PHD2 attenuates high-glucose-induced blood retinal barrier breakdown in human retinal microvascular endothelial cells by regulating the Hif-1α/VEGF pathway

Objective Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood–retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth f...

Full description

Saved in:
Bibliographic Details
Published inInflammation research Vol. 71; no. 1; pp. 69 - 79
Main Authors Li, Jia, Lu, Xi, Wei, Liqing, Ye, Dan, Lin, Jianqiang, Tang, Xiaoyu, Cui, Kaixuan, Yu, Shanshan, Xu, Yue, Liang, Xiaoling
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood–retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina. Materials and methods Primary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA. Results Under hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects. Conclusion These results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis.
AbstractList Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood-retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina.OBJECTIVEDiabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood-retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina.Primary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA.MATERIALS AND METHODSPrimary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA.Under hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects.RESULTSUnder hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects.These results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis.CONCLUSIONThese results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis.
Objective Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood–retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina. Materials and methods Primary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA. Results Under hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects. Conclusion These results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis.
Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood-retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina. Primary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA. Under hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects. These results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis.
ObjectiveDiabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is hypothesized to result from breakdown of the blood–retinal barrier (BRB) due to retinal inflammation by vascular endothelial growth factor (VEGF) secretion under hyperglycemic conditions. In this investigation, we discovered that Prolyl-4-hydroxylase 2 (PHD2), an upstream regulator of hypoxia-inducible factor 1 (HIF-1) modulates VEGF expression and thus preserves BRB function in the mouse retina.Materials and methodsPrimary human retinal microvascular endothelial cells (hRMECs) were cultured in human endothelial serum-free growth medium and exposed to hyperglycemia. Changes in cell viability were investigated by an MTT assay. BRB function in each group was revealed by a paracellular permeability assay and trans-endothelial electrical resistance (TEER). Morphological changes in the BRB were investigated by immunofluorescence staining of occludin and zonula occludens-1 (ZO-1). The mRNA and protein levels of the tight junction proteins, PHD2, HIF-1α, and VEGF were measured by reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and ELISA.ResultsUnder hyperglycemic conditions, the viability of hRMECs was decreased, and PHD2 expression was downregulated, accompanied by increased paracellular permeability and decreased trans-endothelial electrical resistance. Additionally, HIF-1α and VEGF expression levels were increased, whereas the expression levels of tight junction proteins, including occludin and ZO-1, were decreased and BRB function was compromised. The PHD2 activator R59949 (diacylglycerol kinase inhibitor II), altered these pathological changes, and the PHD2 inhibitor dimethyloxalylglycine (DMOG) resulted in the opposite effects.ConclusionThese results demonstrated that PHD2 inhibited HIF-1 activity by inhibiting HIF-1α expression in hRMECs under hyperglycemic conditions, which led to the downregulation of the expression of the angiogenic factor VEGF, and thus helped to maintain the functions of hRMECs. Therefore, it is reasonable to propose that PHD2 could be a potential novel target for the treatment of DME or other diseases with a similar pathogenesis.
Author Tang, Xiaoyu
Li, Jia
Wei, Liqing
Lin, Jianqiang
Cui, Kaixuan
Liang, Xiaoling
Lu, Xi
Yu, Shanshan
Ye, Dan
Xu, Yue
Author_xml – sequence: 1
  givenname: Jia
  surname: Li
  fullname: Li, Jia
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University
– sequence: 2
  givenname: Xi
  surname: Lu
  fullname: Lu, Xi
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University
– sequence: 3
  givenname: Liqing
  surname: Wei
  fullname: Wei, Liqing
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Eye Hospital of Wenzhou Medical University, Hangzhou Xihu Zhijiang Eye Hospital
– sequence: 4
  givenname: Dan
  surname: Ye
  fullname: Ye, Dan
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University
– sequence: 5
  givenname: Jianqiang
  surname: Lin
  fullname: Lin, Jianqiang
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University
– sequence: 6
  givenname: Xiaoyu
  surname: Tang
  fullname: Tang, Xiaoyu
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University
– sequence: 7
  givenname: Kaixuan
  surname: Cui
  fullname: Cui, Kaixuan
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University
– sequence: 8
  givenname: Shanshan
  surname: Yu
  fullname: Yu, Shanshan
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University
– sequence: 9
  givenname: Yue
  surname: Xu
  fullname: Xu, Yue
  email: xuyueeye@163.com
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University
– sequence: 10
  givenname: Xiaoling
  orcidid: 0000-0001-5753-5100
  surname: Liang
  fullname: Liang, Xiaoling
  email: liangxlsums@qq.com
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34773469$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtuFDEQhi0URB5wARbIEhs2Jn70c4nyGqRIsADEzqp2V3c79NiD7Saau3AJLsKZ8DAJSFnEkuWS6vt_les_JgfOOyTkpeBvBef1aeScC8G4zFeUomHyCTkSheSs5c3Xg1xzqZhqFD8kxzHeZLyRjXxGDlVR16qo2iPy8-PqXFJICd0CCSOd7DixcV6Mj8is6xeDPe1m73saMFkHM-0gBIuBdgHhW-9vHbWOTssa3D9kbU3wPyCaZYZA0fU-TTjb3DE4z5F224yOuZnxkeYeXdmBid-_Tr9cXF3SDaTpFrbPydMB5ogv7t4T8vny4tPZil1_uHp_9u6aGVWXiWHDK9Hmo1pjeA9KDNBWiFAVvC77shZiEAWYqkM5NBxaLlRbiLaXg4GhKNUJebP33QT_fcGY9NrG3aDg0C9Ry7Kti7aqeZPR1w_QG7-E_OVM5SFUIYTYGb66o5Zujb3eBLuGsNX3e89AswfymmIMOGhjU16GdymAnbXgehex3kesc8T6b8RaZql8IL13f1Sk9qKYYTdi-D_2I6o_7226Ng
CitedBy_id crossref_primary_10_1016_j_jep_2024_117751
crossref_primary_10_1002_kjm2_12722
crossref_primary_10_1089_ars_2022_0028
crossref_primary_10_31083_j_fbl2711308
crossref_primary_10_1007_s10792_025_03458_w
crossref_primary_10_1016_j_biopha_2024_116202
crossref_primary_10_1021_acsomega_4c06546
crossref_primary_10_1124_pharmrev_123_000928
Cites_doi 10.1038/28867
10.1007/s11481-014-9531-7
10.1016/j.lfs.2019.117148
10.1128/mcb.00425-06
10.1038/sj.bjc.6605682
10.2337/db09-1606
10.1152/ajpcell.00322.2008
10.12659/msm.912051
10.3892/mmr.2015.4679
10.2337/dc11-1909
10.1007/s00011-020-01331-3
10.1038/35025220
10.1111/jpi.12473
10.1016/j.diabres.2019.107843
10.1089/jir.2005.25.297
10.1007/s12031-014-0469-2
10.1161/circulationaha.107.701516
10.1111/jpi.12660
10.1016/j.ophtha.2015.03.024
10.1126/science.aaf4405
10.1016/j.neulet.2004.10.050
10.1002/art.34479
10.1074/jbc.274.33.23463
10.1167/iovs.02-0807
10.1016/b978-0-444-63432-0.00003-7
10.1093/emboj/cdg392
10.1111/jpi.12716
10.2337/dc10-0493
10.1371/journal.pone.0147312
10.1038/onc.2010.498
10.1021/acschemneuro.0c00294
10.1038/ng1019
10.3109/08820539909069543
10.1016/j.preteyeres.2013.02.001
10.3389/fimmu.2020.581288
10.1074/jbc.M414694200
10.1016/j.ophtha.2011.01.031
10.1007/s00011-014-0750-4
10.1016/j.phrs.2015.05.013
10.7150/ijbs.22670
10.2174/1567202614666170619081929
10.1167/tvst.9.6.8
10.1056/NEJMoa1414264
10.1007/s00125-016-3974-8
10.1111/j.1755-3768.2008.01501.x
10.3892/mmr.2017.7475
10.1074/jbc.M406026200
10.1074/jbc.M006180200
10.2337/db09-1420
10.1038/nrc3183
10.1016/s2214-109x(13)70113-x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
DBID AAYXX
CITATION
NPM
3V.
7QL
7T5
7T7
7TM
7TO
7U9
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
C1K
CCPQU
FR3
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00011-021-01518-2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Oncogenes and Growth Factors Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1420-908X
EndPage 79
ExternalDocumentID 34773469
10_1007_s00011_021_01518_2
Genre Journal Article
GrantInformation_xml – fundername: Young Scientists Fund
  grantid: 81900864
  funderid: http://dx.doi.org/10.13039/501100010909
– fundername: National Natural Science Foundation of China
  grantid: 81870668
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Young Scientists Fund
  grantid: 81900864
– fundername: National Natural Science Foundation of China
  grantid: 81870668
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
2.D
203
28-
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3O-
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EN4
EPAXT
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PKN
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
X7M
Y6R
YLTOR
Z45
Z7U
Z7W
Z82
Z87
Z8O
Z8Q
Z8V
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QL
7T5
7T7
7TM
7TO
7U9
7XB
8FD
8FK
ABRTQ
C1K
FR3
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-e8061999939cc0da31fa96eea64075d5711f14ac6be2f80a90139419d2fcaf453
IEDL.DBID U2A
ISSN 1023-3830
1420-908X
IngestDate Fri Jul 11 10:13:45 EDT 2025
Sat Jul 26 02:38:35 EDT 2025
Wed Feb 19 02:28:18 EST 2025
Thu Apr 24 23:02:52 EDT 2025
Tue Jul 01 01:43:52 EDT 2025
Fri Feb 21 02:46:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hyperglycemia
Hypoxia-inducible factor 1α
Prolyl-4-hydroxylase 2
Tight junction
Blood–retinal barrier
Retinal inflammation
Vascular endothelial growth factor
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-e8061999939cc0da31fa96eea64075d5711f14ac6be2f80a90139419d2fcaf453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5753-5100
PMID 34773469
PQID 2619341115
PQPubID 24296
PageCount 11
ParticipantIDs proquest_miscellaneous_2597496708
proquest_journals_2619341115
pubmed_primary_34773469
crossref_citationtrail_10_1007_s00011_021_01518_2
crossref_primary_10_1007_s00011_021_01518_2
springer_journals_10_1007_s00011_021_01518_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
2022-Jan
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: New York
PublicationSubtitle Official Journal of: The International Association of Inflammation Societies + The European Histamine Research Society
PublicationTitle Inflammation research
PublicationTitleAbbrev Inflamm. Res
PublicationTitleAlternate Inflamm Res
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References AfliberceptBor Ranibizumab for Diabetic Macular EdemaNew England J Med201537213119312031:CAS:528:DC%2BC2MXmtFaiu74%3D10.1056/NEJMoa1414264
AragonésJEvidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tensionJ Biol Chem200127613105481055510.1074/jbc.M00618020011136721
ObermeierBVermaARansohoffRThe blood-brain barrierHandb Clin Neurol2016133395910.1016/b978-0-444-63432-0.00003-727112670
AntonettiDVascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumorsJ Biol Chem19992743323463234671:CAS:528:DyaK1MXltlKnu70%3D10.1074/jbc.274.33.2346310438525
TakedaKPlacental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2Mol Cell Biol20062622833683461:CAS:528:DC%2BD28Xht1aktr7I10.1128/mcb.00425-06169663701636770
MuzBProlyl hydroxylase domain enzyme 2 is the major player in regulating hypoxic responses in rheumatoid arthritisArthritis Rheum2012649285628671:CAS:528:DC%2BC38Xht1GrsbjL10.1002/art.3447922488178
Du, Y., et al., Hypoxia-Inducible Factor 1 alpha (HIF-1α)/Vascular Endothelial Growth Factor (VEGF) Pathway Participates in Angiogenesis of Myocardial Infarction in Muscone-Treated Mice: Preliminary Study. Medical science monitor : international medical journal of experimental and clinical research, 2018. 24: p. 8870–8877. https://doi.org/10.12659/msm.912051
BerraEHIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxiaEMBO J20032216408240901:CAS:528:DC%2BD3sXmsVGgsLo%3D10.1093/emboj/cdg39212912907175782
AngSDisruption of oxygen homeostasis underlies congenital Chuvash polycythemiaNat Genet20023246146211:CAS:528:DC%2BD38XptVShtbs%3D10.1038/ng101912415268
HuYFK506 suppresses hypoxia-induced inflammation and protects tight junction function via the CaN-NFATc1 signaling pathway in retinal microvascular epithelial cellsMol Med Rep2017165697469801:CAS:528:DC%2BC1cXmsFWjtbs%3D10.3892/mmr.2017.747528901449
XuYMelatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α-VEGF pathway in oxygen-induced retinopathy miceJ Pineal Res20186441:CAS:528:DC%2BC1cXktV2gs7w%3D10.1111/jpi.1247329411894
YinXVascular endothelial growth factor (VEGF) as a vital target for brain inflammation during the COVID-19 outbreakACS Chem Neurosci20201112170417051:CAS:528:DC%2BB3cXhtVKqtbbL10.1021/acschemneuro.0c0029432485101
LiXEmodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathwayInflammation Res: Off J Europ Histamine Res Soc20206943653731:CAS:528:DC%2BB3cXks1Kns7s%3D10.1007/s00011-020-01331-3
RamakrishnanSAnandVRoySVascular endothelial growth factor signaling in hypoxia and inflammationJ Neuroimmune Pharmacol : Off J Soc NeuroImmune Pharmacol2014921421601:STN:280:DC%2BC2crit1Wjtw%3D%3D10.1007/s11481-014-9531-7
KlaassenIVan NoordenCSchlingemannRMolecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditionsProg Retin Eye Res20133419481:CAS:528:DC%2BC3sXksFers7k%3D10.1016/j.preteyeres.2013.02.00123416119
Hellwig-BürgelTReview: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactionsJ Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res200525629731010.1089/jir.2005.25.297
BourneRCauses of vision loss worldwide, 1990–2010: a systematic analysisLancet Glob Health201316e339e34910.1016/s2214-109x(13)70113-x25104599
YangCTetramethylpyrazine protects CoCl2-induced apoptosis in human umbilical vein endothelial cells by regulating the PHD2/HIF/1α-VEGF pathwayMol Med Rep2016132128712961:CAS:528:DC%2BC28XptFantr4%3D10.3892/mmr.2015.467926676934
CarmelietPJainRAngiogenesis in cancer and other diseasesNature200040768012492571:CAS:528:DC%2BD3cXmvVSls74%3D10.1038/3502522011001068
MassinPSafety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II studyDiabetes Care20103311239924051:CAS:528:DC%2BC3cXhs1SisrzO10.2337/dc10-0493209804272963502
AppelhoffRDifferential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factorJ Biol Chem20042793738458384651:CAS:528:DC%2BD2cXnt1OqtLs%3D10.1074/jbc.M40602620015247232
CarmelietPRole of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesisNature199839466924854901:CAS:528:DyaK1cXltVGqsbg%3D10.1038/288679697772
XuYMelatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathwayJ Pineal Res2020691e126601:CAS:528:DC%2BB3cXptlKksbc%3D10.1111/jpi.1266032323368
RezzolaSAngiogenesis-inflammation cross talk in diabetic retinopathy: novel insights from the chick embryo chorioallantoic membrane/human vitreous platformFront Immunol2020111:CAS:528:DC%2BB3cXis1art7%2FN10.3389/fimmu.2020.581288331173887552803
YauJGlobal prevalence and major risk factors of diabetic retinopathy201235355656410.2337/dc11-1909
Kwak, S., S. Ku, and J. Bae, Fisetin inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflammation research : official journal of the European Histamine Research Society ... [et al.], 2014. 63(9): p. 779–87. https://doi.org/10.1007/s00011-014-0750-4
VeltmannMOsmotic induction of angiogenic growth factor expression in human retinal pigment epithelial cellsPLoS ONE20161111:CAS:528:DC%2BC28XmvVymtbk%3D10.1371/journal.pone.0147312268003594723123
Rankin, E. and A. Giaccia, Hypoxic control of metastasis. Science (New York, N.Y.), 2016. 352(6282): p. 175–80. https://doi.org/10.1126/science.aaf4405
QaumTVEGF-initiated blood-retinal barrier breakdown in early diabetesInvest Ophthalmol Vis Sci20014210240824131:STN:280:DC%2BD3MrgsFOjtw%3D%3D11527957
KeithBJohnsonRSimonMHIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progressionNat Rev Cancer20111219221:CAS:528:DC%2BC3MXhs1aisbzM10.1038/nrc3183221699723401912
RizwanHHigh glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytesLife Sci20202411:CAS:528:DC%2BC1MXitlOnsb7P10.1016/j.lfs.2019.11714831830478
DasAMcGuirePRangasamySDiabetic macular edema: pathophysiology and novel therapeutic targetsOphthalmology201512271375139410.1016/j.ophtha.2015.03.02425935789
HuangRMelatonin protects inner retinal neurons of newborn mice after hypoxia-ischemiaJ Pineal Res2021711e127161:CAS:528:DC%2BB3MXpsFOiu78%3D10.1111/jpi.1271633426650
AveleiraCTNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeabilityDiabetes20105911287228821:CAS:528:DC%2BC3cXhsV2nsbzM10.2337/db09-1606206933462963546
JiangWApigenin and Ethaverine Hydrochloride Enhance Retinal Vascular Barrier In Vitro and In VivoTranslational Vision Sci Technol202096810.1167/tvst.9.6.8
EhrlichRDiabetic macular oedema: physical, physiological and molecular factors contribute to this pathological processActa Ophthalmol20108832792911:CAS:528:DC%2BC3cXns1eqsbk%3D10.1111/j.1755-3768.2008.01501.x20222885
TakedaKCowanAFongGEssential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular systemCirculation200711677747811:CAS:528:DC%2BD2sXos1agu7w%3D10.1161/circulationaha.107.70151617646578
ImaiSTriamcinolone acetonide suppresses inflammation and facilitates vascular barrier function in human retinal microvascular endothelial cellsCurr Neurovasc Res20171432322411:CAS:528:DC%2BC2sXhsVKltrfJ10.2174/156720261466617061908192928625129
HuangQSheibaniNHigh glucose promotes retinal endothelial cell migration through activation of Src, PI3K/Akt1/eNOS, and ERKsAm J Physiol Cell Physiol20082956C1647C16571:CAS:528:DC%2BD1cXhsFWgtLfP10.1152/ajpcell.00322.2008189459412603562
IshidaSVEGF164 is proinflammatory in the diabetic retinaInvest Ophthalmol Vis Sci20034452155216210.1167/iovs.02-080712714656
ChanDGiacciaAPHD2 in tumour angiogenesisBr J Cancer20101031151:CAS:528:DC%2BC3cXotFemsbc%3D10.1038/sj.bjc.6605682204610862905285
ChavezJAlmhannaKBerti-MatteraLTransient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic ratsNeurosci Lett200537431791821:CAS:528:DC%2BD2MXkvFKltA%3D%3D10.1016/j.neulet.2004.10.05015663958
Saeedi, P., et al., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 edition. Diabetes research and clinical practice, 2019. 157: p. 107843. https://doi.org/10.1016/j.diabres.2019.107843
BehlTKotwaniAExploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathyPharmacol Res2015991371481:CAS:528:DC%2BC2MXhtVekt7jL10.1016/j.phrs.2015.05.01326054568
WangJMüller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakageDiabetes2010599229723051:CAS:528:DC%2BC3cXht12ku77N10.2337/db09-1420205307412927953
HuangSOxygen supplementation ameliorates tibial development via stimulating vascularization in tibetan chickens at high altitudesInt J Biol Sci20171312154715591:CAS:528:DC%2BC1cXitFemtr%2FF10.7150/ijbs.22670292301035723921
BahramiBDiabetic macular oedema: pathophysiology, management challenges and treatment resistanceDiabetologia2016598159416081:CAS:528:DC%2BC28XotV2iu7w%3D10.1007/s00125-016-3974-827179659
Yang, L., et al., Diacylglycerol kinase (DGK) inhibitor II (R59949) could suppress retinal neovascularization and protect retinal astrocytes in an oxygen-induced retinopathy model. Journal of molecular neuroscience : MN, 2015. e(1): p. 78–88. https://doi.org/10.1007/s12031-014-0469-2
ChaeKOpposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non
P Mitchell (1518_CR39) 2011; 118
K Chae (1518_CR41) 2011; 30
X Li (1518_CR9) 2020; 69
T Qaum (1518_CR37) 2001; 42
Y Xu (1518_CR30) 2020; 69
B Muz (1518_CR46) 2012; 64
K Takeda (1518_CR45) 2007; 116
T Behl (1518_CR7) 2015; 99
1518_CR1
1518_CR50
1518_CR44
Y Xu (1518_CR42) 2018; 64
J Wang (1518_CR11) 2010; 59
R Huang (1518_CR31) 2021; 71
B Bahrami (1518_CR36) 2016; 59
C Aveleira (1518_CR5) 2010; 59
T Hellwig-Bürgel (1518_CR16) 2005; 25
X Yin (1518_CR8) 2020; 11
S Huang (1518_CR19) 2017; 13
J Aragonés (1518_CR49) 2001; 276
S Rezzola (1518_CR15) 2020; 11
P Massin (1518_CR38) 2010; 33
E Temes (1518_CR48) 2005; 280
P Carmeliet (1518_CR43) 1998; 394
C Yang (1518_CR47) 2016; 13
J Yau (1518_CR2) 2012; 35
M Veltmann (1518_CR29) 2016; 11
B Obermeier (1518_CR4) 2016; 133
W Jiang (1518_CR26) 2020; 9
A Das (1518_CR13) 2015; 122
S Imai (1518_CR32) 2017; 14
E Berra (1518_CR21) 2003; 22
R Appelhoff (1518_CR20) 2004; 279
D Antonetti (1518_CR10) 1999; 274
B Keith (1518_CR22) 2011; 12
B Aflibercept (1518_CR40) 2015; 372
K Takeda (1518_CR23) 2006; 26
S Ishida (1518_CR12) 2003; 44
Y Hu (1518_CR28) 2017; 16
P Carmeliet (1518_CR14) 2000; 407
D Antonetti (1518_CR3) 1999; 14
D Chan (1518_CR25) 2010; 103
I Klaassen (1518_CR34) 2013; 34
R Ehrlich (1518_CR6) 2010; 88
S Ang (1518_CR24) 2002; 32
1518_CR52
H Rizwan (1518_CR51) 2020; 241
J Chavez (1518_CR17) 2005; 374
R Bourne (1518_CR35) 2013; 1
1518_CR18
Q Huang (1518_CR27) 2008; 295
S Ramakrishnan (1518_CR33) 2014; 9
References_xml – reference: AngSDisruption of oxygen homeostasis underlies congenital Chuvash polycythemiaNat Genet20023246146211:CAS:528:DC%2BD38XptVShtbs%3D10.1038/ng101912415268
– reference: AveleiraCTNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeabilityDiabetes20105911287228821:CAS:528:DC%2BC3cXhsV2nsbzM10.2337/db09-1606206933462963546
– reference: ChaeKOpposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non-hypoxic conditionsOncogene20113010121312281:CAS:528:DC%2BC3cXhtl2jtr7O10.1038/onc.2010.49821057546
– reference: TakedaKPlacental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2Mol Cell Biol20062622833683461:CAS:528:DC%2BD28Xht1aktr7I10.1128/mcb.00425-06169663701636770
– reference: XuYMelatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α-VEGF pathway in oxygen-induced retinopathy miceJ Pineal Res20186441:CAS:528:DC%2BC1cXktV2gs7w%3D10.1111/jpi.1247329411894
– reference: HuangQSheibaniNHigh glucose promotes retinal endothelial cell migration through activation of Src, PI3K/Akt1/eNOS, and ERKsAm J Physiol Cell Physiol20082956C1647C16571:CAS:528:DC%2BD1cXhsFWgtLfP10.1152/ajpcell.00322.2008189459412603562
– reference: CarmelietPRole of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesisNature199839466924854901:CAS:528:DyaK1cXltVGqsbg%3D10.1038/288679697772
– reference: TemesEActivation of HIF-prolyl hydroxylases by R59949, an inhibitor of the diacylglycerol kinaseJ Biol Chem20052802524238242441:CAS:528:DC%2BD2MXltlKgs7s%3D10.1074/jbc.M41469420015849364
– reference: ChanDGiacciaAPHD2 in tumour angiogenesisBr J Cancer20101031151:CAS:528:DC%2BC3cXotFemsbc%3D10.1038/sj.bjc.6605682204610862905285
– reference: ChavezJAlmhannaKBerti-MatteraLTransient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic ratsNeurosci Lett200537431791821:CAS:528:DC%2BD2MXkvFKltA%3D%3D10.1016/j.neulet.2004.10.05015663958
– reference: HuangRMelatonin protects inner retinal neurons of newborn mice after hypoxia-ischemiaJ Pineal Res2021711e127161:CAS:528:DC%2BB3MXpsFOiu78%3D10.1111/jpi.1271633426650
– reference: ObermeierBVermaARansohoffRThe blood-brain barrierHandb Clin Neurol2016133395910.1016/b978-0-444-63432-0.00003-727112670
– reference: BahramiBDiabetic macular oedema: pathophysiology, management challenges and treatment resistanceDiabetologia2016598159416081:CAS:528:DC%2BC28XotV2iu7w%3D10.1007/s00125-016-3974-827179659
– reference: CarmelietPJainRAngiogenesis in cancer and other diseasesNature200040768012492571:CAS:528:DC%2BD3cXmvVSls74%3D10.1038/3502522011001068
– reference: YauJGlobal prevalence and major risk factors of diabetic retinopathy201235355656410.2337/dc11-1909
– reference: AppelhoffRDifferential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factorJ Biol Chem20042793738458384651:CAS:528:DC%2BD2cXnt1OqtLs%3D10.1074/jbc.M40602620015247232
– reference: Kwak, S., S. Ku, and J. Bae, Fisetin inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflammation research : official journal of the European Histamine Research Society ... [et al.], 2014. 63(9): p. 779–87. https://doi.org/10.1007/s00011-014-0750-4
– reference: BerraEHIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxiaEMBO J20032216408240901:CAS:528:DC%2BD3sXmsVGgsLo%3D10.1093/emboj/cdg39212912907175782
– reference: HuYFK506 suppresses hypoxia-induced inflammation and protects tight junction function via the CaN-NFATc1 signaling pathway in retinal microvascular epithelial cellsMol Med Rep2017165697469801:CAS:528:DC%2BC1cXmsFWjtbs%3D10.3892/mmr.2017.747528901449
– reference: ImaiSTriamcinolone acetonide suppresses inflammation and facilitates vascular barrier function in human retinal microvascular endothelial cellsCurr Neurovasc Res20171432322411:CAS:528:DC%2BC2sXhsVKltrfJ10.2174/156720261466617061908192928625129
– reference: HuangSOxygen supplementation ameliorates tibial development via stimulating vascularization in tibetan chickens at high altitudesInt J Biol Sci20171312154715591:CAS:528:DC%2BC1cXitFemtr%2FF10.7150/ijbs.22670292301035723921
– reference: IshidaSVEGF164 is proinflammatory in the diabetic retinaInvest Ophthalmol Vis Sci20034452155216210.1167/iovs.02-080712714656
– reference: KlaassenIVan NoordenCSchlingemannRMolecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditionsProg Retin Eye Res20133419481:CAS:528:DC%2BC3sXksFers7k%3D10.1016/j.preteyeres.2013.02.00123416119
– reference: AfliberceptBor Ranibizumab for Diabetic Macular EdemaNew England J Med201537213119312031:CAS:528:DC%2BC2MXmtFaiu74%3D10.1056/NEJMoa1414264
– reference: Yang, L., et al., Diacylglycerol kinase (DGK) inhibitor II (R59949) could suppress retinal neovascularization and protect retinal astrocytes in an oxygen-induced retinopathy model. Journal of molecular neuroscience : MN, 2015. e(1): p. 78–88. https://doi.org/10.1007/s12031-014-0469-2
– reference: BourneRCauses of vision loss worldwide, 1990–2010: a systematic analysisLancet Glob Health201316e339e34910.1016/s2214-109x(13)70113-x25104599
– reference: YangCTetramethylpyrazine protects CoCl2-induced apoptosis in human umbilical vein endothelial cells by regulating the PHD2/HIF/1α-VEGF pathwayMol Med Rep2016132128712961:CAS:528:DC%2BC28XptFantr4%3D10.3892/mmr.2015.467926676934
– reference: Rankin, E. and A. Giaccia, Hypoxic control of metastasis. Science (New York, N.Y.), 2016. 352(6282): p. 175–80. https://doi.org/10.1126/science.aaf4405
– reference: Hellwig-BürgelTReview: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactionsJ Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res200525629731010.1089/jir.2005.25.297
– reference: AragonésJEvidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tensionJ Biol Chem200127613105481055510.1074/jbc.M00618020011136721
– reference: MassinPSafety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II studyDiabetes Care20103311239924051:CAS:528:DC%2BC3cXhs1SisrzO10.2337/dc10-0493209804272963502
– reference: XuYMelatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathwayJ Pineal Res2020691e126601:CAS:528:DC%2BB3cXptlKksbc%3D10.1111/jpi.1266032323368
– reference: MitchellPThe RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edemaOphthalmology2011118461562510.1016/j.ophtha.2011.01.03121459215
– reference: KeithBJohnsonRSimonMHIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progressionNat Rev Cancer20111219221:CAS:528:DC%2BC3MXhs1aisbzM10.1038/nrc3183221699723401912
– reference: MuzBProlyl hydroxylase domain enzyme 2 is the major player in regulating hypoxic responses in rheumatoid arthritisArthritis Rheum2012649285628671:CAS:528:DC%2BC38Xht1GrsbjL10.1002/art.3447922488178
– reference: Du, Y., et al., Hypoxia-Inducible Factor 1 alpha (HIF-1α)/Vascular Endothelial Growth Factor (VEGF) Pathway Participates in Angiogenesis of Myocardial Infarction in Muscone-Treated Mice: Preliminary Study. Medical science monitor : international medical journal of experimental and clinical research, 2018. 24: p. 8870–8877. https://doi.org/10.12659/msm.912051
– reference: RezzolaSAngiogenesis-inflammation cross talk in diabetic retinopathy: novel insights from the chick embryo chorioallantoic membrane/human vitreous platformFront Immunol2020111:CAS:528:DC%2BB3cXis1art7%2FN10.3389/fimmu.2020.581288331173887552803
– reference: EhrlichRDiabetic macular oedema: physical, physiological and molecular factors contribute to this pathological processActa Ophthalmol20108832792911:CAS:528:DC%2BC3cXns1eqsbk%3D10.1111/j.1755-3768.2008.01501.x20222885
– reference: AntonettiDVascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumorsJ Biol Chem19992743323463234671:CAS:528:DyaK1MXltlKnu70%3D10.1074/jbc.274.33.2346310438525
– reference: BehlTKotwaniAExploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathyPharmacol Res2015991371481:CAS:528:DC%2BC2MXhtVekt7jL10.1016/j.phrs.2015.05.01326054568
– reference: RamakrishnanSAnandVRoySVascular endothelial growth factor signaling in hypoxia and inflammationJ Neuroimmune Pharmacol : Off J Soc NeuroImmune Pharmacol2014921421601:STN:280:DC%2BC2crit1Wjtw%3D%3D10.1007/s11481-014-9531-7
– reference: Saeedi, P., et al., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 edition. Diabetes research and clinical practice, 2019. 157: p. 107843. https://doi.org/10.1016/j.diabres.2019.107843
– reference: RizwanHHigh glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytesLife Sci20202411:CAS:528:DC%2BC1MXitlOnsb7P10.1016/j.lfs.2019.11714831830478
– reference: AntonettiDMolecular mechanisms of vascular permeability in diabetic retinopathySeminars Ophthalmol19991442402481:STN:280:DC%2BD3c3isVSitQ%3D%3D10.3109/08820539909069543
– reference: QaumTVEGF-initiated blood-retinal barrier breakdown in early diabetesInvest Ophthalmol Vis Sci20014210240824131:STN:280:DC%2BD3MrgsFOjtw%3D%3D11527957
– reference: WangJMüller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakageDiabetes2010599229723051:CAS:528:DC%2BC3cXht12ku77N10.2337/db09-1420205307412927953
– reference: DasAMcGuirePRangasamySDiabetic macular edema: pathophysiology and novel therapeutic targetsOphthalmology201512271375139410.1016/j.ophtha.2015.03.02425935789
– reference: JiangWApigenin and Ethaverine Hydrochloride Enhance Retinal Vascular Barrier In Vitro and In VivoTranslational Vision Sci Technol202096810.1167/tvst.9.6.8
– reference: VeltmannMOsmotic induction of angiogenic growth factor expression in human retinal pigment epithelial cellsPLoS ONE20161111:CAS:528:DC%2BC28XmvVymtbk%3D10.1371/journal.pone.0147312268003594723123
– reference: YinXVascular endothelial growth factor (VEGF) as a vital target for brain inflammation during the COVID-19 outbreakACS Chem Neurosci20201112170417051:CAS:528:DC%2BB3cXhtVKqtbbL10.1021/acschemneuro.0c0029432485101
– reference: LiXEmodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathwayInflammation Res: Off J Europ Histamine Res Soc20206943653731:CAS:528:DC%2BB3cXks1Kns7s%3D10.1007/s00011-020-01331-3
– reference: TakedaKCowanAFongGEssential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular systemCirculation200711677747811:CAS:528:DC%2BD2sXos1agu7w%3D10.1161/circulationaha.107.70151617646578
– volume: 394
  start-page: 485
  issue: 6692
  year: 1998
  ident: 1518_CR43
  publication-title: Nature
  doi: 10.1038/28867
– volume: 9
  start-page: 142
  issue: 2
  year: 2014
  ident: 1518_CR33
  publication-title: J Neuroimmune Pharmacol : Off J Soc NeuroImmune Pharmacol
  doi: 10.1007/s11481-014-9531-7
– volume: 241
  year: 2020
  ident: 1518_CR51
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2019.117148
– volume: 26
  start-page: 8336
  issue: 22
  year: 2006
  ident: 1518_CR23
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.00425-06
– volume: 103
  start-page: 1
  issue: 1
  year: 2010
  ident: 1518_CR25
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6605682
– volume: 59
  start-page: 2872
  issue: 11
  year: 2010
  ident: 1518_CR5
  publication-title: Diabetes
  doi: 10.2337/db09-1606
– volume: 295
  start-page: C1647
  issue: 6
  year: 2008
  ident: 1518_CR27
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00322.2008
– ident: 1518_CR18
  doi: 10.12659/msm.912051
– volume: 13
  start-page: 1287
  issue: 2
  year: 2016
  ident: 1518_CR47
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2015.4679
– volume: 35
  start-page: 556
  issue: 3
  year: 2012
  ident: 1518_CR2
  publication-title: Global prevalence and major risk factors of diabetic retinopathy
  doi: 10.2337/dc11-1909
– volume: 69
  start-page: 365
  issue: 4
  year: 2020
  ident: 1518_CR9
  publication-title: Inflammation Res: Off J Europ Histamine Res Soc
  doi: 10.1007/s00011-020-01331-3
– volume: 407
  start-page: 249
  issue: 6801
  year: 2000
  ident: 1518_CR14
  publication-title: Nature
  doi: 10.1038/35025220
– volume: 64
  issue: 4
  year: 2018
  ident: 1518_CR42
  publication-title: J Pineal Res
  doi: 10.1111/jpi.12473
– ident: 1518_CR1
  doi: 10.1016/j.diabres.2019.107843
– volume: 25
  start-page: 297
  issue: 6
  year: 2005
  ident: 1518_CR16
  publication-title: J Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res
  doi: 10.1089/jir.2005.25.297
– ident: 1518_CR50
  doi: 10.1007/s12031-014-0469-2
– volume: 116
  start-page: 774
  issue: 7
  year: 2007
  ident: 1518_CR45
  publication-title: Circulation
  doi: 10.1161/circulationaha.107.701516
– volume: 69
  start-page: e12660
  issue: 1
  year: 2020
  ident: 1518_CR30
  publication-title: J Pineal Res
  doi: 10.1111/jpi.12660
– volume: 122
  start-page: 1375
  issue: 7
  year: 2015
  ident: 1518_CR13
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2015.03.024
– ident: 1518_CR44
  doi: 10.1126/science.aaf4405
– volume: 374
  start-page: 179
  issue: 3
  year: 2005
  ident: 1518_CR17
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2004.10.050
– volume: 64
  start-page: 2856
  issue: 9
  year: 2012
  ident: 1518_CR46
  publication-title: Arthritis Rheum
  doi: 10.1002/art.34479
– volume: 274
  start-page: 23463
  issue: 33
  year: 1999
  ident: 1518_CR10
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.33.23463
– volume: 44
  start-page: 2155
  issue: 5
  year: 2003
  ident: 1518_CR12
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.02-0807
– volume: 133
  start-page: 39
  year: 2016
  ident: 1518_CR4
  publication-title: Handb Clin Neurol
  doi: 10.1016/b978-0-444-63432-0.00003-7
– volume: 22
  start-page: 4082
  issue: 16
  year: 2003
  ident: 1518_CR21
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg392
– volume: 71
  start-page: e12716
  issue: 1
  year: 2021
  ident: 1518_CR31
  publication-title: J Pineal Res
  doi: 10.1111/jpi.12716
– volume: 33
  start-page: 2399
  issue: 11
  year: 2010
  ident: 1518_CR38
  publication-title: Diabetes Care
  doi: 10.2337/dc10-0493
– volume: 11
  issue: 1
  year: 2016
  ident: 1518_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0147312
– volume: 30
  start-page: 1213
  issue: 10
  year: 2011
  ident: 1518_CR41
  publication-title: Oncogene
  doi: 10.1038/onc.2010.498
– volume: 11
  start-page: 1704
  issue: 12
  year: 2020
  ident: 1518_CR8
  publication-title: ACS Chem Neurosci
  doi: 10.1021/acschemneuro.0c00294
– volume: 32
  start-page: 614
  issue: 4
  year: 2002
  ident: 1518_CR24
  publication-title: Nat Genet
  doi: 10.1038/ng1019
– volume: 14
  start-page: 240
  issue: 4
  year: 1999
  ident: 1518_CR3
  publication-title: Seminars Ophthalmol
  doi: 10.3109/08820539909069543
– volume: 34
  start-page: 19
  year: 2013
  ident: 1518_CR34
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2013.02.001
– volume: 11
  year: 2020
  ident: 1518_CR15
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.581288
– volume: 280
  start-page: 24238
  issue: 25
  year: 2005
  ident: 1518_CR48
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M414694200
– volume: 118
  start-page: 615
  issue: 4
  year: 2011
  ident: 1518_CR39
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.01.031
– ident: 1518_CR52
  doi: 10.1007/s00011-014-0750-4
– volume: 99
  start-page: 137
  year: 2015
  ident: 1518_CR7
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2015.05.013
– volume: 13
  start-page: 1547
  issue: 12
  year: 2017
  ident: 1518_CR19
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.22670
– volume: 14
  start-page: 232
  issue: 3
  year: 2017
  ident: 1518_CR32
  publication-title: Curr Neurovasc Res
  doi: 10.2174/1567202614666170619081929
– volume: 9
  start-page: 8
  issue: 6
  year: 2020
  ident: 1518_CR26
  publication-title: Translational Vision Sci Technol
  doi: 10.1167/tvst.9.6.8
– volume: 372
  start-page: 1193
  issue: 13
  year: 2015
  ident: 1518_CR40
  publication-title: New England J Med
  doi: 10.1056/NEJMoa1414264
– volume: 59
  start-page: 1594
  issue: 8
  year: 2016
  ident: 1518_CR36
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-3974-8
– volume: 88
  start-page: 279
  issue: 3
  year: 2010
  ident: 1518_CR6
  publication-title: Acta Ophthalmol
  doi: 10.1111/j.1755-3768.2008.01501.x
– volume: 16
  start-page: 6974
  issue: 5
  year: 2017
  ident: 1518_CR28
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2017.7475
– volume: 279
  start-page: 38458
  issue: 37
  year: 2004
  ident: 1518_CR20
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M406026200
– volume: 276
  start-page: 10548
  issue: 13
  year: 2001
  ident: 1518_CR49
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M006180200
– volume: 59
  start-page: 2297
  issue: 9
  year: 2010
  ident: 1518_CR11
  publication-title: Diabetes
  doi: 10.2337/db09-1420
– volume: 12
  start-page: 9
  issue: 1
  year: 2011
  ident: 1518_CR22
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3183
– volume: 42
  start-page: 2408
  issue: 10
  year: 2001
  ident: 1518_CR37
  publication-title: Invest Ophthalmol Vis Sci
– volume: 1
  start-page: e339
  issue: 6
  year: 2013
  ident: 1518_CR35
  publication-title: Lancet Glob Health
  doi: 10.1016/s2214-109x(13)70113-x
SSID ssj0008282
Score 2.4004617
Snippet Objective Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood;...
Diabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however, it is...
ObjectiveDiabetic macular edema (DME) is one of the most frequent causes of severe vision loss. The pathogenesis of DME is still not fully understood; however,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 69
SubjectTerms Allergology
Angiogenesis
Biomedical and Life Sciences
Biomedicine
Blood
Breakdown
Cell viability
Dermatology
Diabetes mellitus
Diacylglycerol kinase
Edema
Electrical resistance
Electrical resistivity
Endothelial cells
Enzyme-linked immunosorbent assay
Growth factors
Hydroxylase
Hyperglycemia
Hypoxia
Hypoxia-inducible factor 1
Hypoxia-inducible factor 1a
Immunofluorescence
Immunology
Investigations
Kinases
Microvasculature
Neurology
Original Research Article
Pathogenesis
Permeability
Pharmacology/Toxicology
Proteins
Retina
Reverse transcription
Rheumatology
Vascular endothelial growth factor
Zonula occludens-1 protein
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxELagXLgg_llakJFQL8Tqetdrr08IQUOEBMqhRbmt_CtVLZvSJKryLrwEL8IzMeP9iVBFz-tkN_lmx994Zr4h5K2pLQffG5isSsmE9uAHizwyLpWNmDiyHHuHv36Ts1PxZVEt-gO3VV9WOfjE5Kj90uEZ-REyffC4QGDeX_5kODUKs6v9CI275B5Kl2FJl1qMAReqs3XZzqJkEInlfdNMap1LZIhhgQJsiBys5d-N6QbbvJEpTRvQ9CF50DNH-qGD-hG5E9rH5HDeSU9vJ_Rk10m1mtBDOt-JUm-fkF_z2aeCophmu0F6SVGneChYZxCYA8SepjJ2io2NeCtrrnCeHYWo2Zx7CNfpWUvTUL9xyQ-s5xuqWWloPTZ0XYBNU8wIrKjdwtI07R5-E4VrdHYGEP35ffT9-POU4jzka7N9Sk6nxycfZ6yfzMBcqao1CzXQAKCWutTO5d6UPBotQzCIbuUrxXnkwjhpQxHr3GgkmoJrX0RnoqjKZ2SvXbbhBaHCaGeULWKUXhhpNHceOFINAbKtvXIZ4QMsjetly3F6xkUzCi4nKBuAsklQNkVG3o2fuexEO25dfTCg3fQv8KrZmVtG3oyX4dXDf8-0YbmBNRiMaanyOiPPOysZb1cKpUohdUYmg9nsvvz_z_Ly9mfZJ_cLbL9IR0AHZG99tQmvgBSt7etk-X8Bb2AJDg
  priority: 102
  providerName: ProQuest
Title PHD2 attenuates high-glucose-induced blood retinal barrier breakdown in human retinal microvascular endothelial cells by regulating the Hif-1α/VEGF pathway
URI https://link.springer.com/article/10.1007/s00011-021-01518-2
https://www.ncbi.nlm.nih.gov/pubmed/34773469
https://www.proquest.com/docview/2619341115
https://www.proquest.com/docview/2597496708
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xuxcuiDeBpTIS2guNiJ3Ejo8ttFuBqCq0ReUUObEjrXbJom0r1P_Cn-CP8JuYcR4VWkDilIMnz8_2fJN5Abw0WcFx73WhTGMZJtriPiiiKuRSFRU5jgpOucMf5nK2TN6t0lWbFLbuot07l6TfqftkN09fQgopQBXGEd8DOErJdsdZvBSjfv9FG6LxcYo4RPsralNl_nyN39XRDY55wz_q1c70Ltxp-SIbNQDfg1uuvg8ni6bg9G7Izvb5U-shO2GLfSnq3QP4vpi9FYxKaNZbIpWMqhN3YeohmuMIrGU-eJ1ROiPdqjDX1MWOoa1sLiwa6ey8Zr6VXy_yhaL4uhhW5mpLaVyXOJMZ-QHWrNihqO9xj-_EcIzNzhGYnz9ef5qcThl1Qf5mdg9hOZ2cvZmFbT-GsIxVugldhsofCaWOdVlG1sS8Mlo6ZwjT1KaK84onppSFE1UWGU30MuHaiqo0VZLGj-CwvqrdE2CJ0aVRhagqaRMjjealRWaUoVlcZFaVAfAOlrxsi5VTz4zLvC-z7KHMEcrcQ5mLAF7153xtSnX8U_q4Qztvl-06J3MS1Tqy5ABe9MO44OjrmdpdbVGGTDAtVZQF8LiZJf3t4kSpOJE6gGE3bfYX__uzPP0_8WdwW1AShv8RdAyHm-ute47UaFMM4ECt1ACORtPxeE7H08_vJ3gcT-aLjwO_Tn4BEQELag
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuiDehBYwEvbBRY8d5-IAQ0F1S2q5WaIt6C07sVCtab-nuapX_wm9A4o_wm5jJa4Uqeus5TmxlxuNvPI-PkFcqzhjYXuOGgR-6Qmqwg9wrXBZGWYGBo4xh7fDRKEyOxeeT4GSD_GprYTCtsrWJlaHWsxzvyHcR6YPFBQDz7uKHi6xRGF1tKTRqtTgw5Qpctvnb_T2Q72vOh4PJx8RtWAXc3I-ChWtiOMIAFklf5rmnlc8KJUNjFK4s0EHEWMGEysPM8CL2lESQJJjUvMhVIZAlAkz-pvDBlemRzQ-D0fhLZ_vBf6njq9x3wffzmjKdqlivgl8upkTAEcxAP_89Cq_g2yux2erIG94ldxqsSt_XynWPbBh7n-yM62bXZZ9O1rVb8z7doeN1G-zyAfk5TvY4xfaddomAlmJn5DZF3p1aDUqlaZU4T7GUEqfK1CUy6FHw09V3PVtZOrW0ohHshpxjBmGbP0uN1VhCdga7iGIMYk6zEoaeVqRk9pTCM5pMQSn-_N79Ovg0pMjAvFLlQ3J8I1J7RHp2Zs0TQoWSuYoyXhShFipUkuUaUFkMLnkW6yh3CGvFkuZNo3Tk6zhLuxbPlShTEGVaiTLlDnnTvXNRtwm5dvR2K-20MRnzdK3gDnnZPYbNjn9PWTNbwhh0_2QYebFDHtda0k3niyjyRSgd0m_VZv3x_6_l6fVreUFuJZOjw_Rwf3SwRW5zLP6oLqC2SW9xuTTPAJItsufNPqDk201vvb_vDkbH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB1VRUJsEG9cCgwSdEOseMb22F4ghEhDSqHKokXZmfE8qogyKU2iKP_CT7DlI_gm7h0_IlTRXdce2yPfx5zr-ziEvJR5xcD3mlCksQiTQoMf5JENmcgqi4mjimHv8OcjMTpJPk7SyRb53fbCYFll6xO9o9Yzhf_I-4j0weMCgOnbpixiPBi-Pf8RIoMUZlpbOo1aRQ7NegXh2_zNwQBk_Yrz4f7x-1HYMAyEKs7SRWhyOM4AIhVxoVSkZcysLIQxEneZ6jRjzLJEKlEZbvNIFgiYElZobpW0CTJGgPu_kcUpQxvLJl2wh5Ph6kwrj0OIAqOmYce37XkgFmJxBBzGDDT130PxEtK9lKX1h9_wDrndoFb6rlazu2TLuHtkb1yPvV736PGmi2veo3t0vBmIvb5Pfo5HA05xkKdbIrSlOCO5LZYPp06DemnqS-gpNlXiqyp5gVx6FCJ2-U3PVo5OHfWEgt2S71hL2FbSUuM0NpOdgT1RzEbMabWGpaeensydUrhGR1NQjz-_-l_2PwwpcjGv5PoBObkWmT0k227mzGNCE1komVXcWqETKWTBlAZ8lkNwXuU6UwFhrVhK1YxMR-aOs7Ib9uxFWYIoSy_KkgfkdXfPeT0w5MrVu620y8Z5zMuNqgfkRXcZzB6_nnRmtoQ1GAgWIovygDyqtaR7XZxkWZyIIiC9Vm02D___Xnau3stzchMMrvx0cHT4hNzi2AXi_0Ttku3FxdI8BWy2qJ55I6Dk63Vb3V-iWkmX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PHD2+attenuates+high-glucose-induced+blood+retinal+barrier+breakdown+in+human+retinal+microvascular+endothelial+cells+by+regulating+the+Hif-1%CE%B1%2FVEGF+pathway&rft.jtitle=Inflammation+research&rft.au=Li%2C+Jia&rft.au=Lu%2C+Xi&rft.au=Wei%2C+Liqing&rft.au=Ye%2C+Dan&rft.date=2022-01-01&rft.pub=Springer+International+Publishing&rft.issn=1023-3830&rft.eissn=1420-908X&rft.volume=71&rft.issue=1&rft.spage=69&rft.epage=79&rft_id=info:doi/10.1007%2Fs00011-021-01518-2&rft.externalDocID=10_1007_s00011_021_01518_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-3830&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-3830&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-3830&client=summon