3D-printed thermally expanded monolithic foam for solid-phase extraction of multiple trace metals

Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions pri...

Full description

Saved in:
Bibliographic Details
Published inMikrochimica acta (1966) Vol. 191; no. 10; p. 598
Main Authors Cheng, Yu-Hsuan, Su, Cheng-Kuan
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L –1 . We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques. Graphical abstract
AbstractList Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L –1 . We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques. Graphical abstract
Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L–1. We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques.
Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L-1. We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques.Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L-1. We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques.
Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L . We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques.
ArticleNumber 598
Author Cheng, Yu-Hsuan
Su, Cheng-Kuan
Author_xml – sequence: 1
  givenname: Yu-Hsuan
  surname: Cheng
  fullname: Cheng, Yu-Hsuan
  organization: Department of Chemistry, National Chung Hsing University
– sequence: 2
  givenname: Cheng-Kuan
  surname: Su
  fullname: Su, Cheng-Kuan
  email: cksu@nchu.edu.tw
  organization: Department of Chemistry, National Chung Hsing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39271489$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3TAQhUVJaW7S_oEuiqGbbtyOHpbkZUmfEOgmeyHLo14H2XIlGZp_Xzk3oZBFFtLA4TvDzJwLcrbEBQl5S-EjBVCfMoAE0QKrT8qetv0LcqCCy7YDxc_IAYDJlkvFzslFzrcAVEkmXpFz3jNFhe4PxPIv7ZqmpeDYlCOm2YZw1-Df1S5jlea4xDCV4-QaH-1cv9TkqozterQZK1iSdWWKSxN9M2-hTGvAZhexmbHYkF-Tl74WfPNQL8nNt683Vz_a61_ff159vm4dV11pUWsvOEinRsUQkImewgjajR2iGtRA9QDWjtRS2nXSe22Fdz1nYvBIJb8kH05t1xT_bJiLmafsMAS7YNyy4RREx7WmqqLvn6C3cUtLHe6eEqpTklfq3QO1DTOOpl5ptunOPN6uAvoEuBRzTuiNm4rdb1HXn4KhYPaYzCkmU2My9zGZ3cqeWB-7P2viJ1PeA_uN6f_Yz7j-AWhFpMY
CitedBy_id crossref_primary_10_1016_j_aca_2024_343552
crossref_primary_10_1021_acs_analchem_4c05363
Cites_doi 10.1021/acs.analchem.7b00136
10.1007/s00604-018-2812-8
10.1039/C5JA00497G
10.1016/S0925-4005(02)00017-5
10.1021/acs.analchem.6b04390
10.3390/polym12102210
10.1016/S0165-9936(03)01207-X
10.1021/acs.analchem.7b01367
10.1080/10408347.2013.855607
10.1016/j.trac.2004.12.004
10.1016/j.trac.2020.116177
10.1016/j.aca.2021.338348
10.1021/ac0106288
10.1021/acs.analchem.3c04961
10.1007/s00604-019-4055-8
10.1016/j.talanta.2018.02.065
10.1016/j.cis.2016.10.005
10.1039/C7MH00084G
10.1016/j.talanta.2019.05.026
10.1016/j.aca.2011.08.027
10.1016/j.talanta.2021.123163
10.1002/jssc.200800116
10.1016/j.heliyon.2020.e04691
10.1016/j.jhazmat.2017.10.013
10.1126/science.1083545
10.1515/pac-2020-0206
10.1021/acsapm.1c00726
10.1016/S0584-8547(03)00072-7
10.1021/acs.analchem.5b01599
10.1016/j.aca.2017.02.002
10.1021/acs.analchem.0c00863
10.1016/j.aca.2023.341489
10.1021/acsami.0c02683
10.3389/fmats.2022.1083931
10.1016/j.talanta.2022.123237
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1007/s00604-024-06691-9
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1436-5073
ExternalDocumentID 39271489
10_1007_s00604_024_06691_9
Genre Journal Article
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: NSTC 113-2113-M-005-003; NSTC 113-2113-M-005-003
  funderid: http://dx.doi.org/10.13039/100020595
– fundername: National Science and Technology Council
  grantid: NSTC 113-2113-M-005-003
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7X7
88E
8FE
8FG
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAS
LLZTM
M1P
M4Y
MA-
ML-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9N
PDBOC
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
Y6R
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z85
Z86
Z87
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8W
Z8Z
Z91
Z92
ZMTXR
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
ABRTQ
K9.
7X8
ID FETCH-LOGICAL-c375t-e88f4306c7d72e0e24910d08cd5ee7b7b18b0aad1a11556ff8a4fc9324bfe163
IEDL.DBID U2A
ISSN 0026-3672
1436-5073
IngestDate Fri Jul 11 04:40:44 EDT 2025
Fri Jul 25 11:02:44 EDT 2025
Thu Apr 03 06:54:19 EDT 2025
Tue Jul 01 04:07:09 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
Fri Feb 21 02:37:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Three-dimensional printing
Monolithic foam
Inductively coupled plasma mass spectrometry
Trace metal analysis
Solid-phase extraction
Language English
License 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-e88f4306c7d72e0e24910d08cd5ee7b7b18b0aad1a11556ff8a4fc9324bfe163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 39271489
PQID 3104475763
PQPubID 2043622
ParticipantIDs proquest_miscellaneous_3104538817
proquest_journals_3104475763
pubmed_primary_39271489
crossref_citationtrail_10_1007_s00604_024_06691_9
crossref_primary_10_1007_s00604_024_06691_9
springer_journals_10_1007_s00604_024_06691_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Austria
– name: Heidelberg
PublicationSubtitle Analytical Sciences and Technologies on the Micro- and Nanoscale
PublicationTitle Mikrochimica acta (1966)
PublicationTitleAbbrev Microchim Acta
PublicationTitleAlternate Mikrochim Acta
PublicationYear 2024
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Wirth, Jaquez, Gandarilla, Hochberg, Church, Pokorski (CR28) 2020; 12
Morel, Price (CR1) 2003; 300
Nesterenko (CR12) 2020; 92
Agatemor, Beauchemin (CR3) 2011; 706
Andersson, Griss, Stemme (CR31) 2002; 84
Su, Peng, Sun (CR15) 2015; 87
Liu, Wang, Zhao, Hao, Fang, Wang (CR34) 2018; 344
Ceballos, Estela, Cerdà, Ferrer (CR18) 2019; 202
Kulomäki, Lahtinen, Perämäki, Väisänen (CR21) 2022; 240
Sun, Wu (CR29) 2022; 9
Chen, Chen, He, Hu (CR35) 2020; 187
Su (CR14) 2021; 1158
Su, Lin (CR19) 2020; 92
Potter, Hilder (CR9) 2008; 31
Calderilla, Maya, Cerdà, Leal (CR16) 2018; 184
Briffa, Sinagra, Blundell (CR2) 2020; 6
Chen, Chen, Su (CR20) 2022; 241
Yu, Davey, Svec, Fréchet (CR11) 2001; 73
Kwon, Park, Lee, Kim (CR27) 2020; 12
Tsai, Su (CR23) 2024; 96
Wang, Hansen (CR5) 2003; 22
Ibrahim, Ali, Sulaiman, Sanagi, Aboul-Enein (CR7) 2014; 44
Seo, Kwon, Dolinski, Sample, Self, Bates, Valentine, Hawker (CR30) 2021; 3
Camel (CR6) 2003; 58
Kosmulski (CR32) 2016; 238
Su, Chen (CR17) 2018; 185
Mu, Bertron, Dunn, Qiao, Wu, Zhao, Saldana, Qi (CR26) 2017; 4
Economou (CR8) 2005; 24
Masini, Svec (CR10) 2017; 964
Chen, Tsai, Su (CR22) 2023; 1271
Macdonald, Cabot, Smejkal, Guijt, Paull, Breadmore (CR25) 2017; 89
Zhang, Chen, Wang, He, Hu (CR33) 2017; 89
Lum, Leung (CR4) 2016; 31
Belka, Ulenberg, Bączek (CR24) 2017; 89
Carrasco-Correa, Simó-Alfonso, Herrero-Martínez, Miró (CR13) 2021; 136
CK Su (6691_CR14) 2021; 1158
B Sun (6691_CR29) 2022; 9
A Economou (6691_CR8) 2005; 24
DM Wirth (6691_CR28) 2020; 12
CK Su (6691_CR17) 2018; 185
JR Chen (6691_CR22) 2023; 1271
OG Potter (6691_CR9) 2008; 31
TS Lum (6691_CR4) 2016; 31
C Calderilla (6691_CR16) 2018; 184
J Briffa (6691_CR2) 2020; 6
C Agatemor (6691_CR3) 2011; 706
SE Seo (6691_CR30) 2021; 3
M Belka (6691_CR24) 2017; 89
JM Liu (6691_CR34) 2018; 344
MR Ceballos (6691_CR18) 2019; 202
J Zhang (6691_CR33) 2017; 89
JC Masini (6691_CR10) 2017; 964
C Yu (6691_CR11) 2001; 73
PN Nesterenko (6691_CR12) 2020; 92
EJ Carrasco-Correa (6691_CR13) 2021; 136
S Kulomäki (6691_CR21) 2022; 240
J Wang (6691_CR5) 2003; 22
NP Macdonald (6691_CR25) 2017; 89
CK Su (6691_CR19) 2020; 92
FMM Morel (6691_CR1) 2003; 300
JR Chen (6691_CR20) 2022; 241
V Camel (6691_CR6) 2003; 58
X Mu (6691_CR26) 2017; 4
WH Tsai (6691_CR23) 2024; 96
WAW Ibrahim (6691_CR7) 2014; 44
H Andersson (6691_CR31) 2002; 84
Z Chen (6691_CR35) 2020; 187
DY Kwon (6691_CR27) 2020; 12
CK Su (6691_CR15) 2015; 87
M Kosmulski (6691_CR32) 2016; 238
References_xml – volume: 89
  start-page: 3858
  year: 2017
  end-page: 3866
  ident: CR25
  article-title: Comparing microfluidic performance of three-dimensional (3D) printing platforms
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b00136
– volume: 185
  start-page: 268
  year: 2018
  ident: CR17
  article-title: 3D-printed, TiO NP–incorporated minicolumn coupled with ICP-MS for speciation of inorganic arsenic and selenium in high-salt-content samples
  publication-title: Microchim Acta
  doi: 10.1007/s00604-018-2812-8
– volume: 31
  start-page: 1078
  year: 2016
  end-page: 1088
  ident: CR4
  article-title: Strategies to overcome spectral interference in ICP-MS detection
  publication-title: J Anal Atom Spectrom
  doi: 10.1039/C5JA00497G
– volume: 84
  start-page: 290
  year: 2002
  end-page: 295
  ident: CR31
  article-title: Expandable microspheres—surface immobilization techniques
  publication-title: Sens Actuators B: Chem
  doi: 10.1016/S0925-4005(02)00017-5
– volume: 89
  start-page: 4373
  year: 2017
  end-page: 4376
  ident: CR24
  article-title: Fused deposition modeling enables the low-cost fabrication of porous, customized-shape sorbents for small-molecule extraction
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.6b04390
– volume: 12
  start-page: 2210
  year: 2020
  ident: CR27
  article-title: Comparison of scaffolds fabricated 3D printing and salt leaching: imaging, biodegradation, and inflammation
  publication-title: Polymers
  doi: 10.3390/polym12102210
– volume: 22
  start-page: 836
  year: 2003
  end-page: 846
  ident: CR5
  article-title: On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS
  publication-title: TrAC—Trends Anal Chem
  doi: 10.1016/S0165-9936(03)01207-X
– volume: 89
  start-page: 6878
  year: 2017
  end-page: 6885
  ident: CR33
  article-title: Facile chip-based array monolithic microextraction system online coupled with ICPMS for fast analysis of trace heavy metals in biological samples
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b01367
– volume: 44
  start-page: 233
  year: 2014
  end-page: 254
  ident: CR7
  article-title: Application of solid-phase extraction for trace elements in environmental and biological samples: a review
  publication-title: Crit Rev Anal Chem
  doi: 10.1080/10408347.2013.855607
– volume: 24
  start-page: 416
  year: 2005
  end-page: 425
  ident: CR8
  article-title: Sequential-Injection Analysis (SIA): A useful tool for on-line sample handling and pre-treatment
  publication-title: TrAC-Trends Anal Chem
  doi: 10.1016/j.trac.2004.12.004
– volume: 136
  start-page: 116177
  year: 2021
  ident: CR13
  article-title: The emerging role of 3D printing in the fabrication of detection systems
  publication-title: TrAC-Trends Anal Chem
  doi: 10.1016/j.trac.2020.116177
– volume: 1158
  year: 2021
  ident: CR14
  article-title: Review of 3D-printed functionalized devices for chemical and biochemical analysis
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2021.338348
– volume: 73
  start-page: 5088
  year: 2001
  end-page: 5096
  ident: CR11
  article-title: Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device
  publication-title: Anal Chem
  doi: 10.1021/ac0106288
– volume: 96
  start-page: 4469
  year: 2024
  end-page: 4478
  ident: CR23
  article-title: 4D-printed elution-peak-guided dual-responsive monolithic packing for the solid-phase extraction of metal ions
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.3c04961
– volume: 187
  start-page: 48
  year: 2020
  ident: CR35
  article-title: Magnetic metal-organic framework composites for dual-column solid-phase microextraction combined with ICP-MS for speciation of trace levels of arsenic
  publication-title: Microchim Acta
  doi: 10.1007/s00604-019-4055-8
– volume: 184
  start-page: 15
  year: 2018
  end-page: 22
  ident: CR16
  article-title: 3D printed device for the automated preconcentration and determination of chromium (VI)
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.02.065
– volume: 238
  start-page: 1
  year: 2016
  end-page: 61
  ident: CR32
  article-title: Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks' review
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2016.10.005
– volume: 4
  start-page: 442
  year: 2017
  end-page: 449
  ident: CR26
  article-title: Porous polymeric materials by 3D printing of photocurable resin
  publication-title: Mater Horiz
  doi: 10.1039/C7MH00084G
– volume: 202
  start-page: 267
  year: 2019
  end-page: 273
  ident: CR18
  article-title: Flow-through magnetic-stirring assisted system for uranium(vi) extraction: first 3D printed device application
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.05.026
– volume: 706
  start-page: 66
  year: 2011
  end-page: 83
  ident: CR3
  article-title: Matrix effects in inductively coupled plasma mass spectrometry: a review
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2011.08.027
– volume: 240
  year: 2022
  ident: CR21
  article-title: Preconcentration and speciation analysis of mercury: 3D printed metal scavenger-based solid-phase extraction followed by analysis with inductively coupled plasma mass spectrometry
  publication-title: Talanta
  doi: 10.1016/j.talanta.2021.123163
– volume: 31
  start-page: 1881
  year: 2008
  end-page: 1906
  ident: CR9
  article-title: Porous polymer monoliths for extraction: diverse applications and platforms
  publication-title: J Sep Sci
  doi: 10.1002/jssc.200800116
– volume: 6
  year: 2020
  ident: CR2
  article-title: Heavy metal pollution in the environment and their toxicological effects on humans
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e04691
– volume: 344
  start-page: 220
  year: 2018
  end-page: 229
  ident: CR34
  article-title: Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2017.10.013
– volume: 300
  start-page: 944
  year: 2003
  end-page: 947
  ident: CR1
  article-title: The biogeochemical cycles of trace metals in the oceans
  publication-title: Science
  doi: 10.1126/science.1083545
– volume: 92
  start-page: 1341
  year: 2020
  end-page: 1355
  ident: CR12
  article-title: 3D Printing in analytical chemistry: current state and future
  publication-title: Pure Appl Chem
  doi: 10.1515/pac-2020-0206
– volume: 3
  start-page: 4984
  issue: 2021
  year: 2021
  end-page: 4991
  ident: CR30
  article-title: Three-dimensional photochemical printing of thermally activated polymer foams
  publication-title: ACS Appl Polym Mater
  doi: 10.1021/acsapm.1c00726
– volume: 58
  start-page: 1177
  year: 2003
  end-page: 1233
  ident: CR6
  article-title: Solid phase extraction of trace elements
  publication-title: Spectrochim Acta Part B-Atom Spectr
  doi: 10.1016/S0584-8547(03)00072-7
– volume: 87
  start-page: 6945
  year: 2015
  end-page: 6950
  ident: CR15
  article-title: Fully 3D-printed preconcentrator for selective extraction of trace elements in seawater
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.5b01599
– volume: 964
  start-page: 24
  year: 2017
  end-page: 44
  ident: CR10
  article-title: Porous monoliths for on-line sample preparation: a review
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2017.02.002
– volume: 92
  start-page: 9640
  year: 2020
  end-page: 9648
  ident: CR19
  article-title: 3D-printed column with porous monolithic packing for online solid-phase extraction of multiple trace metals in environmental water samples
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.0c00863
– volume: 1271
  year: 2023
  ident: CR22
  article-title: TiO Nanoparticle–coated 3D-printed porous monoliths enabling highly sensitive speciation of inorganic Cr, As, and Se
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2023.341489
– volume: 12
  start-page: 19033
  year: 2020
  end-page: 19043
  ident: CR28
  article-title: Highly expandable foam for lithographic 3D printing
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c02683
– volume: 9
  start-page: 1083931
  year: 2022
  ident: CR29
  article-title: Research progress of 3D printing combined with thermoplastic foaming
  publication-title: Front Mater
  doi: 10.3389/fmats.2022.1083931
– volume: 241
  year: 2022
  ident: CR20
  article-title: Solution foaming–treated 3D-printed monolithic packing for enhanced solid phase extraction of trace metals
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123237
– volume: 706
  start-page: 66
  year: 2011
  ident: 6691_CR3
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2011.08.027
– volume: 240
  year: 2022
  ident: 6691_CR21
  publication-title: Talanta
  doi: 10.1016/j.talanta.2021.123163
– volume: 184
  start-page: 15
  year: 2018
  ident: 6691_CR16
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.02.065
– volume: 1271
  year: 2023
  ident: 6691_CR22
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2023.341489
– volume: 89
  start-page: 4373
  year: 2017
  ident: 6691_CR24
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.6b04390
– volume: 87
  start-page: 6945
  year: 2015
  ident: 6691_CR15
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.5b01599
– volume: 12
  start-page: 19033
  year: 2020
  ident: 6691_CR28
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c02683
– volume: 31
  start-page: 1881
  year: 2008
  ident: 6691_CR9
  publication-title: J Sep Sci
  doi: 10.1002/jssc.200800116
– volume: 6
  year: 2020
  ident: 6691_CR2
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e04691
– volume: 58
  start-page: 1177
  year: 2003
  ident: 6691_CR6
  publication-title: Spectrochim Acta Part B-Atom Spectr
  doi: 10.1016/S0584-8547(03)00072-7
– volume: 185
  start-page: 268
  year: 2018
  ident: 6691_CR17
  publication-title: Microchim Acta
  doi: 10.1007/s00604-018-2812-8
– volume: 89
  start-page: 3858
  year: 2017
  ident: 6691_CR25
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b00136
– volume: 12
  start-page: 2210
  year: 2020
  ident: 6691_CR27
  publication-title: Polymers
  doi: 10.3390/polym12102210
– volume: 92
  start-page: 9640
  year: 2020
  ident: 6691_CR19
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.0c00863
– volume: 202
  start-page: 267
  year: 2019
  ident: 6691_CR18
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.05.026
– volume: 4
  start-page: 442
  year: 2017
  ident: 6691_CR26
  publication-title: Mater Horiz
  doi: 10.1039/C7MH00084G
– volume: 92
  start-page: 1341
  year: 2020
  ident: 6691_CR12
  publication-title: Pure Appl Chem
  doi: 10.1515/pac-2020-0206
– volume: 964
  start-page: 24
  year: 2017
  ident: 6691_CR10
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2017.02.002
– volume: 238
  start-page: 1
  year: 2016
  ident: 6691_CR32
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2016.10.005
– volume: 344
  start-page: 220
  year: 2018
  ident: 6691_CR34
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2017.10.013
– volume: 84
  start-page: 290
  year: 2002
  ident: 6691_CR31
  publication-title: Sens Actuators B: Chem
  doi: 10.1016/S0925-4005(02)00017-5
– volume: 31
  start-page: 1078
  year: 2016
  ident: 6691_CR4
  publication-title: J Anal Atom Spectrom
  doi: 10.1039/C5JA00497G
– volume: 300
  start-page: 944
  year: 2003
  ident: 6691_CR1
  publication-title: Science
  doi: 10.1126/science.1083545
– volume: 22
  start-page: 836
  year: 2003
  ident: 6691_CR5
  publication-title: TrAC—Trends Anal Chem
  doi: 10.1016/S0165-9936(03)01207-X
– volume: 136
  start-page: 116177
  year: 2021
  ident: 6691_CR13
  publication-title: TrAC-Trends Anal Chem
  doi: 10.1016/j.trac.2020.116177
– volume: 3
  start-page: 4984
  issue: 2021
  year: 2021
  ident: 6691_CR30
  publication-title: ACS Appl Polym Mater
  doi: 10.1021/acsapm.1c00726
– volume: 187
  start-page: 48
  year: 2020
  ident: 6691_CR35
  publication-title: Microchim Acta
  doi: 10.1007/s00604-019-4055-8
– volume: 9
  start-page: 1083931
  year: 2022
  ident: 6691_CR29
  publication-title: Front Mater
  doi: 10.3389/fmats.2022.1083931
– volume: 73
  start-page: 5088
  year: 2001
  ident: 6691_CR11
  publication-title: Anal Chem
  doi: 10.1021/ac0106288
– volume: 1158
  year: 2021
  ident: 6691_CR14
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2021.338348
– volume: 89
  start-page: 6878
  year: 2017
  ident: 6691_CR33
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b01367
– volume: 44
  start-page: 233
  year: 2014
  ident: 6691_CR7
  publication-title: Crit Rev Anal Chem
  doi: 10.1080/10408347.2013.855607
– volume: 241
  year: 2022
  ident: 6691_CR20
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123237
– volume: 96
  start-page: 4469
  year: 2024
  ident: 6691_CR23
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.3c04961
– volume: 24
  start-page: 416
  year: 2005
  ident: 6691_CR8
  publication-title: TrAC-Trends Anal Chem
  doi: 10.1016/j.trac.2004.12.004
SSID ssj0017624
Score 2.4118128
Snippet Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 598
SubjectTerms Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Design optimization
Groundwater treatment
Inductively coupled plasma mass spectrometry
Mass spectrometry
Microengineering
Microspheres
Nanochemistry
Nanotechnology
Photocuring
Photopolymerization
Resins
Seawater
Solid phases
Trace elements
Trace metals
Urine
Title 3D-printed thermally expanded monolithic foam for solid-phase extraction of multiple trace metals
URI https://link.springer.com/article/10.1007/s00604-024-06691-9
https://www.ncbi.nlm.nih.gov/pubmed/39271489
https://www.proquest.com/docview/3104475763
https://www.proquest.com/docview/3104538817
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60PehFfButZQVvupBNstnkWGprUfTUQj2FTbJLC33RB-i_dzYvkargJYdkdhNmJjvf7DwW4Dbh0pfoeVC0Hop6XNs08BmjSC-Z2YR0Y1Pv_PLq9wbe05APi6KwVZntXoYks5W6KnYzrUM8ijbFVM2HjIa7UOfou5tEroHTqmIH-HsXvZd96vrCKUplfp7juznawphb8dHM7HQP4aDAi6SVC_gIdtTsGPba5TFtJyDdB2rGInIkBsxN5WTyQdT7wuwOpwS1zGS4jcYJ0XM5xcuSoLqNU7oYoQFDwvUyr20gc03K9EJibioyVQjNV6fQ73b67R4tzk2giSv4mqog0B66AolIhaNshR4Ws1M7SFKulIhFzILYljJlEuEg97UOpKcTBHJerBXiszOozeYzdQGEJ54KtRPYMuaeFGEY69Q17Wp46jtaKgtYyb0oKXqKm6MtJlHVDTnjeIQcjzKOR6EFd9WYRd5R40_qRimUqPi7VhFCUtOnEJdGC26qx8h3E-yQMzXf5DS4mAdMWHCeC7N6HWJCgW4gTn5fSvdr8t-_5fJ_5Few7xhNyzL_GlBbLzfqGhHMOm5CvfX49txpZor7CYSt54Y
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5UAvFYW2LGypK9ETWIqTOHYOHBAPLeVxWiRulpOMBdK-tLuo8Hv4o4zzQogWqQcuOSRjxxqPPd94HgbYyaVNLFkenLQH8li6gOtECE70VvhDyCjz-c4Xl0n_Kv59La-X4LHJhSmj3RuXZLlTt8luvnRIzEmn-Kz5VPC0DqU8w4c_ZKjN90-PaFZ_heHJ8eCwz-u7BHgeKbngqLWLCR7nqlAhBkhWhwiKQOeFRFSZyoTOAmsLYQkiycQ5bWOXE7iJM4eEWajbD7BM2EP7pXMVHrSuCtpN6lLPCY8SFdaZOX8f8kvt9wrSvnLHllruZBU-1fCUHVTy9BmWcLwGK4fNrXDrYKMj7tsSUGUeO47scPjA8H7qD6MLRkLtA-pubnPmJnZEjxkj6b4t-PSG9CURLmZVKgWbONZEMzL_EtkIyRKYf4HBe7D2K3TGkzFuAJN5jKkLdWAzGVuVppkrIl8dRxZJ6Cx2QTTcM3ldwtzfpDE0bfHlkuOGOG5Kjpu0C7ttm2lVwONN6l4zKaZezHNDCNiXRaSduAs_28_Ed-9bsWOc3FU0pDu0UF34Vk1m-zuCoIqsTup8r5nd587_PZbN_yP_ASv9wcW5OT-9PNuCj6GXujLosAedxewOvxN4WmTbpfAyMO-8WJ4AArcjGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviDdbWjASnMBqnNhxcuBQdVm1FCoOrdSb5cRjtdJudrWbqu2v4i8yzgtVBSQOveSQjB1rPPZ843kY4H2pbGrJ8uCkPZBL5SOepUJworciHEImRch3_n6U7p_Ir6fqdA1-9rkwTbR775JscxpClaaq3lk4vzMkvoUyIpKTfgkZ9LngeRdWeYjXl2S0rT4fjGmGP8Tx5Mvx3j7v7hXgZaJVzTHLvCSoXGqnY4yQLBARuSgrnULUhS5EVkTWOmEJLqnU-8xKXxLQkYVHwi_U7T24L0PyMS2gk3h3cFvQztKVfU55kuq4y9L585BvasJb8PaWa7bReJPH8KiDqmy3la0nsIbVU3i4198Q9wxsMuahLYFWFnDkzE6n1wyvFuFg2jES8BBcd3ZeMj-3M3osGUn6ueOLM9KdRFgv27QKNvesj2xk4SWyGZJVsHoOx3fB2hewXs0rfAVMlRJzH2eRLZS0Os8L75JQKUe5NPYWRyB67pmyK2cebtWYmqEQc8NxQxw3DcdNPoKPQ5tFW8zjn9Rb_aSYbmGvDKHhUCKRduURvBs-E9-Dn8VWOL9oaUiPZEKP4GU7mcPvCI5qskCp80_97P7u_O9j2fw_8rfw4Md4Yr4dHB2-ho04CF0Tf7gF6_XyArcJR9XFm0Z2GZg7Xiu_APBYJ00
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-printed+thermally+expanded+monolithic+foam+for+solid-phase+extraction+of+multiple+trace+metals&rft.jtitle=Mikrochimica+acta+%281966%29&rft.au=Cheng%2C+Yu-Hsuan&rft.au=Su%2C+Cheng-Kuan&rft.date=2024-10-01&rft.issn=1436-5073&rft.eissn=1436-5073&rft.volume=191&rft.issue=10&rft.spage=598&rft_id=info:doi/10.1007%2Fs00604-024-06691-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-3672&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-3672&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-3672&client=summon