CRISPR/Cas9-based application for cancer therapy: Challenges and solutions for non-viral delivery

CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cance...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 361; pp. 727 - 749
Main Authors Lin, Ying-Qi, Feng, Ke-Ke, Lu, Jie-Ying, Le, Jing-Qing, Li, Wu-Lin, Zhang, Bing-Chen, Li, Cheng-Lei, Song, Xun-Huan, Tong, Ling-Wu, Shao, Jing-Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment. [Display omitted] •Qualities of non-viral vectors and anti-tumor effects for CRISPR/Cas9 delivery.•Breaking physiological barrier to improve gene editing efficiency.•Rationally design CRISPR/Cas9 releasing mechanism applicable to tumor site.•Enhanced anti-tumor efficacy through carrier modification.•Application of CRISPR/Cas9 in tumor therapy and current status of clinical treatment.
AbstractList CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment.CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment.
CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment. [Display omitted] •Qualities of non-viral vectors and anti-tumor effects for CRISPR/Cas9 delivery.•Breaking physiological barrier to improve gene editing efficiency.•Rationally design CRISPR/Cas9 releasing mechanism applicable to tumor site.•Enhanced anti-tumor efficacy through carrier modification.•Application of CRISPR/Cas9 in tumor therapy and current status of clinical treatment.
CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment.
Author Lin, Ying-Qi
Feng, Ke-Ke
Le, Jing-Qing
Li, Wu-Lin
Li, Cheng-Lei
Shao, Jing-Wei
Zhang, Bing-Chen
Lu, Jie-Ying
Song, Xun-Huan
Tong, Ling-Wu
Author_xml – sequence: 1
  givenname: Ying-Qi
  surname: Lin
  fullname: Lin, Ying-Qi
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
– sequence: 2
  givenname: Ke-Ke
  surname: Feng
  fullname: Feng, Ke-Ke
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
– sequence: 3
  givenname: Jie-Ying
  surname: Lu
  fullname: Lu, Jie-Ying
  organization: Faculty of Foreign Studies, Guangdong Baiyun University, Guangzhou 510450, China
– sequence: 4
  givenname: Jing-Qing
  surname: Le
  fullname: Le, Jing-Qing
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
– sequence: 5
  givenname: Wu-Lin
  surname: Li
  fullname: Li, Wu-Lin
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
– sequence: 6
  givenname: Bing-Chen
  surname: Zhang
  fullname: Zhang, Bing-Chen
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
– sequence: 7
  givenname: Cheng-Lei
  surname: Li
  fullname: Li, Cheng-Lei
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
– sequence: 8
  givenname: Xun-Huan
  surname: Song
  fullname: Song, Xun-Huan
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
– sequence: 9
  givenname: Ling-Wu
  surname: Tong
  fullname: Tong, Ling-Wu
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
– sequence: 10
  givenname: Jing-Wei
  surname: Shao
  fullname: Shao, Jing-Wei
  email: shaojingwei@fzu.edu.cn
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
BookMark eNqFkU1r3DAQhkVJoZttf0LBx17sjD781RxCMWkTCCSk7VmM5VGjRbFcybuw_z7ebE65LHOYy_O-DPOcs7MxjMTYVw4FB15dbIqNCWMkXwgQsoCmANF8YCve1DJXbVuesdXCNbmsyvYTO09pAwClVPWKYfd4-_vh8aLD1OY9JhoynCbvDM4ujJkNMTM4GorZ_EQRp_33rHtC72n8RynDcchS8NsDm17h5bR85yL6bCDvdhT3n9lHiz7Rl7e9Zn9_Xv_pbvK7-1-33Y-73Mi6nHMrjJVIshYtCq5U3cuhldCXaLAaSksWOEpbUd_UlQUQApWtW0De18YaLtfs27F3iuH_ltKsn10y5D2OFLZJS1CglFjmJCqaUraKq2Wt2eURNTGkFMlq4-bX38wRndcc9MGB3ug3B_rgQEOjFwdLunyXnqJ7xrg_mbs65mh52M5R1Mk4WjQMLpKZ9RDciYYXpDenGQ
CitedBy_id crossref_primary_10_1186_s12951_023_02259_6
crossref_primary_10_1016_j_cclet_2024_110282
crossref_primary_10_1088_1361_6528_ad5f33
crossref_primary_10_3390_pharmaceutics16010062
crossref_primary_10_1021_acs_nanolett_5c00285
crossref_primary_10_1002_ijc_35241
crossref_primary_10_1002_smll_202410535
crossref_primary_10_1016_j_addr_2025_115522
crossref_primary_10_3390_ijms25147715
crossref_primary_10_1039_D4CB00116H
crossref_primary_10_1186_s12951_024_02627_w
crossref_primary_10_1088_2043_6262_ad6e5c
crossref_primary_10_1016_j_jconrel_2024_12_062
crossref_primary_10_1002_advs_202403858
Cites_doi 10.1021/acsnano.0c04707
10.1002/smll.202102557
10.1016/j.addr.2019.06.007
10.1126/sciadv.abb0020
10.1166/jbn.2019.2712
10.1016/j.jconrel.2023.03.042
10.1126/sciadv.abc9450
10.1128/jb.169.12.5429-5433.1987
10.1186/s12951-021-01201-y
10.1039/D1TB02688G
10.1021/jacs.7b11754
10.1039/D0TB01925A
10.1039/C7CC09257A
10.1039/D0BM00427H
10.1002/anie.201506030
10.1016/j.semcancer.2018.04.001
10.1016/j.gde.2020.02.021
10.1126/science.1138140
10.1021/acsnano.2c01885
10.1016/j.cell.2015.11.024
10.1016/j.ejps.2017.10.036
10.1038/ncomms7244
10.2147/IJN.S248538
10.1056/NEJMoa2031054
10.1021/acsami.0c17660
10.1016/j.bioactmat.2021.10.007
10.3389/fonc.2020.01451
10.1021/acs.accounts.8b00493
10.1016/j.jconrel.2017.09.012
10.1021/acssynbio.8b00202
10.1126/sciadv.abb7107
10.2147/IJN.S176991
10.1101/cshperspect.a035907
10.1038/cdd.2015.33
10.1002/anie.201708689
10.1186/s12951-019-0564-1
10.1002/adhm.202102365
10.1021/acsami.9b21667
10.1016/j.jconrel.2014.05.055
10.1016/j.biomaterials.2019.01.001
10.1016/j.cej.2020.124688
10.1016/j.apsb.2020.04.011
10.1002/anie.201806941
10.1002/adhm.202201038
10.1038/s41467-021-27184-w
10.1158/1541-7786.MCR-18-0313
10.1080/15548627.2017.1332550
10.1038/s41591-020-0840-5
10.1016/j.omtn.2020.04.005
10.1021/acsami.9b12335
10.1038/nprot.2013.143
10.7150/thno.14937
10.1038/nrd.2016.280
10.1039/C5BM00003C
10.1002/anie.201903618
10.1016/j.biomaterials.2017.09.015
10.1002/marc.201800068
10.1016/j.ymthe.2020.09.028
10.1002/cbic.202100359
10.1080/14686996.2016.1194167
10.1038/nature14299
10.7150/thno.47007
10.1021/acs.accounts.9b00106
10.1002/adma.201606134
10.1073/pnas.1904697116
10.1016/j.phrs.2017.07.010
10.1016/j.tibtech.2017.11.006
10.1016/j.biomaterials.2016.12.033
10.2147/IJN.S61880
10.1021/acs.chemrev.6b00799
10.1039/D1NR02872C
10.1186/s12943-021-01431-6
10.1016/j.apsb.2021.03.014
10.1038/s41563-020-00886-0
10.3390/pharmaceutics11070311
10.4161/auto.27901
10.1021/jacs.9b11638
10.18632/aging.102657
10.1126/science.1231143
10.1038/s41401-019-0322-9
10.1080/17425247.2018.1517746
10.1111/pbi.12256
10.1021/jacs.8b11996
10.1016/j.jconrel.2017.09.013
10.1002/advs.201700611
10.1038/nrc3950
10.1016/j.celrep.2014.04.004
10.1039/D1TB00577D
10.1002/wnan.1609
10.1016/j.bioactmat.2021.05.051
10.1021/acscentsci.1c01143
10.1016/j.virol.2012.10.003
10.1016/j.nano.2018.06.009
10.1007/s11033-019-05093-y
10.1016/j.omtn.2019.09.004
10.3390/ijms22116072
10.1016/j.tibtech.2018.01.014
10.1038/nature.2016.20988
10.1016/j.biomaterials.2018.04.031
10.1002/jcp.30064
10.1002/adma.202006003
10.1016/j.addr.2021.113891
10.1126/sciadv.aav7199
10.1016/j.jconrel.2015.12.031
10.1038/s41586-022-05531-1
10.1021/acsami.2c22584
10.1021/ja5088024
10.3390/ijms22189667
10.1186/s12951-020-0586-8
10.1016/j.biomaterials.2008.10.003
10.1016/j.omtn.2018.09.012
10.1002/anie.202107036
10.1002/smll.202206981
10.3389/fonc.2020.595187
10.26508/lsa.202000875
10.1016/j.actbio.2022.09.046
10.1016/j.biomaterials.2015.06.045
10.1126/sciadv.abm8011
10.1039/D0CC06241C
10.1038/s41565-020-0669-6
10.1172/JCI87885
10.1021/acs.molpharmaceut.5b00054
10.1039/C7NR07999K
10.1186/s12951-022-01593-5
10.1089/hum.2019.312
10.1126/sciadv.abb4005
10.1016/j.canlet.2019.01.017
10.3390/cancers10060154
10.1016/j.ymeth.2021.06.004
10.1002/adma.201901570
10.1016/j.cell.2017.06.012
10.1016/j.jconrel.2022.09.046
10.1016/j.addr.2019.11.005
10.1186/s12951-021-01101-1
10.1038/s41417-019-0141-7
10.3322/caac.21660
10.1021/acsami.9b23084
10.1038/s41568-020-0290-x
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2023.08.028
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 749
ExternalDocumentID 10_1016_j_jconrel_2023_08_028
S0168365923005266
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYOK
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPT
SSH
SSM
SSP
SSZ
T5K
TEORI
WUQ
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7X8
7S9
L.6
ID FETCH-LOGICAL-c375t-f2cf3ae3729a21447b3d930b5aca6d5fef01a3f6eb876f0022a4f790a1b7cfc13
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Fri Aug 22 21:00:36 EDT 2025
Fri Jul 11 07:07:34 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Tue Jul 01 04:10:11 EDT 2025
Sun Apr 06 06:56:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords cancer therapy
Non-viral vectors
CRISPR/Cas9
editing efficient
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-f2cf3ae3729a21447b3d930b5aca6d5fef01a3f6eb876f0022a4f790a1b7cfc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2853941485
PQPubID 23479
PageCount 23
ParticipantIDs proquest_miscellaneous_3040442424
proquest_miscellaneous_2853941485
crossref_citationtrail_10_1016_j_jconrel_2023_08_028
crossref_primary_10_1016_j_jconrel_2023_08_028
elsevier_sciencedirect_doi_10_1016_j_jconrel_2023_08_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of controlled release
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhan, Xie, Zhou, Liu, Huang (bb0700) 2018; 7
Tang, Xu, Chen, Xin, Wan, Li, Pan, Li, Ping (bb0190) 2021; 33
Rosenblum, Gutkin, Kedmi, Ramishetti, Veiga, Jacobi, Schubert, Friedmann-Morvinski, Cohen, Behlke, Lieberman, Peer (bb0295) 2020; 6
Jiang, Wang, Sun, Yuan, Tian, Xiang, Li, Li, Li, Wu (bb0360) 2019; 197
Tagliafierro, Ilich, Moncalvo, Gu, Sriskanda, Grenier, Murphy, Chiba-Falek, Kantor (bb0105) 2019; 145
Ju, Li, Ramos da Silva, Gao (bb0215) 2019; 11
Wang, Li, Chen, Oupický (bb0340) 2015; 3
Zhang, Wang, Xie, Wang, Deng, Qin, Zhang, Yu, Zheng, Jiang (bb0405) 2019; 58
Wang, Zhang, Zheng, Cong, Guo, Xie, Wang, Tang, Feng, Hamada, Gonda, Hu, Wu, Jiang (bb0415) 2018; 57
Batır, Şahin, Çam (bb0715) 2019; 46
Zhen, Liu, Lu, Tuo, Yang, Chen, Chen, Li (bb0550) 2020; 31
Zheng, Zhao, Xu, Shen, Chen, Shao (bb0615) 2018; 111
Li, Pan, Chen, Gao, Liu, Yang, Luan, Zhou, Zeng, Han, Song (bb0410) 2021; 60
Kanvinde, Kulkarni, Deodhar, Bhattacharya, Dasgupta (bb0165) 2022; 11
Zhang, Wan, Chen, Chen, Sun, Cao, Songyang, Tang, Wu, Ping, Xu, Huang (bb0335) 2019; 40
Xiao, Luo, Hayes, Kim, Ng, Ding, Liao, Ke (bb0195) 2017; 170
Barati, Shariati, Moeinzadeh, Melero-Martin, Khademhosseini, Jabbari (bb0515) 2016; 223
Liu, Zhang, Liu, Cheng (bb0110) 2017; 266
Yan, Duan, Li, Wu, Zhou, Pan, Liu, Liu, Zheng (bb0585) 2016; 6
Tang, Luo, Li, Zheng, Zhu, Szalaj, Trzaskoma, Magalska, Wlodarczyk, Ruszczycki, Michalski, Piecuch, Wang, Wang, Tian, Penrad-Mobayed, Sachs, Ruan, Wei, Liu, Wilczynski, Plewczynski, Li, Ruan (bb0680) 2015; 163
Ma, Fu, Yu, Cui, Wang, Guo, Mao (bb0270) 2017; 121
Ishino, Shinagawa, Makino, Amemura, Nakata (bb0005) 1987; 169
Zhang, Luo, Zou, Wu, Jiang, Le, Zhao, Chen, Shao (bb0610) 2020; 12
Bi, Xia, Li, Lee, Xie, Liu, Qiu, Teng (bb0250) 2019; 11
Nakagawa, Gonda, Kamei, Cong, Hamada, Kitamura, Tada, Ishida, Aimiya, Furusawa, Nakano, Ohuchi (bb0230) 2016; 17
Liu, Li, Guo, Ni, Gao, Cao, Xia, Shi, Guo (bb0315) 2023; 15
Ostdiek, Ivey, Grant, Gopaldas, Grant (bb0395) 2015; 65
Zhu, Pan, Bei, Li, Liang, Xu, Fu (bb0695) 2020; 10
Chen, Mao, Xu, Weng, Mao, Ji (bb0200) 2019; 447
Cheng, Wei, Farbiak, Johnson, Dilliard, Siegwart (bb0300) 2020; 15
McAndrews, Xiao, Chronopoulos, LeBleu, Kugeratski, Kalluri (bb0480) 2021; 4
Chang, Chen, Glass, Gao, Mao, Wang, Xu (bb0130) 2019; 52
Du, Hou, Huang, Pang, Ruan, Wu, Xu, Zhang, Yin, He (bb0635) 2021; 11
Cyranoski (bb0065) 2016; 539
Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini, Zhang (bb0050) 2013; 339
Zhen, Li (bb0245) 2020; 27
Fineran, Charpentier (bb0030) 2012; 434
Kemp, Moore, Moser, Bernard, Teater, Smith, Rabaia, Gurley, Guinney, Busch, Shaknovich, Lobanenkov, Liggitt, Shmulevich, Melnick, Filippova (bb0685) 2014; 7
Rui, Varanasi, Mendes, Yamagata, Wilson, Green (bb0135) 2020; 20
Ye, Zhang, Xie, Xu, Xie, Yang, Shi, Zhang, Zhang, Chen, Jiang, Li (bb0645) 2020; 8
Zhang (bb0170) 2021; 236
Wu, Yang (bb0355) 2017; 29
Ruan, Zheng, An, Liu, Lovejoy, Hao, Zou, Lee, Yang, Lu, Morsch, Chung, Shi (bb0420) 2018; 54
Yim, Shim, Shin, Jeong, Kang, Kim, Eun, Lee, Conner, Factor, Moore, Johnson, Thorgeirsson, Lee (bb0605) 2018; 16
Ran, Cong, Yan, Scott, Gootenberg, Kriz, Zetsche, Shalem, Wu, Makarova, Koonin, Sharp, Zhang (bb0100) 2015; 520
Alsaiari, Patil, Alyami, Alamoudi, Aleisa, Merzaban, Li, Khashab (bb0365) 2018; 140
Luo, Xie, Wang, Huang, Tan, Sun, Li, Li, Liu, Zhang, Xu, Su, Ni, Jiang, Chang, Chen, Chen, Xu, Deng, Wang, Du, Chen (bb0590) 2018; 13
Veiseh, Kievit, Gunn, Ratner, Zhang (bb0310) 2009; 30
Duan, Ouyang, Wang, Xu, Xu, Wen, Xie, Liang, Xia (bb0375) 2021; 22
Yin, Sun, Pu, Yu, Feng, Dong, Zhou, Du, Zhang, Chen, Xu (bb0450) 2021; 7
Chen, Alphonse, Liu (bb0185) 2020; 12
Jo, Ringel-Scaia, McDaniel, Thomas, Zhang, Riffle, Allen, Davis (bb0305) 2020; 18
Alyami, Alsaiari, Li, Qutub, Aleisa, Sougrat, Merzaban, Khashab (bb0370) 2020; 142
Ryu, Kim, Park, Lee, Kim, Kim, Baek, Kim, Lee, Kim (bb0330) 2018; 14
Ran, Hsu, Wright, Agarwala, Scott, Zhang (bb0240) 2013; 8
Brown (bb0720) 2021; 22
Fontana, Martin, Lee, Schill, Hematti, Murphy (bb0235) 2019; 18
Wei, Cheng, Farbiak, Anderson, Langer, Siegwart (bb0020) 2020; 14
Guo, Smutok, Johnston, Walden, Ungerer, Peat, Newman, Parker, Nebl, Hepburn, Melman, Suderman, Katz, Alexandrov (bb0640) 2021; 12
Taharabaru, Yokoyama, Higashi, Mohammed, Inoue, Maeda, Niidome, Onodera, Motoyama (bb0140) 2020; 12
Lai, Xu, Zhu, Hua (bb0265) 2018; 13
Gao, Wu, Assaraf, Chen, Wang (bb0690) 2021; 57
Liu, Cheng, Wei, Yu, Johnson, Farbiak, Siegwart (bb0535) 2021; 20
Kanapathipillai (bb0725) 2018; 10
Yang, Tang, Jiang, Zhang, Wang, Mao (bb0350) 2019; 141
Ding, Wang, Han, Tian, Cheng, Luo, Zhao, Wang, Feng, Wang, Meng, Meng (bb0560) 2021; 9
Frangoul, Altshuler, Cappellini, Chen, Domm, Eustace, Foell, de la Fuente, Grupp, Handgretinger, Ho, Kattamis, Kernytsky, Lekstrom-Himes, Li, Locatelli, Mapara, de Montalembert, Rondelli, Sharma, Sheth, Soni, Steinberg, Wall, Yen, Corbacioglu (bb0080) 2021; 384
Lin, He, Liu, Feng, Huang, Sun, Deng (bb0580) 2020; 15
Zhang, Wang, Liu, Ren, Li, Jiang, Liu, Lovell, Zhang (bb0485) 2023; 357
Meisel (bb0085) 2021; 384
Huang, Zhou, Abbas, Li, Cui, Zhang, Wang (bb0470) 2022; 11
Foy, Jacoby, Bota, Hunter, Pan, Stawiski, Ma, Lu, Peng, Wang, Yuen, Dalmas, Heeringa, Sennino, Conroy, Bethune, Mende, White, Kukreja, Gunturu, Humphrey, Hussaini, An, Litterman, Quach, Ng, Lu, Smith, Campbell, Anaya, Skrdlant, Huang, Mendoza, Mathur, Dengler, Purandare, Moot, Yi, Funke, Sibley, Stallings-Schmitt, Oh, Chmielowski, Abedi, Yuan, Sosman, Lee, Schoenfeld, Baltimore, Heath, Franzusoff, Ribas, Rao, Mandl (bb0745) 2023; 615
Glass, Lee, Li, Xu (bb0115) 2018; 36
Li, Dai, Huang, Jin, Ning, Shen (bb0755) 2020; 12
Brendel, Guda, Renella, Bauer, Canver, Kim, Heeney, Klatt, Fogel, Milsom, Orkin, Gregory, Williams (bb0075) 2016; 126
Duan, Bao, Xie, Guo, Liu, Li, Liu, Li, Bai, Yan, Mu, Li, Wang, Lu (bb0545) 2022; 11
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (bb0010) 2021; 71
Yang, Chou, Li, Hui, Liu, Sun, Zhang, Zhu, Tsai, Lai, Smalley, Zhang, Chen, Romero, Liu, Ke, Zou, Lee, Jonas, Ban, Weiss, Kohn, Chen, Chiou, Tseng (bb0225) 2020; 6
Deng, Li, Liu, Chen, Li, Chew, Leong, Cheng (bb0455) 2020; 6
Li, Yang, Weng, Zhang, Zhao, Guo, Hu, Shao, Wang, Hussain, Liang, Huang (bb0555) 2022; 9
Li, Zhang, Liu, Chen, Zhong, Ye, Wei, Zhao, Tang (bb0155) 2019; 31
Horodecka, Düchler (bb0380) 2021; 22
Yue, Zhou, Cheng, Xing (bb0440) 2018; 10
Liang, Li, Wang, Zhang, Wang, He, Li, Chen, Shaikh, Liu, Wu, Peng, Dang, Guo, He, Au, Lu, Zhu, Zhang, Lu, Zhang (bb0345) 2017; 147
Zhu, Liu, Lu, Zhang, Zhang, Chen, Deng (bb0730) 2020; 10
Mehta (bb0070) 2021; 384
Wang, Li, Lee, Chakraborty, Kim, Bao, Leong (bb0035) 2017; 117
Sun, Jiang, Lu, Reiff, Mo, Gu (bb0430) 2014; 136
Barrangou, Fremaux, Deveau, Richards, Boyaval, Moineau, Romero, Horvath (bb0025) 2007; 315
Martínez-Jiménez, Muiños, Sentís, Deu-Pons, Reyes-Salazar, Arnedo-Pac, Mularoni, Pich, Bonet, Kranas, Gonzalez-Perez, Lopez-Bigas (bb0660) 2020; 20
Zhang, Eshraghian, Jammal, Zhang, Zhu (bb0095) 2021; 133
Wang, Zhang, Xie, Wang, Tang, Zheng, Jiang (bb0145) 2017; 4
Zhang, Shen, Li, Cheng (bb0120) 2021; 11
Lipsick (bb0670) 2020; 12
Li, Hu, Chen (bb0015) 2018; 171
Wilbie, Walther, Mastrobattista (bb0060) 2019; 52
Wei, Shao, Liu, Xiong, Cui, Liu, Li (bb0320) 2022; 10
Islam, Park, Singh, Maharjan, Firdous, Cho, Kang, Yun, Choi, Cho (bb0540) 2014; 193
Lao, Li, Gao, Shao, Chi, Huang, Chakraborty, Ho, Jiang, Wang, Wang, Leong (bb0520) 2018; 5
Debaugny, Skok (bb0675) 2020; 61
Iyombe-Engembe, Ouellet, Barbeau, Rousseau, Chapdelaine, Lagüe, Tremblay (bb0735) 2016; 5
Yin, Kauffman, Anderson (bb0040) 2017; 16
Guo, Yang, Huang, Auguste, Moses (bb0280) 2019; 116
He, Zhang, Zhu, Song (bb0285) 2014; 9
Tao, Yi, Hu, Shao, Li (bb0390) 2021; 9
Zhao, Zhang, Yue, Li, Liu, Yu, Belyi, Yang, Feng, Hu (bb0710) 2015; 22
Wang, Zhang, Zhao, Zhang, Zhan, Chen, He, Cao, Hao, Wang, Quan, Ou (bb0595) 2022; 20
Lu, Xue, Deng, Zhou, Yu, Deng, Huang, Yi, Liang, Wang, Shen, Tong, Wang, Li, Song, Li, Su, Ding, Gong, Zhu, Wang, Zou, Zhang, Li, Zhou, Liu, Yu, Wang, Zhang, Yin, Xia, Zeng, Zhou, Ying, Chen, Wei, Li, Mok (bb0750) 2020; 26
Ma, Tian, Baryza, Luft, DeSimone (bb0275) 2015; 12
Sun, Ji, Hall, Hu, Wang, Beisel, Gu (bb0425) 2015; 54
Xu, Zheng, Cheng, Hu, Zhang, Zhou, Sun, Wang, Su, Zou, Song, Xia, Yi, Gao (bb0505) 2021; 19
Ousterout, Kabadi, Thakore, Majoros, Reddy, Gersbach (bb0220) 2015; 6
Tu, Deng, Kong, Wang, Yang, Hu, Hu, Yang, Zhang (bb0465) 2020; 12
Xu, Chen, Luo, Zhang, Zhao, Lu, Czarna, Gu, Wang (bb0175) 2021; 168
Zhang, Ren, Liu, Li, Wang, Zhang (bb0490) 2022; 11
Zhang, Wang, Liu, Ren, Liu, Jiang, Zhang (bb0500) 2023; 19
Lu, Yang, He, Gong, Lai, Xie, Tao, Xu, Wang, Zhang, Cao, Zhou, Zhong, Zhao (bb0125) 2019; 15
Liu, Xu, Koivisto, Zhou, Jacquemet, Rosenholm, Zhang (bb0150) 2021; 13
Gao, Liu, Yang, Cheng, Chu, Xu, Meng, Fan, Shi, Liu (bb0510) 2013; 8
Sánchez-Rivera, Jacks (bb0665) 2015; 15
Xing, Meng (bb0055) 2020; 41
Kim, Yang, Oh, Hong, Seo, Jang (bb0385) 2017; 266
Pellegrini, Strambi, Zipoli, Hägg-Olofsson, Buoncervello, Linder, De Milito (bb0575) 2014; 10
Hong, Zheng, Zhang, Huang, Cheng, Zhang (bb0400) 2020; 6
Li, Yu, Chen, Lin, Zhu, Liu, He, Chen, He (bb0625) 2022; 20
Zou, Sun, Yang, Zheng, Shimoni, Ruan, Wang, Zhang, Yin, Huang, Tao, Park, Liang, Leong, Shi (bb0090) 2022; 8
Zhou, Cui, Ying, Yu (bb0445) 2018; 57
Wang, Wu, Tucker, Shah, Lu, Lu (bb0325) 2020; 18
Zhao, Li, Zhang, Huang, Zhang, Chen, Xu, Chu, Zhang, Yang (bb0460) 2022; 16
Sharma, Sharma, Bhattacharya, Lee, Chakraborty (bb0740) 2021; 29
Chen, Liu, Chen, Liu, Wang, Chen, Deng, Zhang, Liu, Hong, Zhou (bb0260) 2017
Chira, Gulei, Hajitou, Berindan-Neagoe (bb0705) 2018; 36
Mahfouz, Piatek, Stewart (bb0180) 2014; 12
Xu, Liu, Wang, Koivisto, Zhou, Shu, Zhang (bb0205) 2021; 176
Lin, Wu, Gu, Huang, Tong, Huang, Tan (bb0650) 2018; 5
Yu, Liu, Cheng, Kuang, Zhang, Yan (bb0210) 2021; 194
Zhang, Qin, An, Zheng, Wen, Chen, Liu, Lv, Yang, Xu, Gao, Wu (bb0655) 2021; 20
Zhan, Rindtorff, Betge, Ebert, Boutros (bb0045) 2019; 55
Yu, Wang, Zhou, Li, Wang, Chi, Wang, Lin, He, Wang (bb0255) 2020; 10
Martin, Dudek-Peric, Garg, Roose, Dem
Wang (10.1016/j.jconrel.2023.08.028_bb0035) 2017; 117
Sharma (10.1016/j.jconrel.2023.08.028_bb0740) 2021; 29
Liu (10.1016/j.jconrel.2023.08.028_bb0535) 2021; 20
Meisel (10.1016/j.jconrel.2023.08.028_bb0085) 2021; 384
Zhan (10.1016/j.jconrel.2023.08.028_bb0045) 2019; 55
Liu (10.1016/j.jconrel.2023.08.028_bb0150) 2021; 13
Zhu (10.1016/j.jconrel.2023.08.028_bb0695) 2020; 10
Wang (10.1016/j.jconrel.2023.08.028_bb0145) 2017; 4
Ju (10.1016/j.jconrel.2023.08.028_bb0215) 2019; 11
Tao (10.1016/j.jconrel.2023.08.028_bb0390) 2021; 9
Li (10.1016/j.jconrel.2023.08.028_bb0410) 2021; 60
Sung (10.1016/j.jconrel.2023.08.028_bb0010) 2021; 71
Chang (10.1016/j.jconrel.2023.08.028_bb0130) 2019; 52
Xu (10.1016/j.jconrel.2023.08.028_bb0505) 2021; 19
Xu (10.1016/j.jconrel.2023.08.028_bb0205) 2021; 176
Zhang (10.1016/j.jconrel.2023.08.028_bb0500) 2023; 19
Tang (10.1016/j.jconrel.2023.08.028_bb0680) 2015; 163
Taharabaru (10.1016/j.jconrel.2023.08.028_bb0140) 2020; 12
Li (10.1016/j.jconrel.2023.08.028_bb0755) 2020; 12
Duan (10.1016/j.jconrel.2023.08.028_bb0375) 2021; 22
Peng (10.1016/j.jconrel.2023.08.028_bb0525) 2019; 143
Foy (10.1016/j.jconrel.2023.08.028_bb0745) 2023; 615
Huang (10.1016/j.jconrel.2023.08.028_bb0470) 2022; 11
Li (10.1016/j.jconrel.2023.08.028_bb0625) 2022; 20
Lao (10.1016/j.jconrel.2023.08.028_bb0520) 2018; 5
Sánchez-Rivera (10.1016/j.jconrel.2023.08.028_bb0665) 2015; 15
Bi (10.1016/j.jconrel.2023.08.028_bb0250) 2019; 11
Alsaiari (10.1016/j.jconrel.2023.08.028_bb0365) 2018; 140
Tagliafierro (10.1016/j.jconrel.2023.08.028_bb0105) 2019; 145
Wilbie (10.1016/j.jconrel.2023.08.028_bb0060) 2019; 52
Zhou (10.1016/j.jconrel.2023.08.028_bb0445) 2018; 57
Barati (10.1016/j.jconrel.2023.08.028_bb0515) 2016; 223
Gao (10.1016/j.jconrel.2023.08.028_bb0510) 2013; 8
Chira (10.1016/j.jconrel.2023.08.028_bb0705) 2018; 36
Zou (10.1016/j.jconrel.2023.08.028_bb0090) 2022; 8
Lin (10.1016/j.jconrel.2023.08.028_bb0650) 2018; 5
Kanapathipillai (10.1016/j.jconrel.2023.08.028_bb0725) 2018; 10
Lin (10.1016/j.jconrel.2023.08.028_bb0580) 2020; 15
Zhen (10.1016/j.jconrel.2023.08.028_bb0550) 2020; 31
Liu (10.1016/j.jconrel.2023.08.028_bb0110) 2017; 266
Chen (10.1016/j.jconrel.2023.08.028_bb0185) 2020; 12
Ma (10.1016/j.jconrel.2023.08.028_bb0270) 2017; 121
Yan (10.1016/j.jconrel.2023.08.028_bb0585) 2016; 6
Rosenblum (10.1016/j.jconrel.2023.08.028_bb0295) 2020; 6
Zhang (10.1016/j.jconrel.2023.08.028_bb0655) 2021; 20
Li (10.1016/j.jconrel.2023.08.028_bb0155) 2019; 31
Yu (10.1016/j.jconrel.2023.08.028_bb0210) 2021; 194
Yin (10.1016/j.jconrel.2023.08.028_bb0450) 2021; 7
Ma (10.1016/j.jconrel.2023.08.028_bb0435) 2021; 17
Cheng (10.1016/j.jconrel.2023.08.028_bb0300) 2020; 15
Wang (10.1016/j.jconrel.2023.08.028_bb0415) 2018; 57
Chen (10.1016/j.jconrel.2023.08.028_bb0200) 2019; 447
Wang (10.1016/j.jconrel.2023.08.028_bb0595) 2022; 20
Du (10.1016/j.jconrel.2023.08.028_bb0635) 2021; 11
Zhang (10.1016/j.jconrel.2023.08.028_bb0170) 2021; 236
Tu (10.1016/j.jconrel.2023.08.028_bb0465) 2020; 12
Ousterout (10.1016/j.jconrel.2023.08.028_bb0220) 2015; 6
Veiseh (10.1016/j.jconrel.2023.08.028_bb0310) 2009; 30
Wu (10.1016/j.jconrel.2023.08.028_bb0355) 2017; 29
Zhan (10.1016/j.jconrel.2023.08.028_bb0700) 2018; 7
Hong (10.1016/j.jconrel.2023.08.028_bb0400) 2020; 6
Zhen (10.1016/j.jconrel.2023.08.028_bb0245) 2020; 27
Cong (10.1016/j.jconrel.2023.08.028_bb0050) 2013; 339
Zhang (10.1016/j.jconrel.2023.08.028_bb0095) 2021; 133
Horodecka (10.1016/j.jconrel.2023.08.028_bb0380) 2021; 22
Kim (10.1016/j.jconrel.2023.08.028_bb0385) 2017; 266
Kanvinde (10.1016/j.jconrel.2023.08.028_bb0165) 2022; 11
Duan (10.1016/j.jconrel.2023.08.028_bb0545) 2022; 11
Guo (10.1016/j.jconrel.2023.08.028_bb0640) 2021; 12
Brown (10.1016/j.jconrel.2023.08.028_bb0720) 2021; 22
Cyranoski (10.1016/j.jconrel.2023.08.028_bb0065) 2016; 539
Guo (10.1016/j.jconrel.2023.08.028_bb0280) 2019; 116
Pan (10.1016/j.jconrel.2023.08.028_bb0495) 2019; 5
Zhang (10.1016/j.jconrel.2023.08.028_bb0405) 2019; 58
Zhang (10.1016/j.jconrel.2023.08.028_bb0620) 2020; 393
Fineran (10.1016/j.jconrel.2023.08.028_bb0030) 2012; 434
Ostdiek (10.1016/j.jconrel.2023.08.028_bb0395) 2015; 65
Ruan (10.1016/j.jconrel.2023.08.028_bb0600) 2022; 351
Zhang (10.1016/j.jconrel.2023.08.028_bb0630) 2020; 393
Zheng (10.1016/j.jconrel.2023.08.028_bb0615) 2018; 111
Sun (10.1016/j.jconrel.2023.08.028_bb0430) 2014; 136
Yin (10.1016/j.jconrel.2023.08.028_bb0040) 2017; 16
Luo (10.1016/j.jconrel.2023.08.028_bb0590) 2018; 13
Li (10.1016/j.jconrel.2023.08.028_bb0015) 2018; 171
Ye (10.1016/j.jconrel.2023.08.028_bb0645) 2020; 8
Jo (10.1016/j.jconrel.2023.08.028_bb0305) 2020; 18
Zhang (10.1016/j.jconrel.2023.08.028_bb0490) 2022; 11
Zhu (10.1016/j.jconrel.2023.08.028_bb0730) 2020; 10
Yu (10.1016/j.jconrel.2023.08.028_bb0255) 2020; 10
Luther (10.1016/j.jconrel.2023.08.028_bb0160) 2018; 15
Ryu (10.1016/j.jconrel.2023.08.028_bb0330) 2018; 14
Yang (10.1016/j.jconrel.2023.08.028_bb0350) 2019; 141
Zhang (10.1016/j.jconrel.2023.08.028_bb0335) 2019; 40
Liang (10.1016/j.jconrel.2023.08.028_bb0345) 2017; 147
McAndrews (10.1016/j.jconrel.2023.08.028_bb0480) 2021; 4
Zhang (10.1016/j.jconrel.2023.08.028_bb0485) 2023; 357
Ran (10.1016/j.jconrel.2023.08.028_bb0100) 2015; 520
Wei (10.1016/j.jconrel.2023.08.028_bb0020) 2020; 14
Lu (10.1016/j.jconrel.2023.08.028_bb0125) 2019; 15
Mehta (10.1016/j.jconrel.2023.08.028_bb0070) 2021; 384
He (10.1016/j.jconrel.2023.08.028_bb0285) 2014; 9
Wang (10.1016/j.jconrel.2023.08.028_bb0325) 2020; 18
Gao (10.1016/j.jconrel.2023.08.028_bb0690) 2021; 57
Deng (10.1016/j.jconrel.2023.08.028_bb0455) 2020; 6
Ruan (10.1016/j.jconrel.2023.08.028_bb0420) 2018; 54
Kemp (10.1016/j.jconrel.2023.08.028_bb0685) 2014; 7
Wang (10.1016/j.jconrel.2023.08.028_bb0290) 2022; 153
Wang (10.1016/j.jconrel.2023.08.028_bb0340) 2015; 3
Rok (10.1016/j.jconrel.2023.08.028_bb0565) 2022
Zhang (10.1016/j.jconrel.2023.08.028_bb0120) 2021; 11
Iyombe-Engembe (10.1016/j.jconrel.2023.08.028_bb0735) 2016; 5
Ma (10.1016/j.jconrel.2023.08.028_bb0275) 2015; 12
Yue (10.1016/j.jconrel.2023.08.028_bb0440) 2018; 10
Zhao (10.1016/j.jconrel.2023.08.028_bb0460) 2022; 16
Xing (10.1016/j.jconrel.2023.08.028_bb0055) 2020; 41
Alyami (10.1016/j.jconrel.2023.08.028_bb0370) 2020; 142
Zhang (10.1016/j.jconrel.2023.08.028_bb0610) 2020; 12
Yang (10.1016/j.jconrel.2023.08.028_bb0225) 2020; 6
Wei (10.1016/j.jconrel.2023.08.028_bb0320) 2022; 10
Li (10.1016/j.jconrel.2023.08.028_bb0555) 2022; 9
Brendel (10.1016/j.jconrel.2023.08.028_bb0075) 2016; 126
Rui (10.1016/j.jconrel.2023.08.028_bb0135) 2020; 20
Poddar (10.1016/j.jconrel.2023.08.028_bb0475) 2020; 56
Xiao (10.1016/j.jconrel.2023.08.028_bb0195) 2017; 170
Batır (10.1016/j.jconrel.2023.08.028_bb0715) 2019; 46
Ding (10.1016/j.jconrel.2023.08.028_bb0560) 2021; 9
Lu (10.1016/j.jconrel.2023.08.028_bb0750) 2020; 26
Xu (10.1016/j.jconrel.2023.08.028_bb0175) 2021; 168
Nakagawa (10.1016/j.jconrel.2023.08.028_bb0230) 2016; 17
Glass (10.1016/j.jconrel.2023.08.028_bb0115) 2018; 36
Tang (10.1016/j.jconrel.2023.08.028_bb0190) 2021; 33
Lipsick (10.1016/j.jconrel.2023.08.028_bb0670) 2020; 12
Mahfouz (10.1016/j.jconrel.2023.08.028_bb0180) 2014; 12
Martin (10.1016/j.jconrel.2023.08.028_bb0570) 2017; 13
Chen (10.1016/j.jconrel.2023.08.028_bb0260) 2017
Zhao (10.1016/j.jconrel.2023.08.028_bb0710) 2015; 22
Jiang (10.1016/j.jconrel.2023.08.028_bb0360) 2019; 197
Lai (10.1016/j.jconrel.2023.08.028_bb0265) 2018; 13
Ran (10.1016/j.jconrel.2023.08.028_bb0240) 2013; 8
Ishino (10.1016/j.jconrel.2023.08.028_bb0005) 1987; 169
Kolosnjaj-Tabi (10.1016/j.jconrel.2023.08.028_bb0530) 2017; 126
Debaugny (10.1016/j.jconrel.2023.08.028_bb0675) 2020; 61
Yim (10.1016/j.jconrel.2023.08.028_bb0605) 2018; 16
Pellegrini (10.1016/j.jconrel.2023.08.028_bb0575) 2014; 10
Martínez-Jiménez (10.1016/j.jconrel.2023.08.028_bb0660) 2020; 20
Liu (10.1016/j.jconrel.2023.08.028_bb0315) 2023; 15
Islam (10.1016/j.jconrel.2023.08.028_bb0540) 2014; 193
Fontana (10.1016/j.jconrel.2023.08.028_bb0235) 2019; 18
Sun (10.1016/j.jconrel.2023.08.028_bb0425) 2015; 54
Barrangou (10.1016/j.jconrel.2023.08.028_bb0025) 2007; 315
Frangoul (10.1016/j.jconrel.2023.08.028_bb0080) 2021; 384
References_xml – volume: 11
  start-page: 614
  year: 2021
  end-page: 648
  ident: bb0120
  article-title: Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
  publication-title: Theranostics
– volume: 30
  start-page: 649
  year: 2009
  end-page: 657
  ident: bb0310
  article-title: A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells
  publication-title: Biomaterials
– volume: 11
  start-page: 34717
  year: 2019
  end-page: 34724
  ident: bb0215
  article-title: Gold Nanocluster-Mediated Efficient Delivery of Cas9 Protein through pH-Induced Assembly-Disassembly for Inactivation of Virus Oncogenes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 57362
  year: 2020
  end-page: 57372
  ident: bb0610
  article-title: Co-delivery of Sorafenib and CRISPR/Cas9 Based on Targeted Core-Shell Hollow Mesoporous Organosilica Nanoparticles for Synergistic HCC Therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 905
  year: 2018
  end-page: 913
  ident: bb0160
  article-title: Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges
  publication-title: Expert Opin. Drug Deliv.
– volume: 143
  start-page: 37
  year: 2019
  end-page: 67
  ident: bb0525
  article-title: Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy
  publication-title: Adv. Drug Deliv. Rev.
– volume: 46
  start-page: 6471
  year: 2019
  end-page: 6484
  ident: bb0715
  article-title: Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3
  publication-title: Mol. Biol. Rep.
– volume: 15
  start-page: 12809
  year: 2023
  end-page: 12821
  ident: bb0315
  article-title: Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 1491
  year: 2018
  end-page: 1496
  ident: bb0415
  article-title: Thermo-triggered Release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 12
  start-page: 7137
  year: 2021
  ident: bb0640
  article-title: Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices
  publication-title: Nat. Commun.
– volume: 20
  start-page: 401
  year: 2022
  ident: bb0625
  article-title: Engineering cancer cell membrane-camouflaged metal complex for efficient targeting therapy of breast cancer
  publication-title: J. Nanobiotechnol.
– volume: 5
  start-page: 1700540
  year: 2018
  ident: bb0520
  article-title: HPV Oncogene Manipulation Using Nonvirally Delivered CRISPR/Cas9 or Natronobacterium gregoryi Argonaute
  publication-title: Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany)
– volume: 163
  start-page: 1611
  year: 2015
  end-page: 1627
  ident: bb0680
  article-title: CTCF-Mediated human 3D genome architecture reveals chromatin topology for transcription
  publication-title: Cell
– volume: 19
  start-page: 355
  year: 2021
  ident: bb0505
  article-title: Chemo-photodynamic therapy with light-triggered disassembly of theranostic nanoplatform in combination with checkpoint blockade for immunotherapy of hepatocellular carcinoma
  publication-title: J. Nanobiotechnol.
– volume: 9
  start-page: 590
  year: 2022
  end-page: 601
  ident: bb0555
  article-title: Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy
  publication-title: Bioact. Mater.
– volume: 615
  start-page: 687
  year: 2023
  end-page: 696
  ident: bb0745
  article-title: Non-viral precision T
  publication-title: Nature
– volume: 22
  year: 2021
  ident: bb0720
  article-title: Oncogenes, Proto-Oncogenes, and Lineage Restriction of Cancer Stem Cells
  publication-title: Int. J. Mol. Sci.
– volume: 539
  start-page: 479
  year: 2016
  ident: bb0065
  article-title: CRISPR gene-editing tested in a person for the first time
  publication-title: Nature
– volume: 52
  start-page: 665
  year: 2019
  end-page: 675
  ident: bb0130
  article-title: Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing
  publication-title: Acc. Chem. Res.
– volume: 18
  start-page: 34
  year: 2020
  ident: bb0325
  article-title: Triazine-cored polymeric vectors for antisense oligonucleotide delivery in vitro and in vivo
  publication-title: J. Nanobiotechnol.
– volume: 520
  start-page: 186
  year: 2015
  end-page: 191
  ident: bb0100
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
– volume: 33
  start-page: e2006003
  year: 2021
  ident: bb0190
  article-title: Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy
  publication-title: Adv. Mater. (Deerfield Beach, Fla.)
– volume: 12
  start-page: 21386
  year: 2020
  end-page: 21397
  ident: bb0140
  article-title: Genome Editing in a Wide Area of the Brain Using Dendrimer-Based Ternary Polyplexes of Cas9 Ribonucleoprotein
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2020
  ident: bb0695
  article-title: Mutant p53 in Cancer Progression and Targeted Therapies
  publication-title: Front. Oncol.
– volume: 6
  year: 2020
  ident: bb0225
  article-title: Supramolecular nanosubstrate-mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies
  publication-title: Sci. Adv.
– volume: 141
  start-page: 3782
  year: 2019
  end-page: 3786
  ident: bb0350
  article-title: Nanoscale ATP-Responsive Zeolitic Imidazole Framework-90 as a General Platform for Cytosolic Protein Delivery and Genome Editing
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 1824
  year: 2015
  end-page: 1836
  ident: bb0710
  article-title: Pontin, a new mutant p53-binding protein, promotes gain-of-function of mutant p53
  publication-title: Cell Death Differ.
– volume: 12
  start-page: 3518
  year: 2015
  end-page: 3526
  ident: bb0275
  article-title: Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo
  publication-title: Mol. Pharm.
– volume: 15
  start-page: 387
  year: 2015
  end-page: 395
  ident: bb0665
  article-title: Applications of the CRISPR-Cas9 system in cancer biology
  publication-title: Nat. Rev. Cancer
– volume: 18
  start-page: 455
  year: 2019
  end-page: 464
  ident: bb0235
  article-title: Mineral-Coated Microparticles Enhance mRNA-Based Transfection of Human Bone Marrow Cells
  publication-title: Mol. Therap. Nucl. Acids
– volume: 266
  start-page: 8
  year: 2017
  end-page: 16
  ident: bb0385
  article-title: Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
– volume: 11
  year: 2022
  ident: bb0165
  article-title: Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer
  publication-title: Biotech (Basel (Switzerland))
– volume: 5
  year: 2016
  ident: bb0735
  article-title: Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method
  publication-title: Mol. Therap. Nucl. Acids
– volume: 12
  start-page: 1006
  year: 2014
  end-page: 1014
  ident: bb0180
  article-title: Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives
  publication-title: Plant Biotechnol. J.
– volume: 29
  start-page: 571
  year: 2021
  end-page: 586
  ident: bb0740
  article-title: CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases
  publication-title: Mol. Ther.
– volume: 117
  start-page: 9874
  year: 2017
  end-page: 9906
  ident: bb0035
  article-title: CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery
  publication-title: Chem. Rev.
– start-page: (2)
  year: 2022
  ident: bb0565
  article-title: The Anticancer Potential of Doxycycline and Minocycline-A Comparative Study on Amelanotic Melanoma Cell Lines
  publication-title: Int. J. Mol. Sci.
– volume: 15
  start-page: 313
  year: 2020
  end-page: 320
  ident: bb0300
  article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 1114
  year: 2015
  end-page: 1123
  ident: bb0340
  article-title: Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes
  publication-title: Biomater. Sci.
– volume: 133
  year: 2021
  ident: bb0095
  article-title: CRISPR technology: The engine that drives cancer therapy
  publication-title: Biomed. & Pharmacotherap. = Biomed. & Pharmacotherap.
– volume: 54
  start-page: 12029
  year: 2015
  end-page: 12033
  ident: bb0425
  article-title: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 393
  year: 2020
  ident: bb0620
  article-title: Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: e1901570
  year: 2019
  ident: bb0155
  article-title: Encapsulation of plasmid DNA by nanoscale metal-organic frameworks for efficient gene transportation and expression
  publication-title: Adv. Mater. (Deerfield Beach, Fla.)
– volume: 40
  year: 2019
  ident: bb0335
  article-title: Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing
  publication-title: Macromol. Rapid Commun.
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: bb0010
  article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA Cancer J. Clin.
– volume: 10
  start-page: 1451
  year: 2020
  ident: bb0730
  article-title: Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer
  publication-title: Front. Oncol.
– volume: 140
  start-page: 143
  year: 2018
  end-page: 146
  ident: bb0365
  article-title: Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 83
  year: 2022
  ident: bb0595
  article-title: Homologous targeting nanoparticles for enhanced PDT against osteosarcoma HOS cells and the related molecular mechanisms
  publication-title: J. Nanobiotechnol.
– volume: 14
  start-page: 9243
  year: 2020
  end-page: 9262
  ident: bb0020
  article-title: Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for In Vivo CRISPR/Cas-Based Genome Editing
  publication-title: ACS Nano
– volume: 11
  start-page: 1
  year: 2022
  end-page: 14
  ident: bb0545
  article-title: Targeted core-shell nanoparticles for precise CTCF gene insert in treatment of metastatic breast cancer
  publication-title: Bioact. Mater.
– volume: 19
  year: 2023
  ident: bb0500
  article-title: CRISPR/Cas9 and Chlorophyll Coordination Micelles for Cancer Treatment by Genome Editing and Photodynamic Therapy
  publication-title: Small
– volume: 10
  start-page: 562
  year: 2014
  end-page: 571
  ident: bb0575
  article-title: Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies
  publication-title: Autophagy
– volume: 36
  start-page: 653
  year: 2018
  end-page: 660
  ident: bb0705
  article-title: Restoring the p53 'Guardian' Phenotype in p53-deficient tumor cells with CRISPR/Cas9
  publication-title: Trends Biotechnol.
– volume: 55
  start-page: 106
  year: 2019
  end-page: 119
  ident: bb0045
  article-title: CRISPR/Cas9 for cancer research and therapy
  publication-title: Semin. Cancer Biol.
– volume: 142
  start-page: 1715
  year: 2020
  end-page: 1720
  ident: bb0370
  article-title: Cell-Type-Specific CRISPR/Cas9 Delivery by Biomimetic Metal Organic Frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2020
  ident: bb0185
  article-title: Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
– start-page: 27
  year: 2017
  ident: bb0260
  article-title: Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles
  publication-title: Adv. Funct. Mater.
– volume: 447
  start-page: 48
  year: 2019
  end-page: 55
  ident: bb0200
  article-title: CRISPR-Cas9 for cancer therapy: Opportunities and challenges
  publication-title: Cancer Lett.
– volume: 315
  start-page: 1709
  year: 2007
  end-page: 1712
  ident: bb0025
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science (New York, N.Y.)
– volume: 171
  start-page: 207
  year: 2018
  end-page: 218
  ident: bb0015
  article-title: Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities
  publication-title: Biomaterials
– volume: 111
  start-page: 492
  year: 2018
  end-page: 502
  ident: bb0615
  article-title: Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy
  publication-title: Eur. J. Pharm. Sci.
– volume: 41
  start-page: 583
  year: 2020
  end-page: 587
  ident: bb0055
  article-title: CRISPR-cas9: a powerful tool towards precision medicine in cancer treatment
  publication-title: Acta Pharmacol. Sin.
– volume: 236
  start-page: 2459
  year: 2021
  end-page: 2481
  ident: bb0170
  article-title: CRISPR/Cas gene therapy
  publication-title: J. Cell. Physiol.
– volume: 26
  start-page: 732
  year: 2020
  end-page: 740
  ident: bb0750
  article-title: Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer
  publication-title: Nat. Med.
– volume: 58
  start-page: 12404
  year: 2019
  end-page: 12408
  ident: bb0405
  article-title: Triple-Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 8
  start-page: 2966
  year: 2020
  end-page: 2976
  ident: bb0645
  article-title: An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells
  publication-title: Biomater. Sci.
– volume: 194
  start-page: 48
  year: 2021
  end-page: 55
  ident: bb0210
  article-title: Latest progress in the study of nanoparticle-based delivery of the CRISPR/Cas9 system
  publication-title: Methods (San Diego, Calif.)
– volume: 384
  start-page: 252
  year: 2021
  end-page: 260
  ident: bb0080
  article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
  publication-title: N. Engl. J. Med.
– volume: 18
  start-page: 16
  year: 2020
  ident: bb0305
  article-title: Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR-Cas9 plasmid
  publication-title: J. Nanobiotechnol.
– volume: 20
  start-page: 555
  year: 2020
  end-page: 572
  ident: bb0660
  article-title: A compendium of mutational cancer driver genes
  publication-title: Nat. Rev. Cancer
– volume: 7
  start-page: 1798
  year: 2018
  end-page: 1807
  ident: bb0700
  article-title: Synthesizing a genetic sensor based on CRISPR-Cas9 for Specifically Killing p53-Deficient Cancer Cells
  publication-title: ACS Synth. Biol.
– volume: 147
  start-page: 68
  year: 2017
  end-page: 85
  ident: bb0345
  article-title: Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma
  publication-title: Biomaterials
– volume: 9
  start-page: 94
  year: 2021
  end-page: 100
  ident: bb0390
  article-title: Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing
  publication-title: J. Mater. Chem. B
– volume: 15
  start-page: 593
  year: 2019
  end-page: 601
  ident: bb0125
  article-title: Generation of Cancer-Specific Cytotoxic PD-1(-) T Cells Using Liposome-Encapsulated CRISPR/Cas System with Dendritic/Tumor Fusion Cells
  publication-title: J. Biomed. Nanotechnol.
– volume: 121
  start-page: 55
  year: 2017
  end-page: 63
  ident: bb0270
  article-title: Targeted delivery of in situ PCR-amplified Sleeping Beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells
  publication-title: Biomaterials
– volume: 351
  start-page: 739
  year: 2022
  end-page: 751
  ident: bb0600
  article-title: Brain-targeted CRISPR/Cas9 nanomedicine for effective glioblastoma therapy
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
– volume: 7
  start-page: 2049
  year: 2021
  end-page: 2062
  ident: bb0450
  article-title: Ultrasound-controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma
  publication-title: ACS Cent. Sci.
– volume: 4
  start-page: 1700175
  year: 2017
  ident: bb0145
  article-title: Genome editing for cancer therapy: delivery of Cas9 Protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier
  publication-title: Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany)
– volume: 12
  start-page: 16018
  year: 2020
  end-page: 16030
  ident: bb0465
  article-title: Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death
  publication-title: ACS Appl. Mater. Interfaces
– volume: 193
  start-page: 74
  year: 2014
  end-page: 89
  ident: bb0540
  article-title: Major degradable polycations as carriers for DNA and siRNA
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
– volume: 168
  start-page: 3
  year: 2021
  end-page: 29
  ident: bb0175
  article-title: Rational designs of in vivo CRISPR-Cas delivery systems
  publication-title: Adv. Drug Deliv. Rev.
– volume: 5
  start-page: 1700611
  year: 2018
  ident: bb0650
  article-title: Exosome-Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs
  publication-title: Adv. Sci. (Weinh)
– volume: 12
  year: 2020
  ident: bb0670
  article-title: A History of Cancer Research: Tumor Suppressor Genes
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 52
  start-page: 1555
  year: 2019
  end-page: 1564
  ident: bb0060
  article-title: Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing
  publication-title: Acc. Chem. Res.
– volume: 57
  start-page: 10268
  year: 2018
  end-page: 10272
  ident: bb0445
  article-title: Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 8
  start-page: eabm8011
  year: 2022
  ident: bb0090
  article-title: Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy
  publication-title: Sci. Adv.
– volume: 17
  year: 2021
  ident: bb0435
  article-title: Recent advances in 2D material-mediated immuno-combined cancer therapy
  publication-title: Small (Weinheim an der Bergstrasse, Germany)
– volume: 60
  start-page: 21200
  year: 2021
  end-page: 21204
  ident: bb0410
  article-title: Hypoxia-responsive gene editing to reduce tumor thermal tolerance for mild-photothermal therapy
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: bb0050
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science (New York, N.Y.)
– volume: 116
  start-page: 18295
  year: 2019
  end-page: 18303
  ident: bb0280
  article-title: Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  start-page: 4229
  year: 2013
  end-page: 4246
  ident: bb0510
  article-title: The impact of PEGylation patterns on the in vivo biodistribution of mixed shell micelles
  publication-title: Int. J. Nanomedicine
– volume: 14
  start-page: 2095
  year: 2018
  end-page: 2102
  ident: bb0330
  article-title: Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy
  publication-title: Nanomedicine
– volume: 16
  start-page: 1713
  year: 2018
  end-page: 1723
  ident: bb0605
  article-title: Integrated Genomic Comparison of Mouse Models Reveals Their Clinical Resemblance to Human Liver Cancer
  publication-title: Mol. Cancer Res. : MCR
– volume: 11
  year: 2019
  ident: bb0250
  article-title: Liposomal Vitamin D(3) as an Anti-aging Agent for the Skin
  publication-title: Pharmaceutics
– volume: 11
  start-page: 3272
  year: 2021
  end-page: 3285
  ident: bb0635
  article-title: Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response
  publication-title: Acta Pharm. Sin. B
– volume: 10
  start-page: 1291
  year: 2022
  end-page: 1300
  ident: bb0320
  article-title: Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy
  publication-title: J. Mater. Chem. B
– volume: 17
  start-page: 387
  year: 2016
  end-page: 397
  ident: bb0230
  article-title: X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface
  publication-title: Sci. Technol. Adv. Mater.
– volume: 13
  start-page: 6603
  year: 2018
  end-page: 6623
  ident: bb0265
  article-title: Highly efficient siRNA transfection in macrophages using apoptotic body-mimic Ca-PS lipopolyplex
  publication-title: Int. J. Nanomedicine
– volume: 56
  start-page: 15406
  year: 2020
  end-page: 15409
  ident: bb0475
  article-title: ZIF-C for targeted RNA interference and CRISPR/Cas9 based gene editing in prostate cancer
  publication-title: Chem. Commun. (Camb.)
– volume: 357
  start-page: 210
  year: 2023
  end-page: 221
  ident: bb0485
  article-title: Metal coordination micelles for anti-cancer treatment by gene-editing and phototherapy
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
– volume: 15
  start-page: 5377
  year: 2020
  end-page: 5387
  ident: bb0580
  article-title: Hybrid Hydrogels for Synergistic Periodontal Antibacterial Treatment with Sustained Drug Release and NIR-Responsive Photothermal Effect
  publication-title: Int. J. Nanomedicine
– volume: 13
  start-page: 1512
  year: 2017
  end-page: 1527
  ident: bb0570
  article-title: An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF(V600E) inhibitor-resistant metastatic melanoma cells
  publication-title: Autophagy
– volume: 13
  start-page: 291
  year: 2018
  end-page: 302
  ident: bb0590
  article-title: Adeno-associated Virus-Mediated RNAi against Mutant alleles attenuates abnormal calvarial phenotypes in an apert syndrome mouse model
  publication-title: Mol. Therap. Nucl. Acids
– volume: 10
  year: 2018
  ident: bb0725
  article-title: Treating p53 Mutant Aggregation-Associated Cancer
  publication-title: Cancers
– volume: 126
  start-page: 123
  year: 2017
  end-page: 137
  ident: bb0530
  article-title: Nanoparticle-based hyperthermia, a local treatment modulating the tumor extracellular matrix
  publication-title: Pharmacol. Res.
– volume: 384
  year: 2021
  ident: bb0070
  article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
  publication-title: N. Engl. J. Med.
– volume: 20
  start-page: 126
  year: 2021
  ident: bb0655
  article-title: Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer
  publication-title: Mol. Cancer
– volume: 136
  start-page: 14722
  year: 2014
  end-page: 14725
  ident: bb0430
  article-title: Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery
  publication-title: J. Am. Chem. Soc.
– volume: 223
  start-page: 126
  year: 2016
  end-page: 136
  ident: bb0515
  article-title: Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
– volume: 393
  year: 2020
  ident: bb0630
  article-title: Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 6244
  year: 2015
  ident: bb0220
  article-title: Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  ident: bb0355
  article-title: Metal-Organic Framework (MOF)-Based Drug/Cargo delivery and cancer therapy
  publication-title: Adv. Mater. (Deerfield Beach, Fla.)
– volume: 5
  start-page: eaav7199
  year: 2019
  ident: bb0495
  article-title: Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform
  publication-title: Sci. Adv.
– volume: 126
  start-page: 3868
  year: 2016
  end-page: 3878
  ident: bb0075
  article-title: Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype
  publication-title: J. Clin. Invest.
– volume: 11
  year: 2022
  ident: bb0470
  article-title: A Cancer Cell Membrane-Derived Biomimetic Nanocarrier for Synergistic Photothermal/Gene Therapy by Efficient Delivery of CRISPR/Cas9 and Gold Nanorods
  publication-title: Adv. Healthc. Mater.
– volume: 12
  start-page: 808
  year: 2020
  end-page: 824
  ident: bb0755
  article-title: Low-abundance mutations in colorectal cancer patients and healthy adults
  publication-title: Aging
– volume: 22
  year: 2021
  ident: bb0380
  article-title: CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles
  publication-title: Int. J. Mol. Sci.
– volume: 16
  start-page: 13821
  year: 2022
  end-page: 13833
  ident: bb0460
  article-title: HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy
  publication-title: ACS Nano
– volume: 9
  start-page: 6347
  year: 2021
  end-page: 6356
  ident: bb0560
  article-title: Substance P containing peptide gene delivery vectors for specifically transfecting glioma cells mediated by a neurokinin-1 receptor
  publication-title: J. Mater. Chem. B
– volume: 6
  start-page: 2337
  year: 2016
  end-page: 2351
  ident: bb0585
  article-title: NIR-laser-controlled drug release from DOX/IR-780-Loaded temperature-sensitive-liposomes for chemo-photothermal synergistic tumor therapy
  publication-title: Theranostics
– volume: 22
  start-page: 3360
  year: 2021
  end-page: 3368
  ident: bb0375
  article-title: Exosomes as Targeted Delivery Platform of CRISPR/Cas9 for Therapeutic Genome Editing
  publication-title: Chembiochem : Eur. J. Chem. Biol.
– volume: 16
  start-page: 387
  year: 2017
  end-page: 399
  ident: bb0040
  article-title: Delivery technologies for genome editing
  publication-title: Nat. Rev. Drug Discov.
– volume: 266
  start-page: 17
  year: 2017
  end-page: 26
  ident: bb0110
  article-title: Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
– volume: 153
  start-page: 481
  year: 2022
  end-page: 493
  ident: bb0290
  article-title: A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy
  publication-title: Acta Biomater.
– volume: 4
  year: 2021
  ident: bb0480
  article-title: Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer
  publication-title: Life Sci. Allian.
– volume: 11
  year: 2022
  ident: bb0490
  article-title: Effective Genome Editing Using CRISPR-Cas9 Nanoflowers
  publication-title: Adv. Healthc. Mater.
– volume: 6
  start-page: eabb4005
  year: 2020
  ident: bb0455
  article-title: Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects
  publication-title: Sci. Adv.
– volume: 10
  start-page: 1730
  year: 2020
  end-page: 1740
  ident: bb0255
  article-title: Remote loading paclitaxel-doxorubicin prodrug into liposomes for cancer combination therapy
  publication-title: Acta Pharm. Sin. B
– volume: 384
  year: 2021
  ident: bb0085
  article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
  publication-title: N. Engl. J. Med.
– volume: 7
  start-page: 1020
  year: 2014
  end-page: 1029
  ident: bb0685
  article-title: CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer
  publication-title: Cell Rep.
– volume: 145
  year: 2019
  ident: bb0105
  article-title: Lentiviral Vector Platform for the Efficient Delivery of Epigenome-editing Tools into Human Induced Pluripotent Stem Cell-derived Disease Models
  publication-title: J. Visualiz. Experiment. : JoVE
– volume: 57
  year: 2021
  ident: bb0690
  article-title: Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function
  publication-title: Drug Resistan. Updates : Rev. Comment. Antimicrobial. Antican. Chemotherap.
– volume: 61
  start-page: 44
  year: 2020
  end-page: 52
  ident: bb0675
  article-title: CTCF and CTCFL in cancer
  publication-title: Curr. Opin. Genet. Dev.
– volume: 10
  start-page: 1063
  year: 2018
  end-page: 1071
  ident: bb0440
  article-title: Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing
  publication-title: Nanoscale
– volume: 170
  start-page: 48
  year: 2017
  end-page: 60.e11
  ident: bb0195
  article-title: Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System
  publication-title: Cell
– volume: 54
  start-page: 3609
  year: 2018
  end-page: 3612
  ident: bb0420
  article-title: DNA nanoclew templated spherical nucleic acids for siRNA delivery
  publication-title: Chem. Commun. (Camb.)
– volume: 434
  start-page: 202
  year: 2012
  end-page: 209
  ident: bb0030
  article-title: Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information
  publication-title: Virology
– volume: 176
  year: 2021
  ident: bb0205
  article-title: Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment
  publication-title: Adv. Drug Deliv. Rev.
– volume: 13
  start-page: 16525
  year: 2021
  end-page: 16532
  ident: bb0150
  article-title: Improving the knock-in efficiency of the MOF-encapsulated CRISPR/Cas9 system through controllable embedding structures
  publication-title: Nanoscale
– volume: 36
  start-page: 173
  year: 2018
  end-page: 185
  ident: bb0115
  article-title: Engineering the Delivery System for CRISPR-Based Genome Editing
  publication-title: Trends Biotechnol.
– volume: 197
  start-page: 41
  year: 2019
  end-page: 50
  ident: bb0360
  article-title: Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo
  publication-title: Biomaterials
– volume: 31
  start-page: 309
  year: 2020
  end-page: 324
  ident: bb0550
  article-title: Human Papillomavirus Oncogene Manipulation Using Clustered Regularly Interspersed Short Palindromic Repeats/Cas9 Delivered by pH-Sensitive Cationic Liposomes
  publication-title: Hum. Gene Ther.
– volume: 6
  year: 2020
  ident: bb0295
  article-title: CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy
  publication-title: Sci. Adv.
– volume: 27
  start-page: 515
  year: 2020
  end-page: 527
  ident: bb0245
  article-title: Liposomal delivery of CRISPR/Cas9
  publication-title: Cancer Gene Ther.
– volume: 6
  start-page: eabb0020
  year: 2020
  ident: bb0400
  article-title: Vascular disrupting agent induced aggregation of gold nanoparticles for photothermally enhanced tumor vascular disruption
  publication-title: Sci. Adv.
– volume: 9
  start-page: 4055
  year: 2014
  end-page: 4066
  ident: bb0285
  article-title: Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy
  publication-title: Int. J. Nanomedicine
– volume: 20
  start-page: 701
  year: 2021
  end-page: 710
  ident: bb0535
  article-title: Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing
  publication-title: Nat. Mater.
– volume: 20
  start-page: 661
  year: 2020
  end-page: 672
  ident: bb0135
  article-title: Poly(Beta-Amino Ester) Nanoparticles Enable Nonviral Delivery of CRISPR-Cas9 Plasmids for Gene Knockout and Gene Deletion
  publication-title: Mol. Therap. Nucl. Acids
– volume: 65
  start-page: 175
  year: 2015
  end-page: 183
  ident: bb0395
  article-title: An in vivo study of a gold nanocomposite biomaterial for vascular repair
  publication-title: Biomaterials
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: bb0240
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
– volume: 169
  start-page: 5429
  year: 1987
  end-page: 5433
  ident: bb0005
  article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
  publication-title: J. Bacteriol.
– volume: 14
  start-page: 9243
  issue: 8
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0020
  article-title: Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for In Vivo CRISPR/Cas-Based Genome Editing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04707
– volume: 11
  issue: 1
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0165
  article-title: Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer
  publication-title: Biotech (Basel (Switzerland))
– volume: 17
  issue: 46
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0435
  article-title: Recent advances in 2D material-mediated immuno-combined cancer therapy
  publication-title: Small (Weinheim an der Bergstrasse, Germany)
  doi: 10.1002/smll.202102557
– volume: 143
  start-page: 37
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0525
  article-title: Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2019.06.007
– volume: 57
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0690
  article-title: Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function
  publication-title: Drug Resistan. Updates : Rev. Comment. Antimicrobial. Antican. Chemotherap.
– volume: 6
  start-page: eabb0020
  issue: 23
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0400
  article-title: Vascular disrupting agent induced aggregation of gold nanoparticles for photothermally enhanced tumor vascular disruption
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb0020
– volume: 15
  start-page: 593
  issue: 3
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0125
  article-title: Generation of Cancer-Specific Cytotoxic PD-1(-) T Cells Using Liposome-Encapsulated CRISPR/Cas System with Dendritic/Tumor Fusion Cells
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2019.2712
– volume: 357
  start-page: 210
  year: 2023
  ident: 10.1016/j.jconrel.2023.08.028_bb0485
  article-title: Metal coordination micelles for anti-cancer treatment by gene-editing and phototherapy
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
  doi: 10.1016/j.jconrel.2023.03.042
– volume: 6
  issue: 47
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0295
  article-title: CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc9450
– volume: 169
  start-page: 5429
  issue: 12
  year: 1987
  ident: 10.1016/j.jconrel.2023.08.028_bb0005
  article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.169.12.5429-5433.1987
– volume: 20
  start-page: 83
  issue: 1
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0595
  article-title: Homologous targeting nanoparticles for enhanced PDT against osteosarcoma HOS cells and the related molecular mechanisms
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-021-01201-y
– volume: 8
  start-page: 4229
  year: 2013
  ident: 10.1016/j.jconrel.2023.08.028_bb0510
  article-title: The impact of PEGylation patterns on the in vivo biodistribution of mixed shell micelles
  publication-title: Int. J. Nanomedicine
– volume: 10
  start-page: 1291
  issue: 8
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0320
  article-title: Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB02688G
– volume: 140
  start-page: 143
  issue: 1
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0365
  article-title: Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11754
– volume: 9
  start-page: 94
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0390
  article-title: Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB01925A
– volume: 54
  start-page: 3609
  issue: 29
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0420
  article-title: DNA nanoclew templated spherical nucleic acids for siRNA delivery
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C7CC09257A
– volume: 8
  start-page: 2966
  issue: 10
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0645
  article-title: An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM00427H
– volume: 54
  start-page: 12029
  issue: 41
  year: 2015
  ident: 10.1016/j.jconrel.2023.08.028_bb0425
  article-title: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201506030
– volume: 55
  start-page: 106
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0045
  article-title: CRISPR/Cas9 for cancer research and therapy
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2018.04.001
– volume: 61
  start-page: 44
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0675
  article-title: CTCF and CTCFL in cancer
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2020.02.021
– volume: 315
  start-page: 1709
  issue: 5819
  year: 2007
  ident: 10.1016/j.jconrel.2023.08.028_bb0025
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1138140
– volume: 16
  start-page: 13821
  issue: 9
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0460
  article-title: HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c01885
– volume: 5
  start-page: 1700540
  issue: 7
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0520
  article-title: HPV Oncogene Manipulation Using Nonvirally Delivered CRISPR/Cas9 or Natronobacterium gregoryi Argonaute
  publication-title: Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany)
– volume: 163
  start-page: 1611
  issue: 7
  year: 2015
  ident: 10.1016/j.jconrel.2023.08.028_bb0680
  article-title: CTCF-Mediated human 3D genome architecture reveals chromatin topology for transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.024
– volume: 111
  start-page: 492
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0615
  article-title: Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2017.10.036
– volume: 6
  start-page: 6244
  year: 2015
  ident: 10.1016/j.jconrel.2023.08.028_bb0220
  article-title: Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7244
– volume: 15
  start-page: 5377
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0580
  article-title: Hybrid Hydrogels for Synergistic Periodontal Antibacterial Treatment with Sustained Drug Release and NIR-Responsive Photothermal Effect
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S248538
– volume: 384
  start-page: 252
  issue: 3
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0080
  article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2031054
– volume: 12
  start-page: 57362
  issue: 51
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0610
  article-title: Co-delivery of Sorafenib and CRISPR/Cas9 Based on Targeted Core-Shell Hollow Mesoporous Organosilica Nanoparticles for Synergistic HCC Therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c17660
– volume: 11
  start-page: 1
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0545
  article-title: Targeted core-shell nanoparticles for precise CTCF gene insert in treatment of metastatic breast cancer
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2021.10.007
– volume: 10
  start-page: 1451
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0730
  article-title: Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.01451
– volume: 52
  start-page: 665
  issue: 3
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0130
  article-title: Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00493
– volume: 266
  start-page: 17
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0110
  article-title: Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
  doi: 10.1016/j.jconrel.2017.09.012
– volume: 7
  start-page: 1798
  issue: 7
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0700
  article-title: Synthesizing a genetic sensor based on CRISPR-Cas9 for Specifically Killing p53-Deficient Cancer Cells
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00202
– volume: 6
  issue: 43
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0225
  article-title: Supramolecular nanosubstrate-mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb7107
– volume: 13
  start-page: 6603
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0265
  article-title: Highly efficient siRNA transfection in macrophages using apoptotic body-mimic Ca-PS lipopolyplex
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S176991
– volume: 12
  issue: 2
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0670
  article-title: A History of Cancer Research: Tumor Suppressor Genes
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a035907
– volume: 22
  start-page: 1824
  issue: 11
  year: 2015
  ident: 10.1016/j.jconrel.2023.08.028_bb0710
  article-title: Pontin, a new mutant p53-binding protein, promotes gain-of-function of mutant p53
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2015.33
– volume: 57
  start-page: 1491
  issue: 6
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0415
  article-title: Thermo-triggered Release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201708689
– volume: 18
  start-page: 16
  issue: 1
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0305
  article-title: Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR-Cas9 plasmid
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-019-0564-1
– volume: 11
  issue: 10
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0490
  article-title: Effective Genome Editing Using CRISPR-Cas9 Nanoflowers
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202102365
– volume: 12
  start-page: 21386
  issue: 19
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0140
  article-title: Genome Editing in a Wide Area of the Brain Using Dendrimer-Based Ternary Polyplexes of Cas9 Ribonucleoprotein
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21667
– volume: 193
  start-page: 74
  year: 2014
  ident: 10.1016/j.jconrel.2023.08.028_bb0540
  article-title: Major degradable polycations as carriers for DNA and siRNA
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
  doi: 10.1016/j.jconrel.2014.05.055
– volume: 197
  start-page: 41
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0360
  article-title: Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.01.001
– volume: 393
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0630
  article-title: Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124688
– volume: 10
  start-page: 1730
  issue: 9
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0255
  article-title: Remote loading paclitaxel-doxorubicin prodrug into liposomes for cancer combination therapy
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2020.04.011
– volume: 57
  start-page: 10268
  issue: 32
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0445
  article-title: Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201806941
– volume: 11
  issue: 16
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0470
  article-title: A Cancer Cell Membrane-Derived Biomimetic Nanocarrier for Synergistic Photothermal/Gene Therapy by Efficient Delivery of CRISPR/Cas9 and Gold Nanorods
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202201038
– volume: 12
  start-page: 7137
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0640
  article-title: Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27184-w
– volume: 16
  start-page: 1713
  issue: 11
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0605
  article-title: Integrated Genomic Comparison of Mouse Models Reveals Their Clinical Resemblance to Human Liver Cancer
  publication-title: Mol. Cancer Res. : MCR
  doi: 10.1158/1541-7786.MCR-18-0313
– volume: 13
  start-page: 1512
  issue: 9
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0570
  article-title: An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF(V600E) inhibitor-resistant metastatic melanoma cells
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1332550
– volume: 26
  start-page: 732
  issue: 5
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0750
  article-title: Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0840-5
– volume: 20
  start-page: 661
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0135
  article-title: Poly(Beta-Amino Ester) Nanoparticles Enable Nonviral Delivery of CRISPR-Cas9 Plasmids for Gene Knockout and Gene Deletion
  publication-title: Mol. Therap. Nucl. Acids
  doi: 10.1016/j.omtn.2020.04.005
– volume: 5
  issue: 1
  year: 2016
  ident: 10.1016/j.jconrel.2023.08.028_bb0735
  article-title: Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method
  publication-title: Mol. Therap. Nucl. Acids
– volume: 11
  start-page: 34717
  issue: 38
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0215
  article-title: Gold Nanocluster-Mediated Efficient Delivery of Cas9 Protein through pH-Induced Assembly-Disassembly for Inactivation of Virus Oncogenes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12335
– volume: 8
  start-page: 2281
  issue: 11
  year: 2013
  ident: 10.1016/j.jconrel.2023.08.028_bb0240
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 6
  start-page: 2337
  issue: 13
  year: 2016
  ident: 10.1016/j.jconrel.2023.08.028_bb0585
  article-title: NIR-laser-controlled drug release from DOX/IR-780-Loaded temperature-sensitive-liposomes for chemo-photothermal synergistic tumor therapy
  publication-title: Theranostics
  doi: 10.7150/thno.14937
– volume: 16
  start-page: 387
  issue: 6
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0040
  article-title: Delivery technologies for genome editing
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.280
– volume: 3
  start-page: 1114
  issue: 7
  year: 2015
  ident: 10.1016/j.jconrel.2023.08.028_bb0340
  article-title: Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes
  publication-title: Biomater. Sci.
  doi: 10.1039/C5BM00003C
– volume: 58
  start-page: 12404
  issue: 36
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0405
  article-title: Triple-Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201903618
– volume: 147
  start-page: 68
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0345
  article-title: Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.09.015
– volume: 40
  issue: 5
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0335
  article-title: Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201800068
– volume: 29
  start-page: 571
  issue: 2
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0740
  article-title: CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2020.09.028
– volume: 384
  issue: 23
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0070
  article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
  publication-title: N. Engl. J. Med.
– volume: 22
  start-page: 3360
  issue: 24
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0375
  article-title: Exosomes as Targeted Delivery Platform of CRISPR/Cas9 for Therapeutic Genome Editing
  publication-title: Chembiochem : Eur. J. Chem. Biol.
  doi: 10.1002/cbic.202100359
– volume: 17
  start-page: 387
  issue: 1
  year: 2016
  ident: 10.1016/j.jconrel.2023.08.028_bb0230
  article-title: X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2016.1194167
– volume: 520
  start-page: 186
  issue: 7546
  year: 2015
  ident: 10.1016/j.jconrel.2023.08.028_bb0100
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
  doi: 10.1038/nature14299
– volume: 11
  start-page: 614
  issue: 2
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0120
  article-title: Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
  publication-title: Theranostics
  doi: 10.7150/thno.47007
– volume: 52
  start-page: 1555
  issue: 6
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0060
  article-title: Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00106
– volume: 29
  issue: 23
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0355
  article-title: Metal-Organic Framework (MOF)-Based Drug/Cargo delivery and cancer therapy
  publication-title: Adv. Mater. (Deerfield Beach, Fla.)
  doi: 10.1002/adma.201606134
– volume: 384
  issue: 23
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0085
  article-title: CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
  publication-title: N. Engl. J. Med.
– start-page: 23 (2)
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0565
  article-title: The Anticancer Potential of Doxycycline and Minocycline-A Comparative Study on Amelanotic Melanoma Cell Lines
  publication-title: Int. J. Mol. Sci.
– volume: 116
  start-page: 18295
  issue: 37
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0280
  article-title: Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1904697116
– volume: 133
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0095
  article-title: CRISPR technology: The engine that drives cancer therapy
  publication-title: Biomed. & Pharmacotherap. = Biomed. & Pharmacotherap.
– volume: 126
  start-page: 123
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0530
  article-title: Nanoparticle-based hyperthermia, a local treatment modulating the tumor extracellular matrix
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2017.07.010
– volume: 36
  start-page: 173
  issue: 2
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0115
  article-title: Engineering the Delivery System for CRISPR-Based Genome Editing
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2017.11.006
– volume: 121
  start-page: 55
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0270
  article-title: Targeted delivery of in situ PCR-amplified Sleeping Beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.12.033
– volume: 9
  start-page: 4055
  year: 2014
  ident: 10.1016/j.jconrel.2023.08.028_bb0285
  article-title: Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S61880
– volume: 117
  start-page: 9874
  issue: 15
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0035
  article-title: CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00799
– volume: 13
  start-page: 16525
  issue: 39
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0150
  article-title: Improving the knock-in efficiency of the MOF-encapsulated CRISPR/Cas9 system through controllable embedding structures
  publication-title: Nanoscale
  doi: 10.1039/D1NR02872C
– volume: 20
  start-page: 126
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0655
  article-title: Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-021-01431-6
– volume: 11
  start-page: 3272
  issue: 10
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0635
  article-title: Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2021.03.014
– volume: 20
  start-page: 701
  issue: 5
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0535
  article-title: Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00886-0
– volume: 11
  issue: 7
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0250
  article-title: Liposomal Vitamin D(3) as an Anti-aging Agent for the Skin
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11070311
– volume: 10
  start-page: 562
  issue: 4
  year: 2014
  ident: 10.1016/j.jconrel.2023.08.028_bb0575
  article-title: Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies
  publication-title: Autophagy
  doi: 10.4161/auto.27901
– volume: 142
  start-page: 1715
  issue: 4
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0370
  article-title: Cell-Type-Specific CRISPR/Cas9 Delivery by Biomimetic Metal Organic Frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11638
– volume: 12
  start-page: 808
  issue: 1
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0755
  article-title: Low-abundance mutations in colorectal cancer patients and healthy adults
  publication-title: Aging
  doi: 10.18632/aging.102657
– volume: 339
  start-page: 819
  issue: 6121
  year: 2013
  ident: 10.1016/j.jconrel.2023.08.028_bb0050
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1231143
– volume: 41
  start-page: 583
  issue: 5
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0055
  article-title: CRISPR-cas9: a powerful tool towards precision medicine in cancer treatment
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-019-0322-9
– volume: 15
  start-page: 905
  issue: 9
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0160
  article-title: Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2018.1517746
– volume: 12
  start-page: 1006
  issue: 8
  year: 2014
  ident: 10.1016/j.jconrel.2023.08.028_bb0180
  article-title: Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12256
– volume: 141
  start-page: 3782
  issue: 9
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0350
  article-title: Nanoscale ATP-Responsive Zeolitic Imidazole Framework-90 as a General Platform for Cytosolic Protein Delivery and Genome Editing
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11996
– volume: 266
  start-page: 8
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0385
  article-title: Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
  doi: 10.1016/j.jconrel.2017.09.013
– volume: 5
  start-page: 1700611
  issue: 4
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0650
  article-title: Exosome-Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs
  publication-title: Adv. Sci. (Weinh)
  doi: 10.1002/advs.201700611
– volume: 15
  start-page: 387
  issue: 7
  year: 2015
  ident: 10.1016/j.jconrel.2023.08.028_bb0665
  article-title: Applications of the CRISPR-Cas9 system in cancer biology
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3950
– volume: 7
  start-page: 1020
  issue: 4
  year: 2014
  ident: 10.1016/j.jconrel.2023.08.028_bb0685
  article-title: CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.04.004
– volume: 9
  start-page: 6347
  issue: 32
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0560
  article-title: Substance P containing peptide gene delivery vectors for specifically transfecting glioma cells mediated by a neurokinin-1 receptor
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB00577D
– volume: 12
  issue: 3
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0185
  article-title: Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1609
– volume: 9
  start-page: 590
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0555
  article-title: Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2021.05.051
– volume: 7
  start-page: 2049
  issue: 12
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0450
  article-title: Ultrasound-controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.1c01143
– volume: 434
  start-page: 202
  issue: 2
  year: 2012
  ident: 10.1016/j.jconrel.2023.08.028_bb0030
  article-title: Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information
  publication-title: Virology
  doi: 10.1016/j.virol.2012.10.003
– volume: 14
  start-page: 2095
  issue: 7
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0330
  article-title: Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2018.06.009
– volume: 46
  start-page: 6471
  issue: 6
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0715
  article-title: Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-019-05093-y
– volume: 18
  start-page: 455
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0235
  article-title: Mineral-Coated Microparticles Enhance mRNA-Based Transfection of Human Bone Marrow Cells
  publication-title: Mol. Therap. Nucl. Acids
  doi: 10.1016/j.omtn.2019.09.004
– volume: 22
  issue: 11
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0380
  article-title: CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22116072
– volume: 36
  start-page: 653
  issue: 7
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0705
  article-title: Restoring the p53 'Guardian' Phenotype in p53-deficient tumor cells with CRISPR/Cas9
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.01.014
– volume: 539
  start-page: 479
  issue: 7630
  year: 2016
  ident: 10.1016/j.jconrel.2023.08.028_bb0065
  article-title: CRISPR gene-editing tested in a person for the first time
  publication-title: Nature
  doi: 10.1038/nature.2016.20988
– volume: 171
  start-page: 207
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0015
  article-title: Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.04.031
– volume: 393
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0620
  article-title: Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124688
– volume: 236
  start-page: 2459
  issue: 4
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0170
  article-title: CRISPR/Cas gene therapy
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.30064
– volume: 33
  start-page: e2006003
  issue: 12
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0190
  article-title: Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy
  publication-title: Adv. Mater. (Deerfield Beach, Fla.)
  doi: 10.1002/adma.202006003
– volume: 176
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0205
  article-title: Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.113891
– volume: 5
  start-page: eaav7199
  issue: 4
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0495
  article-title: Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav7199
– volume: 223
  start-page: 126
  year: 2016
  ident: 10.1016/j.jconrel.2023.08.028_bb0515
  article-title: Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
  doi: 10.1016/j.jconrel.2015.12.031
– volume: 615
  start-page: 687
  issue: 7953
  year: 2023
  ident: 10.1016/j.jconrel.2023.08.028_bb0745
  article-title: Non-viral precision Tcell receptor replacement for personalized cell therapy
  publication-title: Nature
  doi: 10.1038/s41586-022-05531-1
– volume: 15
  start-page: 12809
  issue: 10
  year: 2023
  ident: 10.1016/j.jconrel.2023.08.028_bb0315
  article-title: Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c22584
– volume: 136
  start-page: 14722
  issue: 42
  year: 2014
  ident: 10.1016/j.jconrel.2023.08.028_bb0430
  article-title: Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5088024
– volume: 22
  issue: 18
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0720
  article-title: Oncogenes, Proto-Oncogenes, and Lineage Restriction of Cancer Stem Cells
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22189667
– start-page: 27
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0260
  article-title: Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 34
  issue: 1
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0325
  article-title: Triazine-cored polymeric vectors for antisense oligonucleotide delivery in vitro and in vivo
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-020-0586-8
– volume: 30
  start-page: 649
  issue: 4
  year: 2009
  ident: 10.1016/j.jconrel.2023.08.028_bb0310
  article-title: A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.10.003
– volume: 13
  start-page: 291
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0590
  article-title: Adeno-associated Virus-Mediated RNAi against Mutant alleles attenuates abnormal calvarial phenotypes in an apert syndrome mouse model
  publication-title: Mol. Therap. Nucl. Acids
  doi: 10.1016/j.omtn.2018.09.012
– volume: 60
  start-page: 21200
  issue: 39
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0410
  article-title: Hypoxia-responsive gene editing to reduce tumor thermal tolerance for mild-photothermal therapy
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.202107036
– volume: 4
  start-page: 1700175
  issue: 11
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0145
  article-title: Genome editing for cancer therapy: delivery of Cas9 Protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier
  publication-title: Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany)
– volume: 19
  issue: 17
  year: 2023
  ident: 10.1016/j.jconrel.2023.08.028_bb0500
  article-title: CRISPR/Cas9 and Chlorophyll Coordination Micelles for Cancer Treatment by Genome Editing and Photodynamic Therapy
  publication-title: Small
  doi: 10.1002/smll.202206981
– volume: 10
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0695
  article-title: Mutant p53 in Cancer Progression and Targeted Therapies
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.595187
– volume: 4
  issue: 9
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0480
  article-title: Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer
  publication-title: Life Sci. Allian.
  doi: 10.26508/lsa.202000875
– volume: 153
  start-page: 481
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0290
  article-title: A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2022.09.046
– volume: 65
  start-page: 175
  year: 2015
  ident: 10.1016/j.jconrel.2023.08.028_bb0395
  article-title: An in vivo study of a gold nanocomposite biomaterial for vascular repair
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.06.045
– volume: 8
  start-page: eabm8011
  issue: 16
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0090
  article-title: Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abm8011
– volume: 56
  start-page: 15406
  issue: 98
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0475
  article-title: ZIF-C for targeted RNA interference and CRISPR/Cas9 based gene editing in prostate cancer
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/D0CC06241C
– volume: 15
  start-page: 313
  issue: 4
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0300
  article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0669-6
– volume: 126
  start-page: 3868
  issue: 10
  year: 2016
  ident: 10.1016/j.jconrel.2023.08.028_bb0075
  article-title: Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI87885
– volume: 12
  start-page: 3518
  issue: 10
  year: 2015
  ident: 10.1016/j.jconrel.2023.08.028_bb0275
  article-title: Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.5b00054
– volume: 10
  start-page: 1063
  issue: 3
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0440
  article-title: Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing
  publication-title: Nanoscale
  doi: 10.1039/C7NR07999K
– volume: 20
  start-page: 401
  issue: 1
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0625
  article-title: Engineering cancer cell membrane-camouflaged metal complex for efficient targeting therapy of breast cancer
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-022-01593-5
– volume: 31
  start-page: 309
  issue: 5-6
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0550
  article-title: Human Papillomavirus Oncogene Manipulation Using Clustered Regularly Interspersed Short Palindromic Repeats/Cas9 Delivered by pH-Sensitive Cationic Liposomes
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2019.312
– volume: 6
  start-page: eabb4005
  issue: 29
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0455
  article-title: Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb4005
– volume: 447
  start-page: 48
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0200
  article-title: CRISPR-Cas9 for cancer therapy: Opportunities and challenges
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.01.017
– volume: 10
  issue: 6
  year: 2018
  ident: 10.1016/j.jconrel.2023.08.028_bb0725
  article-title: Treating p53 Mutant Aggregation-Associated Cancer
  publication-title: Cancers
  doi: 10.3390/cancers10060154
– volume: 194
  start-page: 48
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0210
  article-title: Latest progress in the study of nanoparticle-based delivery of the CRISPR/Cas9 system
  publication-title: Methods (San Diego, Calif.)
  doi: 10.1016/j.ymeth.2021.06.004
– volume: 145
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0105
  article-title: Lentiviral Vector Platform for the Efficient Delivery of Epigenome-editing Tools into Human Induced Pluripotent Stem Cell-derived Disease Models
  publication-title: J. Visualiz. Experiment. : JoVE
– volume: 31
  start-page: e1901570
  issue: 29
  year: 2019
  ident: 10.1016/j.jconrel.2023.08.028_bb0155
  article-title: Encapsulation of plasmid DNA by nanoscale metal-organic frameworks for efficient gene transportation and expression
  publication-title: Adv. Mater. (Deerfield Beach, Fla.)
  doi: 10.1002/adma.201901570
– volume: 170
  start-page: 48
  issue: 1
  year: 2017
  ident: 10.1016/j.jconrel.2023.08.028_bb0195
  article-title: Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.012
– volume: 351
  start-page: 739
  year: 2022
  ident: 10.1016/j.jconrel.2023.08.028_bb0600
  article-title: Brain-targeted CRISPR/Cas9 nanomedicine for effective glioblastoma therapy
  publication-title: J. Controll. Releas. : Off. J. Controll. Releas. Soc.
  doi: 10.1016/j.jconrel.2022.09.046
– volume: 168
  start-page: 3
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0175
  article-title: Rational designs of in vivo CRISPR-Cas delivery systems
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2019.11.005
– volume: 19
  start-page: 355
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0505
  article-title: Chemo-photodynamic therapy with light-triggered disassembly of theranostic nanoplatform in combination with checkpoint blockade for immunotherapy of hepatocellular carcinoma
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-021-01101-1
– volume: 27
  start-page: 515
  issue: 7-8
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0245
  article-title: Liposomal delivery of CRISPR/Cas9
  publication-title: Cancer Gene Ther.
  doi: 10.1038/s41417-019-0141-7
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: 10.1016/j.jconrel.2023.08.028_bb0010
  article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 12
  start-page: 16018
  issue: 14
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0465
  article-title: Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b23084
– volume: 20
  start-page: 555
  issue: 10
  year: 2020
  ident: 10.1016/j.jconrel.2023.08.028_bb0660
  article-title: A compendium of mutational cancer driver genes
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-020-0290-x
SSID ssj0005347
Score 2.5255113
SecondaryResourceType review_article
Snippet CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 727
SubjectTerms cancer therapy
carcinogenicity
CRISPR-Cas systems
CRISPR/Cas9
editing efficient
genes
immunogenicity
neoplasms
Non-viral vectors
virus transmission
viruses
Title CRISPR/Cas9-based application for cancer therapy: Challenges and solutions for non-viral delivery
URI https://dx.doi.org/10.1016/j.jconrel.2023.08.028
https://www.proquest.com/docview/2853941485
https://www.proquest.com/docview/3040442424
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL17EJ76JID2ZbneTTTbeZLFURSk-wFvIZhOwlFXaeujF325mH7aKInjcJWFDZjLzZWfmG4ROOEt0N7SCWGk0YTSXREt_rrj3_ZQ67UwG_ztubnn_kV09xU8tlDa1MJBWWdv-yqaX1rp-E9S7Gbw-Pwf3HqwkFKKCtCQtAdptxgRoeed9Ic2DsqpkmicERs-reIJhZ-jvnGMLEYiIlkye0JT9Z__0zVKX7qe3hlZr3IjPq6Wto5YtNlB7UBFPz07xw7yOanKK23gwp6SebSKd3l3eD-6CVE8kAceV44XINfbAFRsQ_xhX9VizM5w2XVYmWBc5_lTRcnDxUhDIDh7h3I4gs2O2hR57Fw9pn9TNFYihIp4SFxlHtYWonQbaNJF5OdFuFmujeR4767qhpo7bzNtLB65eMydkV4eZMM6EdBst-Y_ZHYRDkTMjnYgoN4APJLfUSWMEDzOPTuwuYs2WKlMzj0MDjJFqUsyGqpaEAkkoaIwZJbuo8znttaLe-GtC0shLfdEh5d3DX1OPG_kqf74gaKIL-_I2UZHHM5L5S2P8-xjqLSFjUGiz9_8l7KMVeKry1w7Q0nT8Zg894JlmR6VGH6Hl88vr_u0H6KICAQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8rC9TGMMARvgSRNPmDSx48R7qyJQO6CqoEi8WY5jS1RVQP146H8_Xz7omEBIvCa2YvnOdz_n7n4H8EvwVHdDm1ArjaacFZJq6c-V8L6fMaedyfF_x9VQ9G_5n7v4bgOythYG0yob21_b9MpaN0-CZjeDx_v74MaDlZRhVJBVpCXiA2wiO1Xcgc3e4KI_XGd6MF5XTYuU4oR1IU8wOZ34a-fMYhAiYhWZJ_Zlf9lF_WesKw90_gU-N9CR9OrVbcGGLb_C8ajmnl6dkPG6lGp-Qo7JaM1KvdoGnV0PbkbXQabnkqLvKsg_wWvisSsxqAEzUpdkrX6TrG20Mie6LMiTllaDy4eSYoLwlBR2iskdq29we342zvq06a9ADUviBXWRcUxbDNxpZE5Lci8q1s1jbbQoYmddN9TMCZt7k-nQ22vuEtnVYZ4YZ0K2Ax3_MbsLJEwKbqRLIiYMQgQpLHPSmESEuQcodg94u6XKNOTj2ANjqtoss4lqJKFQEgp7Y0bpHpw-TXus2TfempC28lLP1Eh5D_HW1J-tfJU_Yhg30aV9WM5V5CGN5P7eGL8-hnljyDnW2uy_fwlH8LE_vrpUl4PhxXf4hG_qdLYf0FnMlvbA459Fftjo91-0jgSy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas9-based+application+for+cancer+therapy%3A+Challenges+and+solutions+for+non-viral+delivery&rft.jtitle=Journal+of+controlled+release&rft.au=Lin%2C+Ying-Qi&rft.au=Feng%2C+Ke-Ke&rft.au=Lu%2C+Jie-Ying&rft.au=Le%2C+Jing-Qing&rft.date=2023-09-01&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.volume=361&rft.spage=727&rft.epage=749&rft_id=info:doi/10.1016%2Fj.jconrel.2023.08.028&rft.externalDocID=S0168365923005266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon