Construction of S-scheme Bi2WO6/g-C3N4 heterostructure nanosheets with enhanced visible-light photocatalytic degradation for ammonium dinitramide
Photocatalysis technology is considered as a promising environmental remediation strategy. Herein, photocatalytic degradation of ammonium dinitramide (ADN, main component of propellant) was investigated over Bi2WO6/g-C3N4 (BWO/CN) heterostructure nanosheets prepared by a one-step in-situ hydrotherma...
Saved in:
Published in | Journal of hazardous materials Vol. 412; p. 125217 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photocatalysis technology is considered as a promising environmental remediation strategy. Herein, photocatalytic degradation of ammonium dinitramide (ADN, main component of propellant) was investigated over Bi2WO6/g-C3N4 (BWO/CN) heterostructure nanosheets prepared by a one-step in-situ hydrothermal method. The operating conditions including ADN initial concentration, catalyst dosage, initial pH, temperature and green oxidizer (hydrogen peroxide) were optimized systematically. Under optimal conditions, the photocatalytic degradation rate of ADN over BWO/CN can reach 98.93% after 80 min visible-light irradiation. Besides, the composite has excellent stability for ADN treatment and nitrate ions are the major degradation products. Furthermore, S-scheme heterojunction mechanism was proposed to explain the extremely high REDOX performance of BWO/CN composite.
[Display omitted]
•Bi2WO6/g-C3N4 composites were fabricated by a hydrothermal method.•Photocatalytic degradation of ADN was investigated over Bi2WO6/g-C3N4.•The highest degradation rate reaches 98.93% under optimal conditions.•The main degradation products are nitrate ions.•S-scheme charge transfer mechanism was proposed. |
---|---|
AbstractList | Photocatalysis technology is considered as a promising environmental remediation strategy. Herein, photocatalytic degradation of ammonium dinitramide (ADN, main component of propellant) was investigated over Bi2WO6/g-C3N4 (BWO/CN) heterostructure nanosheets prepared by a one-step in-situ hydrothermal method. The operating conditions including ADN initial concentration, catalyst dosage, initial pH, temperature and green oxidizer (hydrogen peroxide) were optimized systematically. Under optimal conditions, the photocatalytic degradation rate of ADN over BWO/CN can reach 98.93% after 80 min visible-light irradiation. Besides, the composite has excellent stability for ADN treatment and nitrate ions are the major degradation products. Furthermore, S-scheme heterojunction mechanism was proposed to explain the extremely high REDOX performance of BWO/CN composite.
[Display omitted]
•Bi2WO6/g-C3N4 composites were fabricated by a hydrothermal method.•Photocatalytic degradation of ADN was investigated over Bi2WO6/g-C3N4.•The highest degradation rate reaches 98.93% under optimal conditions.•The main degradation products are nitrate ions.•S-scheme charge transfer mechanism was proposed. Photocatalysis technology is considered as a promising environmental remediation strategy. Herein, photocatalytic degradation of ammonium dinitramide (ADN, main component of propellant) was investigated over Bi2WO6/g-C3N4 (BWO/CN) heterostructure nanosheets prepared by a one-step in-situ hydrothermal method. The operating conditions including ADN initial concentration, catalyst dosage, initial pH, temperature and green oxidizer (hydrogen peroxide) were optimized systematically. Under optimal conditions, the photocatalytic degradation rate of ADN over BWO/CN can reach 98.93% after 80 min visible-light irradiation. Besides, the composite has excellent stability for ADN treatment and nitrate ions are the major degradation products. Furthermore, S-scheme heterojunction mechanism was proposed to explain the extremely high REDOX performance of BWO/CN composite.Photocatalysis technology is considered as a promising environmental remediation strategy. Herein, photocatalytic degradation of ammonium dinitramide (ADN, main component of propellant) was investigated over Bi2WO6/g-C3N4 (BWO/CN) heterostructure nanosheets prepared by a one-step in-situ hydrothermal method. The operating conditions including ADN initial concentration, catalyst dosage, initial pH, temperature and green oxidizer (hydrogen peroxide) were optimized systematically. Under optimal conditions, the photocatalytic degradation rate of ADN over BWO/CN can reach 98.93% after 80 min visible-light irradiation. Besides, the composite has excellent stability for ADN treatment and nitrate ions are the major degradation products. Furthermore, S-scheme heterojunction mechanism was proposed to explain the extremely high REDOX performance of BWO/CN composite. Photocatalysis technology is considered as a promising environmental remediation strategy. Herein, photocatalytic degradation of ammonium dinitramide (ADN, main component of propellant) was investigated over Bi₂WO₆/g-C₃N₄ (BWO/CN) heterostructure nanosheets prepared by a one-step in-situ hydrothermal method. The operating conditions including ADN initial concentration, catalyst dosage, initial pH, temperature and green oxidizer (hydrogen peroxide) were optimized systematically. Under optimal conditions, the photocatalytic degradation rate of ADN over BWO/CN can reach 98.93% after 80 min visible-light irradiation. Besides, the composite has excellent stability for ADN treatment and nitrate ions are the major degradation products. Furthermore, S-scheme heterojunction mechanism was proposed to explain the extremely high REDOX performance of BWO/CN composite. |
ArticleNumber | 125217 |
Author | Dong, Shuai Xue, Wenhua Li, Hui Liu, Enzhou Xu, Kangzhen Lian, Xiaoyan |
Author_xml | – sequence: 1 givenname: Xiaoyan surname: Lian fullname: Lian, Xiaoyan organization: School of Chemical Engineering/Xi’an Key Laboratory of Special Energy Materials, Northwest University, Xi’an 710069, China – sequence: 2 givenname: Wenhua surname: Xue fullname: Xue, Wenhua organization: School of Chemical Engineering/Xi’an Key Laboratory of Special Energy Materials, Northwest University, Xi’an 710069, China – sequence: 3 givenname: Shuai surname: Dong fullname: Dong, Shuai organization: School of Chemical Engineering/Xi’an Key Laboratory of Special Energy Materials, Northwest University, Xi’an 710069, China – sequence: 4 givenname: Enzhou surname: Liu fullname: Liu, Enzhou organization: School of Chemical Engineering/Xi’an Key Laboratory of Special Energy Materials, Northwest University, Xi’an 710069, China – sequence: 5 givenname: Hui surname: Li fullname: Li, Hui organization: Xi’an Modern Chemistry Research Institute, Xi’an 710065, China – sequence: 6 givenname: Kangzhen surname: Xu fullname: Xu, Kangzhen email: xukz@nwu.edu.cn organization: School of Chemical Engineering/Xi’an Key Laboratory of Special Energy Materials, Northwest University, Xi’an 710069, China |
BookMark | eNqFkc1u1DAUhS1UJKaFR0Dykk2mdmznRywQjFpAquiiRSwtj30zuaPEHmynVXkL3phM0xWbWd3NOefqnO-cnPnggZD3nK0549Xlfr3vzZ_R5HXJSr7mpSp5_YqseFOLQghRnZEVE0wWomnlG3Ke0p4xxmslV-TvJviU42QzBk9DR--KZHsYgX7B8tdtdbkrNuKHpD1kiGFRThGoNz6kHiAn-oi5p-B74y04-oAJtwMUA-76TA99yMGabIanjJY62EXjzPOvLkRqxjF4nEbq0GOOZkQHb8nrzgwJ3r3cC_Lz-up-8624uf36ffP5prCiVrkA5ypTNlvompa10s7VpVCNYlvJVau2YBizpnKqbUoOULfcsaqt2wYqZmzHxAX5sOQeYvg9Qcp6xGRhGIyHMCU9ryjLRigpT0tlI3ml2lLN0o-L1M5rpQidtpifC8_1cNCc6SMzvdcvzPSRmV6YzW71n_sQcTTx6aTv0-KDebAHhKiTRTjywAg2axfwRMI_nPO4eA |
CitedBy_id | crossref_primary_10_1016_j_jaap_2021_105372 crossref_primary_10_1007_s11356_022_25027_9 crossref_primary_10_1016_j_jallcom_2022_165533 crossref_primary_10_1016_j_jenvman_2023_119218 crossref_primary_10_1016_j_envres_2022_113069 crossref_primary_10_1080_01614940_2023_2250652 crossref_primary_10_1016_j_ceramint_2021_08_279 crossref_primary_10_1016_j_jece_2024_112698 crossref_primary_10_1016_j_jhazmat_2021_126912 crossref_primary_10_1016_j_molstruc_2024_140041 crossref_primary_10_1016_j_seppur_2024_130107 crossref_primary_10_1021_acs_energyfuels_4c00203 crossref_primary_10_1016_j_cej_2022_136677 crossref_primary_10_1016_j_jhazmat_2023_131154 crossref_primary_10_1016_j_jmst_2022_02_035 crossref_primary_10_1016_j_jclepro_2021_129651 crossref_primary_10_1016_j_jallcom_2022_168362 crossref_primary_10_1016_j_chemosphere_2022_136912 crossref_primary_10_1016_j_optmat_2024_115798 crossref_primary_10_3390_ijerph192214935 crossref_primary_10_1016_j_jmst_2023_07_012 crossref_primary_10_1039_D2MA00290F crossref_primary_10_3389_fnano_2021_698351 crossref_primary_10_1007_s40843_023_2755_2 crossref_primary_10_1016_j_scitotenv_2021_150698 crossref_primary_10_1039_D4TA09216C crossref_primary_10_1002_adma_202107668 crossref_primary_10_1002_smll_202207636 crossref_primary_10_1016_j_cej_2023_147676 crossref_primary_10_1021_acs_jpcc_1c06753 crossref_primary_10_1016_j_jhazmat_2022_128665 crossref_primary_10_1016_j_jwpe_2024_105490 crossref_primary_10_1016_j_inoche_2022_109826 crossref_primary_10_1016_j_jmst_2021_10_016 crossref_primary_10_1016_j_jwpe_2023_103972 crossref_primary_10_1016_j_cej_2022_137371 crossref_primary_10_1016_j_jhazmat_2021_125934 crossref_primary_10_1016_j_apcatb_2021_120929 crossref_primary_10_1016_j_cej_2022_135471 crossref_primary_10_1039_D4CC01358A crossref_primary_10_1016_j_chemosphere_2023_140285 crossref_primary_10_1016_j_jece_2022_108624 crossref_primary_10_1039_D2CY00610C crossref_primary_10_1088_1361_6528_acf139 crossref_primary_10_1016_j_seppur_2024_131026 crossref_primary_10_1016_j_jece_2021_106461 crossref_primary_10_1016_j_jece_2021_105893 crossref_primary_10_1016_j_apmt_2022_101609 crossref_primary_10_1016_j_seppur_2023_123388 crossref_primary_10_1016_j_seppur_2022_121867 crossref_primary_10_3390_app142311372 crossref_primary_10_1016_j_jcis_2021_08_198 crossref_primary_10_1016_j_cej_2023_144672 crossref_primary_10_1016_j_surfin_2024_104234 crossref_primary_10_1016_j_jcis_2021_11_131 crossref_primary_10_1039_D2CY01774A crossref_primary_10_1016_j_materresbull_2023_112552 crossref_primary_10_1002_jctb_7480 crossref_primary_10_1016_j_envres_2023_116550 crossref_primary_10_1007_s11356_022_22756_9 crossref_primary_10_1016_j_cjsc_2024_100214 crossref_primary_10_1016_j_seppur_2022_120609 crossref_primary_10_1016_j_ceramint_2023_05_115 crossref_primary_10_1016_j_ceramint_2024_07_009 crossref_primary_10_1016_j_ceramint_2024_02_344 crossref_primary_10_1016_j_apt_2023_103976 crossref_primary_10_1016_j_jcis_2022_04_148 crossref_primary_10_1016_j_seppur_2022_120449 crossref_primary_10_1007_s11164_024_05326_1 crossref_primary_10_1016_j_compositesb_2022_109726 crossref_primary_10_1016_j_seppur_2022_121537 crossref_primary_10_3390_catal13111414 crossref_primary_10_1016_j_mtchem_2023_101633 crossref_primary_10_1134_S0023158424601591 crossref_primary_10_2139_ssrn_4046853 crossref_primary_10_1016_j_colsurfa_2022_129229 crossref_primary_10_1039_D4NJ05487C crossref_primary_10_1007_s10854_022_09403_2 crossref_primary_10_1016_j_cej_2024_150686 crossref_primary_10_1007_s10854_022_08376_6 crossref_primary_10_1016_j_inoche_2022_109209 crossref_primary_10_1016_j_molliq_2024_126415 crossref_primary_10_1039_D2TA08337J crossref_primary_10_1039_D1TA09347A crossref_primary_10_1039_D2NJ04521D crossref_primary_10_1016_j_catcom_2023_106760 crossref_primary_10_1016_j_jallcom_2022_168630 crossref_primary_10_2139_ssrn_4102527 crossref_primary_10_1016_j_jwpe_2024_105630 crossref_primary_10_1016_j_jallcom_2024_177818 crossref_primary_10_1016_j_jallcom_2023_171377 crossref_primary_10_1016_j_jece_2022_108201 crossref_primary_10_1016_j_jpcs_2022_110968 crossref_primary_10_1016_j_matlet_2023_134910 crossref_primary_10_1002_smll_202406074 crossref_primary_10_1016_j_jwpe_2022_102713 crossref_primary_10_1016_j_chemosphere_2021_132126 crossref_primary_10_1016_j_jmst_2025_02_004 crossref_primary_10_1016_j_chemosphere_2022_137552 crossref_primary_10_1680_jgrma_23_00016 crossref_primary_10_2139_ssrn_3969117 crossref_primary_10_1016_j_jssc_2022_122882 crossref_primary_10_1016_j_solidstatesciences_2024_107763 crossref_primary_10_3390_molecules29051169 crossref_primary_10_1002_solr_202100118 crossref_primary_10_1016_j_seppur_2025_132295 crossref_primary_10_1016_j_apsusc_2023_159104 crossref_primary_10_2139_ssrn_3991683 crossref_primary_10_1016_j_optmat_2023_114266 crossref_primary_10_1016_j_cej_2022_139067 crossref_primary_10_1016_j_apcatb_2023_122587 crossref_primary_10_1016_j_apsusc_2023_158091 crossref_primary_10_1016_j_diamond_2024_110817 crossref_primary_10_1016_j_matdes_2021_110040 crossref_primary_10_1007_s12274_022_4960_8 crossref_primary_10_1016_j_jece_2021_107107 crossref_primary_10_1016_j_cej_2022_139192 crossref_primary_10_1016_S1872_2067_22_64096_8 crossref_primary_10_1016_j_cej_2023_145575 crossref_primary_10_1016_j_jtice_2023_104932 crossref_primary_10_1016_j_optmat_2023_113842 crossref_primary_10_3390_molecules28052035 crossref_primary_10_1002_slct_202401545 crossref_primary_10_1038_s41598_024_60306_0 crossref_primary_10_1016_j_mtener_2021_100918 crossref_primary_10_1016_j_ijhydene_2023_03_193 crossref_primary_10_1016_j_nxmate_2025_100557 crossref_primary_10_1016_j_surfin_2023_103717 crossref_primary_10_3390_nano11082123 crossref_primary_10_1016_j_apcatb_2024_123822 crossref_primary_10_1016_j_jallcom_2022_168052 crossref_primary_10_1016_j_jes_2021_10_027 crossref_primary_10_1016_j_jcis_2023_04_178 crossref_primary_10_1016_j_ceramint_2022_05_127 crossref_primary_10_1007_s10854_023_10329_6 crossref_primary_10_1016_S1872_2067_21_63910_4 crossref_primary_10_1016_j_envres_2023_116428 crossref_primary_10_3390_molecules28248011 crossref_primary_10_1016_j_jcis_2023_07_086 crossref_primary_10_1016_j_seppur_2022_120881 crossref_primary_10_1016_j_envres_2024_120656 crossref_primary_10_1016_j_apsusc_2022_154311 crossref_primary_10_1016_j_colsurfa_2023_131134 crossref_primary_10_3390_s22093344 crossref_primary_10_1016_j_seppur_2025_131462 crossref_primary_10_1016_j_jallcom_2023_171955 crossref_primary_10_1016_j_chemosphere_2023_140674 crossref_primary_10_1016_j_colsurfa_2021_128208 crossref_primary_10_1016_j_ijhydene_2024_11_240 crossref_primary_10_1016_j_jallcom_2022_167457 crossref_primary_10_1016_j_jallcom_2022_164586 crossref_primary_10_1002_cptc_202200150 crossref_primary_10_1016_j_jmst_2022_10_042 crossref_primary_10_1016_j_jallcom_2023_169396 crossref_primary_10_1016_j_jelechem_2022_116360 crossref_primary_10_1016_j_seppur_2024_128681 crossref_primary_10_1016_j_apsusc_2024_160044 crossref_primary_10_1016_j_jallcom_2024_174755 crossref_primary_10_1021_acs_inorgchem_4c03268 crossref_primary_10_1016_j_seppur_2024_131053 crossref_primary_10_1039_D4CP02969K crossref_primary_10_1016_j_jpcs_2024_111891 crossref_primary_10_1039_D4DT00628C crossref_primary_10_1002_smll_202103447 crossref_primary_10_1016_j_apsusc_2021_151809 crossref_primary_10_1016_j_jmst_2023_05_037 crossref_primary_10_1016_j_nanoms_2024_04_002 crossref_primary_10_1016_j_cej_2022_139493 crossref_primary_10_1016_j_inoche_2023_111050 crossref_primary_10_1016_j_jece_2022_108083 crossref_primary_10_1016_j_seppur_2024_130239 crossref_primary_10_1039_D2RA08162H crossref_primary_10_1016_j_apsusc_2024_161655 crossref_primary_10_1016_j_materresbull_2023_112404 crossref_primary_10_1016_j_jallcom_2023_172822 crossref_primary_10_3866_PKU_WHXB202305048 crossref_primary_10_1016_j_foodchem_2022_134082 crossref_primary_10_1016_j_ceramint_2024_05_104 crossref_primary_10_1016_j_seppur_2024_129925 crossref_primary_10_1016_j_apcatb_2022_121106 crossref_primary_10_1016_j_jiec_2024_07_007 crossref_primary_10_1088_1361_6528_ac4b30 |
Cites_doi | 10.1039/D0CP02199G 10.1039/c8pp00078f 10.1016/j.jhazmat.2019.121907 10.1016/j.jcis.2018.03.078 10.1016/j.chempr.2020.06.010 10.1016/j.apsusc.2019.05.257 10.1002/anie.201916012 10.1016/j.cej.2020.124474 10.1016/j.jhazmat.2020.123657 10.1016/j.cej.2020.125009 10.1080/01614940.2019.1654224 10.1016/j.ceramint.2019.08.226 10.1016/j.jhazmat.2020.122158 10.1016/j.jhazmat.2019.121827 10.1016/S1872-2067(20)63602-6 10.1016/j.apcatb.2019.118130 10.1016/j.apsusc.2019.06.158 10.1016/j.cej.2020.126844 10.1016/j.jallcom.2016.09.326 10.1016/j.jiec.2018.01.012 10.1016/j.apcatb.2018.11.011 10.1080/10643389.2018.1487227 10.1039/C6CP00458J 10.1016/S1872-2067(17)62913-9 10.1016/j.chemosphere.2017.12.033 10.1016/S1872-2067(20)63631-2 10.1039/c3nr05271k 10.1002/anie.201308620 10.1016/j.apcata.2012.02.016 10.1016/j.matchar.2020.110297 10.1016/j.jmst.2020.03.038 10.1016/j.jclepro.2020.124319 10.1016/S1872-2067(18)63189-4 10.1016/j.jhazmat.2020.122366 10.1039/C9CC01732A 10.1016/j.apsusc.2018.11.006 10.1016/j.dt.2018.03.009 10.1021/acssuschemeng.5b01701 10.1016/S1872-2067(19)63382-6 10.1016/j.apcatb.2020.119167 10.1016/S0045-6535(02)00770-1 10.1016/j.cej.2019.01.021 10.1016/j.apcatb.2018.08.049 10.1016/j.psep.2020.08.015 10.1002/1521-4087(200206)27:3<119::AID-PREP119>3.0.CO;2-T 10.1177/074823379801400602 10.1038/s41467-020-18350-7 10.1016/j.apsusc.2017.12.064 10.1016/S1872-2067(20)63593-8 10.1016/j.cej.2020.125118 10.1016/S1872-2067(20)63634-8 10.1016/j.apcatb.2017.08.049 10.1016/j.apsusc.2017.01.187 10.1016/j.ultsonch.2016.09.020 10.1016/j.apcatb.2020.119214 10.1016/j.matlet.2019.126740 10.1016/j.jpcs.2019.109164 10.1016/j.apcatb.2017.11.025 10.1021/acscatal.0c00693 10.1016/j.seppur.2019.116477 10.1016/j.jcis.2020.07.047 10.1016/j.cej.2019.122692 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2021.125217 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 10_1016_j_jhazmat_2021_125217 S0304389421001801 |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c375t-edd6a28bef89094c202435850b41595bea00ca6d59821ee791d069798e60acf03 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Mon Jul 21 11:06:58 EDT 2025 Fri Jul 11 05:29:45 EDT 2025 Tue Jul 01 00:49:41 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Fri Feb 23 02:46:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | S-scheme Bi2WO6 Ammonium dinitramide G-C3N4 Photocatalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-edd6a28bef89094c202435850b41595bea00ca6d59821ee791d069798e60acf03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2484165925 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524283544 proquest_miscellaneous_2484165925 crossref_citationtrail_10_1016_j_jhazmat_2021_125217 crossref_primary_10_1016_j_jhazmat_2021_125217 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2021_125217 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-15 |
PublicationDateYYYYMMDD | 2021-06-15 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Murcia-López, Hidalgo, Navío (bib33) 2012; 423–424 Shekofteh-Gohari, Habibi-Yangjeh, Abitorabi, Rouhi (bib40) 2018; 48 Akhundi, Habibi-Yangjeh, Abitorabi, Rahim Pouran (bib2) 2019; 61 Habibi-Yangjeh, Asadzadeh-Khaneghah, Feizpoor, Rouhi (bib22) 2020; 580 Mei, Dai, Zhang, Li, Liang (bib32) 2019; 488 Guo, Wu, Long, Zhang, Wang, Ai, Liu (bib21) 2020; 163 Chang, Xue, Liu, Fan, Zhao (bib8) 2019; 362 Li, Zhao, Zhai, Ren, Wang, Guan, Shi (bib30) 2020; 56 Xia, Cao, Zhu, Liu, Shi, Yu, Zhang (bib53) 2020; 59 Zhu, Zhang, Cheng, Yu (bib65) 2018; 224 Ren, Li, Wu, Wang, Zhang (bib39) 2021; 42 Xiao, Wei, Yang, Xiong, Pan, Shi (bib54) 2016; 4 Wang, Wang, Zhong, Liu, Cao, Cui (bib49) 2018; 220 Xue, Chang, Hu, Fan, Liu (bib57) 2021; 42 Kumar (bib26) 2018; 14 Gholami, Dinpazhoh, Khataee, Hassani, Bhatnagar (bib15) 2019; 381 Shi, Liu, Li, Lin, Guo, Shi (bib42) 2020; 389 Wang, Liu, Mao, Bai, Chiang, Shah, Paz-Ferreiro (bib51) 2020; 389 Guo, Huang, Chen, Ren, Li, Chen (bib19) 2020; 390 Xu, Meng, Cheng, Wang, Xu, Yu (bib55) 2020; 11 Giwa, Yusuf, Balogun, Nonni, Sambudi (bib16) 2020; 146 Guo, Li, Ren, Huang, Hou, Wang, Shi, Lu (bib18) 2019; 491 Sun, Guo, Pan, Huang, Wang, Shi (bib45) 2021; 406 Feng, Tang, Deng, Wang, Tang, Liu, Chen, Yu, Wang, Liang (bib13) 2020; 389 Pan, Chen, Xu, Fang, Wu, Liu, Wu, Fang (bib34) 2020; 393 He, Meng, Cheng, Ho, Yu (bib23) 2020; 41 Chang, Feng, Liu, Xing, Hu (bib7) 2014; 53 Yang, Luo, Liu, Cao, Yan (bib59) 2019; 55 Li, Ma, Hu, Liu, Fan (bib31) 2019; 40 Feng, Deng, Tang, Zeng, Wang, Yu, Liu, Peng, Feng, Wang (bib11) 2018; 239 Acisli, Khataee, Darvishi Cheshmeh Soltani, Karaca (bib1) 2017; 35 Akhundi, Badiei, Ziarani, Habibi-Yangjeh, Muñoz-Batista, Luque (bib3) 2020; 488 Bhat, Gogate (bib5) 2021; 403 Zhao, Liang, Wang, Shi, Liu, Fan, Hu (bib61) 2018; 523 Yan, Li, Ma, Xue, Zhang, Liu (bib58) 2018; 17 Zhen, Yang, Shen, Xue, Gu, Feng, Zhang, Fu, Liang (bib64) 2020; 22 Huang, Li, Wu, Lv, Li, Li, Du, Ye (bib25) 2018; 39 Kumar, Baruah, Tonda, Kumar, Shanker, Sreedhar (bib27) 2014; 6 Qadir, Osburn-Atkinson, Swider-Lyons, Cepak, Rolison (bib36) 2003; 50 Zhao, Shi, Hu, Liu, Fan (bib63) 2020; 381 Ren, Zhang, Ding, Shen, Jiang, Lu, Li (bib37) 2019; 4 Yang, Huang, Xie, Lin, Fan, Liu, Chen, Zhang, Wang (bib60) 2017; 403 Bunte, Neumann, Antes, Krause (bib6) 2002; 27 Chen, Li, Luo, Chen, Shi (bib9) 2017; 694 Shi, Li, Huang, Ren, Guo, Tang, Lu (bib41) 2020; 394 Guo, Huang, Chen, Sun, Chen (bib20) 2020; 395 Ren, Zhang, Wang, Yao (bib38) 2016; 18 Li, Chen, Cui, Dong, Wang, Kim, Chu, Sheng, Sun, Dong (bib28) 2020; 10 Feng, Tang, Deng, Wang, Liu, Ouyang, Chen, Yang, Yu, Wang (bib12) 2020; 276 Graeter, Wolfe, Kinkead, Flemming (bib17) 1998; 14 Wang, Zhao, Zhang, Dou, Shi (bib52) 2021; 42 Hu, Dai, Zhang, Zhu, Liang (bib24) 2019; 257 Wang, Wang, Cheng, Yu, Fan (bib48) 2021; 42 Sun, Tian, Zhou, Zhang, Li (bib44) 2019; 469 Asadzadeh-Khaneghah, Habibi-Yangjeh (bib4) 2020; 276 Wang, Shen, Zhang, Liu, Zhang, Zulfiqar, Tang (bib50) 2020; 46 Wang, Dong, Tang, Li, Sun, Wang, Kim, Dong (bib46) 2020; 277 Fu, Xu, Low, Jiang, Yu (bib14) 2019; 243 Xu, Zhang, Cheng, Fan, Yu (bib56) 2020; 6 Li, Cui, Chen, Dong, Chu, Sheng, Zhang, Wang, Dong (bib29) 2020; 260 Zhao, Wang, Liu, Fan, Hu (bib62) 2018; 436 Shi, Ren, Huang, Li, Tang, Guo (bib43) 2020; 237 Darvishi Cheshmeh Soltani, Mashayekhi (bib10) 2018; 194 Wang, Liu, Yang, Lin, Shi (bib47) 2020; 136 Pirhashemi, Habibi-Yangjeh, Rahim Pouran (bib35) 2018; 62 Sun (10.1016/j.jhazmat.2021.125217_bib45) 2021; 406 Mei (10.1016/j.jhazmat.2021.125217_bib32) 2019; 488 Fu (10.1016/j.jhazmat.2021.125217_bib14) 2019; 243 Sun (10.1016/j.jhazmat.2021.125217_bib44) 2019; 469 Zhen (10.1016/j.jhazmat.2021.125217_bib64) 2020; 22 Guo (10.1016/j.jhazmat.2021.125217_bib20) 2020; 395 Feng (10.1016/j.jhazmat.2021.125217_bib13) 2020; 389 Pan (10.1016/j.jhazmat.2021.125217_bib34) 2020; 393 Hu (10.1016/j.jhazmat.2021.125217_bib24) 2019; 257 Ren (10.1016/j.jhazmat.2021.125217_bib38) 2016; 18 Darvishi Cheshmeh Soltani (10.1016/j.jhazmat.2021.125217_bib10) 2018; 194 Xue (10.1016/j.jhazmat.2021.125217_bib57) 2021; 42 Wang (10.1016/j.jhazmat.2021.125217_bib48) 2021; 42 Li (10.1016/j.jhazmat.2021.125217_bib29) 2020; 260 Qadir (10.1016/j.jhazmat.2021.125217_bib36) 2003; 50 Zhu (10.1016/j.jhazmat.2021.125217_bib65) 2018; 224 Graeter (10.1016/j.jhazmat.2021.125217_bib17) 1998; 14 Li (10.1016/j.jhazmat.2021.125217_bib28) 2020; 10 Pirhashemi (10.1016/j.jhazmat.2021.125217_bib35) 2018; 62 Shi (10.1016/j.jhazmat.2021.125217_bib42) 2020; 389 Feng (10.1016/j.jhazmat.2021.125217_bib12) 2020; 276 Huang (10.1016/j.jhazmat.2021.125217_bib25) 2018; 39 Ren (10.1016/j.jhazmat.2021.125217_bib39) 2021; 42 Zhao (10.1016/j.jhazmat.2021.125217_bib63) 2020; 381 Gholami (10.1016/j.jhazmat.2021.125217_bib15) 2019; 381 Asadzadeh-Khaneghah (10.1016/j.jhazmat.2021.125217_bib4) 2020; 276 Wang (10.1016/j.jhazmat.2021.125217_bib49) 2018; 220 Xia (10.1016/j.jhazmat.2021.125217_bib53) 2020; 59 Murcia-López (10.1016/j.jhazmat.2021.125217_bib33) 2012; 423–424 Shi (10.1016/j.jhazmat.2021.125217_bib41) 2020; 394 Yan (10.1016/j.jhazmat.2021.125217_bib58) 2018; 17 Zhao (10.1016/j.jhazmat.2021.125217_bib62) 2018; 436 Xu (10.1016/j.jhazmat.2021.125217_bib56) 2020; 6 Wang (10.1016/j.jhazmat.2021.125217_bib50) 2020; 46 Akhundi (10.1016/j.jhazmat.2021.125217_bib2) 2019; 61 Li (10.1016/j.jhazmat.2021.125217_bib30) 2020; 56 Wang (10.1016/j.jhazmat.2021.125217_bib51) 2020; 389 Acisli (10.1016/j.jhazmat.2021.125217_bib1) 2017; 35 Wang (10.1016/j.jhazmat.2021.125217_bib46) 2020; 277 Giwa (10.1016/j.jhazmat.2021.125217_bib16) 2020; 146 Feng (10.1016/j.jhazmat.2021.125217_bib11) 2018; 239 Chang (10.1016/j.jhazmat.2021.125217_bib8) 2019; 362 Shi (10.1016/j.jhazmat.2021.125217_bib43) 2020; 237 Chang (10.1016/j.jhazmat.2021.125217_bib7) 2014; 53 He (10.1016/j.jhazmat.2021.125217_bib23) 2020; 41 Ren (10.1016/j.jhazmat.2021.125217_bib37) 2019; 4 Bhat (10.1016/j.jhazmat.2021.125217_bib5) 2021; 403 Habibi-Yangjeh (10.1016/j.jhazmat.2021.125217_bib22) 2020; 580 Zhao (10.1016/j.jhazmat.2021.125217_bib61) 2018; 523 Guo (10.1016/j.jhazmat.2021.125217_bib21) 2020; 163 Akhundi (10.1016/j.jhazmat.2021.125217_bib3) 2020; 488 Kumar (10.1016/j.jhazmat.2021.125217_bib26) 2018; 14 Shekofteh-Gohari (10.1016/j.jhazmat.2021.125217_bib40) 2018; 48 Bunte (10.1016/j.jhazmat.2021.125217_bib6) 2002; 27 Wang (10.1016/j.jhazmat.2021.125217_bib52) 2021; 42 Yang (10.1016/j.jhazmat.2021.125217_bib60) 2017; 403 Xiao (10.1016/j.jhazmat.2021.125217_bib54) 2016; 4 Xu (10.1016/j.jhazmat.2021.125217_bib55) 2020; 11 Wang (10.1016/j.jhazmat.2021.125217_bib47) 2020; 136 Guo (10.1016/j.jhazmat.2021.125217_bib19) 2020; 390 Li (10.1016/j.jhazmat.2021.125217_bib31) 2019; 40 Chen (10.1016/j.jhazmat.2021.125217_bib9) 2017; 694 Guo (10.1016/j.jhazmat.2021.125217_bib18) 2019; 491 Yang (10.1016/j.jhazmat.2021.125217_bib59) 2019; 55 Kumar (10.1016/j.jhazmat.2021.125217_bib27) 2014; 6 |
References_xml | – volume: 389 year: 2020 ident: bib13 article-title: Synthesis of branched WO publication-title: Chem. Eng. J. – volume: 224 start-page: 983 year: 2018 end-page: 999 ident: bib65 article-title: First-principle calculation study of tri-s-triazine-based g-C publication-title: Appl. Catal. B: Environ. – volume: 14 start-page: 789 year: 1998 end-page: 798 ident: bib17 article-title: Effects of ammonium dinitramide on preimplantation embryos in Sprague-Dawley rats publication-title: Toxicol. Ind. Health – volume: 491 start-page: 88 year: 2019 end-page: 94 ident: bib18 article-title: Fabrication of p-n CuBi publication-title: Appl. Surf. Sci. – volume: 56 start-page: 216 year: 2020 end-page: 226 ident: bib30 article-title: 2D/2D Bi publication-title: J. Mater. Sci. Technol. – volume: 406 year: 2021 ident: bib45 article-title: One-pot thermal polymerization route to prepare N-deficient modified g-C publication-title: Chem. Eng. J. – volume: 61 start-page: 595 year: 2019 end-page: 628 ident: bib2 article-title: Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts publication-title: Catal. Rev. – volume: 4 year: 2019 ident: bib37 article-title: In situ fabrication of robust cocatalyst‐free CdS/g‐C publication-title: Sol. RRL – volume: 42 start-page: 97 year: 2021 end-page: 106 ident: bib52 article-title: 2D/2D Step-scheme α-Fe publication-title: Chin. J. Catal. – volume: 403 start-page: 326 year: 2017 end-page: 334 ident: bib60 article-title: Controllable synthesis of Bi publication-title: Appl. Surf. Sci. – volume: 395 year: 2020 ident: bib20 article-title: Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C publication-title: Chem. Eng. J. – volume: 220 start-page: 290 year: 2018 end-page: 302 ident: bib49 article-title: Oxygen vacancy-rich 2D/2D BiOCl-g-C publication-title: Appl. Catal. B: Environ. – volume: 694 start-page: 193 year: 2017 end-page: 200 ident: bib9 article-title: Two-dimensional heterojunction photocatalysts constructed by graphite-like C publication-title: J. Alloy. Compd. – volume: 163 year: 2020 ident: bib21 article-title: Nanosheets-assembled Bi publication-title: Mater. Charact. – volume: 55 start-page: 5728 year: 2019 end-page: 5731 ident: bib59 article-title: A composite of single-crystalline Bi publication-title: Chem. Commun. – volume: 48 start-page: 806 year: 2018 end-page: 857 ident: bib40 article-title: Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 40 start-page: 434 year: 2019 end-page: 445 ident: bib31 article-title: Enhanced photocatalytic H publication-title: Chin. J. Catal. – volume: 18 start-page: 14113 year: 2016 end-page: 14121 ident: bib38 article-title: A graphene-coupled Bi publication-title: Phys. Chem. Chem. Phys. – volume: 393 year: 2020 ident: bib34 article-title: Anionic polyacrylamide-assisted construction of thin 2D–2D WO publication-title: J. Hazard. Mater. – volume: 4 start-page: 3017 year: 2016 end-page: 3023 ident: bib54 article-title: Photoreactivity and mechanism of g-C publication-title: ACS Sustain. Chem. Eng. – volume: 243 start-page: 556 year: 2019 end-page: 565 ident: bib14 article-title: Ultrathin 2D/2D WO publication-title: Appl. Catal. B: Environ. – volume: 381 year: 2019 ident: bib15 article-title: Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium publication-title: J. Hazard. Mater. – volume: 41 start-page: 9 year: 2020 end-page: 20 ident: bib23 article-title: Enhanced photocatalytic H publication-title: Chin. J. Catal. – volume: 35 start-page: 210 year: 2017 end-page: 218 ident: bib1 article-title: Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase publication-title: Ultrason. Sonochem. – volume: 277 year: 2020 ident: bib46 article-title: Selective breakage of C-H bonds in the key oxidation intermediates of gaseous formaldehyde on self-doped CaSn(OH) publication-title: Appl. Catal. B: Environ. – volume: 237 year: 2020 ident: bib43 article-title: Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis publication-title: Sep. Purif. Technol. – volume: 523 start-page: 7 year: 2018 end-page: 17 ident: bib61 article-title: Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi publication-title: J. Colloid Interface Sci. – volume: 381 year: 2020 ident: bib63 article-title: Fabricating CsPbX publication-title: Chem. Eng. J. – volume: 403 year: 2021 ident: bib5 article-title: Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: a review on aliphatic and aromatic amines, dyes, and pesticides publication-title: J. Hazard. Mater. – volume: 276 year: 2020 ident: bib12 article-title: Maintaining stable LSPR performance of W publication-title: Appl. Catal. B: Environ. – volume: 257 year: 2019 ident: bib24 article-title: One-pot synthesis of step-scheme Bi publication-title: Mater. Lett. – volume: 59 start-page: 5218 year: 2020 end-page: 5225 ident: bib53 article-title: Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria publication-title: Angew. Chem. Int. Ed. Engl. – volume: 276 year: 2020 ident: bib4 article-title: g-C publication-title: J. Clean. Prod. – volume: 42 start-page: 69 year: 2021 end-page: 77 ident: bib39 article-title: S-scheme Sb publication-title: Chin. J. Catal. – volume: 22 start-page: 26278 year: 2020 end-page: 26288 ident: bib64 article-title: Photocatalytic performance and mechanism insights of a S-scheme g-C publication-title: Phys. Chem. Chem. Phys. – volume: 423–424 start-page: 34 year: 2012 end-page: 41 ident: bib33 article-title: Photocatalytic activity of single and mixed nanosheet-like Bi publication-title: Appl. Catal. A: Gen. – volume: 488 start-page: 151 year: 2019 end-page: 160 ident: bib32 article-title: Construction of Ag SPR-promoted step-scheme porous g-C publication-title: Appl. Surf. Sci. – volume: 27 start-page: 119 year: 2002 end-page: 124 ident: bib6 article-title: Analysis of ADN, its precursor and possible by-products using ion chromatography publication-title: Propellants Explos. Pyrotech. – volume: 436 start-page: 854 year: 2018 end-page: 864 ident: bib62 article-title: Bi publication-title: Appl. Surf. Sci. – volume: 39 start-page: 718 year: 2018 end-page: 727 ident: bib25 article-title: In-situ transformation of Bi publication-title: Chin. J. Catal. – volume: 389 year: 2020 ident: bib51 article-title: Novel Bi publication-title: J. Hazard. Mater. – volume: 580 start-page: 503 year: 2020 end-page: 514 ident: bib22 article-title: Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses? publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 4613 year: 2020 ident: bib55 article-title: Unique S-scheme heterojunctions in self-assembled TiO publication-title: Nat. Commun. – volume: 239 start-page: 525 year: 2018 end-page: 536 ident: bib11 article-title: Core-shell Ag publication-title: Appl. Catal. B: Environ. – volume: 146 start-page: 220 year: 2020 end-page: 256 ident: bib16 article-title: Recent advances in advanced oxidation processes for removal of contaminants from water: a comprehensive review publication-title: Process Saf. Environ. – volume: 389 year: 2020 ident: bib42 article-title: Fabrication of ternary Ag publication-title: J. Hazard. Mater. – volume: 6 start-page: 4830 year: 2014 end-page: 4842 ident: bib27 article-title: Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C publication-title: Nanoscale – volume: 394 year: 2020 ident: bib41 article-title: Construction of CuBi publication-title: Chem. Eng. J. – volume: 390 year: 2020 ident: bib19 article-title: MoS publication-title: J. Hazard. Mater. – volume: 6 start-page: 1543 year: 2020 end-page: 1559 ident: bib56 article-title: S-scheme heterojunction photocatalyst publication-title: Chem – volume: 469 start-page: 125 year: 2019 end-page: 134 ident: bib44 article-title: Exploring the effects of crystal facet in Bi publication-title: Appl. Surf. Sci. – volume: 260 year: 2020 ident: bib29 article-title: Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization publication-title: Appl. Catal. B: Environ. – volume: 14 start-page: 661 year: 2018 end-page: 673 ident: bib26 article-title: An overview on properties, thermal decomposition, and combustion behavior of ADN and ADN based solid propellants publication-title: Def. Technol. – volume: 42 start-page: 152 year: 2021 end-page: 163 ident: bib57 article-title: 2D mesoporous ultrathin Cd publication-title: Chin. J. Catal. – volume: 50 start-page: 1107 year: 2003 end-page: 1114 ident: bib36 article-title: Sonochemically induced decomposition of energetic materials in aqueous media publication-title: Chemosphere – volume: 46 start-page: 23 year: 2020 end-page: 30 ident: bib50 article-title: Build-in electric field induced step-scheme TiO publication-title: Ceram. Int. – volume: 53 start-page: 122 year: 2014 end-page: 126 ident: bib7 article-title: An effective Pd-Ni(2)P/C anode catalyst for direct formic acid fuel cells publication-title: Angew. Chem. Int. Ed. Engl. – volume: 62 start-page: 1 year: 2018 end-page: 25 ident: bib35 article-title: Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts publication-title: J. Ind. Eng. Chem. – volume: 194 start-page: 471 year: 2018 end-page: 480 ident: bib10 article-title: Decomposition of ibuprofen in water via an electrochemical process with nano-sized carbon black-coated carbon cloth as oxygen-permeable cathode integrated with ultrasound publication-title: Chemosphere – volume: 362 start-page: 392 year: 2019 end-page: 401 ident: bib8 article-title: Highly efficient H publication-title: Chem. Eng. J. – volume: 42 start-page: 56 year: 2021 end-page: 68 ident: bib48 article-title: Sulfur-doped g-C publication-title: Chin. J. Catal. – volume: 10 start-page: 7230 year: 2020 end-page: 7239 ident: bib28 article-title: Synergistic photocatalytic decomposition of a volatile organic compound mixture: high efficiency, reaction mechanism, and long-term stability publication-title: ACS Catal. – volume: 17 start-page: 1084 year: 2018 end-page: 1090 ident: bib58 article-title: Hydrothermal synthesis of Bi publication-title: Photochem. Photobiol. Sci. – volume: 488 year: 2020 ident: bib3 article-title: Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production publication-title: Mol. Catal. – volume: 136 year: 2020 ident: bib47 article-title: Fabrication of a ternary heterostructure BiVO publication-title: J. Phys. Chem. Solids – volume: 22 start-page: 26278 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib64 article-title: Photocatalytic performance and mechanism insights of a S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reactions under visible light publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP02199G – volume: 17 start-page: 1084 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib58 article-title: Hydrothermal synthesis of Bi2WO6 with a new tungsten source and enhanced photocatalytic activity of Bi2WO6 hybridized with C3N4 publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c8pp00078f – volume: 389 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib42 article-title: Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121907 – volume: 523 start-page: 7 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib61 article-title: Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.03.078 – volume: 488 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib3 article-title: Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production publication-title: Mol. Catal. – volume: 6 start-page: 1543 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib56 article-title: S-scheme heterojunction photocatalyst publication-title: Chem doi: 10.1016/j.chempr.2020.06.010 – volume: 488 start-page: 151 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib32 article-title: Construction of Ag SPR-promoted step-scheme porous g-C3N4/Ag3VO4 heterojunction for improving photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.257 – volume: 59 start-page: 5218 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib53 article-title: Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201916012 – volume: 389 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib13 article-title: Synthesis of branched WO3@W18O49 homojunction with enhanced interfacial charge separation and full-spectrum photocatalytic performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124474 – volume: 403 year: 2021 ident: 10.1016/j.jhazmat.2021.125217_bib5 article-title: Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: a review on aliphatic and aromatic amines, dyes, and pesticides publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123657 – volume: 394 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib41 article-title: Construction of CuBi2O4/Bi2MoO6 p-n heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125009 – volume: 61 start-page: 595 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib2 article-title: Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts publication-title: Catal. Rev. doi: 10.1080/01614940.2019.1654224 – volume: 46 start-page: 23 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib50 article-title: Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.08.226 – volume: 390 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib19 article-title: MoS2 nanosheets anchored on porous ZnSnO3 cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122158 – volume: 389 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib51 article-title: Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(VI) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121827 – volume: 42 start-page: 97 year: 2021 ident: 10.1016/j.jhazmat.2021.125217_bib52 article-title: 2D/2D Step-scheme α-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63602-6 – volume: 260 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib29 article-title: Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118130 – volume: 491 start-page: 88 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib18 article-title: Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.06.158 – volume: 406 year: 2021 ident: 10.1016/j.jhazmat.2021.125217_bib45 article-title: One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126844 – volume: 694 start-page: 193 year: 2017 ident: 10.1016/j.jhazmat.2021.125217_bib9 article-title: Two-dimensional heterojunction photocatalysts constructed by graphite-like C3N4 and Bi2WO6 nanosheets: enhanced photocatalytic activities for water purification publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.09.326 – volume: 62 start-page: 1 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib35 article-title: Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2018.01.012 – volume: 243 start-page: 556 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib14 article-title: Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.11.011 – volume: 48 start-page: 806 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib40 article-title: Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2018.1487227 – volume: 18 start-page: 14113 year: 2016 ident: 10.1016/j.jhazmat.2021.125217_bib38 article-title: A graphene-coupled Bi2WO6 nanocomposite with enhanced photocatalytic performance: a first-principles study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00458J – volume: 39 start-page: 718 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib25 article-title: In-situ transformation of Bi2WO6 to highly photoreactive Bi2WO6 @Bi2S3 nanoplate via ion exchange publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62913-9 – volume: 194 start-page: 471 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib10 article-title: Decomposition of ibuprofen in water via an electrochemical process with nano-sized carbon black-coated carbon cloth as oxygen-permeable cathode integrated with ultrasound publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.033 – volume: 42 start-page: 69 year: 2021 ident: 10.1016/j.jhazmat.2021.125217_bib39 article-title: S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63631-2 – volume: 6 start-page: 4830 year: 2014 ident: 10.1016/j.jhazmat.2021.125217_bib27 article-title: Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis publication-title: Nanoscale doi: 10.1039/c3nr05271k – volume: 53 start-page: 122 year: 2014 ident: 10.1016/j.jhazmat.2021.125217_bib7 article-title: An effective Pd-Ni(2)P/C anode catalyst for direct formic acid fuel cells publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201308620 – volume: 423–424 start-page: 34 year: 2012 ident: 10.1016/j.jhazmat.2021.125217_bib33 article-title: Photocatalytic activity of single and mixed nanosheet-like Bi2WO6 and TiO2 for Rhodamine B degradation under sunlike and visible illumination publication-title: Appl. Catal. A: Gen. doi: 10.1016/j.apcata.2012.02.016 – volume: 163 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib21 article-title: Nanosheets-assembled Bi2WO6 microspheres with efficient visible-light-driven photocatalytic activities publication-title: Mater. Charact. doi: 10.1016/j.matchar.2020.110297 – volume: 56 start-page: 216 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib30 article-title: 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.03.038 – volume: 276 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib4 article-title: g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124319 – volume: 40 start-page: 434 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib31 article-title: Enhanced photocatalytic H2 production over dual-cocatalyst-modified g-C3N4 heterojunctions publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(18)63189-4 – volume: 393 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib34 article-title: Anionic polyacrylamide-assisted construction of thin 2D–2D WO3/g-C3N4 Step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122366 – volume: 55 start-page: 5728 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib59 article-title: A composite of single-crystalline Bi2WO6 and polycrystalline BiOCl with a high percentage of exposed (00l) facets for highly efficient photocatalytic degradation of organic pollutants publication-title: Chem. Commun. doi: 10.1039/C9CC01732A – volume: 381 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib15 article-title: Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium publication-title: J. Hazard. Mater. – volume: 469 start-page: 125 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib44 article-title: Exploring the effects of crystal facet in Bi2WO6/BiOCl heterostructures on photocatalytic properties: a first-principles theoretical study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.11.006 – volume: 14 start-page: 661 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib26 article-title: An overview on properties, thermal decomposition, and combustion behavior of ADN and ADN based solid propellants publication-title: Def. Technol. doi: 10.1016/j.dt.2018.03.009 – volume: 4 start-page: 3017 year: 2016 ident: 10.1016/j.jhazmat.2021.125217_bib54 article-title: Photoreactivity and mechanism of g-C3N4 and Ag Co-modified Bi2WO6 microsphere under visible light irradiation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01701 – volume: 41 start-page: 9 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib23 article-title: Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63382-6 – volume: 276 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib12 article-title: Maintaining stable LSPR performance of W18O49 by protecting its oxygen vacancy: a novel strategy for achieving durable sunlight driven photocatalysis publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119167 – volume: 50 start-page: 1107 year: 2003 ident: 10.1016/j.jhazmat.2021.125217_bib36 article-title: Sonochemically induced decomposition of energetic materials in aqueous media publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00770-1 – volume: 362 start-page: 392 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib8 article-title: Highly efficient H2 production over NiCo2O4 decorated g-C3N4 by photocatalytic water reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.021 – volume: 239 start-page: 525 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib11 article-title: Core-shell Ag2CrO4/N-GQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.08.049 – volume: 146 start-page: 220 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib16 article-title: Recent advances in advanced oxidation processes for removal of contaminants from water: a comprehensive review publication-title: Process Saf. Environ. doi: 10.1016/j.psep.2020.08.015 – volume: 27 start-page: 119 year: 2002 ident: 10.1016/j.jhazmat.2021.125217_bib6 article-title: Analysis of ADN, its precursor and possible by-products using ion chromatography publication-title: Propellants Explos. Pyrotech. doi: 10.1002/1521-4087(200206)27:3<119::AID-PREP119>3.0.CO;2-T – volume: 14 start-page: 789 year: 1998 ident: 10.1016/j.jhazmat.2021.125217_bib17 article-title: Effects of ammonium dinitramide on preimplantation embryos in Sprague-Dawley rats publication-title: Toxicol. Ind. Health doi: 10.1177/074823379801400602 – volume: 11 start-page: 4613 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib55 article-title: Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction publication-title: Nat. Commun. doi: 10.1038/s41467-020-18350-7 – volume: 436 start-page: 854 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib62 article-title: Bi2WO6 nanoflowers: an efficient visible light photocatalytic activity for ceftriaxone sodium degradation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.12.064 – volume: 42 start-page: 152 year: 2021 ident: 10.1016/j.jhazmat.2021.125217_bib57 article-title: 2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: fabrication mechanism and application potential for photocatalytic H2 evolution publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63593-8 – volume: 395 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib20 article-title: Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125118 – volume: 42 start-page: 56 year: 2021 ident: 10.1016/j.jhazmat.2021.125217_bib48 article-title: Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63634-8 – volume: 220 start-page: 290 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib49 article-title: Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.08.049 – volume: 4 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib37 article-title: In situ fabrication of robust cocatalyst‐free CdS/g‐C3N4 2D–2D step‐scheme heterojunctions for highly active H2 evolution publication-title: Sol. RRL – volume: 403 start-page: 326 year: 2017 ident: 10.1016/j.jhazmat.2021.125217_bib60 article-title: Controllable synthesis of Bi2WO6 nanoplate self-assembled hierarchical erythrocyte microspheres via a one-pot hydrothermal reaction with enhanced visible light photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.01.187 – volume: 35 start-page: 210 year: 2017 ident: 10.1016/j.jhazmat.2021.125217_bib1 article-title: Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.09.020 – volume: 277 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib46 article-title: Selective breakage of C-H bonds in the key oxidation intermediates of gaseous formaldehyde on self-doped CaSn(OH)6 cubes for safe and efficient photocatalysis publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119214 – volume: 257 year: 2019 ident: 10.1016/j.jhazmat.2021.125217_bib24 article-title: One-pot synthesis of step-scheme Bi2S3/porous g-C3N4 heterostructure for enhanced photocatalytic performance publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.126740 – volume: 136 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib47 article-title: Fabrication of a ternary heterostructure BiVO4 quantum dots/C60/g-C3N4 photocatalyst with enhanced photocatalytic activity publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2019.109164 – volume: 224 start-page: 983 year: 2018 ident: 10.1016/j.jhazmat.2021.125217_bib65 article-title: First-principle calculation study of tri-s-triazine-based g-C3N4: a review publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.11.025 – volume: 10 start-page: 7230 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib28 article-title: Synergistic photocatalytic decomposition of a volatile organic compound mixture: high efficiency, reaction mechanism, and long-term stability publication-title: ACS Catal. doi: 10.1021/acscatal.0c00693 – volume: 237 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib43 article-title: Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116477 – volume: 580 start-page: 503 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib22 article-title: Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses? publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.07.047 – volume: 381 year: 2020 ident: 10.1016/j.jhazmat.2021.125217_bib63 article-title: Fabricating CsPbX3/CN heterostructures with enhanced photocatalytic activity for penicillins 6-APA degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122692 |
SSID | ssj0001754 |
Score | 2.6590192 |
Snippet | Photocatalysis technology is considered as a promising environmental remediation strategy. Herein, photocatalytic degradation of ammonium dinitramide (ADN,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 125217 |
SubjectTerms | ammonium Ammonium dinitramide Bi2WO6 catalysts G-C3N4 hot water treatment hydrogen peroxide irradiation light nanosheets nitrates oxidants Photocatalysis remediation S-scheme temperature |
Title | Construction of S-scheme Bi2WO6/g-C3N4 heterostructure nanosheets with enhanced visible-light photocatalytic degradation for ammonium dinitramide |
URI | https://dx.doi.org/10.1016/j.jhazmat.2021.125217 https://www.proquest.com/docview/2484165925 https://www.proquest.com/docview/2524283544 |
Volume | 412 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKucABQQHRApWRuGaTOE5iH8uKatvCcigVvUW2MyFZ7SarblYIDvwH_jEz-aAUISpxiZTIlizPZJ7HM_OGsdeFNoU0JqWKHulJZxJPIa55UVCoRMvIQUwFzu_nyexCnl7GlztsOtbCUFrlYPt7m95Z6-GLP-ymv64q_5yCegi3UhCNkOpquKRMScsn36_TPBAeewopigDg6OsqHn8xWZTmGx4M0U0U4QShXnR9y_6KT39Y6g5-jh-yB8O5kR_1S3vEdqDeY_d_YxPcY3femS-P2Q9qwTmSwvKm4OceOrCwAv6mEp8-JP5nbxrNJS8pD6bpR26vgNembjYlQLvhdDfLoS675ABO1ed2Cd6S3Hi-Lpu26e58vuJKeE5cE31bJo7HX25IravtiiMkVu2VWVU5PGEXx28_Tmfe0HfBc1Eatx7keWKEslAojd6fE8RaiG5FYBHtdWzBBAEKNSfuvxAg1WEeJDrVCpLAuCKInrLduqnhGePKaatdbqM8UtKiM-NyGVqHT2GTNLX7TI67nbmBlJx6YyyzMftskQ1CykhIWS-kfTb5NW3ds3LcNkGNosxuqFeGyHHb1Fej6DP89SieYmpotptMSIrZxlrE_xgTi47STsqD_1_Cc3aP3ihDLYxfsF1UDXiJZ6HWHnbKfsjuHp2czeY_AT-wC4Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcEBQQpTyMxDWbxHES-1hWVFu6XQ5tRW-W7ThNVrvJqpsVKv-Cf8xMHuUhRCUuOSQeyfI4883YM98Q8j6XOudap1jRwz1udeIJwDUvCnKRSB5ZF2OB8-k8mV7wT5fx5Q6ZDLUwmFbZ2_7OprfWun_j96vpr8vSP8NLPYBbzpBGSGAN1y6yU8Ujsnt4fDKd3xpkQMiORQovAUDgZyGPvxgvCv0NfEOIFFk4BrRnbeuyv0LUH8a6RaCjx-RR7zrSw252T8iOq_bIw18IBffIvZn--pR8xy6cAy8srXN65kEM61aOfijZl8-Jf-VNojmnBabC1N3I7bWjla7qTeFcs6F4PEtdVbT5ARQL0M3SeUuM5Om6qJu6Pfa5gZnQDOkmus5MFDxgqnFnl9sVBVQsm2u9KjP3jFwcfTyfTL2-9YJnozRuPJdliWbCuFxICAAtQ-JCiCwCA4AvY-N0EIBeM6T_C51LZZgFiUylcEmgbR5Ez8moqiv3glBhpZE2M1EWCW4gnrEZD42FJzNJmpp9wofVVrbnJcf2GEs1JKAtVK8khUpSnZL2yfhWbN0Rc9wlIAZVqt92mALwuEv03aB6BX8fXqnoytXbjWIcr21jyeJ_jIlZy2rH-cv_n8Jbcn96fjpTs-P5yQF5gF8wYS2MX5ERbBP3Glyjxrzpt_4PWNwONw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+S-scheme+Bi2WO6%2Fg-C3N4+heterostructure+nanosheets+with+enhanced+visible-light+photocatalytic+degradation+for+ammonium+dinitramide&rft.jtitle=Journal+of+hazardous+materials&rft.au=Lian%2C+Xiaoyan&rft.au=Xue%2C+Wenhua&rft.au=Dong%2C+Shuai&rft.au=Liu%2C+Enzhou&rft.date=2021-06-15&rft.issn=0304-3894&rft.volume=412+p.125217-&rft_id=info:doi/10.1016%2Fj.jhazmat.2021.125217&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |