Empirical assessment of carbon emissions in Guangdong Province within the framework of carbon peaking and carbon neutrality: a lasso-TPE-BP neural network approach

The escalating global greenhouse gas emission crisis necessitates a robust scientific carbon accounting framework and innovative development approaches. Achieving emission peaks remains the primary goal for emission reduction. Guangdong Province, a pivotal region in China, faces pressure to reduce c...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 30; no. 58; pp. 121647 - 121665
Main Authors Chen, Ruihan, Ye, Minhua, Li, Zhi, Ma, Zebin, Yang, Derong, Li, Sheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The escalating global greenhouse gas emission crisis necessitates a robust scientific carbon accounting framework and innovative development approaches. Achieving emission peaks remains the primary goal for emission reduction. Guangdong Province, a pivotal region in China, faces pressure to reduce carbon emissions. In this study, data was leveraged from the China Carbon Accounting Database (CEADS) and panel data from the “Guangdong Statistical Yearbook” spanning 1997 to 2022. Factors impacting carbon emissions were selected based on Guangdong Province’s carbon reduction goals, macroeconomic development strategies, and economic-population dynamics. To address multicollinearity, lasso regression identified key factors, including population size, economic development level, energy intensity, and technology factors. A novel STIRPAT extended model, combined with the BP neural network optimized using the TPE algorithm, enhanced carbon emission predictions for Guangdong Province. Employing scenario analysis, five scenarios were generated in alignment with the planning policies of Guangdong Province, to forecast carbon emissions from 2020 to 2050. The results suggest that to achieve a win-win situation for both economic development and environmental protection, Guangdong Province should prioritize the energy-saving scenario (S2), which aligns with the “13th Five-Year Plan’s” ecological and green development directives, to reach a projected carbon peak of 637.05Mt by 2030. In conclusion, recommendations for carbon reduction are proposed in the areas of low-carbon transformation for the population, sustainable economic development, and the development of low-carbon technologies.
AbstractList The escalating global greenhouse gas emission crisis necessitates a robust scientific carbon accounting framework and innovative development approaches. Achieving emission peaks remains the primary goal for emission reduction. Guangdong Province, a pivotal region in China, faces pressure to reduce carbon emissions. In this study, data was leveraged from the China Carbon Accounting Database (CEADS) and panel data from the “Guangdong Statistical Yearbook” spanning 1997 to 2022. Factors impacting carbon emissions were selected based on Guangdong Province’s carbon reduction goals, macroeconomic development strategies, and economic-population dynamics. To address multicollinearity, lasso regression identified key factors, including population size, economic development level, energy intensity, and technology factors. A novel STIRPAT extended model, combined with the BP neural network optimized using the TPE algorithm, enhanced carbon emission predictions for Guangdong Province. Employing scenario analysis, five scenarios were generated in alignment with the planning policies of Guangdong Province, to forecast carbon emissions from 2020 to 2050. The results suggest that to achieve a win-win situation for both economic development and environmental protection, Guangdong Province should prioritize the energy-saving scenario (S2), which aligns with the “13th Five-Year Plan’s” ecological and green development directives, to reach a projected carbon peak of 637.05Mt by 2030. In conclusion, recommendations for carbon reduction are proposed in the areas of low-carbon transformation for the population, sustainable economic development, and the development of low-carbon technologies.
Author Li, Zhi
Ye, Minhua
Chen, Ruihan
Li, Sheng
Ma, Zebin
Yang, Derong
Author_xml – sequence: 1
  givenname: Ruihan
  surname: Chen
  fullname: Chen, Ruihan
  organization: School of Mathematics and Computer, Guangdong Ocean University
– sequence: 2
  givenname: Minhua
  surname: Ye
  fullname: Ye, Minhua
  organization: College of Ocean Engineering and Energy, Guangdong Ocean University
– sequence: 3
  givenname: Zhi
  surname: Li
  fullname: Li, Zhi
  organization: School of Mathematics and Computer, Guangdong Ocean University
– sequence: 4
  givenname: Zebin
  surname: Ma
  fullname: Ma, Zebin
  organization: School of Mathematics and Computer, Guangdong Ocean University
– sequence: 5
  givenname: Derong
  surname: Yang
  fullname: Yang, Derong
  organization: School of Mathematics and Computer, Guangdong Ocean University
– sequence: 6
  givenname: Sheng
  surname: Li
  fullname: Li, Sheng
  email: lish_ls@gdou.edu.cn
  organization: School of Mathematics and Computer, Guangdong Ocean University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37953421$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1TAQhi1U1Bu8AAtkiQ2bUF-S2GFHq0NBqsRZlLU1ScbnuE3sYCdUfR5eFLenN7FgNZb_b_6Z0X9E9nzwSMg7zj5xxtRJ4lxWdcGELCTTWhT8FTnkNS8LVTbN3ov3ATlK6YoxwRqh9smBVE0lS8EPyZ_VOLnoOhgopIQpjehnGiztILbBUxxdSi74RJ2n5wv4TR_8hq5j-O18h_TGzduszFukNsKINyFev2ifEK5d5sH3j18elznC4ObbzxTokKeG4nK9Kk7Xd1JWcpnvbWCaYoBu-4a8tjAkfPtQj8nPr6vLs2_FxY_z72dfLopOqmousOkFl0y2qm5bAUy1KJVobcn6shey7CsBigGAVDJfj9YKYduaSWnbXlRKHpOPO9889teCaTb5-A6HATyGJRmhdVPpWrMqox_-Qa_CEn3ezoiGCV5rqXWmxI7qYkgpojVTdCPEW8OZuYvQ7CI0OUJzH6Hhuen9g_XSjtg_tTxmlgG5A1KW_Abj8-z_2P4F5puq_A
CitedBy_id crossref_primary_10_1007_s11356_024_32591_9
crossref_primary_10_3390_en17081856
Cites_doi 10.1080/00207543.2020.1730998
10.1016/j.apenergy.2019.113650
10.1016/j.jclepro.2017.05.102
10.1007/s11783-023-1667-3
10.1007/s12145-020-00458-5
10.1016/j.apenergy.2023.121164
10.1016/j.eneco.2017.12.022
10.1016/j.energy.2023.127689
10.3390/en12040764
10.1016/j.apenergy.2023.121441
10.1016/j.jclepro.2018.01.116
10.1016/j.enpol.2015.11.020
10.13209/j.0479-8023.2021.086
10.1126/science.171.3977.1212
10.3389/fenrg.2023.1121639
10.1016/j.resconrec.2021.105706
10.1016/j.jtrangeo.2020.102733
10.1109/ACCESS.2021.3125895
10.1016/j.eiar.2021.106623
10.1007/s11356-023-26599-w
10.1016/j.scs.2023.104654
10.3390/nu12092652
10.1007/s11356-018-2762-z
10.1016/j.apenergy.2012.05.038
10.1016/j.resconrec.2018.02.009
10.1016/j.jclepro.2016.02.053
10.1038/nature.2014.16335
10.1007/s11625-018-0527-8
10.1016/j.apenergy.2013.01.036
10.1016/j.adapen.2023.100145
10.1007/s11356-020-08079-7
10.1108/TR-07-2021-0310
10.3390/land12040787
10.1016/j.ecoinf.2014.02.003
10.3390/en11061489
10.1038/d41586-018-05198-7
10.1162/10881980052541927
10.1016/0024-6301(95)99966-4
10.1016/j.jenvman.2022.116032
10.1016/j.jclepro.2023.138049
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID NPM
AAYXX
CITATION
7QL
7SN
7T7
7TV
7U7
8FD
C1K
FR3
K9.
M7N
P64
7X8
DOI 10.1007/s11356-023-30882-1
DatabaseName PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Economics
EISSN 1614-7499
EndPage 121665
ExternalDocumentID 10_1007_s11356_023_30882_1
37953421
Genre Journal Article
GeographicLocations Guangdong China
China
GeographicLocations_xml – name: Guangdong China
– name: China
GrantInformation_xml – fundername: Guangdong Ocean University Undergraduate Innovation Team Project
  grantid: CXTD2023014
– fundername: Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province
  grantid: pdjh2023b0247
  funderid: http://dx.doi.org/10.13039/501100018568
– fundername: Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province
  grantid: pdjh2023b0247
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACSNA
ACSVP
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z85
Z86
Z87
Z88
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AACDK
AAEOY
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AFEUZ
AGQEE
AGRTI
AIGIU
H13
NPM
PQBZA
AAYXX
CITATION
7QL
7SN
7T7
7TV
7U7
8FD
C1K
FR3
K9.
M7N
P64
7X8
ID FETCH-LOGICAL-c375t-e9d21303b76bb2a07be372bf40d4d234d52a70aaa373534eff22fb6033fbd2573
IEDL.DBID AGYKE
ISSN 1614-7499
0944-1344
IngestDate Fri Oct 25 23:41:53 EDT 2024
Thu Nov 07 07:35:47 EST 2024
Thu Sep 12 18:18:53 EDT 2024
Sat Nov 02 12:22:31 EDT 2024
Sat Dec 16 10:33:29 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 58
Keywords BP neural network
Lasso regression
Carbon neutrality
Tree-structured Parzen estimator
Scenario setting
Carbon peaking
Carbon emissions
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-e9d21303b76bb2a07be372bf40d4d234d52a70aaa373534eff22fb6033fbd2573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37953421
PQID 2902168388
PQPubID 54208
PageCount 19
ParticipantIDs proquest_miscellaneous_2889586805
proquest_journals_2902168388
crossref_primary_10_1007_s11356_023_30882_1
pubmed_primary_37953421
springer_journals_10_1007_s11356_023_30882_1
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References DingGQGuoJPueppkeSGYiJLOuMHOuWXThe influence of urban form compactness on CO2 emissions and its threshold effect: evidence from cities in ChinaJ Environ Manag20223221160321:CAS:528:DC%2BB38XitlahtrfK10.1016/j.jenvman.2022.116032
MaYWangSZhouCCan the development of the digital economy reduce urban carbon emissions? Case study of Guangdong ProvinceLand20231278710.3390/land12040787
ZouCMaMZhouNFengWYouKZhangSToward carbon free by 2060: a decarbonization roadmap of operational residential buildings in ChinaEnergy202327712768910.1016/j.energy.2023.127689
LiuMZhangXZhangMFengYLiuYWenJInfluencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an exampleEnviron Impact Assess Rev20219010662310.1016/j.eiar.2021.106623
ZhouJJinBDuSZhangPScenario analysis of carbon emissions of Beijing-Tianjin-HebeiEnergies20181114891:CAS:528:DC%2BC1cXisFSru7nO10.3390/en11061489
LiJChenZLiXYiXZhaoYHeXWater quality soft-sensor prediction in anaerobic process using deep neural network optimized by tree-structured Parzen estimatorFront Environ Sci Eng2022176671:CAS:528:DC%2BB3sXhs1eltQ%3D%3D10.1007/s11783-023-1667-3
CansinoJMRománROrdóñezMMain drivers of changes in CO2 emissions in the Spanish economy: a structural decomposition analysisEnergy Policy2016891501591:CAS:528:DC%2BC2MXhvF2ksLzF10.1016/j.enpol.2015.11.020
McEligotAJPoynorVSharmaRPanangadanALogistic LASSO regression for dietary intakes and breast cancerNutrients20201226521:CAS:528:DC%2BB3cXitFWntbnM10.3390/nu12092652
YaoCFengKHubacekKDriving forces of CO2 emissions in the G20 countries: an index decomposition analysis from 1971 to 2010Eco Inform2015269310010.1016/j.ecoinf.2014.02.003
WangJMaXInfluencing factors of carbon emissions from transportation in China: empirical analysis based on two-level econometrics methodActa Sci Nat Univ Pekin2021576113311421:CAS:528:DC%2BB38XhtVais73P10.13209/j.0479-8023.2021.086
Zarco-SotoIMZarco-PeriñánPJSánchez-DuránRInfluence of climate on energy consumption and CO2 emissions: the case of SpainEnviron Sci Pollut Res2020271315645156621:CAS:528:DC%2BB3cXktlyitbY%3D10.1007/s11356-020-08079-7
ClemonsEKUsing scenario analysis to manage the strategic risks of reengineeringSloan Manag Rev1995364617110.1016/0024-6301(95)99966-4
HuXEmpirical study on the impact of urbanization on carbon dioxide emissions2018Beijing Institute of Technology
WangZYinFZhangYZhangXAn empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing city, ChinaAppl Energy20121002772841:CAS:528:DC%2BC38XhsFGiu7%2FE10.1016/j.apenergy.2012.05.038
ChertowMRThe IPAT equation and its variantsJ Ind Ecol200044132910.1162/10881980052541927
ChontanawatJDriving forces of energy-related CO2 emissions based on expanded IPAT decomposition analysis: evidence from ASEAN and four selected countriesEnergies2019127641:CAS:528:DC%2BC1MXhtlSkurjP10.3390/en12040764
ZhangSZhouNFengWMaMXiangXYouKPathway for decarbonizing residential building operations in the US and China beyond the mid-centuryAppl Energy202334212116410.1016/j.apenergy.2023.121164
MassaoudiMAbu-RubHRefaatSSTrabelsiMChihiIOueslatiFSEnhanced deep belief network based on ensemble learning and tree-structured of Parzen estimators: an optimal photovoltaic power forecasting methodIEEE Access2021915033015034410.1109/ACCESS.2021.3125895
DongFBianZYuBWangYZhangSLiJCan land urbanization help to achieve CO2 intensity reduction target or hinder it? Evidence from ChinaResour Conserv Recycl201813420621510.1016/j.resconrec.2018.02.009
LiuMLiuXChuFZhangEChuCService-oriented robust worker scheduling with motivation effectsInt J Prod Res20215982328235110.1080/00207543.2020.1730998
ChenLMaMXiangXDecarbonizing or illusion? How carbon emissions of commercial building operations change worldwideSustain Cities Soc20239610465410.1016/j.scs.2023.104654
LongZZhangZLiangSChenXDingBWangBSpatially explicit carbon emissions at the county scaleResour Conserv Recycl20211731057061:CAS:528:DC%2BB38XhvVCiur7K10.1016/j.resconrec.2021.105706
WangPWuWZhuBWeiYExamining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, ChinaAppl Energy201310665711:CAS:528:DC%2BC3sXksFantLs%3D10.1016/j.apenergy.2013.01.036
ZhangLLongRLiWWeiJPotential for reducing carbon emissions from urban traffic based on the carbon emission satisfaction: case study in ShanghaiJ Transp Geogr202085202010273310.1016/j.jtrangeo.2020.102733
GuoDChenHLongRCan China fulfill its commitment to reducing carbon dioxide emissions in the Paris Agreement? Analysis based on a back-propagation neural networkEnviron Sci Pollut Res2018252727451274621:CAS:528:DC%2BC1cXhsVegtb7F10.1007/s11356-018-2762-z
MishraHGPanditaSBhatAAMishraRKSharmaSTourism and carbon emissions: a bibliometric review of the last three decades: 1990–2021Tour Rev202277263665810.1108/TR-07-2021-0310
RaoCHuangQChenLForecasting the carbon emissions in Hubei Province under the background of carbon neutrality: a novel STIRPAT extended model with ridge regression and scenario analysisEnviron Sci Pollut Res20233057460574801:CAS:528:DC%2BB3sXmtFGqsbw%3D10.1007/s11356-023-26599-w
EhrlichPRHoldrenJPImpact of population growthScience (New York, N.Y.)19711713977121212171:STN:280:DyaE3M7hs1ylsQ%3D%3D10.1126/science.171.3977.1212
Schiermeier Q (2014) What does the US-China climate deal mean? Nature. https://doi.org/10.1038/nature.2014.16335
DengCHuHZhangTChenJRock slope stability analysis and charts based on hybrid online sequential extreme learning machine modelEarth Sci Inf202013372974610.1007/s12145-020-00458-5
ZhengYLiZChaiJProgress and prospects of international carbon peaking and carbon neutral research –based on bibliometric analysis (1991–2022)Front Energy Res202311011310.3389/fenrg.2023.1121639
Bergstra J, Bardenet R, Kégl B, Bengio Y (2011) Algorithms for hyper-parameter optimization. Adv Neural Inf Process Syst 24. https://proceedings.neurips.cc/paper_files/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
FangDZhangXYuQJinTCTianLA novel method for carbon dioxide emission forecasting based on improved Gaussian processes regressionJ Clean Prod20181731431501:CAS:528:DC%2BC2sXhtVKgt7%2FO10.1016/j.jclepro.2017.05.102
SchlenkerWAuffhammerMThe cost of a warming climateNature201855777064984991:CAS:528:DC%2BC1cXhtVSksrfP10.1038/d41586-018-05198-7
TalbergAThomasSChristoffPKarolyDHow geoengineering scenarios frame assumptions and create expectationsSustain Sci20181341093110410.1007/s11625-018-0527-8
JiaoLYangRChenBZhangYVariation, determinants and prediction of carbon emissions in Guizhou, a new economic growth pole in southwest ChinaJ Clean Prod20234171380491:CAS:528:DC%2BB3sXhsVOrsb7J10.1016/j.jclepro.2023.138049
YangLXiaHZhangXYuanSWhat matters for carbon emissions in regional sectors? A China study of extended STIRPAT modelJ Clean Prod201818059560210.1016/j.jclepro.2018.01.116
XiangXZhouNMaMFengWYanRGlobal transition of operational carbon in residential buildings since the millenniumAdv Appl Energy20231110014510.1016/j.adapen.2023.100145
DietzTRosaEARethinking the environmental impacts of population, affluence and technologyHum Ecol Rev19941277300
DuanHMoJFanYWangSAchieving China’s energy and climate policy targets in 2030 under multiple uncertaintiesEnergy Econ201870456010.1016/j.eneco.2017.12.022
SunWLiuMPrediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in ChinaJ Clean Prod201612214415310.1016/j.jclepro.2016.02.053
WangJWangSLiSFengKCoupling analysis of urbanization and energy-environment efficiency: evidence from Guangdong provinceAppl Energy201925411365010.1016/j.apenergy.2019.113650
YanRChenMXiangXFengWMaMHeterogeneity or illusion? Track the carbon Kuznets curve of global residential building operationsAppl Energy202334712144110.1016/j.apenergy.2023.121441
W Schlenker (30882_CR27) 2018; 557
L Zhang (30882_CR39) 2020; 85
Y Ma (30882_CR21) 2023; 12
IM Zarco-Soto (30882_CR38) 2020; 27
H Duan (30882_CR11) 2018; 70
L Yang (30882_CR36) 2018; 180
M Massaoudi (30882_CR22) 2021; 9
R Yan (30882_CR35) 2023; 347
D Fang (30882_CR13) 2018; 173
J Wang (30882_CR30) 2021; 57
AJ McEligot (30882_CR23) 2020; 12
M Liu (30882_CR18) 2021; 59
J Zhou (30882_CR42) 2018; 11
PR Ehrlich (30882_CR12) 1971; 171
P Wang (30882_CR32) 2013; 106
X Xiang (30882_CR34) 2023; 11
S Zhang (30882_CR40) 2023; 342
Z Long (30882_CR20) 2021; 173
C Rao (30882_CR25) 2023; 30
C Yao (30882_CR37) 2015; 26
L Chen (30882_CR3) 2023; 96
MR Chertow (30882_CR4) 2000; 4
EK Clemons (30882_CR6) 1995; 36
C Zou (30882_CR43) 2023; 277
C Deng (30882_CR7) 2020; 13
GQ Ding (30882_CR9) 2022; 322
J Li (30882_CR17) 2022; 17
F Dong (30882_CR10) 2018; 134
A Talberg (30882_CR29) 2018; 13
30882_CR1
T Dietz (30882_CR8) 1994; 1
HG Mishra (30882_CR24) 2022; 77
W Sun (30882_CR28) 2016; 122
J Wang (30882_CR31) 2019; 254
J Chontanawat (30882_CR5) 2019; 12
Y Zheng (30882_CR41) 2023; 11
D Guo (30882_CR14) 2018; 25
L Jiao (30882_CR16) 2023; 417
M Liu (30882_CR19) 2021; 90
30882_CR26
X Hu (30882_CR15) 2018
Z Wang (30882_CR33) 2012; 100
JM Cansino (30882_CR2) 2016; 89
References_xml – volume: 59
  start-page: 2328
  issue: 8
  year: 2021
  ident: 30882_CR18
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2020.1730998
  contributor:
    fullname: M Liu
– volume: 254
  start-page: 113650
  year: 2019
  ident: 30882_CR31
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113650
  contributor:
    fullname: J Wang
– volume: 173
  start-page: 143
  year: 2018
  ident: 30882_CR13
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.05.102
  contributor:
    fullname: D Fang
– volume: 17
  start-page: 67
  issue: 6
  year: 2022
  ident: 30882_CR17
  publication-title: Front Environ Sci Eng
  doi: 10.1007/s11783-023-1667-3
  contributor:
    fullname: J Li
– volume: 13
  start-page: 729
  issue: 3
  year: 2020
  ident: 30882_CR7
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-020-00458-5
  contributor:
    fullname: C Deng
– volume: 342
  start-page: 121164
  year: 2023
  ident: 30882_CR40
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121164
  contributor:
    fullname: S Zhang
– volume: 70
  start-page: 45
  year: 2018
  ident: 30882_CR11
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2017.12.022
  contributor:
    fullname: H Duan
– volume: 277
  start-page: 127689
  year: 2023
  ident: 30882_CR43
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127689
  contributor:
    fullname: C Zou
– volume: 12
  start-page: 764
  year: 2019
  ident: 30882_CR5
  publication-title: Energies
  doi: 10.3390/en12040764
  contributor:
    fullname: J Chontanawat
– volume: 347
  start-page: 121441
  year: 2023
  ident: 30882_CR35
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121441
  contributor:
    fullname: R Yan
– volume: 180
  start-page: 595
  year: 2018
  ident: 30882_CR36
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.01.116
  contributor:
    fullname: L Yang
– volume: 89
  start-page: 150
  year: 2016
  ident: 30882_CR2
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.11.020
  contributor:
    fullname: JM Cansino
– volume-title: Empirical study on the impact of urbanization on carbon dioxide emissions
  year: 2018
  ident: 30882_CR15
  contributor:
    fullname: X Hu
– volume: 57
  start-page: 1133
  issue: 6
  year: 2021
  ident: 30882_CR30
  publication-title: Acta Sci Nat Univ Pekin
  doi: 10.13209/j.0479-8023.2021.086
  contributor:
    fullname: J Wang
– volume: 171
  start-page: 1212
  issue: 3977
  year: 1971
  ident: 30882_CR12
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.171.3977.1212
  contributor:
    fullname: PR Ehrlich
– volume: 11
  start-page: 01
  year: 2023
  ident: 30882_CR41
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2023.1121639
  contributor:
    fullname: Y Zheng
– volume: 173
  start-page: 105706
  year: 2021
  ident: 30882_CR20
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2021.105706
  contributor:
    fullname: Z Long
– volume: 85
  start-page: 102733
  issue: 2020
  year: 2020
  ident: 30882_CR39
  publication-title: J Transp Geogr
  doi: 10.1016/j.jtrangeo.2020.102733
  contributor:
    fullname: L Zhang
– volume: 9
  start-page: 150330
  year: 2021
  ident: 30882_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3125895
  contributor:
    fullname: M Massaoudi
– volume: 90
  start-page: 106623
  year: 2021
  ident: 30882_CR19
  publication-title: Environ Impact Assess Rev
  doi: 10.1016/j.eiar.2021.106623
  contributor:
    fullname: M Liu
– volume: 30
  start-page: 57460
  year: 2023
  ident: 30882_CR25
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-023-26599-w
  contributor:
    fullname: C Rao
– volume: 96
  start-page: 104654
  year: 2023
  ident: 30882_CR3
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2023.104654
  contributor:
    fullname: L Chen
– volume: 12
  start-page: 2652
  year: 2020
  ident: 30882_CR23
  publication-title: Nutrients
  doi: 10.3390/nu12092652
  contributor:
    fullname: AJ McEligot
– volume: 25
  start-page: 27451
  issue: 27
  year: 2018
  ident: 30882_CR14
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-2762-z
  contributor:
    fullname: D Guo
– volume: 100
  start-page: 277
  year: 2012
  ident: 30882_CR33
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.05.038
  contributor:
    fullname: Z Wang
– volume: 134
  start-page: 206
  year: 2018
  ident: 30882_CR10
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2018.02.009
  contributor:
    fullname: F Dong
– volume: 122
  start-page: 144
  year: 2016
  ident: 30882_CR28
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2016.02.053
  contributor:
    fullname: W Sun
– ident: 30882_CR26
  doi: 10.1038/nature.2014.16335
– volume: 13
  start-page: 1093
  issue: 4
  year: 2018
  ident: 30882_CR29
  publication-title: Sustain Sci
  doi: 10.1007/s11625-018-0527-8
  contributor:
    fullname: A Talberg
– volume: 106
  start-page: 65
  year: 2013
  ident: 30882_CR32
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.01.036
  contributor:
    fullname: P Wang
– volume: 11
  start-page: 100145
  year: 2023
  ident: 30882_CR34
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2023.100145
  contributor:
    fullname: X Xiang
– volume: 27
  start-page: 15645
  issue: 13
  year: 2020
  ident: 30882_CR38
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-08079-7
  contributor:
    fullname: IM Zarco-Soto
– ident: 30882_CR1
– volume: 1
  start-page: 277
  year: 1994
  ident: 30882_CR8
  publication-title: Hum Ecol Rev
  contributor:
    fullname: T Dietz
– volume: 77
  start-page: 636
  issue: 2
  year: 2022
  ident: 30882_CR24
  publication-title: Tour Rev
  doi: 10.1108/TR-07-2021-0310
  contributor:
    fullname: HG Mishra
– volume: 12
  start-page: 787
  year: 2023
  ident: 30882_CR21
  publication-title: Land
  doi: 10.3390/land12040787
  contributor:
    fullname: Y Ma
– volume: 26
  start-page: 93
  year: 2015
  ident: 30882_CR37
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2014.02.003
  contributor:
    fullname: C Yao
– volume: 11
  start-page: 1489
  year: 2018
  ident: 30882_CR42
  publication-title: Energies
  doi: 10.3390/en11061489
  contributor:
    fullname: J Zhou
– volume: 557
  start-page: 498
  issue: 7706
  year: 2018
  ident: 30882_CR27
  publication-title: Nature
  doi: 10.1038/d41586-018-05198-7
  contributor:
    fullname: W Schlenker
– volume: 4
  start-page: 13
  issue: 4
  year: 2000
  ident: 30882_CR4
  publication-title: J Ind Ecol
  doi: 10.1162/10881980052541927
  contributor:
    fullname: MR Chertow
– volume: 36
  start-page: 61
  issue: 4
  year: 1995
  ident: 30882_CR6
  publication-title: Sloan Manag Rev
  doi: 10.1016/0024-6301(95)99966-4
  contributor:
    fullname: EK Clemons
– volume: 322
  start-page: 116032
  year: 2022
  ident: 30882_CR9
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2022.116032
  contributor:
    fullname: GQ Ding
– volume: 417
  start-page: 138049
  year: 2023
  ident: 30882_CR16
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2023.138049
  contributor:
    fullname: L Jiao
SSID ssj0020927
Score 2.446669
Snippet The escalating global greenhouse gas emission crisis necessitates a robust scientific carbon accounting framework and innovative development approaches....
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 121647
SubjectTerms Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Back propagation networks
Carbon
Carbon content
Carbon footprint
Carbon neutrality
Clean technology
Development strategies
Earth and Environmental Science
Economic development
Economics
Ecotoxicology
Emission analysis
Emissions
Emissions control
Empirical analysis
Energy conservation
Environment
Environmental accounting
Environmental Chemistry
Environmental Health
Environmental protection
Green development
Greenhouse gases
Neural networks
Population dynamics
Population number
Research Article
Statistical analysis
Sustainability reporting
Sustainable development
Waste Water Technology
Water Management
Water Pollution Control
Title Empirical assessment of carbon emissions in Guangdong Province within the framework of carbon peaking and carbon neutrality: a lasso-TPE-BP neural network approach
URI https://link.springer.com/article/10.1007/s11356-023-30882-1
https://www.ncbi.nlm.nih.gov/pubmed/37953421
https://www.proquest.com/docview/2902168388
https://search.proquest.com/docview/2889586805
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe-FSnoWFUrkSN3CV9SN2uC0opWpVtIddqZwiO7arCuGsutkD_B3-KGNvsqHacugpUsaPODP2fB7PjBF6DzqWCus0kcI5wgsviAacTFwhTaGKmPMp2iEvv-Vnc35-Ja6GOO7k7N6fSKaFeoh1GzMR_WUZYQkWwpZnrws83Zt8_X5RbvZZWUFlFx9zf827OmgLWG4diiZdc_oEzfqInbWLyY-TVWtO6t_bCRwfMoynaL_DnniyFpZn6JELz9FBOYS6AbGb68sX6E_5c3GTEohgvUnfiRuPa31rmoDjRXHR1LbENwGDpIVr24RrPE02itrhaOEFCgBM7HsPsH-qL1y6BwvrYPtXwa2S3aX99QlrHGF9Q2bTknyeRhJQ4JGc1nGfCf0lmp-Wsy9npLvSgdRMihZEwNKoNY3MjaE6k8YxSY3nmeWWMm4F1TLTWjPJBOPOe0q9yTPGvLGwurADtBua4F4jXNNCu1yLjHPDx96qsQdsJDn0AAu4ciP0oWdytVhn7qiGHM2RCxVwoUpcqMYjdNjLQdXN4mVFC0BAuWJKjdDxhgx_Nx6q6OCaFZRRINEqV5kYoVdr-dl0x2QBg6DQ-MdeGIbG__8tbx5W_C16TKM8JR-bQ7Tb3q7cO0BKrTnqZsYR2pnTyV_q5Q0w
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-MwFLZGcBguCGZYyjIYiRtYSr3EDjdARZ0ZQD20ErfIrm3UA05F2wO_hz_Ks5u0IODAKVKe7Syfl8_Pb0HoBNZYKqzTRArnCC-8IBp4MnGFNIUqYsynqIe8vcu7A_7vXtzXTmGTxtq9OZJMM_XS2a3NRDSYZYQlXgh7ntUYXz1GzB_Qi8U2KyuorN1jPq_3fgn6wCs_nImmpeZ6A63XHBFfzEHdRD9c-IW2O0uXNBDWY3LyG710HsejFOgD60WYTVx5PNRPpgo4JnSLKrEJHgUMPSI82Co84F7SJQwdjppYkAARxL6x1HpTfexSviqsg21uBTdL-pHp8znWONLvivR7HXLZiyKQwCUZl-MmYvkWGlx3-lddUqdeIEMmxRSgsjSubkbmxlCdSeOYpMbzzHJLGbeCaplprZlkgnHnPaXe5Blj3liYBdg2WglVcLsID2mhXa5FxrnhbW9V2wOHkRyeABOtci102qBRjucRNsplLOWIXQnYlQm7st1CBw1gZT3aJiUtgKnkiinVQscLMfzdePihg6tmUEZBz1O5ykQL7cyBXjyOyQI-gkLjZw3yy8a_fpe97xU_Qj-7_dub8ubv3f99tBbz1s_tYg7QyvRp5g6B3UzNn9SZXwEhFPMZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSBUXBG2BLVBcqbfWIutH7HCDdldQKNoDK3GL7LWNONRZsdkDv4c_ythJdqmAA6dIGdt5fLbn83hmjNB30LFUWKeJFM4RXnhBNPBk4gppClXEnE_RDvn3Kj8b8z834uZZFH_ydu-2JJuYhpilKdRHU-uPloFvfSai8ywjLHFEWP-sgSpi0alvTE8WS66soLINlXm93v_q6AXHfLE_mtTOcBNttHwRnzQAb6EVFz6i7cEyPA2E7ficfUKPg3_Tu5T0A-tFyk1ceTzR96YKOB7uFs1jM3wXMPSOcGurcItHya4wcThaZUECpBD7zmvrWfWpS2dXYR1sdyu4ebKV1A_HWONIxStyPRqQ01EUgQQuydEcd9nLP6PxcHD964y0xzCQCZOiBtgsjZrOyNwYqjNpHJPUeJ5ZbinjVlAtM601k0ww7ryn1Js8Y8wbCzMC20aroQpuF-EJLbTLtcg4N7zvrep74DOSwxNg0lWuh350aJTTJttGucyrHLErAbsyYVf2e2i_A6xsR96spAWwllwxpXro20IMfzduhOjgqjmUUdALVa4y0UM7DdCLxzFZwEdQaPxnh_yy8bff5cv7ih-iD6Pfw_Ly_OpiD63HI-wbF5l9tFrfz90BEJ3afE19-Qn8W_de
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+assessment+of+carbon+emissions+in+Guangdong+Province+within+the+framework+of+carbon+peaking+and+carbon+neutrality%3A+a+lasso-TPE-BP+neural+network+approach&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Chen%2C+Ruihan&rft.au=Ye%2C+Minhua&rft.au=Li%2C+Zhi&rft.au=Ma%2C+Zebin&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=30&rft.issue=58&rft.spage=121647&rft.epage=121665&rft_id=info:doi/10.1007%2Fs11356-023-30882-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon