3D-printed thermally expanded monolithic foam for solid-phase extraction of multiple trace metals
Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions pri...
Saved in:
Published in | Mikrochimica acta (1966) Vol. 191; no. 10; p. 598 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L
–1
. We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques.
Graphical abstract |
---|---|
AbstractList | Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L
–1
. We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques.
Graphical abstract Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L–1. We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques. Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L-1. We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques.Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L-1. We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques. Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L . We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques. |
ArticleNumber | 598 |
Author | Cheng, Yu-Hsuan Su, Cheng-Kuan |
Author_xml | – sequence: 1 givenname: Yu-Hsuan surname: Cheng fullname: Cheng, Yu-Hsuan organization: Department of Chemistry, National Chung Hsing University – sequence: 2 givenname: Cheng-Kuan surname: Su fullname: Su, Cheng-Kuan email: cksu@nchu.edu.tw organization: Department of Chemistry, National Chung Hsing University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39271489$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3TAQhUVJaW7S_oEuiqGbbtyOHpbkZUmfEOgmeyHLo14H2XIlGZp_Xzk3oZBFFtLA4TvDzJwLcrbEBQl5S-EjBVCfMoAE0QKrT8qetv0LcqCCy7YDxc_IAYDJlkvFzslFzrcAVEkmXpFz3jNFhe4PxPIv7ZqmpeDYlCOm2YZw1-Df1S5jlea4xDCV4-QaH-1cv9TkqozterQZK1iSdWWKSxN9M2-hTGvAZhexmbHYkF-Tl74WfPNQL8nNt683Vz_a61_ff159vm4dV11pUWsvOEinRsUQkImewgjajR2iGtRA9QDWjtRS2nXSe22Fdz1nYvBIJb8kH05t1xT_bJiLmafsMAS7YNyy4RREx7WmqqLvn6C3cUtLHe6eEqpTklfq3QO1DTOOpl5ptunOPN6uAvoEuBRzTuiNm4rdb1HXn4KhYPaYzCkmU2My9zGZ3cqeWB-7P2viJ1PeA_uN6f_Yz7j-AWhFpMY |
CitedBy_id | crossref_primary_10_1016_j_aca_2024_343552 crossref_primary_10_1021_acs_analchem_4c05363 |
Cites_doi | 10.1021/acs.analchem.7b00136 10.1007/s00604-018-2812-8 10.1039/C5JA00497G 10.1016/S0925-4005(02)00017-5 10.1021/acs.analchem.6b04390 10.3390/polym12102210 10.1016/S0165-9936(03)01207-X 10.1021/acs.analchem.7b01367 10.1080/10408347.2013.855607 10.1016/j.trac.2004.12.004 10.1016/j.trac.2020.116177 10.1016/j.aca.2021.338348 10.1021/ac0106288 10.1021/acs.analchem.3c04961 10.1007/s00604-019-4055-8 10.1016/j.talanta.2018.02.065 10.1016/j.cis.2016.10.005 10.1039/C7MH00084G 10.1016/j.talanta.2019.05.026 10.1016/j.aca.2011.08.027 10.1016/j.talanta.2021.123163 10.1002/jssc.200800116 10.1016/j.heliyon.2020.e04691 10.1016/j.jhazmat.2017.10.013 10.1126/science.1083545 10.1515/pac-2020-0206 10.1021/acsapm.1c00726 10.1016/S0584-8547(03)00072-7 10.1021/acs.analchem.5b01599 10.1016/j.aca.2017.02.002 10.1021/acs.analchem.0c00863 10.1016/j.aca.2023.341489 10.1021/acsami.0c02683 10.3389/fmats.2022.1083931 10.1016/j.talanta.2022.123237 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1007/s00604-024-06691-9 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1436-5073 |
ExternalDocumentID | 39271489 10_1007_s00604_024_06691_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Council grantid: NSTC 113-2113-M-005-003; NSTC 113-2113-M-005-003 funderid: http://dx.doi.org/10.13039/100020595 – fundername: National Science and Technology Council grantid: NSTC 113-2113-M-005-003 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 7X7 88E 8FE 8FG 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAS LLZTM M1P M4Y MA- ML- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9N PDBOC PF0 PQQKQ PROAC PSQYO PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 Y6R YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z7Y Z83 Z85 Z86 Z87 Z8N Z8O Z8P Z8Q Z8S Z8W Z8Z Z91 Z92 ZMTXR ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM ABRTQ K9. 7X8 |
ID | FETCH-LOGICAL-c375t-e88f4306c7d72e0e24910d08cd5ee7b7b18b0aad1a11556ff8a4fc9324bfe163 |
IEDL.DBID | U2A |
ISSN | 0026-3672 1436-5073 |
IngestDate | Fri Jul 11 04:40:44 EDT 2025 Fri Jul 25 11:02:44 EDT 2025 Thu Apr 03 06:54:19 EDT 2025 Tue Jul 01 04:07:09 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Three-dimensional printing Monolithic foam Inductively coupled plasma mass spectrometry Trace metal analysis Solid-phase extraction |
Language | English |
License | 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-e88f4306c7d72e0e24910d08cd5ee7b7b18b0aad1a11556ff8a4fc9324bfe163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 39271489 |
PQID | 3104475763 |
PQPubID | 2043622 |
ParticipantIDs | proquest_miscellaneous_3104538817 proquest_journals_3104475763 pubmed_primary_39271489 crossref_citationtrail_10_1007_s00604_024_06691_9 crossref_primary_10_1007_s00604_024_06691_9 springer_journals_10_1007_s00604_024_06691_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Austria – name: Heidelberg |
PublicationSubtitle | Analytical Sciences and Technologies on the Micro- and Nanoscale |
PublicationTitle | Mikrochimica acta (1966) |
PublicationTitleAbbrev | Microchim Acta |
PublicationTitleAlternate | Mikrochim Acta |
PublicationYear | 2024 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | Wirth, Jaquez, Gandarilla, Hochberg, Church, Pokorski (CR28) 2020; 12 Morel, Price (CR1) 2003; 300 Nesterenko (CR12) 2020; 92 Agatemor, Beauchemin (CR3) 2011; 706 Andersson, Griss, Stemme (CR31) 2002; 84 Su, Peng, Sun (CR15) 2015; 87 Liu, Wang, Zhao, Hao, Fang, Wang (CR34) 2018; 344 Ceballos, Estela, Cerdà, Ferrer (CR18) 2019; 202 Kulomäki, Lahtinen, Perämäki, Väisänen (CR21) 2022; 240 Sun, Wu (CR29) 2022; 9 Chen, Chen, He, Hu (CR35) 2020; 187 Su (CR14) 2021; 1158 Su, Lin (CR19) 2020; 92 Potter, Hilder (CR9) 2008; 31 Calderilla, Maya, Cerdà, Leal (CR16) 2018; 184 Briffa, Sinagra, Blundell (CR2) 2020; 6 Chen, Chen, Su (CR20) 2022; 241 Yu, Davey, Svec, Fréchet (CR11) 2001; 73 Kwon, Park, Lee, Kim (CR27) 2020; 12 Tsai, Su (CR23) 2024; 96 Wang, Hansen (CR5) 2003; 22 Ibrahim, Ali, Sulaiman, Sanagi, Aboul-Enein (CR7) 2014; 44 Seo, Kwon, Dolinski, Sample, Self, Bates, Valentine, Hawker (CR30) 2021; 3 Camel (CR6) 2003; 58 Kosmulski (CR32) 2016; 238 Su, Chen (CR17) 2018; 185 Mu, Bertron, Dunn, Qiao, Wu, Zhao, Saldana, Qi (CR26) 2017; 4 Economou (CR8) 2005; 24 Masini, Svec (CR10) 2017; 964 Chen, Tsai, Su (CR22) 2023; 1271 Macdonald, Cabot, Smejkal, Guijt, Paull, Breadmore (CR25) 2017; 89 Zhang, Chen, Wang, He, Hu (CR33) 2017; 89 Lum, Leung (CR4) 2016; 31 Belka, Ulenberg, Bączek (CR24) 2017; 89 Carrasco-Correa, Simó-Alfonso, Herrero-Martínez, Miró (CR13) 2021; 136 CK Su (6691_CR14) 2021; 1158 B Sun (6691_CR29) 2022; 9 A Economou (6691_CR8) 2005; 24 DM Wirth (6691_CR28) 2020; 12 CK Su (6691_CR17) 2018; 185 JR Chen (6691_CR22) 2023; 1271 OG Potter (6691_CR9) 2008; 31 TS Lum (6691_CR4) 2016; 31 C Calderilla (6691_CR16) 2018; 184 J Briffa (6691_CR2) 2020; 6 C Agatemor (6691_CR3) 2011; 706 SE Seo (6691_CR30) 2021; 3 M Belka (6691_CR24) 2017; 89 JM Liu (6691_CR34) 2018; 344 MR Ceballos (6691_CR18) 2019; 202 J Zhang (6691_CR33) 2017; 89 JC Masini (6691_CR10) 2017; 964 C Yu (6691_CR11) 2001; 73 PN Nesterenko (6691_CR12) 2020; 92 EJ Carrasco-Correa (6691_CR13) 2021; 136 S Kulomäki (6691_CR21) 2022; 240 J Wang (6691_CR5) 2003; 22 NP Macdonald (6691_CR25) 2017; 89 CK Su (6691_CR19) 2020; 92 FMM Morel (6691_CR1) 2003; 300 JR Chen (6691_CR20) 2022; 241 V Camel (6691_CR6) 2003; 58 X Mu (6691_CR26) 2017; 4 WH Tsai (6691_CR23) 2024; 96 WAW Ibrahim (6691_CR7) 2014; 44 H Andersson (6691_CR31) 2002; 84 Z Chen (6691_CR35) 2020; 187 DY Kwon (6691_CR27) 2020; 12 CK Su (6691_CR15) 2015; 87 M Kosmulski (6691_CR32) 2016; 238 |
References_xml | – volume: 89 start-page: 3858 year: 2017 end-page: 3866 ident: CR25 article-title: Comparing microfluidic performance of three-dimensional (3D) printing platforms publication-title: Anal Chem doi: 10.1021/acs.analchem.7b00136 – volume: 185 start-page: 268 year: 2018 ident: CR17 article-title: 3D-printed, TiO NP–incorporated minicolumn coupled with ICP-MS for speciation of inorganic arsenic and selenium in high-salt-content samples publication-title: Microchim Acta doi: 10.1007/s00604-018-2812-8 – volume: 31 start-page: 1078 year: 2016 end-page: 1088 ident: CR4 article-title: Strategies to overcome spectral interference in ICP-MS detection publication-title: J Anal Atom Spectrom doi: 10.1039/C5JA00497G – volume: 84 start-page: 290 year: 2002 end-page: 295 ident: CR31 article-title: Expandable microspheres—surface immobilization techniques publication-title: Sens Actuators B: Chem doi: 10.1016/S0925-4005(02)00017-5 – volume: 89 start-page: 4373 year: 2017 end-page: 4376 ident: CR24 article-title: Fused deposition modeling enables the low-cost fabrication of porous, customized-shape sorbents for small-molecule extraction publication-title: Anal Chem doi: 10.1021/acs.analchem.6b04390 – volume: 12 start-page: 2210 year: 2020 ident: CR27 article-title: Comparison of scaffolds fabricated 3D printing and salt leaching: imaging, biodegradation, and inflammation publication-title: Polymers doi: 10.3390/polym12102210 – volume: 22 start-page: 836 year: 2003 end-page: 846 ident: CR5 article-title: On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS publication-title: TrAC—Trends Anal Chem doi: 10.1016/S0165-9936(03)01207-X – volume: 89 start-page: 6878 year: 2017 end-page: 6885 ident: CR33 article-title: Facile chip-based array monolithic microextraction system online coupled with ICPMS for fast analysis of trace heavy metals in biological samples publication-title: Anal Chem doi: 10.1021/acs.analchem.7b01367 – volume: 44 start-page: 233 year: 2014 end-page: 254 ident: CR7 article-title: Application of solid-phase extraction for trace elements in environmental and biological samples: a review publication-title: Crit Rev Anal Chem doi: 10.1080/10408347.2013.855607 – volume: 24 start-page: 416 year: 2005 end-page: 425 ident: CR8 article-title: Sequential-Injection Analysis (SIA): A useful tool for on-line sample handling and pre-treatment publication-title: TrAC-Trends Anal Chem doi: 10.1016/j.trac.2004.12.004 – volume: 136 start-page: 116177 year: 2021 ident: CR13 article-title: The emerging role of 3D printing in the fabrication of detection systems publication-title: TrAC-Trends Anal Chem doi: 10.1016/j.trac.2020.116177 – volume: 1158 year: 2021 ident: CR14 article-title: Review of 3D-printed functionalized devices for chemical and biochemical analysis publication-title: Anal Chim Acta doi: 10.1016/j.aca.2021.338348 – volume: 73 start-page: 5088 year: 2001 end-page: 5096 ident: CR11 article-title: Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device publication-title: Anal Chem doi: 10.1021/ac0106288 – volume: 96 start-page: 4469 year: 2024 end-page: 4478 ident: CR23 article-title: 4D-printed elution-peak-guided dual-responsive monolithic packing for the solid-phase extraction of metal ions publication-title: Anal Chem doi: 10.1021/acs.analchem.3c04961 – volume: 187 start-page: 48 year: 2020 ident: CR35 article-title: Magnetic metal-organic framework composites for dual-column solid-phase microextraction combined with ICP-MS for speciation of trace levels of arsenic publication-title: Microchim Acta doi: 10.1007/s00604-019-4055-8 – volume: 184 start-page: 15 year: 2018 end-page: 22 ident: CR16 article-title: 3D printed device for the automated preconcentration and determination of chromium (VI) publication-title: Talanta doi: 10.1016/j.talanta.2018.02.065 – volume: 238 start-page: 1 year: 2016 end-page: 61 ident: CR32 article-title: Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks' review publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2016.10.005 – volume: 4 start-page: 442 year: 2017 end-page: 449 ident: CR26 article-title: Porous polymeric materials by 3D printing of photocurable resin publication-title: Mater Horiz doi: 10.1039/C7MH00084G – volume: 202 start-page: 267 year: 2019 end-page: 273 ident: CR18 article-title: Flow-through magnetic-stirring assisted system for uranium(vi) extraction: first 3D printed device application publication-title: Talanta doi: 10.1016/j.talanta.2019.05.026 – volume: 706 start-page: 66 year: 2011 end-page: 83 ident: CR3 article-title: Matrix effects in inductively coupled plasma mass spectrometry: a review publication-title: Anal Chim Acta doi: 10.1016/j.aca.2011.08.027 – volume: 240 year: 2022 ident: CR21 article-title: Preconcentration and speciation analysis of mercury: 3D printed metal scavenger-based solid-phase extraction followed by analysis with inductively coupled plasma mass spectrometry publication-title: Talanta doi: 10.1016/j.talanta.2021.123163 – volume: 31 start-page: 1881 year: 2008 end-page: 1906 ident: CR9 article-title: Porous polymer monoliths for extraction: diverse applications and platforms publication-title: J Sep Sci doi: 10.1002/jssc.200800116 – volume: 6 year: 2020 ident: CR2 article-title: Heavy metal pollution in the environment and their toxicological effects on humans publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e04691 – volume: 344 start-page: 220 year: 2018 end-page: 229 ident: CR34 article-title: Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2017.10.013 – volume: 300 start-page: 944 year: 2003 end-page: 947 ident: CR1 article-title: The biogeochemical cycles of trace metals in the oceans publication-title: Science doi: 10.1126/science.1083545 – volume: 92 start-page: 1341 year: 2020 end-page: 1355 ident: CR12 article-title: 3D Printing in analytical chemistry: current state and future publication-title: Pure Appl Chem doi: 10.1515/pac-2020-0206 – volume: 3 start-page: 4984 issue: 2021 year: 2021 end-page: 4991 ident: CR30 article-title: Three-dimensional photochemical printing of thermally activated polymer foams publication-title: ACS Appl Polym Mater doi: 10.1021/acsapm.1c00726 – volume: 58 start-page: 1177 year: 2003 end-page: 1233 ident: CR6 article-title: Solid phase extraction of trace elements publication-title: Spectrochim Acta Part B-Atom Spectr doi: 10.1016/S0584-8547(03)00072-7 – volume: 87 start-page: 6945 year: 2015 end-page: 6950 ident: CR15 article-title: Fully 3D-printed preconcentrator for selective extraction of trace elements in seawater publication-title: Anal Chem doi: 10.1021/acs.analchem.5b01599 – volume: 964 start-page: 24 year: 2017 end-page: 44 ident: CR10 article-title: Porous monoliths for on-line sample preparation: a review publication-title: Anal Chim Acta doi: 10.1016/j.aca.2017.02.002 – volume: 92 start-page: 9640 year: 2020 end-page: 9648 ident: CR19 article-title: 3D-printed column with porous monolithic packing for online solid-phase extraction of multiple trace metals in environmental water samples publication-title: Anal Chem doi: 10.1021/acs.analchem.0c00863 – volume: 1271 year: 2023 ident: CR22 article-title: TiO Nanoparticle–coated 3D-printed porous monoliths enabling highly sensitive speciation of inorganic Cr, As, and Se publication-title: Anal Chim Acta doi: 10.1016/j.aca.2023.341489 – volume: 12 start-page: 19033 year: 2020 end-page: 19043 ident: CR28 article-title: Highly expandable foam for lithographic 3D printing publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c02683 – volume: 9 start-page: 1083931 year: 2022 ident: CR29 article-title: Research progress of 3D printing combined with thermoplastic foaming publication-title: Front Mater doi: 10.3389/fmats.2022.1083931 – volume: 241 year: 2022 ident: CR20 article-title: Solution foaming–treated 3D-printed monolithic packing for enhanced solid phase extraction of trace metals publication-title: Talanta doi: 10.1016/j.talanta.2022.123237 – volume: 706 start-page: 66 year: 2011 ident: 6691_CR3 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2011.08.027 – volume: 240 year: 2022 ident: 6691_CR21 publication-title: Talanta doi: 10.1016/j.talanta.2021.123163 – volume: 184 start-page: 15 year: 2018 ident: 6691_CR16 publication-title: Talanta doi: 10.1016/j.talanta.2018.02.065 – volume: 1271 year: 2023 ident: 6691_CR22 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2023.341489 – volume: 89 start-page: 4373 year: 2017 ident: 6691_CR24 publication-title: Anal Chem doi: 10.1021/acs.analchem.6b04390 – volume: 87 start-page: 6945 year: 2015 ident: 6691_CR15 publication-title: Anal Chem doi: 10.1021/acs.analchem.5b01599 – volume: 12 start-page: 19033 year: 2020 ident: 6691_CR28 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c02683 – volume: 31 start-page: 1881 year: 2008 ident: 6691_CR9 publication-title: J Sep Sci doi: 10.1002/jssc.200800116 – volume: 6 year: 2020 ident: 6691_CR2 publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e04691 – volume: 58 start-page: 1177 year: 2003 ident: 6691_CR6 publication-title: Spectrochim Acta Part B-Atom Spectr doi: 10.1016/S0584-8547(03)00072-7 – volume: 185 start-page: 268 year: 2018 ident: 6691_CR17 publication-title: Microchim Acta doi: 10.1007/s00604-018-2812-8 – volume: 89 start-page: 3858 year: 2017 ident: 6691_CR25 publication-title: Anal Chem doi: 10.1021/acs.analchem.7b00136 – volume: 12 start-page: 2210 year: 2020 ident: 6691_CR27 publication-title: Polymers doi: 10.3390/polym12102210 – volume: 92 start-page: 9640 year: 2020 ident: 6691_CR19 publication-title: Anal Chem doi: 10.1021/acs.analchem.0c00863 – volume: 202 start-page: 267 year: 2019 ident: 6691_CR18 publication-title: Talanta doi: 10.1016/j.talanta.2019.05.026 – volume: 4 start-page: 442 year: 2017 ident: 6691_CR26 publication-title: Mater Horiz doi: 10.1039/C7MH00084G – volume: 92 start-page: 1341 year: 2020 ident: 6691_CR12 publication-title: Pure Appl Chem doi: 10.1515/pac-2020-0206 – volume: 964 start-page: 24 year: 2017 ident: 6691_CR10 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2017.02.002 – volume: 238 start-page: 1 year: 2016 ident: 6691_CR32 publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2016.10.005 – volume: 344 start-page: 220 year: 2018 ident: 6691_CR34 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2017.10.013 – volume: 84 start-page: 290 year: 2002 ident: 6691_CR31 publication-title: Sens Actuators B: Chem doi: 10.1016/S0925-4005(02)00017-5 – volume: 31 start-page: 1078 year: 2016 ident: 6691_CR4 publication-title: J Anal Atom Spectrom doi: 10.1039/C5JA00497G – volume: 300 start-page: 944 year: 2003 ident: 6691_CR1 publication-title: Science doi: 10.1126/science.1083545 – volume: 22 start-page: 836 year: 2003 ident: 6691_CR5 publication-title: TrAC—Trends Anal Chem doi: 10.1016/S0165-9936(03)01207-X – volume: 136 start-page: 116177 year: 2021 ident: 6691_CR13 publication-title: TrAC-Trends Anal Chem doi: 10.1016/j.trac.2020.116177 – volume: 3 start-page: 4984 issue: 2021 year: 2021 ident: 6691_CR30 publication-title: ACS Appl Polym Mater doi: 10.1021/acsapm.1c00726 – volume: 187 start-page: 48 year: 2020 ident: 6691_CR35 publication-title: Microchim Acta doi: 10.1007/s00604-019-4055-8 – volume: 9 start-page: 1083931 year: 2022 ident: 6691_CR29 publication-title: Front Mater doi: 10.3389/fmats.2022.1083931 – volume: 73 start-page: 5088 year: 2001 ident: 6691_CR11 publication-title: Anal Chem doi: 10.1021/ac0106288 – volume: 1158 year: 2021 ident: 6691_CR14 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2021.338348 – volume: 89 start-page: 6878 year: 2017 ident: 6691_CR33 publication-title: Anal Chem doi: 10.1021/acs.analchem.7b01367 – volume: 44 start-page: 233 year: 2014 ident: 6691_CR7 publication-title: Crit Rev Anal Chem doi: 10.1080/10408347.2013.855607 – volume: 241 year: 2022 ident: 6691_CR20 publication-title: Talanta doi: 10.1016/j.talanta.2022.123237 – volume: 96 start-page: 4469 year: 2024 ident: 6691_CR23 publication-title: Anal Chem doi: 10.1021/acs.analchem.3c04961 – volume: 24 start-page: 416 year: 2005 ident: 6691_CR8 publication-title: TrAC-Trends Anal Chem doi: 10.1016/j.trac.2004.12.004 |
SSID | ssj0017624 |
Score | 2.4118128 |
Snippet | Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 598 |
SubjectTerms | Analytical Chemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Design optimization Groundwater treatment Inductively coupled plasma mass spectrometry Mass spectrometry Microengineering Microspheres Nanochemistry Nanotechnology Photocuring Photopolymerization Resins Seawater Solid phases Trace elements Trace metals Urine |
Title | 3D-printed thermally expanded monolithic foam for solid-phase extraction of multiple trace metals |
URI | https://link.springer.com/article/10.1007/s00604-024-06691-9 https://www.ncbi.nlm.nih.gov/pubmed/39271489 https://www.proquest.com/docview/3104475763 https://www.proquest.com/docview/3104538817 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60PehFfButZQVvupBNstnkWGprUfTUQj2FTbJLC33RB-i_dzYvkargJYdkdhNmJjvf7DwW4Dbh0pfoeVC0Hop6XNs08BmjSC-Z2YR0Y1Pv_PLq9wbe05APi6KwVZntXoYks5W6KnYzrUM8ijbFVM2HjIa7UOfou5tEroHTqmIH-HsXvZd96vrCKUplfp7juznawphb8dHM7HQP4aDAi6SVC_gIdtTsGPba5TFtJyDdB2rGInIkBsxN5WTyQdT7wuwOpwS1zGS4jcYJ0XM5xcuSoLqNU7oYoQFDwvUyr20gc03K9EJibioyVQjNV6fQ73b67R4tzk2giSv4mqog0B66AolIhaNshR4Ws1M7SFKulIhFzILYljJlEuEg97UOpKcTBHJerBXiszOozeYzdQGEJ54KtRPYMuaeFGEY69Q17Wp46jtaKgtYyb0oKXqKm6MtJlHVDTnjeIQcjzKOR6EFd9WYRd5R40_qRimUqPi7VhFCUtOnEJdGC26qx8h3E-yQMzXf5DS4mAdMWHCeC7N6HWJCgW4gTn5fSvdr8t-_5fJ_5Few7xhNyzL_GlBbLzfqGhHMOm5CvfX49txpZor7CYSt54Y |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5UAvFYW2LGypK9ETWIqTOHYOHBAPLeVxWiRulpOMBdK-tLuo8Hv4o4zzQogWqQcuOSRjxxqPPd94HgbYyaVNLFkenLQH8li6gOtECE70VvhDyCjz-c4Xl0n_Kv59La-X4LHJhSmj3RuXZLlTt8luvnRIzEmn-Kz5VPC0DqU8w4c_ZKjN90-PaFZ_heHJ8eCwz-u7BHgeKbngqLWLCR7nqlAhBkhWhwiKQOeFRFSZyoTOAmsLYQkiycQ5bWOXE7iJM4eEWajbD7BM2EP7pXMVHrSuCtpN6lLPCY8SFdaZOX8f8kvt9wrSvnLHllruZBU-1fCUHVTy9BmWcLwGK4fNrXDrYKMj7tsSUGUeO47scPjA8H7qD6MLRkLtA-pubnPmJnZEjxkj6b4t-PSG9CURLmZVKgWbONZEMzL_EtkIyRKYf4HBe7D2K3TGkzFuAJN5jKkLdWAzGVuVppkrIl8dRxZJ6Cx2QTTcM3ldwtzfpDE0bfHlkuOGOG5Kjpu0C7ttm2lVwONN6l4zKaZezHNDCNiXRaSduAs_28_Ed-9bsWOc3FU0pDu0UF34Vk1m-zuCoIqsTup8r5nd587_PZbN_yP_ASv9wcW5OT-9PNuCj6GXujLosAedxewOvxN4WmTbpfAyMO-8WJ4AArcjGg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviDdbWjASnMBqnNhxcuBQdVm1FCoOrdSb5cRjtdJudrWbqu2v4i8yzgtVBSQOveSQjB1rPPZ843kY4H2pbGrJ8uCkPZBL5SOepUJworciHEImRch3_n6U7p_Ir6fqdA1-9rkwTbR775JscxpClaaq3lk4vzMkvoUyIpKTfgkZ9LngeRdWeYjXl2S0rT4fjGmGP8Tx5Mvx3j7v7hXgZaJVzTHLvCSoXGqnY4yQLBARuSgrnULUhS5EVkTWOmEJLqnU-8xKXxLQkYVHwi_U7T24L0PyMS2gk3h3cFvQztKVfU55kuq4y9L585BvasJb8PaWa7bReJPH8KiDqmy3la0nsIbVU3i4198Q9wxsMuahLYFWFnDkzE6n1wyvFuFg2jES8BBcd3ZeMj-3M3osGUn6ueOLM9KdRFgv27QKNvesj2xk4SWyGZJVsHoOx3fB2hewXs0rfAVMlRJzH2eRLZS0Os8L75JQKUe5NPYWRyB67pmyK2cebtWYmqEQc8NxQxw3DcdNPoKPQ5tFW8zjn9Rb_aSYbmGvDKHhUCKRduURvBs-E9-Dn8VWOL9oaUiPZEKP4GU7mcPvCI5qskCp80_97P7u_O9j2fw_8rfw4Md4Yr4dHB2-ho04CF0Tf7gF6_XyArcJR9XFm0Z2GZg7Xiu_APBYJ00 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-printed+thermally+expanded+monolithic+foam+for+solid-phase+extraction+of+multiple+trace+metals&rft.jtitle=Mikrochimica+acta+%281966%29&rft.au=Cheng%2C+Yu-Hsuan&rft.au=Su%2C+Cheng-Kuan&rft.date=2024-10-01&rft.issn=1436-5073&rft.eissn=1436-5073&rft.volume=191&rft.issue=10&rft.spage=598&rft_id=info:doi/10.1007%2Fs00604-024-06691-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-3672&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-3672&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-3672&client=summon |