016/j.jconrel.2023.08.028_bb0430 article-title: Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5088024 – volume: 22 issue: 18 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0720 article-title: Oncogenes, Proto-Oncogenes, and Lineage Restriction of Cancer Stem Cells publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22189667 – start-page: 27 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0260 article-title: Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles publication-title: Adv. Funct. Mater. – volume: 18 start-page: 34 issue: 1 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0325 article-title: Triazine-cored polymeric vectors for antisense oligonucleotide delivery in vitro and in vivo publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-020-0586-8 – volume: 30 start-page: 649 issue: 4 year: 2009 ident: 10.1016/j.jconrel.2023.08.028_bb0310 article-title: A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.10.003 – volume: 13 start-page: 291 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0590 article-title: Adeno-associated Virus-Mediated RNAi against Mutant alleles attenuates abnormal calvarial phenotypes in an apert syndrome mouse model publication-title: Mol. Therap. Nucl. Acids doi: 10.1016/j.omtn.2018.09.012 – volume: 60 start-page: 21200 issue: 39 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0410 article-title: Hypoxia-responsive gene editing to reduce tumor thermal tolerance for mild-photothermal therapy publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.202107036 – volume: 4 start-page: 1700175 issue: 11 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0145 article-title: Genome editing for cancer therapy: delivery of Cas9 Protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier publication-title: Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany) – volume: 19 issue: 17 year: 2023 ident: 10.1016/j.jconrel.2023.08.028_bb0500 article-title: CRISPR/Cas9 and Chlorophyll Coordination Micelles for Cancer Treatment by Genome Editing and Photodynamic Therapy publication-title: Small doi: 10.1002/smll.202206981 – volume: 10 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0695 article-title: Mutant p53 in Cancer Progression and Targeted Therapies publication-title: Front. Oncol. doi: 10.3389/fonc.2020.595187 – volume: 4 issue: 9 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0480 article-title: Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer publication-title: Life Sci. Allian. doi: 10.26508/lsa.202000875 – volume: 153 start-page: 481 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0290 article-title: A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2022.09.046 – volume: 65 start-page: 175 year: 2015 ident: 10.1016/j.jconrel.2023.08.028_bb0395 article-title: An in vivo study of a gold nanocomposite biomaterial for vascular repair publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.06.045 – volume: 8 start-page: eabm8011 issue: 16 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0090 article-title: Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy publication-title: Sci. Adv. doi: 10.1126/sciadv.abm8011 – volume: 56 start-page: 15406 issue: 98 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0475 article-title: ZIF-C for targeted RNA interference and CRISPR/Cas9 based gene editing in prostate cancer publication-title: Chem. Commun. (Camb.) doi: 10.1039/D0CC06241C – volume: 15 start-page: 313 issue: 4 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0300 article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0669-6 – volume: 126 start-page: 3868 issue: 10 year: 2016 ident: 10.1016/j.jconrel.2023.08.028_bb0075 article-title: Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype publication-title: J. Clin. Invest. doi: 10.1172/JCI87885 – volume: 12 start-page: 3518 issue: 10 year: 2015 ident: 10.1016/j.jconrel.2023.08.028_bb0275 article-title: Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.5b00054 – volume: 10 start-page: 1063 issue: 3 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0440 article-title: Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing publication-title: Nanoscale doi: 10.1039/C7NR07999K – volume: 20 start-page: 401 issue: 1 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0625 article-title: Engineering cancer cell membrane-camouflaged metal complex for efficient targeting therapy of breast cancer publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-022-01593-5 – volume: 31 start-page: 309 issue: 5-6 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0550 article-title: Human Papillomavirus Oncogene Manipulation Using Clustered Regularly Interspersed Short Palindromic Repeats/Cas9 Delivered by pH-Sensitive Cationic Liposomes publication-title: Hum. Gene Ther. doi: 10.1089/hum.2019.312 – volume: 6 start-page: eabb4005 issue: 29 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0455 article-title: Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects publication-title: Sci. Adv. doi: 10.1126/sciadv.abb4005 – volume: 447 start-page: 48 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0200 article-title: CRISPR-Cas9 for cancer therapy: Opportunities and challenges publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.01.017 – volume: 10 issue: 6 year: 2018 ident: 10.1016/j.jconrel.2023.08.028_bb0725 article-title: Treating p53 Mutant Aggregation-Associated Cancer publication-title: Cancers doi: 10.3390/cancers10060154 – volume: 194 start-page: 48 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0210 article-title: Latest progress in the study of nanoparticle-based delivery of the CRISPR/Cas9 system publication-title: Methods (San Diego, Calif.) doi: 10.1016/j.ymeth.2021.06.004 – volume: 145 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0105 article-title: Lentiviral Vector Platform for the Efficient Delivery of Epigenome-editing Tools into Human Induced Pluripotent Stem Cell-derived Disease Models publication-title: J. Visualiz. Experiment. : JoVE – volume: 31 start-page: e1901570 issue: 29 year: 2019 ident: 10.1016/j.jconrel.2023.08.028_bb0155 article-title: Encapsulation of plasmid DNA by nanoscale metal-organic frameworks for efficient gene transportation and expression publication-title: Adv. Mater. (Deerfield Beach, Fla.) doi: 10.1002/adma.201901570 – volume: 170 start-page: 48 issue: 1 year: 2017 ident: 10.1016/j.jconrel.2023.08.028_bb0195 article-title: Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System publication-title: Cell doi: 10.1016/j.cell.2017.06.012 – volume: 351 start-page: 739 year: 2022 ident: 10.1016/j.jconrel.2023.08.028_bb0600 article-title: Brain-targeted CRISPR/Cas9 nanomedicine for effective glioblastoma therapy publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc. doi: 10.1016/j.jconrel.2022.09.046 – volume: 168 start-page: 3 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0175 article-title: Rational designs of in vivo CRISPR-Cas delivery systems publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2019.11.005 – volume: 19 start-page: 355 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0505 article-title: Chemo-photodynamic therapy with light-triggered disassembly of theranostic nanoplatform in combination with checkpoint blockade for immunotherapy of hepatocellular carcinoma publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-021-01101-1 – volume: 27 start-page: 515 issue: 7-8 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0245 article-title: Liposomal delivery of CRISPR/Cas9 publication-title: Cancer Gene Ther. doi: 10.1038/s41417-019-0141-7 – volume: 71 start-page: 209 issue: 3 year: 2021 ident: 10.1016/j.jconrel.2023.08.028_bb0010 article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 12 start-page: 16018 issue: 14 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0465 article-title: Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b23084 – volume: 20 start-page: 555 issue: 10 year: 2020 ident: 10.1016/j.jconrel.2023.08.028_bb0660 article-title: A compendium of mutational cancer driver genes publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-020-0290-x |
SSID | ssj0005347 |
Score | 2.5255113 |
SecondaryResourceType | review_article |
Snippet | CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 727 |
SubjectTerms | cancer therapy carcinogenicity CRISPR-Cas systems CRISPR/Cas9 editing efficient genes immunogenicity neoplasms Non-viral vectors virus transmission viruses |
Title | CRISPR/Cas9-based application for cancer therapy: Challenges and solutions for non-viral delivery |
URI | https://dx.doi.org/10.1016/j.jconrel.2023.08.028 https://www.proquest.com/docview/2853941485 https://www.proquest.com/docview/3040442424 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL17EJ76JID2ZbneTTTbeZLFURSk-wFvIZhOwlFXaeujF325mH7aKInjcJWFDZjLzZWfmG4ROOEt0N7SCWGk0YTSXREt_rrj3_ZQ67UwG_ztubnn_kV09xU8tlDa1MJBWWdv-yqaX1rp-E9S7Gbw-Pwf3HqwkFKKCtCQtAdptxgRoeed9Ic2DsqpkmicERs-reIJhZ-jvnGMLEYiIlkye0JT9Z__0zVKX7qe3hlZr3IjPq6Wto5YtNlB7UBFPz07xw7yOanKK23gwp6SebSKd3l3eD-6CVE8kAceV44XINfbAFRsQ_xhX9VizM5w2XVYmWBc5_lTRcnDxUhDIDh7h3I4gs2O2hR57Fw9pn9TNFYihIp4SFxlHtYWonQbaNJF5OdFuFmujeR4767qhpo7bzNtLB65eMydkV4eZMM6EdBst-Y_ZHYRDkTMjnYgoN4APJLfUSWMEDzOPTuwuYs2WKlMzj0MDjJFqUsyGqpaEAkkoaIwZJbuo8znttaLe-GtC0shLfdEh5d3DX1OPG_kqf74gaKIL-_I2UZHHM5L5S2P8-xjqLSFjUGiz9_8l7KMVeKry1w7Q0nT8Zg894JlmR6VGH6Hl88vr_u0H6KICAQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8rC9TGMMARvgSRNPmDSx48R7qyJQO6CqoEi8WY5jS1RVQP146H8_Xz7omEBIvCa2YvnOdz_n7n4H8EvwVHdDm1ArjaacFZJq6c-V8L6fMaedyfF_x9VQ9G_5n7v4bgOythYG0yob21_b9MpaN0-CZjeDx_v74MaDlZRhVJBVpCXiA2wiO1Xcgc3e4KI_XGd6MF5XTYuU4oR1IU8wOZ34a-fMYhAiYhWZJ_Zlf9lF_WesKw90_gU-N9CR9OrVbcGGLb_C8ajmnl6dkPG6lGp-Qo7JaM1KvdoGnV0PbkbXQabnkqLvKsg_wWvisSsxqAEzUpdkrX6TrG20Mie6LMiTllaDy4eSYoLwlBR2iskdq29we342zvq06a9ADUviBXWRcUxbDNxpZE5Lci8q1s1jbbQoYmddN9TMCZt7k-nQ22vuEtnVYZ4YZ0K2Ax3_MbsLJEwKbqRLIiYMQgQpLHPSmESEuQcodg94u6XKNOTj2ANjqtoss4lqJKFQEgp7Y0bpHpw-TXus2TfempC28lLP1Eh5D_HW1J-tfJU_Yhg30aV9WM5V5CGN5P7eGL8-hnljyDnW2uy_fwlH8LE_vrpUl4PhxXf4hG_qdLYf0FnMlvbA459Fftjo91-0jgSy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas9-based+application+for+cancer+therapy%3A+Challenges+and+solutions+for+non-viral+delivery&rft.jtitle=Journal+of+controlled+release&rft.au=Lin%2C+Ying-Qi&rft.au=Feng%2C+Ke-Ke&rft.au=Lu%2C+Jie-Ying&rft.au=Le%2C+Jing-Qing&rft.date=2023-09-01&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.volume=361&rft.spage=727&rft.epage=749&rft_id=info:doi/10.1016%2Fj.jconrel.2023.08.028&rft.externalDocID=S0168365923005266 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |