PHD2 attenuates high-glucose-induced blood retinal barrier breakdown in human retinal microvascular endothelial cells by regulating the Hif-1α/VEGF pathway
Objective Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood–retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth f...
Saved in:
Published in | Inflammation research Vol. 71; no. 1; pp. 69 - 79 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood–retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina.
Materials and methods
Primary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA.
Results
Under hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects.
Conclusion
These results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis. |
---|---|
AbstractList | Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood-retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina.OBJECTIVEDiabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood-retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina.Primary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA.MATERIALS AND METHODSPrimary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA.Under hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects.RESULTSUnder hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects.These results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis.CONCLUSIONThese results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis. Objective Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood–retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina. Materials and methods Primary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA. Results Under hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects. Conclusion These results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis. Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood-retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina. Primary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA. Under hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects. These results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis. ObjectiveDiabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood–retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina.Materials and methodsPrimary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA.ResultsUnder hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects.ConclusionThese results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis. |
Author | Tang, Xiaoyu Li, Jia Wei, Liqing Lin, Jianqiang Cui, Kaixuan Liang, Xiaoling Lu, Xi Yu, Shanshan Ye, Dan Xu, Yue |
Author_xml | – sequence: 1 givenname: Jia surname: Li fullname: Li, Jia organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University – sequence: 2 givenname: Xi surname: Lu fullname: Lu, Xi organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University – sequence: 3 givenname: Liqing surname: Wei fullname: Wei, Liqing organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Eye Hospital of Wenzhou Medical University, Hangzhou Xihu Zhijiang Eye Hospital – sequence: 4 givenname: Dan surname: Ye fullname: Ye, Dan organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University – sequence: 5 givenname: Jianqiang surname: Lin fullname: Lin, Jianqiang organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University – sequence: 6 givenname: Xiaoyu surname: Tang fullname: Tang, Xiaoyu organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University – sequence: 7 givenname: Kaixuan surname: Cui fullname: Cui, Kaixuan organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University – sequence: 8 givenname: Shanshan surname: Yu fullname: Yu, Shanshan organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University – sequence: 9 givenname: Yue surname: Xu fullname: Xu, Yue email: xuyueeye@163.com organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University – sequence: 10 givenname: Xiaoling orcidid: 0000-0001-5753-5100 surname: Liang fullname: Liang, Xiaoling email: liangxlsums@qq.com organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34773469$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtuFDEQhi0URB5wARbIEhs2Jn70c4nyGqRIsADEzqp2V3c79NiD7Saau3AJLsKZ8DAJSFnEkuWS6vt_les_JgfOOyTkpeBvBef1aeScC8G4zFeUomHyCTkSheSs5c3Xg1xzqZhqFD8kxzHeZLyRjXxGDlVR16qo2iPy8-PqXFJICd0CCSOd7DixcV6Mj8is6xeDPe1m73saMFkHM-0gBIuBdgHhW-9vHbWOTssa3D9kbU3wPyCaZYZA0fU-TTjb3DE4z5F224yOuZnxkeYeXdmBid-_Tr9cXF3SDaTpFrbPydMB5ogv7t4T8vny4tPZil1_uHp_9u6aGVWXiWHDK9Hmo1pjeA9KDNBWiFAVvC77shZiEAWYqkM5NBxaLlRbiLaXg4GhKNUJebP33QT_fcGY9NrG3aDg0C9Ry7Kti7aqeZPR1w_QG7-E_OVM5SFUIYTYGb66o5Zujb3eBLuGsNX3e89AswfymmIMOGhjU16GdymAnbXgehex3kesc8T6b8RaZql8IL13f1Sk9qKYYTdi-D_2I6o_7226Ng |
CitedBy_id | crossref_primary_10_1016_j_jep_2024_117751 crossref_primary_10_1002_kjm2_12722 crossref_primary_10_1089_ars_2022_0028 crossref_primary_10_31083_j_fbl2711308 crossref_primary_10_1007_s10792_025_03458_w crossref_primary_10_1016_j_biopha_2024_116202 crossref_primary_10_1021_acsomega_4c06546 crossref_primary_10_1124_pharmrev_123_000928 |
Cites_doi | 10.1038/28867 10.1007/s11481-014-9531-7 10.1016/j.lfs.2019.117148 10.1128/mcb.00425-06 10.1038/sj.bjc.6605682 10.2337/db09-1606 10.1152/ajpcell.00322.2008 10.12659/msm.912051 10.3892/mmr.2015.4679 10.2337/dc11-1909 10.1007/s00011-020-01331-3 10.1038/35025220 10.1111/jpi.12473 10.1016/j.diabres.2019.107843 10.1089/jir.2005.25.297 10.1007/s12031-014-0469-2 10.1161/circulationaha.107.701516 10.1111/jpi.12660 10.1016/j.ophtha.2015.03.024 10.1126/science.aaf4405 10.1016/j.neulet.2004.10.050 10.1002/art.34479 10.1074/jbc.274.33.23463 10.1167/iovs.02-0807 10.1016/b978-0-444-63432-0.00003-7 10.1093/emboj/cdg392 10.1111/jpi.12716 10.2337/dc10-0493 10.1371/journal.pone.0147312 10.1038/onc.2010.498 10.1021/acschemneuro.0c00294 10.1038/ng1019 10.3109/08820539909069543 10.1016/j.preteyeres.2013.02.001 10.3389/fimmu.2020.581288 10.1074/jbc.M414694200 10.1016/j.ophtha.2011.01.031 10.1007/s00011-014-0750-4 10.1016/j.phrs.2015.05.013 10.7150/ijbs.22670 10.2174/1567202614666170619081929 10.1167/tvst.9.6.8 10.1056/NEJMoa1414264 10.1007/s00125-016-3974-8 10.1111/j.1755-3768.2008.01501.x 10.3892/mmr.2017.7475 10.1074/jbc.M406026200 10.1074/jbc.M006180200 10.2337/db09-1420 10.1038/nrc3183 10.1016/s2214-109x(13)70113-x |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
DBID | AAYXX CITATION NPM 3V. 7QL 7T5 7T7 7TM 7TO 7U9 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA BENPR C1K CCPQU FR3 FYUFA GHDGH H94 K9. M0S M1P M7N P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00011-021-01518-2 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Oncogenes and Growth Factors Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1420-908X |
EndPage | 79 |
ExternalDocumentID | 34773469 10_1007_s00011_021_01518_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Young Scientists Fund grantid: 81900864 funderid: http://dx.doi.org/10.13039/501100010909 – fundername: National Natural Science Foundation of China grantid: 81870668 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Young Scientists Fund grantid: 81900864 – fundername: National Natural Science Foundation of China grantid: 81870668 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 2.D 203 28- 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EN4 EPAXT ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M1P M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 X7M Y6R YLTOR Z45 Z7U Z7W Z82 Z87 Z8O Z8Q Z8V Z91 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QL 7T5 7T7 7TM 7TO 7U9 7XB 8FD 8FK ABRTQ C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-e8061999939cc0da31fa96eea64075d5711f14ac6be2f80a90139419d2fcaf453 |
IEDL.DBID | U2A |
ISSN | 1023-3830 1420-908X |
IngestDate | Fri Jul 11 10:13:45 EDT 2025 Sat Jul 26 02:38:35 EDT 2025 Wed Feb 19 02:28:18 EST 2025 Thu Apr 24 23:02:52 EDT 2025 Tue Jul 01 01:43:52 EDT 2025 Fri Feb 21 02:46:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hyperglycemia Hypoxia-inducible factor 1α Prolyl-4-hydroxylase 2 Tight junction Blood–retinal barrier Retinal inflammation Vascular endothelial growth factor |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-e8061999939cc0da31fa96eea64075d5711f14ac6be2f80a90139419d2fcaf453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5753-5100 |
PMID | 34773469 |
PQID | 2619341115 |
PQPubID | 24296 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2597496708 proquest_journals_2619341115 pubmed_primary_34773469 crossref_citationtrail_10_1007_s00011_021_01518_2 crossref_primary_10_1007_s00011_021_01518_2 springer_journals_10_1007_s00011_021_01518_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 2022-Jan 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: New York |
PublicationSubtitle | Official Journal of: The International Association of Inflammation Societies + The European Histamine Research Society |
PublicationTitle | Inflammation research |
PublicationTitleAbbrev | Inflamm. Res |
PublicationTitleAlternate | Inflamm Res |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | AfliberceptBor Ranibizumab for Diabetic Macular EdemaNew England J Med201537213119312031:CAS:528:DC%2BC2MXmtFaiu74%3D10.1056/NEJMoa1414264 AragonésJEvidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tensionJ Biol Chem200127613105481055510.1074/jbc.M00618020011136721 ObermeierBVermaARansohoffRThe blood-brain barrierHandb Clin Neurol2016133395910.1016/b978-0-444-63432-0.00003-727112670 AntonettiDVascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumorsJ Biol Chem19992743323463234671:CAS:528:DyaK1MXltlKnu70%3D10.1074/jbc.274.33.2346310438525 TakedaKPlacental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2Mol Cell Biol20062622833683461:CAS:528:DC%2BD28Xht1aktr7I10.1128/mcb.00425-06169663701636770 MuzBProlyl hydroxylase domain enzyme 2 is the major player in regulating hypoxic responses in rheumatoid arthritisArthritis Rheum2012649285628671:CAS:528:DC%2BC38Xht1GrsbjL10.1002/art.3447922488178 Du, Y., et al., Hypoxia-Inducible Factor 1 alpha (HIF-1α)/Vascular Endothelial Growth Factor (VEGF) Pathway Participates in Angiogenesis of Myocardial Infarction in Muscone-Treated Mice: Preliminary Study. Medical science monitor : international medical journal of experimental and clinical research, 2018. 24: p. 8870–8877. https://doi.org/10.12659/msm.912051 BerraEHIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxiaEMBO J20032216408240901:CAS:528:DC%2BD3sXmsVGgsLo%3D10.1093/emboj/cdg39212912907175782 AngSDisruption of oxygen homeostasis underlies congenital Chuvash polycythemiaNat Genet20023246146211:CAS:528:DC%2BD38XptVShtbs%3D10.1038/ng101912415268 HuYFK506 suppresses hypoxia-induced inflammation and protects tight junction function via the CaN-NFATc1 signaling pathway in retinal microvascular epithelial cellsMol Med Rep2017165697469801:CAS:528:DC%2BC1cXmsFWjtbs%3D10.3892/mmr.2017.747528901449 XuYMelatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α-VEGF pathway in oxygen-induced retinopathy miceJ Pineal Res20186441:CAS:528:DC%2BC1cXktV2gs7w%3D10.1111/jpi.1247329411894 YinXVascular endothelial growth factor (VEGF) as a vital target for brain inflammation during the COVID-19 outbreakACS Chem Neurosci20201112170417051:CAS:528:DC%2BB3cXhtVKqtbbL10.1021/acschemneuro.0c0029432485101 LiXEmodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathwayInflammation Res: Off J Europ Histamine Res Soc20206943653731:CAS:528:DC%2BB3cXks1Kns7s%3D10.1007/s00011-020-01331-3 RamakrishnanSAnandVRoySVascular endothelial growth factor signaling in hypoxia and inflammationJ Neuroimmune Pharmacol : Off J Soc NeuroImmune Pharmacol2014921421601:STN:280:DC%2BC2crit1Wjtw%3D%3D10.1007/s11481-014-9531-7 KlaassenIVan NoordenCSchlingemannRMolecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditionsProg Retin Eye Res20133419481:CAS:528:DC%2BC3sXksFers7k%3D10.1016/j.preteyeres.2013.02.00123416119 Hellwig-BürgelTReview: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactionsJ Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res200525629731010.1089/jir.2005.25.297 BourneRCauses of vision loss worldwide, 1990–2010: a systematic analysisLancet Glob Health201316e339e34910.1016/s2214-109x(13)70113-x25104599 YangCTetramethylpyrazine protects CoCl2-induced apoptosis in human umbilical vein endothelial cells by regulating the PHD2/HIF/1α-VEGF pathwayMol Med Rep2016132128712961:CAS:528:DC%2BC28XptFantr4%3D10.3892/mmr.2015.467926676934 CarmelietPJainRAngiogenesis in cancer and other diseasesNature200040768012492571:CAS:528:DC%2BD3cXmvVSls74%3D10.1038/3502522011001068 MassinPSafety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II studyDiabetes Care20103311239924051:CAS:528:DC%2BC3cXhs1SisrzO10.2337/dc10-0493209804272963502 AppelhoffRDifferential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factorJ Biol Chem20042793738458384651:CAS:528:DC%2BD2cXnt1OqtLs%3D10.1074/jbc.M40602620015247232 CarmelietPRole of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesisNature199839466924854901:CAS:528:DyaK1cXltVGqsbg%3D10.1038/288679697772 XuYMelatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathwayJ Pineal Res2020691e126601:CAS:528:DC%2BB3cXptlKksbc%3D10.1111/jpi.1266032323368 RezzolaSAngiogenesis-inflammation cross talk in diabetic retinopathy: novel insights from the chick embryo chorioallantoic membrane/human vitreous platformFront Immunol2020111:CAS:528:DC%2BB3cXis1art7%2FN10.3389/fimmu.2020.581288331173887552803 YauJGlobal prevalence and major risk factors of diabetic retinopathy201235355656410.2337/dc11-1909 Kwak, S., S. Ku, and J. Bae, Fisetin inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflammation research : official journal of the European Histamine Research Society ... [et al.], 2014. 63(9): p. 779–87. https://doi.org/10.1007/s00011-014-0750-4 VeltmannMOsmotic induction of angiogenic growth factor expression in human retinal pigment epithelial cellsPLoS ONE20161111:CAS:528:DC%2BC28XmvVymtbk%3D10.1371/journal.pone.0147312268003594723123 Rankin, E. and A. Giaccia, Hypoxic control of metastasis. Science (New York, N.Y.), 2016. 352(6282): p. 175–80. https://doi.org/10.1126/science.aaf4405 QaumTVEGF-initiated blood-retinal barrier breakdown in early diabetesInvest Ophthalmol Vis Sci20014210240824131:STN:280:DC%2BD3MrgsFOjtw%3D%3D11527957 KeithBJohnsonRSimonMHIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progressionNat Rev Cancer20111219221:CAS:528:DC%2BC3MXhs1aisbzM10.1038/nrc3183221699723401912 RizwanHHigh glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytesLife Sci20202411:CAS:528:DC%2BC1MXitlOnsb7P10.1016/j.lfs.2019.11714831830478 DasAMcGuirePRangasamySDiabetic macular edema: pathophysiology and novel therapeutic targetsOphthalmology201512271375139410.1016/j.ophtha.2015.03.02425935789 HuangRMelatonin protects inner retinal neurons of newborn mice after hypoxia-ischemiaJ Pineal Res2021711e127161:CAS:528:DC%2BB3MXpsFOiu78%3D10.1111/jpi.1271633426650 AveleiraCTNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeabilityDiabetes20105911287228821:CAS:528:DC%2BC3cXhsV2nsbzM10.2337/db09-1606206933462963546 JiangWApigenin and Ethaverine Hydrochloride Enhance Retinal Vascular Barrier In Vitro and In VivoTranslational Vision Sci Technol202096810.1167/tvst.9.6.8 EhrlichRDiabetic macular oedema: physical, physiological and molecular factors contribute to this pathological processActa Ophthalmol20108832792911:CAS:528:DC%2BC3cXns1eqsbk%3D10.1111/j.1755-3768.2008.01501.x20222885 TakedaKCowanAFongGEssential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular systemCirculation200711677747811:CAS:528:DC%2BD2sXos1agu7w%3D10.1161/circulationaha.107.70151617646578 ImaiSTriamcinolone acetonide suppresses inflammation and facilitates vascular barrier function in human retinal microvascular endothelial cellsCurr Neurovasc Res20171432322411:CAS:528:DC%2BC2sXhsVKltrfJ10.2174/156720261466617061908192928625129 HuangQSheibaniNHigh glucose promotes retinal endothelial cell migration through activation of Src, PI3K/Akt1/eNOS, and ERKsAm J Physiol Cell Physiol20082956C1647C16571:CAS:528:DC%2BD1cXhsFWgtLfP10.1152/ajpcell.00322.2008189459412603562 IshidaSVEGF164 is proinflammatory in the diabetic retinaInvest Ophthalmol Vis Sci20034452155216210.1167/iovs.02-080712714656 ChanDGiacciaAPHD2 in tumour angiogenesisBr J Cancer20101031151:CAS:528:DC%2BC3cXotFemsbc%3D10.1038/sj.bjc.6605682204610862905285 ChavezJAlmhannaKBerti-MatteraLTransient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic ratsNeurosci Lett200537431791821:CAS:528:DC%2BD2MXkvFKltA%3D%3D10.1016/j.neulet.2004.10.05015663958 Saeedi, P., et al., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 edition. Diabetes research and clinical practice, 2019. 157: p. 107843. https://doi.org/10.1016/j.diabres.2019.107843 BehlTKotwaniAExploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathyPharmacol Res2015991371481:CAS:528:DC%2BC2MXhtVekt7jL10.1016/j.phrs.2015.05.01326054568 WangJMüller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakageDiabetes2010599229723051:CAS:528:DC%2BC3cXht12ku77N10.2337/db09-1420205307412927953 HuangSOxygen supplementation ameliorates tibial development via stimulating vascularization in tibetan chickens at high altitudesInt J Biol Sci20171312154715591:CAS:528:DC%2BC1cXitFemtr%2FF10.7150/ijbs.22670292301035723921 BahramiBDiabetic macular oedema: pathophysiology, management challenges and treatment resistanceDiabetologia2016598159416081:CAS:528:DC%2BC28XotV2iu7w%3D10.1007/s00125-016-3974-827179659 Yang, L., et al., Diacylglycerol kinase (DGK) inhibitor II (R59949) could suppress retinal neovascularization and protect retinal astrocytes in an oxygen-induced retinopathy model. Journal of molecular neuroscience : MN, 2015. e(1): p. 78–88. https://doi.org/10.1007/s12031-014-0469-2 ChaeKOpposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non P Mitchell (1518_CR39) 2011; 118 K Chae (1518_CR41) 2011; 30 X Li (1518_CR9) 2020; 69 T Qaum (1518_CR37) 2001; 42 Y Xu (1518_CR30) 2020; 69 B Muz (1518_CR46) 2012; 64 K Takeda (1518_CR45) 2007; 116 T Behl (1518_CR7) 2015; 99 1518_CR1 1518_CR50 1518_CR44 Y Xu (1518_CR42) 2018; 64 J Wang (1518_CR11) 2010; 59 R Huang (1518_CR31) 2021; 71 B Bahrami (1518_CR36) 2016; 59 C Aveleira (1518_CR5) 2010; 59 T Hellwig-Bürgel (1518_CR16) 2005; 25 X Yin (1518_CR8) 2020; 11 S Huang (1518_CR19) 2017; 13 J Aragonés (1518_CR49) 2001; 276 S Rezzola (1518_CR15) 2020; 11 P Massin (1518_CR38) 2010; 33 E Temes (1518_CR48) 2005; 280 P Carmeliet (1518_CR43) 1998; 394 C Yang (1518_CR47) 2016; 13 J Yau (1518_CR2) 2012; 35 M Veltmann (1518_CR29) 2016; 11 B Obermeier (1518_CR4) 2016; 133 W Jiang (1518_CR26) 2020; 9 A Das (1518_CR13) 2015; 122 S Imai (1518_CR32) 2017; 14 E Berra (1518_CR21) 2003; 22 R Appelhoff (1518_CR20) 2004; 279 D Antonetti (1518_CR10) 1999; 274 B Keith (1518_CR22) 2011; 12 B Aflibercept (1518_CR40) 2015; 372 K Takeda (1518_CR23) 2006; 26 S Ishida (1518_CR12) 2003; 44 Y Hu (1518_CR28) 2017; 16 P Carmeliet (1518_CR14) 2000; 407 D Antonetti (1518_CR3) 1999; 14 D Chan (1518_CR25) 2010; 103 I Klaassen (1518_CR34) 2013; 34 R Ehrlich (1518_CR6) 2010; 88 S Ang (1518_CR24) 2002; 32 1518_CR52 H Rizwan (1518_CR51) 2020; 241 J Chavez (1518_CR17) 2005; 374 R Bourne (1518_CR35) 2013; 1 1518_CR18 Q Huang (1518_CR27) 2008; 295 S Ramakrishnan (1518_CR33) 2014; 9 |
References_xml | – reference: AngSDisruption of oxygen homeostasis underlies congenital Chuvash polycythemiaNat Genet20023246146211:CAS:528:DC%2BD38XptVShtbs%3D10.1038/ng101912415268 – reference: AveleiraCTNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeabilityDiabetes20105911287228821:CAS:528:DC%2BC3cXhsV2nsbzM10.2337/db09-1606206933462963546 – reference: ChaeKOpposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non-hypoxic conditionsOncogene20113010121312281:CAS:528:DC%2BC3cXhtl2jtr7O10.1038/onc.2010.49821057546 – reference: TakedaKPlacental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2Mol Cell Biol20062622833683461:CAS:528:DC%2BD28Xht1aktr7I10.1128/mcb.00425-06169663701636770 – reference: XuYMelatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α-VEGF pathway in oxygen-induced retinopathy miceJ Pineal Res20186441:CAS:528:DC%2BC1cXktV2gs7w%3D10.1111/jpi.1247329411894 – reference: HuangQSheibaniNHigh glucose promotes retinal endothelial cell migration through activation of Src, PI3K/Akt1/eNOS, and ERKsAm J Physiol Cell Physiol20082956C1647C16571:CAS:528:DC%2BD1cXhsFWgtLfP10.1152/ajpcell.00322.2008189459412603562 – reference: CarmelietPRole of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesisNature199839466924854901:CAS:528:DyaK1cXltVGqsbg%3D10.1038/288679697772 – reference: TemesEActivation of HIF-prolyl hydroxylases by R59949, an inhibitor of the diacylglycerol kinaseJ Biol Chem20052802524238242441:CAS:528:DC%2BD2MXltlKgs7s%3D10.1074/jbc.M41469420015849364 – reference: ChanDGiacciaAPHD2 in tumour angiogenesisBr J Cancer20101031151:CAS:528:DC%2BC3cXotFemsbc%3D10.1038/sj.bjc.6605682204610862905285 – reference: ChavezJAlmhannaKBerti-MatteraLTransient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic ratsNeurosci Lett200537431791821:CAS:528:DC%2BD2MXkvFKltA%3D%3D10.1016/j.neulet.2004.10.05015663958 – reference: HuangRMelatonin protects inner retinal neurons of newborn mice after hypoxia-ischemiaJ Pineal Res2021711e127161:CAS:528:DC%2BB3MXpsFOiu78%3D10.1111/jpi.1271633426650 – reference: ObermeierBVermaARansohoffRThe blood-brain barrierHandb Clin Neurol2016133395910.1016/b978-0-444-63432-0.00003-727112670 – reference: BahramiBDiabetic macular oedema: pathophysiology, management challenges and treatment resistanceDiabetologia2016598159416081:CAS:528:DC%2BC28XotV2iu7w%3D10.1007/s00125-016-3974-827179659 – reference: CarmelietPJainRAngiogenesis in cancer and other diseasesNature200040768012492571:CAS:528:DC%2BD3cXmvVSls74%3D10.1038/3502522011001068 – reference: YauJGlobal prevalence and major risk factors of diabetic retinopathy201235355656410.2337/dc11-1909 – reference: AppelhoffRDifferential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factorJ Biol Chem20042793738458384651:CAS:528:DC%2BD2cXnt1OqtLs%3D10.1074/jbc.M40602620015247232 – reference: Kwak, S., S. Ku, and J. Bae, Fisetin inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflammation research : official journal of the European Histamine Research Society ... [et al.], 2014. 63(9): p. 779–87. https://doi.org/10.1007/s00011-014-0750-4 – reference: BerraEHIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxiaEMBO J20032216408240901:CAS:528:DC%2BD3sXmsVGgsLo%3D10.1093/emboj/cdg39212912907175782 – reference: HuYFK506 suppresses hypoxia-induced inflammation and protects tight junction function via the CaN-NFATc1 signaling pathway in retinal microvascular epithelial cellsMol Med Rep2017165697469801:CAS:528:DC%2BC1cXmsFWjtbs%3D10.3892/mmr.2017.747528901449 – reference: ImaiSTriamcinolone acetonide suppresses inflammation and facilitates vascular barrier function in human retinal microvascular endothelial cellsCurr Neurovasc Res20171432322411:CAS:528:DC%2BC2sXhsVKltrfJ10.2174/156720261466617061908192928625129 – reference: HuangSOxygen supplementation ameliorates tibial development via stimulating vascularization in tibetan chickens at high altitudesInt J Biol Sci20171312154715591:CAS:528:DC%2BC1cXitFemtr%2FF10.7150/ijbs.22670292301035723921 – reference: IshidaSVEGF164 is proinflammatory in the diabetic retinaInvest Ophthalmol Vis Sci20034452155216210.1167/iovs.02-080712714656 – reference: KlaassenIVan NoordenCSchlingemannRMolecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditionsProg Retin Eye Res20133419481:CAS:528:DC%2BC3sXksFers7k%3D10.1016/j.preteyeres.2013.02.00123416119 – reference: AfliberceptBor Ranibizumab for Diabetic Macular EdemaNew England J Med201537213119312031:CAS:528:DC%2BC2MXmtFaiu74%3D10.1056/NEJMoa1414264 – reference: Yang, L., et al., Diacylglycerol kinase (DGK) inhibitor II (R59949) could suppress retinal neovascularization and protect retinal astrocytes in an oxygen-induced retinopathy model. Journal of molecular neuroscience : MN, 2015. e(1): p. 78–88. https://doi.org/10.1007/s12031-014-0469-2 – reference: BourneRCauses of vision loss worldwide, 1990–2010: a systematic analysisLancet Glob Health201316e339e34910.1016/s2214-109x(13)70113-x25104599 – reference: YangCTetramethylpyrazine protects CoCl2-induced apoptosis in human umbilical vein endothelial cells by regulating the PHD2/HIF/1α-VEGF pathwayMol Med Rep2016132128712961:CAS:528:DC%2BC28XptFantr4%3D10.3892/mmr.2015.467926676934 – reference: Rankin, E. and A. Giaccia, Hypoxic control of metastasis. Science (New York, N.Y.), 2016. 352(6282): p. 175–80. https://doi.org/10.1126/science.aaf4405 – reference: Hellwig-BürgelTReview: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactionsJ Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res200525629731010.1089/jir.2005.25.297 – reference: AragonésJEvidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tensionJ Biol Chem200127613105481055510.1074/jbc.M00618020011136721 – reference: MassinPSafety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II studyDiabetes Care20103311239924051:CAS:528:DC%2BC3cXhs1SisrzO10.2337/dc10-0493209804272963502 – reference: XuYMelatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathwayJ Pineal Res2020691e126601:CAS:528:DC%2BB3cXptlKksbc%3D10.1111/jpi.1266032323368 – reference: MitchellPThe RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edemaOphthalmology2011118461562510.1016/j.ophtha.2011.01.03121459215 – reference: KeithBJohnsonRSimonMHIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progressionNat Rev Cancer20111219221:CAS:528:DC%2BC3MXhs1aisbzM10.1038/nrc3183221699723401912 – reference: MuzBProlyl hydroxylase domain enzyme 2 is the major player in regulating hypoxic responses in rheumatoid arthritisArthritis Rheum2012649285628671:CAS:528:DC%2BC38Xht1GrsbjL10.1002/art.3447922488178 – reference: Du, Y., et al., Hypoxia-Inducible Factor 1 alpha (HIF-1α)/Vascular Endothelial Growth Factor (VEGF) Pathway Participates in Angiogenesis of Myocardial Infarction in Muscone-Treated Mice: Preliminary Study. Medical science monitor : international medical journal of experimental and clinical research, 2018. 24: p. 8870–8877. https://doi.org/10.12659/msm.912051 – reference: RezzolaSAngiogenesis-inflammation cross talk in diabetic retinopathy: novel insights from the chick embryo chorioallantoic membrane/human vitreous platformFront Immunol2020111:CAS:528:DC%2BB3cXis1art7%2FN10.3389/fimmu.2020.581288331173887552803 – reference: EhrlichRDiabetic macular oedema: physical, physiological and molecular factors contribute to this pathological processActa Ophthalmol20108832792911:CAS:528:DC%2BC3cXns1eqsbk%3D10.1111/j.1755-3768.2008.01501.x20222885 – reference: AntonettiDVascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumorsJ Biol Chem19992743323463234671:CAS:528:DyaK1MXltlKnu70%3D10.1074/jbc.274.33.2346310438525 – reference: BehlTKotwaniAExploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathyPharmacol Res2015991371481:CAS:528:DC%2BC2MXhtVekt7jL10.1016/j.phrs.2015.05.01326054568 – reference: RamakrishnanSAnandVRoySVascular endothelial growth factor signaling in hypoxia and inflammationJ Neuroimmune Pharmacol : Off J Soc NeuroImmune Pharmacol2014921421601:STN:280:DC%2BC2crit1Wjtw%3D%3D10.1007/s11481-014-9531-7 – reference: Saeedi, P., et al., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 edition. Diabetes research and clinical practice, 2019. 157: p. 107843. https://doi.org/10.1016/j.diabres.2019.107843 – reference: RizwanHHigh glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytesLife Sci20202411:CAS:528:DC%2BC1MXitlOnsb7P10.1016/j.lfs.2019.11714831830478 – reference: AntonettiDMolecular mechanisms of vascular permeability in diabetic retinopathySeminars Ophthalmol19991442402481:STN:280:DC%2BD3c3isVSitQ%3D%3D10.3109/08820539909069543 – reference: QaumTVEGF-initiated blood-retinal barrier breakdown in early diabetesInvest Ophthalmol Vis Sci20014210240824131:STN:280:DC%2BD3MrgsFOjtw%3D%3D11527957 – reference: WangJMüller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakageDiabetes2010599229723051:CAS:528:DC%2BC3cXht12ku77N10.2337/db09-1420205307412927953 – reference: DasAMcGuirePRangasamySDiabetic macular edema: pathophysiology and novel therapeutic targetsOphthalmology201512271375139410.1016/j.ophtha.2015.03.02425935789 – reference: JiangWApigenin and Ethaverine Hydrochloride Enhance Retinal Vascular Barrier In Vitro and In VivoTranslational Vision Sci Technol202096810.1167/tvst.9.6.8 – reference: VeltmannMOsmotic induction of angiogenic growth factor expression in human retinal pigment epithelial cellsPLoS ONE20161111:CAS:528:DC%2BC28XmvVymtbk%3D10.1371/journal.pone.0147312268003594723123 – reference: YinXVascular endothelial growth factor (VEGF) as a vital target for brain inflammation during the COVID-19 outbreakACS Chem Neurosci20201112170417051:CAS:528:DC%2BB3cXhtVKqtbbL10.1021/acschemneuro.0c0029432485101 – reference: LiXEmodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathwayInflammation Res: Off J Europ Histamine Res Soc20206943653731:CAS:528:DC%2BB3cXks1Kns7s%3D10.1007/s00011-020-01331-3 – reference: TakedaKCowanAFongGEssential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular systemCirculation200711677747811:CAS:528:DC%2BD2sXos1agu7w%3D10.1161/circulationaha.107.70151617646578 – volume: 394 start-page: 485 issue: 6692 year: 1998 ident: 1518_CR43 publication-title: Nature doi: 10.1038/28867 – volume: 9 start-page: 142 issue: 2 year: 2014 ident: 1518_CR33 publication-title: J Neuroimmune Pharmacol : Off J Soc NeuroImmune Pharmacol doi: 10.1007/s11481-014-9531-7 – volume: 241 year: 2020 ident: 1518_CR51 publication-title: Life Sci doi: 10.1016/j.lfs.2019.117148 – volume: 26 start-page: 8336 issue: 22 year: 2006 ident: 1518_CR23 publication-title: Mol Cell Biol doi: 10.1128/mcb.00425-06 – volume: 103 start-page: 1 issue: 1 year: 2010 ident: 1518_CR25 publication-title: Br J Cancer doi: 10.1038/sj.bjc.6605682 – volume: 59 start-page: 2872 issue: 11 year: 2010 ident: 1518_CR5 publication-title: Diabetes doi: 10.2337/db09-1606 – volume: 295 start-page: C1647 issue: 6 year: 2008 ident: 1518_CR27 publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00322.2008 – ident: 1518_CR18 doi: 10.12659/msm.912051 – volume: 13 start-page: 1287 issue: 2 year: 2016 ident: 1518_CR47 publication-title: Mol Med Rep doi: 10.3892/mmr.2015.4679 – volume: 35 start-page: 556 issue: 3 year: 2012 ident: 1518_CR2 publication-title: Global prevalence and major risk factors of diabetic retinopathy doi: 10.2337/dc11-1909 – volume: 69 start-page: 365 issue: 4 year: 2020 ident: 1518_CR9 publication-title: Inflammation Res: Off J Europ Histamine Res Soc doi: 10.1007/s00011-020-01331-3 – volume: 407 start-page: 249 issue: 6801 year: 2000 ident: 1518_CR14 publication-title: Nature doi: 10.1038/35025220 – volume: 64 issue: 4 year: 2018 ident: 1518_CR42 publication-title: J Pineal Res doi: 10.1111/jpi.12473 – ident: 1518_CR1 doi: 10.1016/j.diabres.2019.107843 – volume: 25 start-page: 297 issue: 6 year: 2005 ident: 1518_CR16 publication-title: J Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res doi: 10.1089/jir.2005.25.297 – ident: 1518_CR50 doi: 10.1007/s12031-014-0469-2 – volume: 116 start-page: 774 issue: 7 year: 2007 ident: 1518_CR45 publication-title: Circulation doi: 10.1161/circulationaha.107.701516 – volume: 69 start-page: e12660 issue: 1 year: 2020 ident: 1518_CR30 publication-title: J Pineal Res doi: 10.1111/jpi.12660 – volume: 122 start-page: 1375 issue: 7 year: 2015 ident: 1518_CR13 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2015.03.024 – ident: 1518_CR44 doi: 10.1126/science.aaf4405 – volume: 374 start-page: 179 issue: 3 year: 2005 ident: 1518_CR17 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2004.10.050 – volume: 64 start-page: 2856 issue: 9 year: 2012 ident: 1518_CR46 publication-title: Arthritis Rheum doi: 10.1002/art.34479 – volume: 274 start-page: 23463 issue: 33 year: 1999 ident: 1518_CR10 publication-title: J Biol Chem doi: 10.1074/jbc.274.33.23463 – volume: 44 start-page: 2155 issue: 5 year: 2003 ident: 1518_CR12 publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.02-0807 – volume: 133 start-page: 39 year: 2016 ident: 1518_CR4 publication-title: Handb Clin Neurol doi: 10.1016/b978-0-444-63432-0.00003-7 – volume: 22 start-page: 4082 issue: 16 year: 2003 ident: 1518_CR21 publication-title: EMBO J doi: 10.1093/emboj/cdg392 – volume: 71 start-page: e12716 issue: 1 year: 2021 ident: 1518_CR31 publication-title: J Pineal Res doi: 10.1111/jpi.12716 – volume: 33 start-page: 2399 issue: 11 year: 2010 ident: 1518_CR38 publication-title: Diabetes Care doi: 10.2337/dc10-0493 – volume: 11 issue: 1 year: 2016 ident: 1518_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0147312 – volume: 30 start-page: 1213 issue: 10 year: 2011 ident: 1518_CR41 publication-title: Oncogene doi: 10.1038/onc.2010.498 – volume: 11 start-page: 1704 issue: 12 year: 2020 ident: 1518_CR8 publication-title: ACS Chem Neurosci doi: 10.1021/acschemneuro.0c00294 – volume: 32 start-page: 614 issue: 4 year: 2002 ident: 1518_CR24 publication-title: Nat Genet doi: 10.1038/ng1019 – volume: 14 start-page: 240 issue: 4 year: 1999 ident: 1518_CR3 publication-title: Seminars Ophthalmol doi: 10.3109/08820539909069543 – volume: 34 start-page: 19 year: 2013 ident: 1518_CR34 publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2013.02.001 – volume: 11 year: 2020 ident: 1518_CR15 publication-title: Front Immunol doi: 10.3389/fimmu.2020.581288 – volume: 280 start-page: 24238 issue: 25 year: 2005 ident: 1518_CR48 publication-title: J Biol Chem doi: 10.1074/jbc.M414694200 – volume: 118 start-page: 615 issue: 4 year: 2011 ident: 1518_CR39 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2011.01.031 – ident: 1518_CR52 doi: 10.1007/s00011-014-0750-4 – volume: 99 start-page: 137 year: 2015 ident: 1518_CR7 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2015.05.013 – volume: 13 start-page: 1547 issue: 12 year: 2017 ident: 1518_CR19 publication-title: Int J Biol Sci doi: 10.7150/ijbs.22670 – volume: 14 start-page: 232 issue: 3 year: 2017 ident: 1518_CR32 publication-title: Curr Neurovasc Res doi: 10.2174/1567202614666170619081929 – volume: 9 start-page: 8 issue: 6 year: 2020 ident: 1518_CR26 publication-title: Translational Vision Sci Technol doi: 10.1167/tvst.9.6.8 – volume: 372 start-page: 1193 issue: 13 year: 2015 ident: 1518_CR40 publication-title: New England J Med doi: 10.1056/NEJMoa1414264 – volume: 59 start-page: 1594 issue: 8 year: 2016 ident: 1518_CR36 publication-title: Diabetologia doi: 10.1007/s00125-016-3974-8 – volume: 88 start-page: 279 issue: 3 year: 2010 ident: 1518_CR6 publication-title: Acta Ophthalmol doi: 10.1111/j.1755-3768.2008.01501.x – volume: 16 start-page: 6974 issue: 5 year: 2017 ident: 1518_CR28 publication-title: Mol Med Rep doi: 10.3892/mmr.2017.7475 – volume: 279 start-page: 38458 issue: 37 year: 2004 ident: 1518_CR20 publication-title: J Biol Chem doi: 10.1074/jbc.M406026200 – volume: 276 start-page: 10548 issue: 13 year: 2001 ident: 1518_CR49 publication-title: J Biol Chem doi: 10.1074/jbc.M006180200 – volume: 59 start-page: 2297 issue: 9 year: 2010 ident: 1518_CR11 publication-title: Diabetes doi: 10.2337/db09-1420 – volume: 12 start-page: 9 issue: 1 year: 2011 ident: 1518_CR22 publication-title: Nat Rev Cancer doi: 10.1038/nrc3183 – volume: 42 start-page: 2408 issue: 10 year: 2001 ident: 1518_CR37 publication-title: Invest Ophthalmol Vis Sci – volume: 1 start-page: e339 issue: 6 year: 2013 ident: 1518_CR35 publication-title: Lancet Glob Health doi: 10.1016/s2214-109x(13)70113-x |
SSID | ssj0008282 |
Score | 2.4004617 |
Snippet | Objective
Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood;... Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is... ObjectiveDiabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 69 |
SubjectTerms | Allergology Angiogenesis Biomedical and Life Sciences Biomedicine Blood Breakdown Cell viability Dermatology Diabetes mellitus Diacylglycerol kinase Edema Electrical resistance Electrical resistivity Endothelial cells Enzyme-linked immunosorbent assay Growth factors Hydroxylase Hyperglycemia Hypoxia Hypoxia-inducible factor 1 Hypoxia-inducible factor 1a Immunofluorescence Immunology Investigations Kinases Microvasculature Neurology Original Research Article Pathogenesis Permeability Pharmacology/Toxicology Proteins Retina Reverse transcription Rheumatology Vascular endothelial growth factor Zonula occludens-1 protein |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxELagXLgg_llakJFQL8Tqetdrr08IQUOEBMqhRbmt_CtVLZvSJKryLrwEL8IzMeP9iVBFz-tkN_lmx994Zr4h5K2pLQffG5isSsmE9uAHizwyLpWNmDiyHHuHv36Ts1PxZVEt-gO3VV9WOfjE5Kj90uEZ-REyffC4QGDeX_5kODUKs6v9CI275B5Kl2FJl1qMAReqs3XZzqJkEInlfdNMap1LZIhhgQJsiBys5d-N6QbbvJEpTRvQ9CF50DNH-qGD-hG5E9rH5HDeSU9vJ_Rk10m1mtBDOt-JUm-fkF_z2aeCophmu0F6SVGneChYZxCYA8SepjJ2io2NeCtrrnCeHYWo2Zx7CNfpWUvTUL9xyQ-s5xuqWWloPTZ0XYBNU8wIrKjdwtI07R5-E4VrdHYGEP35ffT9-POU4jzka7N9Sk6nxycfZ6yfzMBcqao1CzXQAKCWutTO5d6UPBotQzCIbuUrxXnkwjhpQxHr3GgkmoJrX0RnoqjKZ2SvXbbhBaHCaGeULWKUXhhpNHceOFINAbKtvXIZ4QMsjetly3F6xkUzCi4nKBuAsklQNkVG3o2fuexEO25dfTCg3fQv8KrZmVtG3oyX4dXDf8-0YbmBNRiMaanyOiPPOysZb1cKpUohdUYmg9nsvvz_z_Ly9mfZJ_cLbL9IR0AHZG99tQmvgBSt7etk-X8Bb2AJDg priority: 102 providerName: ProQuest |
Title | PHD2 attenuates high-glucose-induced blood retinal barrier breakdown in human retinal microvascular endothelial cells by regulating the Hif-1α/VEGF pathway |
URI | https://link.springer.com/article/10.1007/s00011-021-01518-2 https://www.ncbi.nlm.nih.gov/pubmed/34773469 https://www.proquest.com/docview/2619341115 https://www.proquest.com/docview/2597496708 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xuxcuiDeBpTIS2guNiJ3Ejo8ttFuBqCq0ReUUObEjrXbJom0r1P_Cn-CP8JuYcR4VWkDilIMnz8_2fJN5Abw0WcFx73WhTGMZJtriPiiiKuRSFRU5jgpOucMf5nK2TN6t0lWbFLbuot07l6TfqftkN09fQgopQBXGEd8DOErJdsdZvBSjfv9FG6LxcYo4RPsralNl_nyN39XRDY55wz_q1c70Ltxp-SIbNQDfg1uuvg8ni6bg9G7Izvb5U-shO2GLfSnq3QP4vpi9FYxKaNZbIpWMqhN3YeohmuMIrGU-eJ1ROiPdqjDX1MWOoa1sLiwa6ey8Zr6VXy_yhaL4uhhW5mpLaVyXOJMZ-QHWrNihqO9xj-_EcIzNzhGYnz9ef5qcThl1Qf5mdg9hOZ2cvZmFbT-GsIxVugldhsofCaWOdVlG1sS8Mlo6ZwjT1KaK84onppSFE1UWGU30MuHaiqo0VZLGj-CwvqrdE2CJ0aVRhagqaRMjjealRWaUoVlcZFaVAfAOlrxsi5VTz4zLvC-z7KHMEcrcQ5mLAF7153xtSnX8U_q4Qztvl-06J3MS1Tqy5ABe9MO44OjrmdpdbVGGTDAtVZQF8LiZJf3t4kSpOJE6gGE3bfYX__uzPP0_8WdwW1AShv8RdAyHm-ute47UaFMM4ECt1ACORtPxeE7H08_vJ3gcT-aLjwO_Tn4BEQELag |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuiDehBYwEvbBRY8d5-IAQ0F1S2q5WaIt6C07sVCtab-nuapX_wm9A4o_wm5jJa4Uqeus5TmxlxuNvPI-PkFcqzhjYXuOGgR-6Qmqwg9wrXBZGWYGBo4xh7fDRKEyOxeeT4GSD_GprYTCtsrWJlaHWsxzvyHcR6YPFBQDz7uKHi6xRGF1tKTRqtTgw5Qpctvnb_T2Q72vOh4PJx8RtWAXc3I-ChWtiOMIAFklf5rmnlc8KJUNjFK4s0EHEWMGEysPM8CL2lESQJJjUvMhVIZAlAkz-pvDBlemRzQ-D0fhLZ_vBf6njq9x3wffzmjKdqlivgl8upkTAEcxAP_89Cq_g2yux2erIG94ldxqsSt_XynWPbBh7n-yM62bXZZ9O1rVb8z7doeN1G-zyAfk5TvY4xfaddomAlmJn5DZF3p1aDUqlaZU4T7GUEqfK1CUy6FHw09V3PVtZOrW0ohHshpxjBmGbP0uN1VhCdga7iGIMYk6zEoaeVqRk9pTCM5pMQSn-_N79Ovg0pMjAvFLlQ3J8I1J7RHp2Zs0TQoWSuYoyXhShFipUkuUaUFkMLnkW6yh3CGvFkuZNo3Tk6zhLuxbPlShTEGVaiTLlDnnTvXNRtwm5dvR2K-20MRnzdK3gDnnZPYbNjn9PWTNbwhh0_2QYebFDHtda0k3niyjyRSgd0m_VZv3x_6_l6fVreUFuJZOjw_Rwf3SwRW5zLP6oLqC2SW9xuTTPAJItsufNPqDk201vvb_vDkbH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB1VRUJsEG9cCgwSdEOseMb22F4ghEhDSqHKokXZmfE8qogyKU2iKP_CT7DlI_gm7h0_IlTRXdce2yPfx5zr-ziEvJR5xcD3mlCksQiTQoMf5JENmcgqi4mjimHv8OcjMTpJPk7SyRb53fbCYFll6xO9o9Yzhf_I-4j0weMCgOnbpixiPBi-Pf8RIoMUZlpbOo1aRQ7NegXh2_zNwQBk_Yrz4f7x-1HYMAyEKs7SRWhyOM4AIhVxoVSkZcysLIQxEneZ6jRjzLJEKlEZbvNIFgiYElZobpW0CTJGgPu_kcUpQxvLJl2wh5Ph6kwrj0OIAqOmYce37XkgFmJxBBzGDDT130PxEtK9lKX1h9_wDrndoFb6rlazu2TLuHtkb1yPvV736PGmi2veo3t0vBmIvb5Pfo5HA05xkKdbIrSlOCO5LZYPp06DemnqS-gpNlXiqyp5gVx6FCJ2-U3PVo5OHfWEgt2S71hL2FbSUuM0NpOdgT1RzEbMabWGpaeensydUrhGR1NQjz-_-l_2PwwpcjGv5PoBObkWmT0k227mzGNCE1komVXcWqETKWTBlAZ8lkNwXuU6UwFhrVhK1YxMR-aOs7Ib9uxFWYIoSy_KkgfkdXfPeT0w5MrVu620y8Z5zMuNqgfkRXcZzB6_nnRmtoQ1GAgWIovygDyqtaR7XZxkWZyIIiC9Vm02D___Xnau3stzchMMrvx0cHT4hNzi2AXi_0Ttku3FxdI8BWy2qJ55I6Dk63Vb3V-iWkmX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PHD2+attenuates+high-glucose-induced+blood+retinal+barrier+breakdown+in+human+retinal+microvascular+endothelial+cells+by+regulating+the+Hif-1%CE%B1%2FVEGF+pathway&rft.jtitle=Inflammation+research&rft.au=Li%2C+Jia&rft.au=Lu%2C+Xi&rft.au=Wei%2C+Liqing&rft.au=Ye%2C+Dan&rft.date=2022-01-01&rft.pub=Springer+International+Publishing&rft.issn=1023-3830&rft.eissn=1420-908X&rft.volume=71&rft.issue=1&rft.spage=69&rft.epage=79&rft_id=info:doi/10.1007%2Fs00011-021-01518-2&rft.externalDocID=10_1007_s00011_021_01518_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-3830&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-3830&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-3830&client=summon |