Empirical assessment of carbon emissions in Guangdong Province within the framework of carbon peaking and carbon neutrality: a lasso-TPE-BP neural network approach
The escalating global greenhouse gas emission crisis necessitates a robust scientific carbon accounting framework and innovative development approaches. Achieving emission peaks remains the primary goal for emission reduction. Guangdong Province, a pivotal region in China, faces pressure to reduce c...
Saved in:
Published in | Environmental science and pollution research international Vol. 30; no. 58; pp. 121647 - 121665 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The escalating global greenhouse gas emission crisis necessitates a robust scientific carbon accounting framework and innovative development approaches. Achieving emission peaks remains the primary goal for emission reduction. Guangdong Province, a pivotal region in China, faces pressure to reduce carbon emissions. In this study, data was leveraged from the China Carbon Accounting Database (CEADS) and panel data from the “Guangdong Statistical Yearbook” spanning 1997 to 2022. Factors impacting carbon emissions were selected based on Guangdong Province’s carbon reduction goals, macroeconomic development strategies, and economic-population dynamics. To address multicollinearity, lasso regression identified key factors, including population size, economic development level, energy intensity, and technology factors. A novel STIRPAT extended model, combined with the BP neural network optimized using the TPE algorithm, enhanced carbon emission predictions for Guangdong Province. Employing scenario analysis, five scenarios were generated in alignment with the planning policies of Guangdong Province, to forecast carbon emissions from 2020 to 2050. The results suggest that to achieve a win-win situation for both economic development and environmental protection, Guangdong Province should prioritize the energy-saving scenario (S2), which aligns with the “13th Five-Year Plan’s” ecological and green development directives, to reach a projected carbon peak of 637.05Mt by 2030. In conclusion, recommendations for carbon reduction are proposed in the areas of low-carbon transformation for the population, sustainable economic development, and the development of low-carbon technologies. |
---|---|
AbstractList | The escalating global greenhouse gas emission crisis necessitates a robust scientific carbon accounting framework and innovative development approaches. Achieving emission peaks remains the primary goal for emission reduction. Guangdong Province, a pivotal region in China, faces pressure to reduce carbon emissions. In this study, data was leveraged from the China Carbon Accounting Database (CEADS) and panel data from the “Guangdong Statistical Yearbook” spanning 1997 to 2022. Factors impacting carbon emissions were selected based on Guangdong Province’s carbon reduction goals, macroeconomic development strategies, and economic-population dynamics. To address multicollinearity, lasso regression identified key factors, including population size, economic development level, energy intensity, and technology factors. A novel STIRPAT extended model, combined with the BP neural network optimized using the TPE algorithm, enhanced carbon emission predictions for Guangdong Province. Employing scenario analysis, five scenarios were generated in alignment with the planning policies of Guangdong Province, to forecast carbon emissions from 2020 to 2050. The results suggest that to achieve a win-win situation for both economic development and environmental protection, Guangdong Province should prioritize the energy-saving scenario (S2), which aligns with the “13th Five-Year Plan’s” ecological and green development directives, to reach a projected carbon peak of 637.05Mt by 2030. In conclusion, recommendations for carbon reduction are proposed in the areas of low-carbon transformation for the population, sustainable economic development, and the development of low-carbon technologies. |
Author | Li, Zhi Ye, Minhua Chen, Ruihan Li, Sheng Ma, Zebin Yang, Derong |
Author_xml | – sequence: 1 givenname: Ruihan surname: Chen fullname: Chen, Ruihan organization: School of Mathematics and Computer, Guangdong Ocean University – sequence: 2 givenname: Minhua surname: Ye fullname: Ye, Minhua organization: College of Ocean Engineering and Energy, Guangdong Ocean University – sequence: 3 givenname: Zhi surname: Li fullname: Li, Zhi organization: School of Mathematics and Computer, Guangdong Ocean University – sequence: 4 givenname: Zebin surname: Ma fullname: Ma, Zebin organization: School of Mathematics and Computer, Guangdong Ocean University – sequence: 5 givenname: Derong surname: Yang fullname: Yang, Derong organization: School of Mathematics and Computer, Guangdong Ocean University – sequence: 6 givenname: Sheng surname: Li fullname: Li, Sheng email: lish_ls@gdou.edu.cn organization: School of Mathematics and Computer, Guangdong Ocean University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37953421$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1TAQhi1U1Bu8AAtkiQ2bUF-S2GFHq0NBqsRZlLU1ScbnuE3sYCdUfR5eFLenN7FgNZb_b_6Z0X9E9nzwSMg7zj5xxtRJ4lxWdcGELCTTWhT8FTnkNS8LVTbN3ov3ATlK6YoxwRqh9smBVE0lS8EPyZ_VOLnoOhgopIQpjehnGiztILbBUxxdSi74RJ2n5wv4TR_8hq5j-O18h_TGzduszFukNsKINyFev2ifEK5d5sH3j18elznC4ObbzxTokKeG4nK9Kk7Xd1JWcpnvbWCaYoBu-4a8tjAkfPtQj8nPr6vLs2_FxY_z72dfLopOqmousOkFl0y2qm5bAUy1KJVobcn6shey7CsBigGAVDJfj9YKYduaSWnbXlRKHpOPO9889teCaTb5-A6HATyGJRmhdVPpWrMqox_-Qa_CEn3ezoiGCV5rqXWmxI7qYkgpojVTdCPEW8OZuYvQ7CI0OUJzH6Hhuen9g_XSjtg_tTxmlgG5A1KW_Abj8-z_2P4F5puq_A |
CitedBy_id | crossref_primary_10_1007_s11356_024_32591_9 crossref_primary_10_3390_en17081856 |
Cites_doi | 10.1080/00207543.2020.1730998 10.1016/j.apenergy.2019.113650 10.1016/j.jclepro.2017.05.102 10.1007/s11783-023-1667-3 10.1007/s12145-020-00458-5 10.1016/j.apenergy.2023.121164 10.1016/j.eneco.2017.12.022 10.1016/j.energy.2023.127689 10.3390/en12040764 10.1016/j.apenergy.2023.121441 10.1016/j.jclepro.2018.01.116 10.1016/j.enpol.2015.11.020 10.13209/j.0479-8023.2021.086 10.1126/science.171.3977.1212 10.3389/fenrg.2023.1121639 10.1016/j.resconrec.2021.105706 10.1016/j.jtrangeo.2020.102733 10.1109/ACCESS.2021.3125895 10.1016/j.eiar.2021.106623 10.1007/s11356-023-26599-w 10.1016/j.scs.2023.104654 10.3390/nu12092652 10.1007/s11356-018-2762-z 10.1016/j.apenergy.2012.05.038 10.1016/j.resconrec.2018.02.009 10.1016/j.jclepro.2016.02.053 10.1038/nature.2014.16335 10.1007/s11625-018-0527-8 10.1016/j.apenergy.2013.01.036 10.1016/j.adapen.2023.100145 10.1007/s11356-020-08079-7 10.1108/TR-07-2021-0310 10.3390/land12040787 10.1016/j.ecoinf.2014.02.003 10.3390/en11061489 10.1038/d41586-018-05198-7 10.1162/10881980052541927 10.1016/0024-6301(95)99966-4 10.1016/j.jenvman.2022.116032 10.1016/j.jclepro.2023.138049 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | NPM AAYXX CITATION 7QL 7SN 7T7 7TV 7U7 8FD C1K FR3 K9. M7N P64 7X8 |
DOI | 10.1007/s11356-023-30882-1 |
DatabaseName | PubMed CrossRef Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences Economics |
EISSN | 1614-7499 |
EndPage | 121665 |
ExternalDocumentID | 10_1007_s11356_023_30882_1 37953421 |
Genre | Journal Article |
GeographicLocations | Guangdong China China |
GeographicLocations_xml | – name: Guangdong China – name: China |
GrantInformation_xml | – fundername: Guangdong Ocean University Undergraduate Innovation Team Project grantid: CXTD2023014 – fundername: Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province grantid: pdjh2023b0247 funderid: http://dx.doi.org/10.13039/501100018568 – fundername: Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province grantid: pdjh2023b0247 |
GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACSNA ACSVP ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z85 Z86 Z87 Z88 Z8P Z8Q Z8S ZMTXR ~02 ~KM AACDK AAEOY AAHBH AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AFEUZ AGQEE AGRTI AIGIU H13 NPM PQBZA AAYXX CITATION 7QL 7SN 7T7 7TV 7U7 8FD C1K FR3 K9. M7N P64 7X8 |
ID | FETCH-LOGICAL-c375t-e9d21303b76bb2a07be372bf40d4d234d52a70aaa373534eff22fb6033fbd2573 |
IEDL.DBID | AGYKE |
ISSN | 1614-7499 0944-1344 |
IngestDate | Fri Oct 25 23:41:53 EDT 2024 Thu Nov 07 07:35:47 EST 2024 Thu Sep 12 18:18:53 EDT 2024 Sat Nov 02 12:22:31 EDT 2024 Sat Dec 16 10:33:29 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 58 |
Keywords | BP neural network Lasso regression Carbon neutrality Tree-structured Parzen estimator Scenario setting Carbon peaking Carbon emissions |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-e9d21303b76bb2a07be372bf40d4d234d52a70aaa373534eff22fb6033fbd2573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 37953421 |
PQID | 2902168388 |
PQPubID | 54208 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2889586805 proquest_journals_2902168388 crossref_primary_10_1007_s11356_023_30882_1 pubmed_primary_37953421 springer_journals_10_1007_s11356_023_30882_1 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Environmental science and pollution research international |
PublicationTitleAbbrev | Environ Sci Pollut Res |
PublicationTitleAlternate | Environ Sci Pollut Res Int |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | DingGQGuoJPueppkeSGYiJLOuMHOuWXThe influence of urban form compactness on CO2 emissions and its threshold effect: evidence from cities in ChinaJ Environ Manag20223221160321:CAS:528:DC%2BB38XitlahtrfK10.1016/j.jenvman.2022.116032 MaYWangSZhouCCan the development of the digital economy reduce urban carbon emissions? Case study of Guangdong ProvinceLand20231278710.3390/land12040787 ZouCMaMZhouNFengWYouKZhangSToward carbon free by 2060: a decarbonization roadmap of operational residential buildings in ChinaEnergy202327712768910.1016/j.energy.2023.127689 LiuMZhangXZhangMFengYLiuYWenJInfluencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an exampleEnviron Impact Assess Rev20219010662310.1016/j.eiar.2021.106623 ZhouJJinBDuSZhangPScenario analysis of carbon emissions of Beijing-Tianjin-HebeiEnergies20181114891:CAS:528:DC%2BC1cXisFSru7nO10.3390/en11061489 LiJChenZLiXYiXZhaoYHeXWater quality soft-sensor prediction in anaerobic process using deep neural network optimized by tree-structured Parzen estimatorFront Environ Sci Eng2022176671:CAS:528:DC%2BB3sXhs1eltQ%3D%3D10.1007/s11783-023-1667-3 CansinoJMRománROrdóñezMMain drivers of changes in CO2 emissions in the Spanish economy: a structural decomposition analysisEnergy Policy2016891501591:CAS:528:DC%2BC2MXhvF2ksLzF10.1016/j.enpol.2015.11.020 McEligotAJPoynorVSharmaRPanangadanALogistic LASSO regression for dietary intakes and breast cancerNutrients20201226521:CAS:528:DC%2BB3cXitFWntbnM10.3390/nu12092652 YaoCFengKHubacekKDriving forces of CO2 emissions in the G20 countries: an index decomposition analysis from 1971 to 2010Eco Inform2015269310010.1016/j.ecoinf.2014.02.003 WangJMaXInfluencing factors of carbon emissions from transportation in China: empirical analysis based on two-level econometrics methodActa Sci Nat Univ Pekin2021576113311421:CAS:528:DC%2BB38XhtVais73P10.13209/j.0479-8023.2021.086 Zarco-SotoIMZarco-PeriñánPJSánchez-DuránRInfluence of climate on energy consumption and CO2 emissions: the case of SpainEnviron Sci Pollut Res2020271315645156621:CAS:528:DC%2BB3cXktlyitbY%3D10.1007/s11356-020-08079-7 ClemonsEKUsing scenario analysis to manage the strategic risks of reengineeringSloan Manag Rev1995364617110.1016/0024-6301(95)99966-4 HuXEmpirical study on the impact of urbanization on carbon dioxide emissions2018Beijing Institute of Technology WangZYinFZhangYZhangXAn empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing city, ChinaAppl Energy20121002772841:CAS:528:DC%2BC38XhsFGiu7%2FE10.1016/j.apenergy.2012.05.038 ChertowMRThe IPAT equation and its variantsJ Ind Ecol200044132910.1162/10881980052541927 ChontanawatJDriving forces of energy-related CO2 emissions based on expanded IPAT decomposition analysis: evidence from ASEAN and four selected countriesEnergies2019127641:CAS:528:DC%2BC1MXhtlSkurjP10.3390/en12040764 ZhangSZhouNFengWMaMXiangXYouKPathway for decarbonizing residential building operations in the US and China beyond the mid-centuryAppl Energy202334212116410.1016/j.apenergy.2023.121164 MassaoudiMAbu-RubHRefaatSSTrabelsiMChihiIOueslatiFSEnhanced deep belief network based on ensemble learning and tree-structured of Parzen estimators: an optimal photovoltaic power forecasting methodIEEE Access2021915033015034410.1109/ACCESS.2021.3125895 DongFBianZYuBWangYZhangSLiJCan land urbanization help to achieve CO2 intensity reduction target or hinder it? Evidence from ChinaResour Conserv Recycl201813420621510.1016/j.resconrec.2018.02.009 LiuMLiuXChuFZhangEChuCService-oriented robust worker scheduling with motivation effectsInt J Prod Res20215982328235110.1080/00207543.2020.1730998 ChenLMaMXiangXDecarbonizing or illusion? How carbon emissions of commercial building operations change worldwideSustain Cities Soc20239610465410.1016/j.scs.2023.104654 LongZZhangZLiangSChenXDingBWangBSpatially explicit carbon emissions at the county scaleResour Conserv Recycl20211731057061:CAS:528:DC%2BB38XhvVCiur7K10.1016/j.resconrec.2021.105706 WangPWuWZhuBWeiYExamining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, ChinaAppl Energy201310665711:CAS:528:DC%2BC3sXksFantLs%3D10.1016/j.apenergy.2013.01.036 ZhangLLongRLiWWeiJPotential for reducing carbon emissions from urban traffic based on the carbon emission satisfaction: case study in ShanghaiJ Transp Geogr202085202010273310.1016/j.jtrangeo.2020.102733 GuoDChenHLongRCan China fulfill its commitment to reducing carbon dioxide emissions in the Paris Agreement? Analysis based on a back-propagation neural networkEnviron Sci Pollut Res2018252727451274621:CAS:528:DC%2BC1cXhsVegtb7F10.1007/s11356-018-2762-z MishraHGPanditaSBhatAAMishraRKSharmaSTourism and carbon emissions: a bibliometric review of the last three decades: 1990–2021Tour Rev202277263665810.1108/TR-07-2021-0310 RaoCHuangQChenLForecasting the carbon emissions in Hubei Province under the background of carbon neutrality: a novel STIRPAT extended model with ridge regression and scenario analysisEnviron Sci Pollut Res20233057460574801:CAS:528:DC%2BB3sXmtFGqsbw%3D10.1007/s11356-023-26599-w EhrlichPRHoldrenJPImpact of population growthScience (New York, N.Y.)19711713977121212171:STN:280:DyaE3M7hs1ylsQ%3D%3D10.1126/science.171.3977.1212 Schiermeier Q (2014) What does the US-China climate deal mean? Nature. https://doi.org/10.1038/nature.2014.16335 DengCHuHZhangTChenJRock slope stability analysis and charts based on hybrid online sequential extreme learning machine modelEarth Sci Inf202013372974610.1007/s12145-020-00458-5 ZhengYLiZChaiJProgress and prospects of international carbon peaking and carbon neutral research –based on bibliometric analysis (1991–2022)Front Energy Res202311011310.3389/fenrg.2023.1121639 Bergstra J, Bardenet R, Kégl B, Bengio Y (2011) Algorithms for hyper-parameter optimization. Adv Neural Inf Process Syst 24. https://proceedings.neurips.cc/paper_files/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html FangDZhangXYuQJinTCTianLA novel method for carbon dioxide emission forecasting based on improved Gaussian processes regressionJ Clean Prod20181731431501:CAS:528:DC%2BC2sXhtVKgt7%2FO10.1016/j.jclepro.2017.05.102 SchlenkerWAuffhammerMThe cost of a warming climateNature201855777064984991:CAS:528:DC%2BC1cXhtVSksrfP10.1038/d41586-018-05198-7 TalbergAThomasSChristoffPKarolyDHow geoengineering scenarios frame assumptions and create expectationsSustain Sci20181341093110410.1007/s11625-018-0527-8 JiaoLYangRChenBZhangYVariation, determinants and prediction of carbon emissions in Guizhou, a new economic growth pole in southwest ChinaJ Clean Prod20234171380491:CAS:528:DC%2BB3sXhsVOrsb7J10.1016/j.jclepro.2023.138049 YangLXiaHZhangXYuanSWhat matters for carbon emissions in regional sectors? A China study of extended STIRPAT modelJ Clean Prod201818059560210.1016/j.jclepro.2018.01.116 XiangXZhouNMaMFengWYanRGlobal transition of operational carbon in residential buildings since the millenniumAdv Appl Energy20231110014510.1016/j.adapen.2023.100145 DietzTRosaEARethinking the environmental impacts of population, affluence and technologyHum Ecol Rev19941277300 DuanHMoJFanYWangSAchieving China’s energy and climate policy targets in 2030 under multiple uncertaintiesEnergy Econ201870456010.1016/j.eneco.2017.12.022 SunWLiuMPrediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in ChinaJ Clean Prod201612214415310.1016/j.jclepro.2016.02.053 WangJWangSLiSFengKCoupling analysis of urbanization and energy-environment efficiency: evidence from Guangdong provinceAppl Energy201925411365010.1016/j.apenergy.2019.113650 YanRChenMXiangXFengWMaMHeterogeneity or illusion? Track the carbon Kuznets curve of global residential building operationsAppl Energy202334712144110.1016/j.apenergy.2023.121441 W Schlenker (30882_CR27) 2018; 557 L Zhang (30882_CR39) 2020; 85 Y Ma (30882_CR21) 2023; 12 IM Zarco-Soto (30882_CR38) 2020; 27 H Duan (30882_CR11) 2018; 70 L Yang (30882_CR36) 2018; 180 M Massaoudi (30882_CR22) 2021; 9 R Yan (30882_CR35) 2023; 347 D Fang (30882_CR13) 2018; 173 J Wang (30882_CR30) 2021; 57 AJ McEligot (30882_CR23) 2020; 12 M Liu (30882_CR18) 2021; 59 J Zhou (30882_CR42) 2018; 11 PR Ehrlich (30882_CR12) 1971; 171 P Wang (30882_CR32) 2013; 106 X Xiang (30882_CR34) 2023; 11 S Zhang (30882_CR40) 2023; 342 Z Long (30882_CR20) 2021; 173 C Rao (30882_CR25) 2023; 30 C Yao (30882_CR37) 2015; 26 L Chen (30882_CR3) 2023; 96 MR Chertow (30882_CR4) 2000; 4 EK Clemons (30882_CR6) 1995; 36 C Zou (30882_CR43) 2023; 277 C Deng (30882_CR7) 2020; 13 GQ Ding (30882_CR9) 2022; 322 J Li (30882_CR17) 2022; 17 F Dong (30882_CR10) 2018; 134 A Talberg (30882_CR29) 2018; 13 30882_CR1 T Dietz (30882_CR8) 1994; 1 HG Mishra (30882_CR24) 2022; 77 W Sun (30882_CR28) 2016; 122 J Wang (30882_CR31) 2019; 254 J Chontanawat (30882_CR5) 2019; 12 Y Zheng (30882_CR41) 2023; 11 D Guo (30882_CR14) 2018; 25 L Jiao (30882_CR16) 2023; 417 M Liu (30882_CR19) 2021; 90 30882_CR26 X Hu (30882_CR15) 2018 Z Wang (30882_CR33) 2012; 100 JM Cansino (30882_CR2) 2016; 89 |
References_xml | – volume: 59 start-page: 2328 issue: 8 year: 2021 ident: 30882_CR18 publication-title: Int J Prod Res doi: 10.1080/00207543.2020.1730998 contributor: fullname: M Liu – volume: 254 start-page: 113650 year: 2019 ident: 30882_CR31 publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113650 contributor: fullname: J Wang – volume: 173 start-page: 143 year: 2018 ident: 30882_CR13 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.05.102 contributor: fullname: D Fang – volume: 17 start-page: 67 issue: 6 year: 2022 ident: 30882_CR17 publication-title: Front Environ Sci Eng doi: 10.1007/s11783-023-1667-3 contributor: fullname: J Li – volume: 13 start-page: 729 issue: 3 year: 2020 ident: 30882_CR7 publication-title: Earth Sci Inf doi: 10.1007/s12145-020-00458-5 contributor: fullname: C Deng – volume: 342 start-page: 121164 year: 2023 ident: 30882_CR40 publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121164 contributor: fullname: S Zhang – volume: 70 start-page: 45 year: 2018 ident: 30882_CR11 publication-title: Energy Econ doi: 10.1016/j.eneco.2017.12.022 contributor: fullname: H Duan – volume: 277 start-page: 127689 year: 2023 ident: 30882_CR43 publication-title: Energy doi: 10.1016/j.energy.2023.127689 contributor: fullname: C Zou – volume: 12 start-page: 764 year: 2019 ident: 30882_CR5 publication-title: Energies doi: 10.3390/en12040764 contributor: fullname: J Chontanawat – volume: 347 start-page: 121441 year: 2023 ident: 30882_CR35 publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121441 contributor: fullname: R Yan – volume: 180 start-page: 595 year: 2018 ident: 30882_CR36 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.01.116 contributor: fullname: L Yang – volume: 89 start-page: 150 year: 2016 ident: 30882_CR2 publication-title: Energy Policy doi: 10.1016/j.enpol.2015.11.020 contributor: fullname: JM Cansino – volume-title: Empirical study on the impact of urbanization on carbon dioxide emissions year: 2018 ident: 30882_CR15 contributor: fullname: X Hu – volume: 57 start-page: 1133 issue: 6 year: 2021 ident: 30882_CR30 publication-title: Acta Sci Nat Univ Pekin doi: 10.13209/j.0479-8023.2021.086 contributor: fullname: J Wang – volume: 171 start-page: 1212 issue: 3977 year: 1971 ident: 30882_CR12 publication-title: Science (New York, N.Y.) doi: 10.1126/science.171.3977.1212 contributor: fullname: PR Ehrlich – volume: 11 start-page: 01 year: 2023 ident: 30882_CR41 publication-title: Front Energy Res doi: 10.3389/fenrg.2023.1121639 contributor: fullname: Y Zheng – volume: 173 start-page: 105706 year: 2021 ident: 30882_CR20 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2021.105706 contributor: fullname: Z Long – volume: 85 start-page: 102733 issue: 2020 year: 2020 ident: 30882_CR39 publication-title: J Transp Geogr doi: 10.1016/j.jtrangeo.2020.102733 contributor: fullname: L Zhang – volume: 9 start-page: 150330 year: 2021 ident: 30882_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3125895 contributor: fullname: M Massaoudi – volume: 90 start-page: 106623 year: 2021 ident: 30882_CR19 publication-title: Environ Impact Assess Rev doi: 10.1016/j.eiar.2021.106623 contributor: fullname: M Liu – volume: 30 start-page: 57460 year: 2023 ident: 30882_CR25 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-023-26599-w contributor: fullname: C Rao – volume: 96 start-page: 104654 year: 2023 ident: 30882_CR3 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2023.104654 contributor: fullname: L Chen – volume: 12 start-page: 2652 year: 2020 ident: 30882_CR23 publication-title: Nutrients doi: 10.3390/nu12092652 contributor: fullname: AJ McEligot – volume: 25 start-page: 27451 issue: 27 year: 2018 ident: 30882_CR14 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-018-2762-z contributor: fullname: D Guo – volume: 100 start-page: 277 year: 2012 ident: 30882_CR33 publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.05.038 contributor: fullname: Z Wang – volume: 134 start-page: 206 year: 2018 ident: 30882_CR10 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2018.02.009 contributor: fullname: F Dong – volume: 122 start-page: 144 year: 2016 ident: 30882_CR28 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2016.02.053 contributor: fullname: W Sun – ident: 30882_CR26 doi: 10.1038/nature.2014.16335 – volume: 13 start-page: 1093 issue: 4 year: 2018 ident: 30882_CR29 publication-title: Sustain Sci doi: 10.1007/s11625-018-0527-8 contributor: fullname: A Talberg – volume: 106 start-page: 65 year: 2013 ident: 30882_CR32 publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.01.036 contributor: fullname: P Wang – volume: 11 start-page: 100145 year: 2023 ident: 30882_CR34 publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2023.100145 contributor: fullname: X Xiang – volume: 27 start-page: 15645 issue: 13 year: 2020 ident: 30882_CR38 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-08079-7 contributor: fullname: IM Zarco-Soto – ident: 30882_CR1 – volume: 1 start-page: 277 year: 1994 ident: 30882_CR8 publication-title: Hum Ecol Rev contributor: fullname: T Dietz – volume: 77 start-page: 636 issue: 2 year: 2022 ident: 30882_CR24 publication-title: Tour Rev doi: 10.1108/TR-07-2021-0310 contributor: fullname: HG Mishra – volume: 12 start-page: 787 year: 2023 ident: 30882_CR21 publication-title: Land doi: 10.3390/land12040787 contributor: fullname: Y Ma – volume: 26 start-page: 93 year: 2015 ident: 30882_CR37 publication-title: Eco Inform doi: 10.1016/j.ecoinf.2014.02.003 contributor: fullname: C Yao – volume: 11 start-page: 1489 year: 2018 ident: 30882_CR42 publication-title: Energies doi: 10.3390/en11061489 contributor: fullname: J Zhou – volume: 557 start-page: 498 issue: 7706 year: 2018 ident: 30882_CR27 publication-title: Nature doi: 10.1038/d41586-018-05198-7 contributor: fullname: W Schlenker – volume: 4 start-page: 13 issue: 4 year: 2000 ident: 30882_CR4 publication-title: J Ind Ecol doi: 10.1162/10881980052541927 contributor: fullname: MR Chertow – volume: 36 start-page: 61 issue: 4 year: 1995 ident: 30882_CR6 publication-title: Sloan Manag Rev doi: 10.1016/0024-6301(95)99966-4 contributor: fullname: EK Clemons – volume: 322 start-page: 116032 year: 2022 ident: 30882_CR9 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2022.116032 contributor: fullname: GQ Ding – volume: 417 start-page: 138049 year: 2023 ident: 30882_CR16 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2023.138049 contributor: fullname: L Jiao |
SSID | ssj0020927 |
Score | 2.446669 |
Snippet | The escalating global greenhouse gas emission crisis necessitates a robust scientific carbon accounting framework and innovative development approaches.... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 121647 |
SubjectTerms | Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Back propagation networks Carbon Carbon content Carbon footprint Carbon neutrality Clean technology Development strategies Earth and Environmental Science Economic development Economics Ecotoxicology Emission analysis Emissions Emissions control Empirical analysis Energy conservation Environment Environmental accounting Environmental Chemistry Environmental Health Environmental protection Green development Greenhouse gases Neural networks Population dynamics Population number Research Article Statistical analysis Sustainability reporting Sustainable development Waste Water Technology Water Management Water Pollution Control |
Title | Empirical assessment of carbon emissions in Guangdong Province within the framework of carbon peaking and carbon neutrality: a lasso-TPE-BP neural network approach |
URI | https://link.springer.com/article/10.1007/s11356-023-30882-1 https://www.ncbi.nlm.nih.gov/pubmed/37953421 https://www.proquest.com/docview/2902168388 https://search.proquest.com/docview/2889586805 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe-FSnoWFUrkSN3CV9SN2uC0opWpVtIddqZwiO7arCuGsutkD_B3-KGNvsqHacugpUsaPODP2fB7PjBF6DzqWCus0kcI5wgsviAacTFwhTaGKmPMp2iEvv-Vnc35-Ja6GOO7k7N6fSKaFeoh1GzMR_WUZYQkWwpZnrws83Zt8_X5RbvZZWUFlFx9zf827OmgLWG4diiZdc_oEzfqInbWLyY-TVWtO6t_bCRwfMoynaL_DnniyFpZn6JELz9FBOYS6AbGb68sX6E_5c3GTEohgvUnfiRuPa31rmoDjRXHR1LbENwGDpIVr24RrPE02itrhaOEFCgBM7HsPsH-qL1y6BwvrYPtXwa2S3aX99QlrHGF9Q2bTknyeRhJQ4JGc1nGfCf0lmp-Wsy9npLvSgdRMihZEwNKoNY3MjaE6k8YxSY3nmeWWMm4F1TLTWjPJBOPOe0q9yTPGvLGwurADtBua4F4jXNNCu1yLjHPDx96qsQdsJDn0AAu4ciP0oWdytVhn7qiGHM2RCxVwoUpcqMYjdNjLQdXN4mVFC0BAuWJKjdDxhgx_Nx6q6OCaFZRRINEqV5kYoVdr-dl0x2QBg6DQ-MdeGIbG__8tbx5W_C16TKM8JR-bQ7Tb3q7cO0BKrTnqZsYR2pnTyV_q5Q0w |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-MwFLZGcBguCGZYyjIYiRtYSr3EDjdARZ0ZQD20ErfIrm3UA05F2wO_hz_Ks5u0IODAKVKe7Syfl8_Pb0HoBNZYKqzTRArnCC-8IBp4MnGFNIUqYsynqIe8vcu7A_7vXtzXTmGTxtq9OZJMM_XS2a3NRDSYZYQlXgh7ntUYXz1GzB_Qi8U2KyuorN1jPq_3fgn6wCs_nImmpeZ6A63XHBFfzEHdRD9c-IW2O0uXNBDWY3LyG710HsejFOgD60WYTVx5PNRPpgo4JnSLKrEJHgUMPSI82Co84F7SJQwdjppYkAARxL6x1HpTfexSviqsg21uBTdL-pHp8znWONLvivR7HXLZiyKQwCUZl-MmYvkWGlx3-lddUqdeIEMmxRSgsjSubkbmxlCdSeOYpMbzzHJLGbeCaplprZlkgnHnPaXe5Blj3liYBdg2WglVcLsID2mhXa5FxrnhbW9V2wOHkRyeABOtci102qBRjucRNsplLOWIXQnYlQm7st1CBw1gZT3aJiUtgKnkiinVQscLMfzdePihg6tmUEZBz1O5ykQL7cyBXjyOyQI-gkLjZw3yy8a_fpe97xU_Qj-7_dub8ubv3f99tBbz1s_tYg7QyvRp5g6B3UzNn9SZXwEhFPMZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSBUXBG2BLVBcqbfWIutH7HCDdldQKNoDK3GL7LWNONRZsdkDv4c_ythJdqmAA6dIGdt5fLbn83hmjNB30LFUWKeJFM4RXnhBNPBk4gppClXEnE_RDvn3Kj8b8z834uZZFH_ydu-2JJuYhpilKdRHU-uPloFvfSai8ywjLHFEWP-sgSpi0alvTE8WS66soLINlXm93v_q6AXHfLE_mtTOcBNttHwRnzQAb6EVFz6i7cEyPA2E7ficfUKPg3_Tu5T0A-tFyk1ceTzR96YKOB7uFs1jM3wXMPSOcGurcItHya4wcThaZUECpBD7zmvrWfWpS2dXYR1sdyu4ebKV1A_HWONIxStyPRqQ01EUgQQuydEcd9nLP6PxcHD964y0xzCQCZOiBtgsjZrOyNwYqjNpHJPUeJ5ZbinjVlAtM601k0ww7ryn1Js8Y8wbCzMC20aroQpuF-EJLbTLtcg4N7zvrep74DOSwxNg0lWuh350aJTTJttGucyrHLErAbsyYVf2e2i_A6xsR96spAWwllwxpXro20IMfzduhOjgqjmUUdALVa4y0UM7DdCLxzFZwEdQaPxnh_yy8bff5cv7ih-iD6Pfw_Ly_OpiD63HI-wbF5l9tFrfz90BEJ3afE19-Qn8W_de |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+assessment+of+carbon+emissions+in+Guangdong+Province+within+the+framework+of+carbon+peaking+and+carbon+neutrality%3A+a+lasso-TPE-BP+neural+network+approach&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Chen%2C+Ruihan&rft.au=Ye%2C+Minhua&rft.au=Li%2C+Zhi&rft.au=Ma%2C+Zebin&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=30&rft.issue=58&rft.spage=121647&rft.epage=121665&rft_id=info:doi/10.1007%2Fs11356-023-30882-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon |