Deep learning for abdominal adipose tissue segmentation with few labelled samples

Purpose Fully automated abdominal adipose tissue segmentation from computed tomography (CT) scans plays an important role in biomedical diagnoses and prognoses. However, to identify and segment subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the abdominal region, the tradition...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 17; no. 3; pp. 579 - 587
Main Authors Wang, Zheng, Hounye, Alphonse Houssou, Zhang, Jianglin, Hou, Muzhou, Qi, Min
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Fully automated abdominal adipose tissue segmentation from computed tomography (CT) scans plays an important role in biomedical diagnoses and prognoses. However, to identify and segment subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the abdominal region, the traditional routine process used in clinical practise is unattractive, expensive, time-consuming and leads to false segmentation. To address this challenge, this paper introduces and develops an effective global-anatomy-level convolutional neural network (ConvNet) automated segmentation of abdominal adipose tissue from CT scans termed EFNet to accommodate multistage semantic segmentation and high similarity intensity characteristics of the two classes (VAT and SAT) in the abdominal region. Methods EFNet consists of three pathways: (1) The first pathway is the max unpooling operator, which was used to reduce computational consumption. (2) The second pathway is concatenation, which was applied to recover the shape segmentation results. (3) The third pathway is anatomy pyramid pooling, which was adopted to obtain fine-grained features. The usable anatomical information was encoded in the output of EFNet and allowed for the control of the density of the fine-grained features. Results We formulated an end-to-end manner for the learning process of EFNet, where the representation features can be jointly learned through a mixed feature fusion layer. We immensely evaluated our model on different datasets and compared it to existing deep learning networks. Our proposed model called EFNet outperformed other state-of-the-art models on the segmentation results and demonstrated tremendous performances for abdominal adipose tissue segmentation. Conclusion EFNet is extremely fast with remarkable performance for fully automated segmentation of the VAT and SAT in abdominal adipose tissue from CT scans. The proposed method demonstrates a strength ability for automated detection and segmentation of abdominal adipose tissue in clinical practise.
AbstractList Purpose Fully automated abdominal adipose tissue segmentation from computed tomography (CT) scans plays an important role in biomedical diagnoses and prognoses. However, to identify and segment subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the abdominal region, the traditional routine process used in clinical practise is unattractive, expensive, time-consuming and leads to false segmentation. To address this challenge, this paper introduces and develops an effective global-anatomy-level convolutional neural network (ConvNet) automated segmentation of abdominal adipose tissue from CT scans termed EFNet to accommodate multistage semantic segmentation and high similarity intensity characteristics of the two classes (VAT and SAT) in the abdominal region. Methods EFNet consists of three pathways: (1) The first pathway is the max unpooling operator, which was used to reduce computational consumption. (2) The second pathway is concatenation, which was applied to recover the shape segmentation results. (3) The third pathway is anatomy pyramid pooling, which was adopted to obtain fine-grained features. The usable anatomical information was encoded in the output of EFNet and allowed for the control of the density of the fine-grained features. Results We formulated an end-to-end manner for the learning process of EFNet, where the representation features can be jointly learned through a mixed feature fusion layer. We immensely evaluated our model on different datasets and compared it to existing deep learning networks. Our proposed model called EFNet outperformed other state-of-the-art models on the segmentation results and demonstrated tremendous performances for abdominal adipose tissue segmentation. Conclusion EFNet is extremely fast with remarkable performance for fully automated segmentation of the VAT and SAT in abdominal adipose tissue from CT scans. The proposed method demonstrates a strength ability for automated detection and segmentation of abdominal adipose tissue in clinical practise.
PurposeFully automated abdominal adipose tissue segmentation from computed tomography (CT) scans plays an important role in biomedical diagnoses and prognoses. However, to identify and segment subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the abdominal region, the traditional routine process used in clinical practise is unattractive, expensive, time-consuming and leads to false segmentation. To address this challenge, this paper introduces and develops an effective global-anatomy-level convolutional neural network (ConvNet) automated segmentation of abdominal adipose tissue from CT scans termed EFNet to accommodate multistage semantic segmentation and high similarity intensity characteristics of the two classes (VAT and SAT) in the abdominal region.MethodsEFNet consists of three pathways: (1) The first pathway is the max unpooling operator, which was used to reduce computational consumption. (2) The second pathway is concatenation, which was applied to recover the shape segmentation results. (3) The third pathway is anatomy pyramid pooling, which was adopted to obtain fine-grained features. The usable anatomical information was encoded in the output of EFNet and allowed for the control of the density of the fine-grained features.ResultsWe formulated an end-to-end manner for the learning process of EFNet, where the representation features can be jointly learned through a mixed feature fusion layer. We immensely evaluated our model on different datasets and compared it to existing deep learning networks. Our proposed model called EFNet outperformed other state-of-the-art models on the segmentation results and demonstrated tremendous performances for abdominal adipose tissue segmentation. ConclusionEFNet is extremely fast with remarkable performance for fully automated segmentation of the VAT and SAT in abdominal adipose tissue from CT scans. The proposed method demonstrates a strength ability for automated detection and segmentation of abdominal adipose tissue in clinical practise.
Fully automated abdominal adipose tissue segmentation from computed tomography (CT) scans plays an important role in biomedical diagnoses and prognoses. However, to identify and segment subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the abdominal region, the traditional routine process used in clinical practise is unattractive, expensive, time-consuming and leads to false segmentation. To address this challenge, this paper introduces and develops an effective global-anatomy-level convolutional neural network (ConvNet) automated segmentation of abdominal adipose tissue from CT scans termed EFNet to accommodate multistage semantic segmentation and high similarity intensity characteristics of the two classes (VAT and SAT) in the abdominal region.PURPOSEFully automated abdominal adipose tissue segmentation from computed tomography (CT) scans plays an important role in biomedical diagnoses and prognoses. However, to identify and segment subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the abdominal region, the traditional routine process used in clinical practise is unattractive, expensive, time-consuming and leads to false segmentation. To address this challenge, this paper introduces and develops an effective global-anatomy-level convolutional neural network (ConvNet) automated segmentation of abdominal adipose tissue from CT scans termed EFNet to accommodate multistage semantic segmentation and high similarity intensity characteristics of the two classes (VAT and SAT) in the abdominal region.EFNet consists of three pathways: (1) The first pathway is the max unpooling operator, which was used to reduce computational consumption. (2) The second pathway is concatenation, which was applied to recover the shape segmentation results. (3) The third pathway is anatomy pyramid pooling, which was adopted to obtain fine-grained features. The usable anatomical information was encoded in the output of EFNet and allowed for the control of the density of the fine-grained features.METHODSEFNet consists of three pathways: (1) The first pathway is the max unpooling operator, which was used to reduce computational consumption. (2) The second pathway is concatenation, which was applied to recover the shape segmentation results. (3) The third pathway is anatomy pyramid pooling, which was adopted to obtain fine-grained features. The usable anatomical information was encoded in the output of EFNet and allowed for the control of the density of the fine-grained features.We formulated an end-to-end manner for the learning process of EFNet, where the representation features can be jointly learned through a mixed feature fusion layer. We immensely evaluated our model on different datasets and compared it to existing deep learning networks. Our proposed model called EFNet outperformed other state-of-the-art models on the segmentation results and demonstrated tremendous performances for abdominal adipose tissue segmentation.RESULTSWe formulated an end-to-end manner for the learning process of EFNet, where the representation features can be jointly learned through a mixed feature fusion layer. We immensely evaluated our model on different datasets and compared it to existing deep learning networks. Our proposed model called EFNet outperformed other state-of-the-art models on the segmentation results and demonstrated tremendous performances for abdominal adipose tissue segmentation.EFNet is extremely fast with remarkable performance for fully automated segmentation of the VAT and SAT in abdominal adipose tissue from CT scans. The proposed method demonstrates a strength ability for automated detection and segmentation of abdominal adipose tissue in clinical practise.CONCLUSIONEFNet is extremely fast with remarkable performance for fully automated segmentation of the VAT and SAT in abdominal adipose tissue from CT scans. The proposed method demonstrates a strength ability for automated detection and segmentation of abdominal adipose tissue in clinical practise.
Fully automated abdominal adipose tissue segmentation from computed tomography (CT) scans plays an important role in biomedical diagnoses and prognoses. However, to identify and segment subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the abdominal region, the traditional routine process used in clinical practise is unattractive, expensive, time-consuming and leads to false segmentation. To address this challenge, this paper introduces and develops an effective global-anatomy-level convolutional neural network (ConvNet) automated segmentation of abdominal adipose tissue from CT scans termed EFNet to accommodate multistage semantic segmentation and high similarity intensity characteristics of the two classes (VAT and SAT) in the abdominal region. EFNet consists of three pathways: (1) The first pathway is the max unpooling operator, which was used to reduce computational consumption. (2) The second pathway is concatenation, which was applied to recover the shape segmentation results. (3) The third pathway is anatomy pyramid pooling, which was adopted to obtain fine-grained features. The usable anatomical information was encoded in the output of EFNet and allowed for the control of the density of the fine-grained features. We formulated an end-to-end manner for the learning process of EFNet, where the representation features can be jointly learned through a mixed feature fusion layer. We immensely evaluated our model on different datasets and compared it to existing deep learning networks. Our proposed model called EFNet outperformed other state-of-the-art models on the segmentation results and demonstrated tremendous performances for abdominal adipose tissue segmentation. EFNet is extremely fast with remarkable performance for fully automated segmentation of the VAT and SAT in abdominal adipose tissue from CT scans. The proposed method demonstrates a strength ability for automated detection and segmentation of abdominal adipose tissue in clinical practise.
Author Hounye, Alphonse Houssou
Zhang, Jianglin
Hou, Muzhou
Wang, Zheng
Qi, Min
Author_xml – sequence: 1
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  organization: School of Mathematics and Statistics, Central South University, Science and Engineering School, Hunan First Normal University
– sequence: 2
  givenname: Alphonse Houssou
  surname: Hounye
  fullname: Hounye, Alphonse Houssou
  organization: School of Mathematics and Statistics, Central South University
– sequence: 3
  givenname: Jianglin
  surname: Zhang
  fullname: Zhang, Jianglin
  organization: Department of Detmatology, The Second Clinical Medical College, Shenzhen Peoples Hospital, Jinan University. The First Affiliated Hospital, Southern University of Science and Technology
– sequence: 4
  givenname: Muzhou
  orcidid: 0000-0001-6658-2187
  surname: Hou
  fullname: Hou, Muzhou
  email: houmuzhou@sina.com
  organization: School of Mathematics and Statistics, Central South University
– sequence: 5
  givenname: Min
  surname: Qi
  fullname: Qi, Min
  email: qimin05@csu.edu.cn
  organization: Department of Plastic Surgery, Xiangya Hospital, Central South University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34845590$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1q3TAQRkVJaH7aF8iiCLrpxs3Ikmx5WZImLVwIgWQtZHl8q2BLrmRzydtXN04ayCILIS3OGUbfd0IOfPBIyBmD7wygPk-MSaEKKFk-kvNCfSDHTFWsqETZHPx_MzgiJyk9AAhZc_mRHHGhhJQNHJPbS8SJDmiid35L-xCpabswOm8Gajo3hYR0diktSBNuR_SzmV3wdOfmP7THHR1Mi8OAHU1mnAZMn8hhb4aEn5_vU3J_9fPu4lexubn-ffFjU1hey7lAK3soTatEU7fWQmuZ4pbbXlXYCMYMUygESAFgUCoDdWM4wwoq6DtgDT8l39a5Uwx_F0yzHl2yeRXjMSxJlxUIxXNQMqNf36APYYn5h3uKl03ViJJl6ssztbQjdnqKbjTxUb-ElQG1AjaGlCL22ro1jTkaN2gGet-LXnvRuRf91ItWWS3fqC_T35X4KqUM-y3G17Xfsf4BKhCeRA
CitedBy_id crossref_primary_10_3390_cancers16132364
crossref_primary_10_1016_j_heliyon_2024_e29670
crossref_primary_10_53903_01212095_280
Cites_doi 10.1007/978-3-030-57373-7_2
10.1109/TPAMI.2015.2496141
10.1007/s11063-020-10230-x
10.1002/mrm.27550
10.1016/j.cmpb.2017.03.017
10.1373/clinchem.2017.277376
10.1038/s41598-016-0028-x
10.1109/TPAMI.2016.2644615
10.1016/j.media.2019.101619
10.1210/jcem-54-2-254
10.1016/j.media.2016.05.004
10.1007/s10439-019-02349-3
10.1118/1.2842076
10.1002/mp.14465
10.1016/j.neucom.2021.03.035
10.1038/oby.2007.29
10.1002/mrm.28022
10.14201/ADCAIJ2020927990
10.1109/TPAMI.2017.2699184
10.1109/JBHI.2018.2818620
10.1016/j.neuroimage.2018.11.042
10.1148/radiol.2018181432
10.1117/1.JMI.5.3.036501
10.1109/CVPR.2006.68
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2017.660
10.1117/12.2254139
10.1007/978-3-030-01234-2_49
10.1007/978-1-4842-3516-4_2
ContentType Journal Article
Copyright CARS 2021
2021. CARS.
CARS 2021.
Copyright_xml – notice: CARS 2021
– notice: 2021. CARS.
– notice: CARS 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s11548-021-02533-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 587
ExternalDocumentID 34845590
10_1007_s11548_021_02533_8
Genre Journal Article
GrantInformation_xml – fundername: scientific research fund of hunan provincial education department
  grantid: 20C0402
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ABRTQ
K9.
7X8
ID FETCH-LOGICAL-c375t-ec5f02ab8497bcc0bc183c3cf86e9411a18e4405400ae58a079a31e6060fd0193
IEDL.DBID U2A
ISSN 1861-6410
1861-6429
IngestDate Fri Jul 11 09:37:23 EDT 2025
Fri Jul 25 09:57:54 EDT 2025
Wed Feb 19 02:26:47 EST 2025
Thu Apr 24 23:08:32 EDT 2025
Tue Jul 01 00:15:12 EDT 2025
Fri Feb 21 02:47:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Subcutaneous adipose tissue (SAT)
Visceral adipose tissue (VAT)
Convolutional neural network (ConvNet)
Computed tomography (CT)
Language English
License 2021. CARS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-ec5f02ab8497bcc0bc183c3cf86e9411a18e4405400ae58a079a31e6060fd0193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6658-2187
PMID 34845590
PQID 2632969421
PQPubID 2043910
PageCount 9
ParticipantIDs proquest_miscellaneous_2604831005
proquest_journals_2632969421
pubmed_primary_34845590
crossref_citationtrail_10_1007_s11548_021_02533_8
crossref_primary_10_1007_s11548_021_02533_8
springer_journals_10_1007_s11548_021_02533_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Langner, Hedstrom, Morwald, Weghuber, Forslund, Bergsten, Ahlstrom, Kullberg (CR10) 2019; 81
Anthimopoulos, Christodoulidis, Ebner, Geiser, Christe, Mougiakakou (CR11) 2018; 23
Wang, Qiu, Thai, Moore, Hong, Zheng (CR9) 2017; 144
CR18
Klein, Van-der Heide, Lips, Van-Vulpen, Staring, Pluim (CR36) 2008; 35
CR38
CR14
CR13
Weston, Korfiatis, Kline, Philbrick, Kostandy, Sakinis, Sugimoto, Takahashi, Erickson (CR17) 2019; 290
CR31
CR30
Fu, Ippolito, Ludwig, Nizamuddin, Li, Yang (CR1) 2020; 47
Estrada, Lu, Conjeti, Orozco-Ruiz, Panos-Willuhn, Breteler, Reuter (CR16) 2020; 84
Kullberg, Hedström, Brandberg, Strand, Johansson, Bergström, Ahlström (CR8) 2017; 7
Yan, Wang, Lu, Summers (CR33) 2018; 5
Napolitano, Miller, Murgatroyd, Coward, Wright, Finer, De Bruin, Bullmore, Nunez (CR5) 2008; 16
Badrinarayanan, Kendall, Cipolla (CR12) 2017; 39
Dubrovina, Kisilev, Ginsburg, Hashoul, Kimmel (CR7) 2018; 6
Kissebah, Vydelingum, Murray, Evans, Hartz, Kalkhoff, Adams (CR3) 1982; 54
Xia, Sun, Song, Mou (CR21) 2020; 51
Hussein, Malik, Ong, Slik (CR19) 2020; 603
CR29
CR28
CR27
CR25
Jia, Jiang, Lin, Li, Xu, Yu (CR32) 2021; 448
Aljunid (CR2) 2021
CR24
WickstrØm, Kampffmeyer, Jenssen (CR20) 2020; 60
Chen, Papandreou, Kokkinos, Murphy, Yuille (CR22) 2018; 40
Turchenko, Chalmers, Luczak (CR15) 2017; 18
Dosovitskiy, Fischer, Springenberg, Riedmiller, Brox (CR37) 2016; 38
Hinton, Tieleman (CR35) 2012; 4
Colditz, Peterson (CR4) 2018; 64
Roy, Conjeti, Navab, Wachinger (CR23) 2019; 186
Wang, Meng, Weng, Chen, Lu, Liu, Zhang (CR39) 2020; 48
Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR6) 2017; 35
Zhao, Mathieu, Goroshin, Lecun (CR26) 2016; 15
Fatima (CR34) 2020; 9
S Klein (2533_CR36) 2008; 35
AD Weston (2533_CR17) 2019; 290
J Kullberg (2533_CR8) 2017; 7
MM Anthimopoulos (2533_CR11) 2018; 23
2533_CR18
V Badrinarayanan (2533_CR12) 2017; 39
2533_CR38
Y Wang (2533_CR9) 2017; 144
S Estrada (2533_CR16) 2020; 84
T Langner (2533_CR10) 2019; 81
2533_CR31
2533_CR30
2533_CR14
2533_CR13
J Zhao (2533_CR26) 2016; 15
A Dosovitskiy (2533_CR37) 2016; 38
A Napolitano (2533_CR5) 2008; 16
A Dubrovina (2533_CR7) 2018; 6
S Jia (2533_CR32) 2021; 448
N Fatima (2533_CR34) 2020; 9
G Hinton (2533_CR35) 2012; 4
GA Colditz (2533_CR4) 2018; 64
K WickstrØm (2533_CR20) 2020; 60
Z Wang (2533_CR39) 2020; 48
2533_CR29
2533_CR28
2533_CR27
H Xia (2533_CR21) 2020; 51
LC Chen (2533_CR22) 2018; 40
Y Fu (2533_CR1) 2020; 47
SM Aljunid (2533_CR2) 2021
2533_CR25
2533_CR24
V Turchenko (2533_CR15) 2017; 18
AH Kissebah (2533_CR3) 1982; 54
BR Hussein (2533_CR19) 2020; 603
M Havaei (2533_CR6) 2017; 35
AG Roy (2533_CR23) 2019; 186
K Yan (2533_CR33) 2018; 5
References_xml – volume: 603
  start-page: 321
  year: 2020
  end-page: 330
  ident: CR19
  article-title: Semantic segmentation of herbarium specimens using deep learning techniques, lecture notes in electrical
  publication-title: Engineering
– start-page: 13
  year: 2021
  end-page: 22
  ident: CR2
  article-title: Obesity, a costly epidemic
  publication-title: Laparoscopic sleeve gastrectomy
  doi: 10.1007/978-3-030-57373-7_2
– ident: CR18
– volume: 38
  start-page: 1734
  issue: 9
  year: 2016
  end-page: 1747
  ident: CR37
  article-title: Discriminative unsupervised feature learning with exemplar convolutional neural networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2496141
– volume: 51
  start-page: 2915
  issue: 3
  year: 2020
  end-page: 2927
  ident: CR21
  article-title: Md-net: multi-scale dilated convolution network for ct images segmentation
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10230-x
– ident: CR14
– volume: 81
  start-page: 2736
  issue: 4
  year: 2019
  end-page: 2745
  ident: CR10
  article-title: Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water–fat MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27550
– ident: CR30
– volume: 144
  start-page: 97
  year: 2017
  end-page: 104
  ident: CR9
  article-title: A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.03.017
– volume: 64
  start-page: 154
  issue: 1
  year: 2018
  end-page: 162
  ident: CR4
  article-title: Obesity and cancer: evidence, impact, and future directions
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2017.277376
– ident: CR29
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 11
  ident: CR8
  article-title: Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies
  publication-title: Scientif Rep
  doi: 10.1038/s41598-016-0028-x
– ident: CR25
– ident: CR27
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  end-page: 2495
  ident: CR12
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans Pattern Anal Machine Intell
  doi: 10.1109/TPAMI.2016.2644615
– volume: 60
  start-page: 101619
  year: 2020
  ident: CR20
  article-title: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101619
– volume: 4
  start-page: 26
  year: 2012
  end-page: 30
  ident: CR35
  article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA Neural Netw Mach Learn
– volume: 54
  start-page: 254
  issue: 2
  year: 1982
  end-page: 260
  ident: CR3
  article-title: Relation of body fat distribution to metabolic complications of obesity
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem-54-2-254
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: CR6
  article-title: Brain tumor segmentation with Deep Neural Networks
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.05.004
– volume: 48
  start-page: 312
  issue: 1
  year: 2020
  end-page: 328
  ident: CR39
  article-title: An effective cnn method for fully automated segmenting subcutaneous and visceral adipose tissue on ct scans
  publication-title: Annal Biomed Eng
  doi: 10.1007/s10439-019-02349-3
– ident: CR38
– volume: 35
  start-page: 1407
  issue: 4
  year: 2008
  end-page: 1417
  ident: CR36
  article-title: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information
  publication-title: Med Phys
  doi: 10.1118/1.2842076
– volume: 47
  start-page: 5723
  issue: 11
  year: 2020
  end-page: 5730
  ident: CR1
  article-title: Automatic segmentation of ct images for ventral body composition analysis
  publication-title: Med Phys
  doi: 10.1002/mp.14465
– ident: CR31
– ident: CR13
– volume: 448
  start-page: 179
  year: 2021
  end-page: 204
  ident: CR32
  article-title: A survey: Deep learning for hyperspectral image classification with few labeled samples
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.035
– volume: 16
  start-page: 191
  issue: 1
  year: 2008
  end-page: 198
  ident: CR5
  article-title: Validation of a quantitative magnetic resonance method for measuring human body composition
  publication-title: Obesity
  doi: 10.1038/oby.2007.29
– volume: 84
  start-page: 1471
  issue: 3
  year: 2020
  end-page: 1483
  ident: CR16
  article-title: Fatsegnet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon mri
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28022
– volume: 9
  start-page: 79
  issue: 2
  year: 2020
  end-page: 90
  ident: CR34
  article-title: Enhancing performance of a deep neural network: A comparative analysis of optimization algorithms
  publication-title: ADCAIJ Adv Distributed Comput Artif Intell J
  doi: 10.14201/ADCAIJ2020927990
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  end-page: 848
  ident: CR22
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2699184
– volume: 6
  start-page: 243
  issue: 3
  year: 2018
  end-page: 247
  ident: CR7
  article-title: Computational mammography using deep neural networks
  publication-title: Comput Methods Biomech Biomed Eng: Imaging Visual
– volume: 15
  start-page: 3563
  issue: 1
  year: 2016
  end-page: 3593
  ident: CR26
  article-title: Stacked What-Where Auto-encoders
  publication-title: Comput Sci
– ident: CR28
– volume: 23
  start-page: 714
  issue: 2
  year: 2018
  end-page: 722
  ident: CR11
  article-title: Semantic segmentation of pathological lung tissue with dilated fully convolutional networks
  publication-title: IEEE J Biomed Health Informatics
  doi: 10.1109/JBHI.2018.2818620
– volume: 186
  start-page: 713
  year: 2019
  end-page: 727
  ident: CR23
  article-title: Quicknat: A fully convolutional network for quick and accurate segmentation of neuroan atomy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.11.042
– ident: CR24
– volume: 18
  start-page: 1
  year: 2017
  ident: CR15
  article-title: A deep convolutional auto-encoder with pooling - unpooling layers in caffe
  publication-title: Int J Comput
– volume: 290
  start-page: 669
  issue: 3
  year: 2019
  end-page: 679
  ident: CR17
  article-title: Automated abdominal segmentation of ct scans for body composition analysis using deep learning
  publication-title: Radiology
  doi: 10.1148/radiol.2018181432
– volume: 5
  start-page: 036501
  issue: 3
  year: 2018
  ident: CR33
  article-title: Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.5.3.036501
– volume: 60
  start-page: 101619
  year: 2020
  ident: 2533_CR20
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101619
– ident: 2533_CR38
  doi: 10.1109/CVPR.2006.68
– volume: 23
  start-page: 714
  issue: 2
  year: 2018
  ident: 2533_CR11
  publication-title: IEEE J Biomed Health Informatics
  doi: 10.1109/JBHI.2018.2818620
– volume: 38
  start-page: 1734
  issue: 9
  year: 2016
  ident: 2533_CR37
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2496141
– volume: 6
  start-page: 243
  issue: 3
  year: 2018
  ident: 2533_CR7
  publication-title: Comput Methods Biomech Biomed Eng: Imaging Visual
– volume: 144
  start-page: 97
  year: 2017
  ident: 2533_CR9
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.03.017
– ident: 2533_CR27
– volume: 47
  start-page: 5723
  issue: 11
  year: 2020
  ident: 2533_CR1
  publication-title: Med Phys
  doi: 10.1002/mp.14465
– ident: 2533_CR25
– volume: 448
  start-page: 179
  year: 2021
  ident: 2533_CR32
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.035
– ident: 2533_CR13
  doi: 10.1007/978-3-319-24574-4_28
– volume: 35
  start-page: 1407
  issue: 4
  year: 2008
  ident: 2533_CR36
  publication-title: Med Phys
  doi: 10.1118/1.2842076
– volume: 64
  start-page: 154
  issue: 1
  year: 2018
  ident: 2533_CR4
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2017.277376
– ident: 2533_CR31
– ident: 2533_CR14
  doi: 10.1109/CVPR.2017.660
– volume: 84
  start-page: 1471
  issue: 3
  year: 2020
  ident: 2533_CR16
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28022
– volume: 603
  start-page: 321
  year: 2020
  ident: 2533_CR19
  publication-title: Engineering
– volume: 15
  start-page: 3563
  issue: 1
  year: 2016
  ident: 2533_CR26
  publication-title: Comput Sci
– volume: 4
  start-page: 26
  year: 2012
  ident: 2533_CR35
  publication-title: COURSERA Neural Netw Mach Learn
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 2533_CR8
  publication-title: Scientif Rep
  doi: 10.1038/s41598-016-0028-x
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 2533_CR22
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2699184
– volume: 186
  start-page: 713
  year: 2019
  ident: 2533_CR23
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.11.042
– ident: 2533_CR24
– volume: 16
  start-page: 191
  issue: 1
  year: 2008
  ident: 2533_CR5
  publication-title: Obesity
  doi: 10.1038/oby.2007.29
– ident: 2533_CR28
– volume: 81
  start-page: 2736
  issue: 4
  year: 2019
  ident: 2533_CR10
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27550
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 2533_CR12
  publication-title: IEEE Trans Pattern Anal Machine Intell
  doi: 10.1109/TPAMI.2016.2644615
– volume: 18
  start-page: 1
  year: 2017
  ident: 2533_CR15
  publication-title: Int J Comput
– volume: 48
  start-page: 312
  issue: 1
  year: 2020
  ident: 2533_CR39
  publication-title: Annal Biomed Eng
  doi: 10.1007/s10439-019-02349-3
– volume: 35
  start-page: 18
  year: 2017
  ident: 2533_CR6
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.05.004
– ident: 2533_CR18
  doi: 10.1117/12.2254139
– volume: 54
  start-page: 254
  issue: 2
  year: 1982
  ident: 2533_CR3
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem-54-2-254
– volume: 290
  start-page: 669
  issue: 3
  year: 2019
  ident: 2533_CR17
  publication-title: Radiology
  doi: 10.1148/radiol.2018181432
– volume: 51
  start-page: 2915
  issue: 3
  year: 2020
  ident: 2533_CR21
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10230-x
– volume: 5
  start-page: 036501
  issue: 3
  year: 2018
  ident: 2533_CR33
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.5.3.036501
– volume: 9
  start-page: 79
  issue: 2
  year: 2020
  ident: 2533_CR34
  publication-title: ADCAIJ Adv Distributed Comput Artif Intell J
  doi: 10.14201/ADCAIJ2020927990
– ident: 2533_CR29
  doi: 10.1007/978-3-030-01234-2_49
– ident: 2533_CR30
  doi: 10.1007/978-1-4842-3516-4_2
– start-page: 13
  volume-title: Laparoscopic sleeve gastrectomy
  year: 2021
  ident: 2533_CR2
  doi: 10.1007/978-3-030-57373-7_2
SSID ssj0045735
Score 2.2748885
Snippet Purpose Fully automated abdominal adipose tissue segmentation from computed tomography (CT) scans plays an important role in biomedical diagnoses and...
Fully automated abdominal adipose tissue segmentation from computed tomography (CT) scans plays an important role in biomedical diagnoses and prognoses....
PurposeFully automated abdominal adipose tissue segmentation from computed tomography (CT) scans plays an important role in biomedical diagnoses and prognoses....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 579
SubjectTerms Abdomen
Abdominal Fat - diagnostic imaging
Adipose tissue
Anatomy
Artificial neural networks
Automation
Body fat
Computed tomography
Computer Imaging
Computer Science
Deep Learning
Health Informatics
Humans
Imaging
Medical imaging
Medicine
Medicine & Public Health
Neural Networks, Computer
Original Article
Pattern Recognition and Graphics
Radiology
Semantic segmentation
Subcutaneous Fat
Surgery
Tomography, X-Ray Computed
Vision
Title Deep learning for abdominal adipose tissue segmentation with few labelled samples
URI https://link.springer.com/article/10.1007/s11548-021-02533-8
https://www.ncbi.nlm.nih.gov/pubmed/34845590
https://www.proquest.com/docview/2632969421
https://www.proquest.com/docview/2604831005
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WFEZf2i5rN29d0WBvq0CyZEt-DF27sJFCYYHuyUjyqQw2J8wp_fcnOXLC6Fbos8-yudPpfqf7AvjgbdgY3JRUFTlSKbyiRghLvfbBB3IWGxMLnGdX5XQuv9wUN6korBuy3YeQZH9Sb4vdIrqmMaUg2GkhqN6B3SL47jGRa55PhvNXFqofq8l1yWkpOUulMv9e429z9ABjPoiP9mbn8hD2E14kk7WAX8AzbMdwMMxiIEk1x_B8loLkL-H6E-KSpHEQtySgUmJss-indxHT_FguOiSrnuGkw9tfqfqoJfFOlni8J2FnxPv8hnQmNg_ujmB-efHtfErT5ATqhCpWFF3hWW6slpWyzjHrguY64bwusZKcG65RyojWmMFCG6YqIzgGZ4b5JoA-cQyjdtHiayDM6sZxxUxpY5BWVbb0jVTW5szKCvMM-MDA2qW24nG6xc962xA5Mr0OTK97ptc6g4-bd5brphqPUp8McqmTgnV1bDNflZXMeQbvN4-DasR4h2lxcRdpYr_8sGqRwau1PDefE1LL4EyxDM4GAW8X__-_vHka-VvYy2O5RJ-zdgKj1e87fBdAzMqewu7k8_evF6f93v0DR4vnKw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NaxQxFH_UCtqL1ap1bNUIetJAvmaSOXgorWVruwWhC72NSSYpgs4uzpbi_-MfapLN7FKqgoee500mvI-8X-Z9AbzxJigG1RWWJXNYcC-x5txgr3y4A1njWh0LnMen1WgiPp2X52vwa6iFSdnuQ0gyndSrYreIrnFMKQh-mnOscirlsft5FS5q_YejgyDVt4wdfjzbH-E8SwBbLss5drb0hGmjRC2NtcTYoMuWW68qVwtKNVVOiIhfiHal0kTWmlMX4D3xbYBBPKx7B-4G8KGi7UzY3nDei1KmMZ5UVRRXgpJcmvPnPV93fzcw7Y14bHJzhw_hQcanaG-hUI9gzXVbsDnMfkD5KNiCe-MclH8Mnw-cm6E8fuICBRSMtGmnaVoY0u3X2bR3aJ4EjHp38T1XO3Uo_gNG3l2hoIkxftCiXsdmxf0TmNwKd5_Cejft3DNAxKjWUkl0ZWJQWNam8q2QxjBiRO1YAXRgYGNzG_M4TeNbs2rAHJneBKY3iemNKuDd8p3ZoonHP6l3B7k02aD7Jra1r6taMFrA6-XjYIoxvqI7N72MNLE_f1i1LGB7Ic_l57hQIlzeSAHvBwGvFv_7Xp7_H_kruD86G580J0enxzuwwWKpRsqX24X1-Y9L9yIAqLl5mfQXwZfbNpjfZzEh5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVceBQogQJGghNYtWMndg4cKpZVS2kFEiv1FmxnXCFBdkVSVfwrfiJ21tkVKiBx6DmOY83D_pyZbwbgubfBMLgpqSpypFJ4RY0Qlnrtwx3IWWxMJDgfn5QHM_nutDjdgJ8jF2bIdh9DkktOQ6zS1PZ7i8bvrYlvEWnTmF4QzmwhqE5plUf44yJc2rrXh5Og4Rd5Pn376c0BTX0FqBOq6Cm6wrPcWC0rZZ1j1gW7dsJ5XWIlOTdco5QRyzCDhTZMVUZwDFCf-SZAIhHmvQbXZWQfBw-a5fvj3i8LNbT05LrktJScJZrOn9f8-1F4Cd9eis0OR970NtxMWJXsL43rDmxguw23xj4QJG0L27B1nAL0d-HjBHFBUiuKMxIQMTG2mQ-dw4hpvizmHZJ-UDbp8OxbYj61JP4PJh4vSLDKGEtoSGdi4eLuHsyuRLr3YbOdt_gACLO6cVwxU9oYIFaVLX0jlbU5s7LCPAM-CrB2qaR57KzxtV4XY45Cr4PQ60Hotc7g5eqdxbKgxz9H7456qZNzd3UscV-Vlcx5Bs9Wj4NbxliLaXF-HsfEWv1h1iKDnaU-V58TUstwkWMZvBoVvJ7872t5-H_Dn8LWh8m0fn94cvQIbuSRtTGkzu3CZv_9HB8HLNXbJ4P5Evh81f7yC3XQJhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+abdominal+adipose+tissue+segmentation+with+few+labelled+samples&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Wang%2C+Zheng&rft.au=Hounye%2C+Alphonse+Houssou&rft.au=Zhang%2C+Jianglin&rft.au=Hou%2C+Muzhou&rft.date=2022-03-01&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=17&rft.issue=3&rft.spage=579&rft.epage=587&rft_id=info:doi/10.1007%2Fs11548-021-02533-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11548_021_02533_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon