Molecular Mechanisms and Structural Basis of Retigabine Analogues in Regulating KCNQ2 Channel
KCNQ2 channel is one of the important members of potassium voltage-gated channel. KCNQ2 is closely related to neuronal excitatory diseases including epilepsy and neuropathic pain, and also acts as a drug target of the anti-epileptic drug, retigabine (RTG). In the past few decades, RTG has shown stro...
Saved in:
Published in | The Journal of membrane biology Vol. 253; no. 2; pp. 167 - 181 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | KCNQ2 channel is one of the important members of potassium voltage-gated channel. KCNQ2 is closely related to neuronal excitatory diseases including epilepsy and neuropathic pain, and also acts as a drug target of the anti-epileptic drug, retigabine (RTG). In the past few decades, RTG has shown strong efficacy in the treatment of refractory epilepsy but has been withdrawn from clinical use due to its multiple adverse effects in clinical phase III trials. To overcome the drawbacks of RTG, several RTG analogues have been developed with different activation potency to KCNQ2. However, the detailed molecular mechanism by which these RTG analogues regulate KCNQ2 channel remains obscure. In this study, we used molecular simulations to analyse the interaction mode between the RTG analogues and KCNQ2, and to determine their molecular mechanism of action. Our data show that the van der Waals interactions, hydrophobic interactions, hydrogen bond, halogen bond, and π–π stacking work together to maintain the binding stability of the drugs in the binding pocket. On an atomic scale, the amide group in the carbamate and the amino group in the 2-aminophenyl moiety of RTG and RL648_81 are identified as key interaction sites. Our finding provides insight into the molecular mechanism by which KCNQ2 channels are regulated by RTG analogues. It also provides direct theoretical support for optimizing design of the KCNQ2 channel openers in the future, which will help treat refractory epilepsy caused by nerve excitability.
Graphic Abstract |
---|---|
AbstractList | KCNQ2 channel is one of the important members of potassium voltage-gated channel. KCNQ2 is closely related to neuronal excitatory diseases including epilepsy and neuropathic pain, and also acts as a drug target of the anti-epileptic drug, retigabine (RTG). In the past few decades, RTG has shown strong efficacy in the treatment of refractory epilepsy but has been withdrawn from clinical use due to its multiple adverse effects in clinical phase III trials. To overcome the drawbacks of RTG, several RTG analogues have been developed with different activation potency to KCNQ2. However, the detailed molecular mechanism by which these RTG analogues regulate KCNQ2 channel remains obscure. In this study, we used molecular simulations to analyse the interaction mode between the RTG analogues and KCNQ2, and to determine their molecular mechanism of action. Our data show that the van der Waals interactions, hydrophobic interactions, hydrogen bond, halogen bond, and π–π stacking work together to maintain the binding stability of the drugs in the binding pocket. On an atomic scale, the amide group in the carbamate and the amino group in the 2-aminophenyl moiety of RTG and RL648_81 are identified as key interaction sites. Our finding provides insight into the molecular mechanism by which KCNQ2 channels are regulated by RTG analogues. It also provides direct theoretical support for optimizing design of the KCNQ2 channel openers in the future, which will help treat refractory epilepsy caused by nerve excitability.Graphic Abstract KCNQ2 channel is one of the important members of potassium voltage-gated channel. KCNQ2 is closely related to neuronal excitatory diseases including epilepsy and neuropathic pain, and also acts as a drug target of the anti-epileptic drug, retigabine (RTG). In the past few decades, RTG has shown strong efficacy in the treatment of refractory epilepsy but has been withdrawn from clinical use due to its multiple adverse effects in clinical phase III trials. To overcome the drawbacks of RTG, several RTG analogues have been developed with different activation potency to KCNQ2. However, the detailed molecular mechanism by which these RTG analogues regulate KCNQ2 channel remains obscure. In this study, we used molecular simulations to analyse the interaction mode between the RTG analogues and KCNQ2, and to determine their molecular mechanism of action. Our data show that the van der Waals interactions, hydrophobic interactions, hydrogen bond, halogen bond, and π–π stacking work together to maintain the binding stability of the drugs in the binding pocket. On an atomic scale, the amide group in the carbamate and the amino group in the 2-aminophenyl moiety of RTG and RL648_81 are identified as key interaction sites. Our finding provides insight into the molecular mechanism by which KCNQ2 channels are regulated by RTG analogues. It also provides direct theoretical support for optimizing design of the KCNQ2 channel openers in the future, which will help treat refractory epilepsy caused by nerve excitability. Graphic Abstract KCNQ2 channel is one of the important members of potassium voltage-gated channel. KCNQ2 is closely related to neuronal excitatory diseases including epilepsy and neuropathic pain, and also acts as a drug target of the anti-epileptic drug, retigabine (RTG). In the past few decades, RTG has shown strong efficacy in the treatment of refractory epilepsy but has been withdrawn from clinical use due to its multiple adverse effects in clinical phase III trials. To overcome the drawbacks of RTG, several RTG analogues have been developed with different activation potency to KCNQ2. However, the detailed molecular mechanism by which these RTG analogues regulate KCNQ2 channel remains obscure. In this study, we used molecular simulations to analyse the interaction mode between the RTG analogues and KCNQ2, and to determine their molecular mechanism of action. Our data show that the van der Waals interactions, hydrophobic interactions, hydrogen bond, halogen bond, and π-π stacking work together to maintain the binding stability of the drugs in the binding pocket. On an atomic scale, the amide group in the carbamate and the amino group in the 2-aminophenyl moiety of RTG and RL648_81 are identified as key interaction sites. Our finding provides insight into the molecular mechanism by which KCNQ2 channels are regulated by RTG analogues. It also provides direct theoretical support for optimizing design of the KCNQ2 channel openers in the future, which will help treat refractory epilepsy caused by nerve excitability. KCNQ2 channel is one of the important members of potassium voltage-gated channel. KCNQ2 is closely related to neuronal excitatory diseases including epilepsy and neuropathic pain, and also acts as a drug target of the anti-epileptic drug, retigabine (RTG). In the past few decades, RTG has shown strong efficacy in the treatment of refractory epilepsy but has been withdrawn from clinical use due to its multiple adverse effects in clinical phase III trials. To overcome the drawbacks of RTG, several RTG analogues have been developed with different activation potency to KCNQ2. However, the detailed molecular mechanism by which these RTG analogues regulate KCNQ2 channel remains obscure. In this study, we used molecular simulations to analyse the interaction mode between the RTG analogues and KCNQ2, and to determine their molecular mechanism of action. Our data show that the van der Waals interactions, hydrophobic interactions, hydrogen bond, halogen bond, and π-π stacking work together to maintain the binding stability of the drugs in the binding pocket. On an atomic scale, the amide group in the carbamate and the amino group in the 2-aminophenyl moiety of RTG and RL648_81 are identified as key interaction sites. Our finding provides insight into the molecular mechanism by which KCNQ2 channels are regulated by RTG analogues. It also provides direct theoretical support for optimizing design of the KCNQ2 channel openers in the future, which will help treat refractory epilepsy caused by nerve excitability.KCNQ2 channel is one of the important members of potassium voltage-gated channel. KCNQ2 is closely related to neuronal excitatory diseases including epilepsy and neuropathic pain, and also acts as a drug target of the anti-epileptic drug, retigabine (RTG). In the past few decades, RTG has shown strong efficacy in the treatment of refractory epilepsy but has been withdrawn from clinical use due to its multiple adverse effects in clinical phase III trials. To overcome the drawbacks of RTG, several RTG analogues have been developed with different activation potency to KCNQ2. However, the detailed molecular mechanism by which these RTG analogues regulate KCNQ2 channel remains obscure. In this study, we used molecular simulations to analyse the interaction mode between the RTG analogues and KCNQ2, and to determine their molecular mechanism of action. Our data show that the van der Waals interactions, hydrophobic interactions, hydrogen bond, halogen bond, and π-π stacking work together to maintain the binding stability of the drugs in the binding pocket. On an atomic scale, the amide group in the carbamate and the amino group in the 2-aminophenyl moiety of RTG and RL648_81 are identified as key interaction sites. Our finding provides insight into the molecular mechanism by which KCNQ2 channels are regulated by RTG analogues. It also provides direct theoretical support for optimizing design of the KCNQ2 channel openers in the future, which will help treat refractory epilepsy caused by nerve excitability. |
Author | Sun, Fude Qi, Jinlong Shi, Sai Chen, Yafei An, Hailong Guo, Shuai Geng, Yizhao Pang, Chunli Zhang, Hailin Li, Junwei Wang, Xuzhao Zhan, Yong |
Author_xml | – sequence: 1 givenname: Sai surname: Shi fullname: Shi, Sai organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology – sequence: 2 givenname: Junwei surname: Li fullname: Li, Junwei organization: Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology – sequence: 3 givenname: Fude surname: Sun fullname: Sun, Fude organization: Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology – sequence: 4 givenname: Yafei surname: Chen fullname: Chen, Yafei organization: Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology – sequence: 5 givenname: Chunli surname: Pang fullname: Pang, Chunli organization: Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology – sequence: 6 givenname: Yizhao surname: Geng fullname: Geng, Yizhao organization: Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology – sequence: 7 givenname: Jinlong surname: Qi fullname: Qi, Jinlong organization: Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drug, Hebei Province, Department of Pharmacology, Hebei Medical University – sequence: 8 givenname: Shuai surname: Guo fullname: Guo, Shuai organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology – sequence: 9 givenname: Xuzhao surname: Wang fullname: Wang, Xuzhao organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology – sequence: 10 givenname: Hailin surname: Zhang fullname: Zhang, Hailin organization: Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drug, Hebei Province, Department of Pharmacology, Hebei Medical University – sequence: 11 givenname: Yong surname: Zhan fullname: Zhan, Yong organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology – sequence: 12 givenname: Hailong orcidid: 0000-0001-7947-357X surname: An fullname: An, Hailong email: hailong_an@hebut.edu.cn organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32170353$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUhS00FQyPP8CissSGTVo_kjizHEalrcpDFFgiy3FuUiOPTe1k0X_fS4dRpVmwsnT9naN7zzkksxADEHLK2SfOmPqcGRNSFEywgjHOZVHvkTkvccRLUc7IHP9FIWrJD8hhzs8IKVWX--RACq6YrOScPF1HD3byJtFrsL9McHmdqQkdvR_TZMcpGU8vTHaZxp7-hNENpnUB6DIYH4cJMnUB5wNajC4M9Mfq5k7QFToF8MfkQ298hpO394g8Xn55WH0rrm6_fl8trworVTUWoKpe2Q6kVE1bWqtU07DOLowqjWhty0TPoWdtZ1lfQ7VgCw5ygRyeWQN08oicb3xfUvyNO4167bIF702AOGUtpFKyEnXFET3bQZ_jlPCYV6ppSsysUkh9fKOmdg2dfklubdIfvQ0OgWYD2BRzTtBr60ZMIIYxGec1Z_q1I73pSGNH-l9Hukap2JFu3d8VyY0oIxwGSP_Xfkf1FxHeoi8 |
CitedBy_id | crossref_primary_10_1016_j_bioorg_2022_105909 crossref_primary_10_1172_jci_insight_156314 crossref_primary_10_3390_molecules29133234 crossref_primary_10_1111_epi_16832 crossref_primary_10_3389_fncel_2020_566418 crossref_primary_10_1016_j_molcel_2020_10_037 crossref_primary_10_1016_j_ejphar_2021_174278 crossref_primary_10_1085_jgp_202213191 crossref_primary_10_1039_D0MD00328J crossref_primary_10_3389_fneur_2022_829116 crossref_primary_10_1111_ane_13695 crossref_primary_10_1038_s41422_020_00410_8 crossref_primary_10_1039_D4QO00878B crossref_primary_10_1016_j_bcp_2023_115413 crossref_primary_10_2174_1389450123666220927103715 crossref_primary_10_1021_acs_jmedchem_2c00911 |
Cites_doi | 10.1021/ci100275a 10.1038/s41467-018-06339-2 10.1111/j.1476-5381.2009.00111.x 10.1124/pr.112.007336 10.1517/17460441.2013.837882 10.1016/0263-7855(96)00018-5 10.1126/science.1096361 10.1016/j.arabjc.2017.07.006 10.1021/jp902584c 10.1016/j.cell.2017.05.019 10.1124/mol.58.2.253 10.1038/ng0198-25 10.1126/science.279.5349.403 10.1038/s42003-019-0648-3 10.1523/JNEUROSCI.21-15-05535.2001 10.1016/j.neuropharm.2006.07.001 10.2174/0929867053363045 10.1007/s00249-016-1188-0 10.1093/nar/gky427 10.1093/bioinformatics/btu457 10.1016/S0028-3908(01)00029-6 10.1002/jcc.21992 10.1007/s00894-010-0709-5 10.1038/35036198 10.1038/Ncomms9116 10.1126/science.282.5395.1890 10.1073/pnas.1000142107 10.1124/mol.104.010793 10.1002/jcc.21287 10.1016/j.jmgm.2012.07.004 10.1002/jcc.21256 10.1124/mol.115.103200 10.1063/1.445869 10.1111/j.1528-1167.2011.03365.x 10.1517/17460441.2015.1032936 10.1124/jpet.109.162800 10.13140/RG.2.2.27958.70729 10.1016/j.molstruc.2018.03.085 10.1093/bioinformatics/btq662 10.1074/jbc.M115.683185 10.1523/JNEUROSCI.0128-05.2005 10.1038/s41467-018-04266-w 10.1212/01.wnl.0000275523.95103.36 10.1002/jcc.26068 10.1111/epi.12296 10.1016/0040-4020(80)80168-2 10.1093/nar/gkw1132 10.1124/mol.108.052282 10.1002/jcc.20035 10.1111/j.1527-3458.2002.tb00233.x 10.1002/jcc.21366 10.1021/ja00315a051 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. KB0 LK8 M0S M1P M7P NAPCQ PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00232-020-00113-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1432-1424 |
EndPage | 181 |
ExternalDocumentID | 32170353 10_1007_s00232_020_00113_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (CN) grantid: 11735006 – fundername: National Natural Science Foundation of China grantid: 11747610; 81830061; 31600594 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Hebei Province grantid: C2017202208; C2018202302 funderid: http://dx.doi.org/10.13039/501100003787 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .55 .86 .GJ .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7RV 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP CZ9 D1I DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KC. KDC KOV KOW KPH L7B LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PDBOC PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UQL UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW X7M XOL Y6R YLTOR Z45 Z7U Z7V Z87 Z8O Z8P Z91 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-e75f7cde3378b4cc77880dc9a74a2bcb02f1ef0bdc0f6e59091e39cc74246eed3 |
IEDL.DBID | 7X7 |
ISSN | 0022-2631 1432-1424 |
IngestDate | Fri Jul 11 14:14:45 EDT 2025 Sat Aug 23 12:54:28 EDT 2025 Mon Jul 21 06:03:03 EDT 2025 Tue Jul 01 02:08:41 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 Fri Feb 21 02:25:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Retigabine Ion channel Epilepsy KCNQ2 Molecular simulations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-e75f7cde3378b4cc77880dc9a74a2bcb02f1ef0bdc0f6e59091e39cc74246eed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7947-357X |
PMID | 32170353 |
PQID | 2388400257 |
PQPubID | 48759 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2377352651 proquest_journals_2388400257 pubmed_primary_32170353 crossref_citationtrail_10_1007_s00232_020_00113_6 crossref_primary_10_1007_s00232_020_00113_6 springer_journals_10_1007_s00232_020_00113_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200400 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Heidelberg |
PublicationTitle | The Journal of membrane biology |
PublicationTitleAbbrev | J Membrane Biol |
PublicationTitleAlternate | J Membr Biol |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Syeda, Santos, Montal (CR46) 2016; 291 Murray, Politzer (CR35) 2002 Case (CR7) 2016 Jorgensen, Chandrasekhar, Madura, Impey, Klein (CR23) 1983; 79 Manville, Abbott (CR31) 2018; 9 Al-Tamimi, Mary, Miniyar, Al-Wahaibi, El-Emam, Armaković, Armaković (CR1) 2018; 1164 Singh (CR40) 1998; 18 Humphrey, Dalke, Schulten (CR17) 1996; 14 Waterhouse (CR52) 2018; 46 Wua, Dworetzky (CR56) 2005; 12 Iannotti, Panza, Barrese, Viggiano, Soldovieri, Taglialatela (CR18) 2010; 332 Jentsch (CR21) 2000; 1 Wang (CR50) 1998; 282 Weiner (CR54) 1984; 106 Emamian, Lu, Kruse (CR9) 2019; 40 Sun, MacKinnon (CR44) 2017; 169 Main, Cryan, Dupere, Cox, Clare, Burbidge (CR29) 2000; 58 Slobodan, Ivana (CR42) 2013; 8 Tatulian, Delmas, Abogadie, Brown (CR48) 2001; 21 Morris, Huey, Lindstrom, Sanner, Belew, Goodsell, Olson (CR34) 2009; 30 Wilcox (CR55) 2013; 54 Politzer, Murray, Bulat (CR37) 2010; 16 Sureshkumar (CR45) 2020; 13 Kim, Yau, Galpin, Seebohm, Ahern, Pless, Kurata (CR25) 2015 Bienert, Waterhouse, de Beer, Tauriello, Studer, Bordoli, Schwede (CR3) 2017; 45 Kumar, Reed, Liu, Aizenman, Wipf, Tzounopoulos (CR26) 2016; 89 Hjorth, Nicole, Kirstine, William, Morten, Søren-Peter (CR15) 2006; 51 Wuttke, Jurkat-Rott, Paulus, Garncarek, Lehmann-Horn, Lerche (CR58) 2007; 69 Genheden, Ryde (CR12) 2010; 31 Brooks (CR5) 2009; 30 Karami, Saboury, Rezaee, Tabatabai (CR24) 2017; 46 Tian, Feiwu (CR49) 2012; 33 Brown, Passmore (CR6) 2009; 156 Lange, Geissendorfer, Schenzer, Grotzinger, Seebohm, Friedrich, Schwake (CR27) 2009; 75 Jorgensen (CR22) 2004; 303 Manville, Papanikolaou, Abbott (CR33) 2018; 9 Genheden, Ryde (CR13) 2015; 10 Sliwoski, Kothiwale, Meiler, Lowe (CR41) 2014; 66 Wuttke, Seebohm, Bail, Maljevic, Lerche (CR57) 2005; 67 Maljevic, Lerche, Seebohm, Alekov, Lerche (CR30) 2003; 548 Manville, Abbott (CR32) 2019; 2 Wang, Wolf, Caldwell, Kollman, Case (CR51) 2004; 25 Schenzer, Friedrich, Pusch, Saftig, Jentsch, Grötzinger, Schwake (CR38) 2005; 25 Jensen (CR20) 2010; 8 Lu, Chen (CR28) 2012; 38 Benkert, Biasini, Schwede (CR2) 2011; 27 Studer, Biasini, Schwede (CR43) 2014; 30 Jankovic, Ilickovic (CR19) 2013; 8 Cheatham, Joung (CR8) 2009; 113 Frisch, Trucks, Schlegel, Scuceria, Robb, Cheeseman, Pople (CR10) 2003 Biervert, Schroeder, Kubisch, Berkovic, Propping, Jentsch, Steinlein (CR4) 1998; 279 Hou, Wang, Li, Wang (CR16) 2011; 51 Politzer, Murray (CR36) 2007 Webb, Sali (CR53) 2016 Xiaorui, Qinghua, Fengyun, Jianpeng (CR59) 2010; 107 Gasteiger, Marsili (CR11) 1980; 36 Gunthorpe, Large, Sankar (CR14) 2012; 53 Schrøder, Jespersen, Christophersen, Strøbaek, Jensen, Olesen (CR39) 2001; 40 C Biervert (113_CR4) 1998; 279 S Bienert (113_CR3) 2017; 45 P Politzer (113_CR36) 2007 BB Hjorth (113_CR15) 2006; 51 SJ Weiner (113_CR54) 1984; 106 W Jorgensen (113_CR23) 1983; 79 L Tian (113_CR49) 2012; 33 S Genheden (113_CR13) 2015; 10 TJ Hou (113_CR16) 2011; 51 TV Wuttke (113_CR57) 2005; 67 W Lange (113_CR27) 2009; 75 W Humphrey (113_CR17) 1996; 14 RW Manville (113_CR33) 2018; 9 D Case (113_CR7) 2016 C Xiaorui (113_CR59) 2010; 107 S Emamian (113_CR9) 2019; 40 S Maljevic (113_CR30) 2003; 548 B Sureshkumar (113_CR45) 2020; 13 R Syeda (113_CR46) 2016; 291 FA Iannotti (113_CR18) 2010; 332 P Benkert (113_CR2) 2011; 27 MJ Main (113_CR29) 2000; 58 GM Morris (113_CR34) 2009; 30 P Politzer (113_CR37) 2010; 16 YJ Wua (113_CR56) 2005; 12 H Wang (113_CR50) 1998; 282 JS Murray (113_CR35) 2002 J Wang (113_CR51) 2004; 25 MJ Gunthorpe (113_CR14) 2012; 53 L Karami (113_CR24) 2017; 46 A-MS Al-Tamimi (113_CR1) 2018; 1164 BS Jensen (113_CR20) 2010; 8 TJ Jentsch (113_CR21) 2000; 1 G Sliwoski (113_CR41) 2014; 66 TE Cheatham (113_CR8) 2009; 113 RY Kim (113_CR25) 2015 KS Wilcox (113_CR55) 2013; 54 J Slobodan (113_CR42) 2013; 8 RW Manville (113_CR31) 2018; 9 BR Brooks (113_CR5) 2009; 30 G Studer (113_CR43) 2014; 30 M Kumar (113_CR26) 2016; 89 RL Schrøder (113_CR39) 2001; 40 DA Brown (113_CR6) 2009; 156 WL Jorgensen (113_CR22) 2004; 303 A Schenzer (113_CR38) 2005; 25 S Jankovic (113_CR19) 2013; 8 L Tatulian (113_CR48) 2001; 21 RW Manville (113_CR32) 2019; 2 A Waterhouse (113_CR52) 2018; 46 TV Wuttke (113_CR58) 2007; 69 J Sun (113_CR44) 2017; 169 J Gasteiger (113_CR11) 1980; 36 NA Singh (113_CR40) 1998; 18 B Webb (113_CR53) 2016 S Genheden (113_CR12) 2010; 31 T Lu (113_CR28) 2012; 38 JM Frisch (113_CR10) 2003 |
References_xml | – volume: 51 start-page: 69 year: 2011 end-page: 82 ident: CR16 article-title: Assessing the performance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations publication-title: J Chem Inf Model doi: 10.1021/ci100275a – volume: 548 start-page: 353 year: 2003 end-page: 360 ident: CR30 article-title: C-terminal interaction of KCNQ2 and KCNQ3 K + channels publication-title: J Physiol – volume: 9 start-page: 3845 year: 2018 ident: CR31 article-title: Ancient and modern anticonvulsants act synergistically in a KCNQ potassium channel binding pocket publication-title: Nat Commun doi: 10.1038/s41467-018-06339-2 – volume: 156 start-page: 1185 year: 2009 ident: CR6 article-title: Neural KCNQ (Kv7) channels publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2009.00111.x – volume: 66 start-page: 334 year: 2014 end-page: 395 ident: CR41 article-title: Computational methods in drug discovery publication-title: Pharmacol Rev doi: 10.1124/pr.112.007336 – volume: 8 start-page: 1429 year: 2013 end-page: 1437 ident: CR42 article-title: The preclinical discovery and development of ezogabine for the treatment of epilepsy publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2013.837882 – volume: 14 start-page: 33 year: 1996 ident: CR17 article-title: VMD: visual molecular dynamics publication-title: J Mol Graph doi: 10.1016/0263-7855(96)00018-5 – volume: 303 start-page: 1813 year: 2004 end-page: 1818 ident: CR22 article-title: The many roles of computation in drug discovery publication-title: Science doi: 10.1126/science.1096361 – volume: 13 start-page: 632 year: 2020 end-page: 648 ident: CR45 article-title: Quinoline derivatives as possible lead compounds for anti-malarial drugs: spectroscopic, DFT and MD study publication-title: Arab J Chem doi: 10.1016/j.arabjc.2017.07.006 – volume: 113 start-page: 13279 year: 2009 end-page: 13290 ident: CR8 article-title: Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters publication-title: J Phys Chem doi: 10.1021/jp902584c – volume: 169 start-page: 1042 year: 2017 end-page: 1050 ident: CR44 article-title: Cryo-EM Structure of a KCNQ1/CaM complex reveals insights into congenital long QT syndrome publication-title: Cell doi: 10.1016/j.cell.2017.05.019 – volume: 8 start-page: 1429 year: 2013 end-page: 1437 ident: CR19 article-title: The preclinical discovery and development of ezogabine for the treatment of epilepsy publication-title: Expert Opin Drug Dis doi: 10.1517/17460441.2013.837882 – volume: 58 start-page: 253 year: 2000 ident: CR29 article-title: Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine publication-title: Mol Pharmacol doi: 10.1124/mol.58.2.253 – volume: 18 start-page: 25 year: 1998 end-page: 29 ident: CR40 article-title: A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns publication-title: Nat Genet doi: 10.1038/ng0198-25 – volume: 279 start-page: 403 year: 1998 end-page: 406 ident: CR4 article-title: A potassium channel mutation in neonatal human epilepsy publication-title: Science doi: 10.1126/science.279.5349.403 – volume: 2 start-page: 401 year: 2019 ident: CR32 article-title: In silico re-engineering of a neurotransmitter to activate KCNQ potassium channels in an isoform-specific manner publication-title: Commun Biol doi: 10.1038/s42003-019-0648-3 – volume: 21 start-page: 5535 year: 2001 end-page: 5545 ident: CR48 article-title: Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-15-05535.2001 – volume: 51 start-page: 1068 year: 2006 end-page: 1077 ident: CR15 article-title: The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2006.07.001 – volume: 12 start-page: 453 year: 2005 end-page: 460 ident: CR56 article-title: Recent developments on KCNQ potassium channel openers publication-title: Curr Med Chem doi: 10.2174/0929867053363045 – volume: 46 start-page: 445 year: 2017 end-page: 459 ident: CR24 article-title: Investigation of the binding mode of 1, 3, 4-oxadiazole derivatives as amide-based inhibitors for soluble epoxide hydrolase (sEH) by molecular docking and MM-GBSA publication-title: Eur Biophys J Biophy doi: 10.1007/s00249-016-1188-0 – volume: 46 start-page: W296 year: 2018 end-page: W303 ident: CR52 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res doi: 10.1093/nar/gky427 – volume: 30 start-page: i505 year: 2014 end-page: i511 ident: CR43 article-title: Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane) publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu457 – volume: 40 start-page: 888 year: 2001 end-page: 898 ident: CR39 article-title: KCNQ4 channel activation by BMS-204352 and retigabine publication-title: Neuropharmacology doi: 10.1016/S0028-3908(01)00029-6 – volume: 33 start-page: 580 year: 2012 end-page: 592 ident: CR49 article-title: Multiwfn: a multifunctional wavefunction analyzer publication-title: J Comput Chem doi: 10.1002/jcc.21992 – volume: 16 start-page: 1731 year: 2010 end-page: 1742 ident: CR37 article-title: Average local ionization energy: a revie publication-title: J Mol Model doi: 10.1007/s00894-010-0709-5 – year: 2016 ident: CR53 publication-title: Comparative protein structure modeling using MODELLER – volume: 1 start-page: 21 year: 2000 end-page: 30 ident: CR21 article-title: Neuronal KCNQ potassium channels: physiology and role in disease publication-title: Nat Rev Neurosci doi: 10.1038/35036198 – year: 2015 ident: CR25 article-title: Atomic basis for therapeutic activation of neuronal potassium channels publication-title: Nat Commun doi: 10.1038/Ncomms9116 – volume: 282 start-page: 1890 year: 1998 end-page: 1893 ident: CR50 article-title: KCNQ2 and KCNQ3 Potassium channel subunits: molecular correlates of the M-channel publication-title: Science doi: 10.1126/science.282.5395.1890 – volume: 107 start-page: 11352 year: 2010 end-page: 11357 ident: CR59 article-title: Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1000142107 – volume: 67 start-page: 1009 year: 2005 end-page: 1017 ident: CR57 article-title: The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate publication-title: Mol Pharmacol doi: 10.1124/mol.104.010793 – year: 2007 ident: CR36 publication-title: Molecular electrostatic potentials and chemical reactivity – volume: 30 start-page: 1545 year: 2009 ident: CR5 article-title: CHARMM: the biomolecular simulation program publication-title: J Comput Chem doi: 10.1002/jcc.21287 – volume: 38 start-page: 314 year: 2012 end-page: 323 ident: CR28 article-title: Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2012.07.004 – volume: 30 start-page: 2785 year: 2009 ident: CR34 article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility publication-title: J Comput Chem doi: 10.1002/jcc.21256 – volume: 89 start-page: 667 year: 2016 ident: CR26 article-title: Synthesis and evaluation of potent KCNQ2/3-specific channel activators publication-title: Mol Pharmacol doi: 10.1124/mol.115.103200 – year: 2002 ident: CR35 publication-title: Electrostatic potentials: chemical applications – volume: 79 start-page: 926 year: 1983 end-page: 935 ident: CR23 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J Chem Phys doi: 10.1063/1.445869 – volume: 53 start-page: 412 year: 2012 end-page: 424 ident: CR14 article-title: The mechanism of action of retigabine (ezogabine), a first-in-class K + channel opener for the treatment of epilepsy publication-title: Epilepsia doi: 10.1111/j.1528-1167.2011.03365.x – volume: 10 start-page: 449 year: 2015 end-page: 461 ident: CR13 article-title: The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2015.1032936 – volume: 332 start-page: 811 year: 2010 end-page: 820 ident: CR18 article-title: Expression, localization, and pharmacological role of Kv7 potassium channels in skeletal muscle proliferation, differentiation, and survival after myotoxic insults publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.109.162800 – year: 2016 ident: CR7 publication-title: Amber 2016 doi: 10.13140/RG.2.2.27958.70729 – volume: 1164 start-page: 459 year: 2018 end-page: 469 ident: CR1 article-title: Synthesis, spectroscopic analyses, chemical reactivity and molecular docking study and anti-tubercular activity of pyrazine and condensed oxadiazole derivatives publication-title: J Mol Struct doi: 10.1016/j.molstruc.2018.03.085 – volume: 27 start-page: 343 year: 2011 end-page: 350 ident: CR2 article-title: Toward the estimation of the absolute quality of individual protein structure models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq662 – volume: 291 start-page: 2931 year: 2016 end-page: 2937 ident: CR46 article-title: The sensorless pore module of voltage-gated K + channel family 7 embodies the target site for the anticonvulsant retigabine publication-title: J Biol Chem doi: 10.1074/jbc.M115.683185 – volume: 25 start-page: 5051 year: 2005 ident: CR38 article-title: Molecular determinants of KCNQ (Kv7) K + channel sensitivity to the anticonvulsant retigabine publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0128-05.2005 – volume: 9 start-page: 1847 year: 2018 ident: CR33 article-title: Direct neurotransmitter activation of voltage-gated potassium channels publication-title: Nat Commun doi: 10.1038/s41467-018-04266-w – volume: 69 start-page: 2045 year: 2007 end-page: 2053 ident: CR58 article-title: Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations publication-title: Neurology doi: 10.1212/01.wnl.0000275523.95103.36 – volume: 40 start-page: 2868 year: 2019 end-page: 2881 ident: CR9 article-title: Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory publication-title: J Comput Chem doi: 10.1002/jcc.26068 – year: 2003 ident: CR10 publication-title: Gaussian 03, revision A.1 – volume: 54 start-page: 24 year: 2013 end-page: 34 ident: CR55 article-title: Issues related to development of new antiseizure treatments publication-title: Epilepsia doi: 10.1111/epi.12296 – volume: 36 start-page: 3219 year: 1980 end-page: 3228 ident: CR11 article-title: Iterative partial equalization of orbital electronegativity—a rapid access to atomic charge publication-title: Tetrahedron doi: 10.1016/0040-4020(80)80168-2 – volume: 45 start-page: D313 year: 2017 end-page: D319 ident: CR3 article-title: The SWISS-MODEL repository-new features and functionality publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1132 – volume: 75 start-page: 272 year: 2009 end-page: 280 ident: CR27 article-title: Refinement of the binding site and mode of action of the anticonvulsant Retigabine on KCNQ K + channels publication-title: Mol Pharmacol doi: 10.1124/mol.108.052282 – volume: 25 start-page: 1157 year: 2004 end-page: 1174 ident: CR51 article-title: Development and testing of a general amber force field publication-title: J Comput Chem doi: 10.1002/jcc.20035 – volume: 8 start-page: 353 year: 2010 end-page: 360 ident: CR20 article-title: BMS-204352: a potassium channel opener developed for the treatment of stroke publication-title: CNS Drug Rev doi: 10.1111/j.1527-3458.2002.tb00233.x – volume: 31 start-page: 837 year: 2010 end-page: 846 ident: CR12 article-title: How to obtain statistically converged MM/GBSA result publication-title: J Comput Chem doi: 10.1002/jcc.21366 – volume: 106 start-page: 765 year: 1984 end-page: 784 ident: CR54 article-title: A new force field for molecular mechanical simulation of nucleic acids and proteins publication-title: J Am Chem Soc doi: 10.1021/ja00315a051 – volume: 1 start-page: 21 year: 2000 ident: 113_CR21 publication-title: Nat Rev Neurosci doi: 10.1038/35036198 – volume: 30 start-page: i505 year: 2014 ident: 113_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu457 – volume-title: Amber 2016 year: 2016 ident: 113_CR7 doi: 10.13140/RG.2.2.27958.70729 – volume: 169 start-page: 1042 year: 2017 ident: 113_CR44 publication-title: Cell doi: 10.1016/j.cell.2017.05.019 – volume: 45 start-page: D313 year: 2017 ident: 113_CR3 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1132 – volume: 21 start-page: 5535 year: 2001 ident: 113_CR48 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-15-05535.2001 – volume: 53 start-page: 412 year: 2012 ident: 113_CR14 publication-title: Epilepsia doi: 10.1111/j.1528-1167.2011.03365.x – volume: 8 start-page: 353 year: 2010 ident: 113_CR20 publication-title: CNS Drug Rev doi: 10.1111/j.1527-3458.2002.tb00233.x – volume: 9 start-page: 3845 year: 2018 ident: 113_CR31 publication-title: Nat Commun doi: 10.1038/s41467-018-06339-2 – volume: 291 start-page: 2931 year: 2016 ident: 113_CR46 publication-title: J Biol Chem doi: 10.1074/jbc.M115.683185 – volume: 36 start-page: 3219 year: 1980 ident: 113_CR11 publication-title: Tetrahedron doi: 10.1016/0040-4020(80)80168-2 – volume: 279 start-page: 403 year: 1998 ident: 113_CR4 publication-title: Science doi: 10.1126/science.279.5349.403 – volume: 16 start-page: 1731 year: 2010 ident: 113_CR37 publication-title: J Mol Model doi: 10.1007/s00894-010-0709-5 – volume: 282 start-page: 1890 year: 1998 ident: 113_CR50 publication-title: Science doi: 10.1126/science.282.5395.1890 – volume: 67 start-page: 1009 year: 2005 ident: 113_CR57 publication-title: Mol Pharmacol doi: 10.1124/mol.104.010793 – volume-title: Comparative protein structure modeling using MODELLER year: 2016 ident: 113_CR53 – volume: 10 start-page: 449 year: 2015 ident: 113_CR13 publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2015.1032936 – volume: 40 start-page: 2868 year: 2019 ident: 113_CR9 publication-title: J Comput Chem doi: 10.1002/jcc.26068 – volume: 79 start-page: 926 year: 1983 ident: 113_CR23 publication-title: J Chem Phys doi: 10.1063/1.445869 – volume-title: Molecular electrostatic potentials and chemical reactivity year: 2007 ident: 113_CR36 – volume: 54 start-page: 24 year: 2013 ident: 113_CR55 publication-title: Epilepsia doi: 10.1111/epi.12296 – volume: 46 start-page: W296 year: 2018 ident: 113_CR52 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky427 – year: 2015 ident: 113_CR25 publication-title: Nat Commun doi: 10.1038/Ncomms9116 – volume: 303 start-page: 1813 year: 2004 ident: 113_CR22 publication-title: Science doi: 10.1126/science.1096361 – volume: 27 start-page: 343 year: 2011 ident: 113_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq662 – volume: 2 start-page: 401 year: 2019 ident: 113_CR32 publication-title: Commun Biol doi: 10.1038/s42003-019-0648-3 – volume: 18 start-page: 25 year: 1998 ident: 113_CR40 publication-title: Nat Genet doi: 10.1038/ng0198-25 – volume: 12 start-page: 453 year: 2005 ident: 113_CR56 publication-title: Curr Med Chem doi: 10.2174/0929867053363045 – volume: 13 start-page: 632 year: 2020 ident: 113_CR45 publication-title: Arab J Chem doi: 10.1016/j.arabjc.2017.07.006 – volume: 58 start-page: 253 year: 2000 ident: 113_CR29 publication-title: Mol Pharmacol doi: 10.1124/mol.58.2.253 – volume: 75 start-page: 272 year: 2009 ident: 113_CR27 publication-title: Mol Pharmacol doi: 10.1124/mol.108.052282 – volume: 25 start-page: 5051 year: 2005 ident: 113_CR38 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0128-05.2005 – volume: 51 start-page: 69 year: 2011 ident: 113_CR16 publication-title: J Chem Inf Model doi: 10.1021/ci100275a – volume: 38 start-page: 314 year: 2012 ident: 113_CR28 publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2012.07.004 – volume-title: Electrostatic potentials: chemical applications year: 2002 ident: 113_CR35 – volume: 31 start-page: 837 year: 2010 ident: 113_CR12 publication-title: J Comput Chem doi: 10.1002/jcc.21366 – volume: 69 start-page: 2045 year: 2007 ident: 113_CR58 publication-title: Neurology doi: 10.1212/01.wnl.0000275523.95103.36 – volume: 30 start-page: 1545 year: 2009 ident: 113_CR5 publication-title: J Comput Chem doi: 10.1002/jcc.21287 – volume: 9 start-page: 1847 year: 2018 ident: 113_CR33 publication-title: Nat Commun doi: 10.1038/s41467-018-04266-w – volume: 66 start-page: 334 year: 2014 ident: 113_CR41 publication-title: Pharmacol Rev doi: 10.1124/pr.112.007336 – volume: 40 start-page: 888 year: 2001 ident: 113_CR39 publication-title: Neuropharmacology doi: 10.1016/S0028-3908(01)00029-6 – volume-title: Gaussian 03, revision A.1 year: 2003 ident: 113_CR10 – volume: 8 start-page: 1429 year: 2013 ident: 113_CR42 publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2013.837882 – volume: 25 start-page: 1157 year: 2004 ident: 113_CR51 publication-title: J Comput Chem doi: 10.1002/jcc.20035 – volume: 46 start-page: 445 year: 2017 ident: 113_CR24 publication-title: Eur Biophys J Biophy doi: 10.1007/s00249-016-1188-0 – volume: 51 start-page: 1068 year: 2006 ident: 113_CR15 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2006.07.001 – volume: 106 start-page: 765 year: 1984 ident: 113_CR54 publication-title: J Am Chem Soc doi: 10.1021/ja00315a051 – volume: 113 start-page: 13279 year: 2009 ident: 113_CR8 publication-title: J Phys Chem doi: 10.1021/jp902584c – volume: 548 start-page: 353 year: 2003 ident: 113_CR30 publication-title: J Physiol – volume: 14 start-page: 33 year: 1996 ident: 113_CR17 publication-title: J Mol Graph doi: 10.1016/0263-7855(96)00018-5 – volume: 107 start-page: 11352 year: 2010 ident: 113_CR59 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1000142107 – volume: 1164 start-page: 459 year: 2018 ident: 113_CR1 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2018.03.085 – volume: 8 start-page: 1429 year: 2013 ident: 113_CR19 publication-title: Expert Opin Drug Dis doi: 10.1517/17460441.2013.837882 – volume: 89 start-page: 667 year: 2016 ident: 113_CR26 publication-title: Mol Pharmacol doi: 10.1124/mol.115.103200 – volume: 30 start-page: 2785 year: 2009 ident: 113_CR34 publication-title: J Comput Chem doi: 10.1002/jcc.21256 – volume: 156 start-page: 1185 year: 2009 ident: 113_CR6 publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2009.00111.x – volume: 33 start-page: 580 year: 2012 ident: 113_CR49 publication-title: J Comput Chem doi: 10.1002/jcc.21992 – volume: 332 start-page: 811 year: 2010 ident: 113_CR18 publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.109.162800 |
SSID | ssj0017764 |
Score | 2.3613226 |
Snippet | KCNQ2 channel is one of the important members of potassium voltage-gated channel. KCNQ2 is closely related to neuronal excitatory diseases including epilepsy... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | Amino Acid Sequence Binding Binding Sites Biochemistry Biomedical and Life Sciences Carbamates - pharmacology Clinical trials Design optimization Epilepsy Excitability Human Physiology Hydrogen Bonding Hydrogen bonds Hydrophobicity Ion Channel Gating - drug effects KCNQ2 Potassium Channel - chemistry KCNQ2 Potassium Channel - physiology KCNQ2 protein Life Sciences Membrane Transport Modulators - pharmacology Molecular Docking Simulation Molecular Dynamics Simulation Molecular modelling Neuralgia Phenylenediamines - pharmacology Potassium channels (voltage-gated) Protein Binding Protein Conformation Structure-Activity Relationship Therapeutic targets |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-UwEB5cRdgX8bKXeiOCb7uFtrm1jyqKKEdQ94AvS2nSKRxwe4Tqg__emZy2i-gu-NpO05JJOt-XZL4BOFSNLryxJsba1rGSysU5rzZpXdcEH_IicUwUJ1fmfKou7vRdnxTWDafdhy3J8Kcek904vGQx0x3GMTI2n2BFM3enUTzNjsa9A2uNGjTCMyPTPlXm_TZeh6M3GPPN_mgIO2frsNbjRXG0cPAGLGG7CauLCpLPW_B7MpS3FRPkJN5Z96cTVVuL2yAMy6Ia4rjqZp2YN-IGWVGDuDAKFiPhVZtOzFq6HgrS0weIy5Or60xwzkGL919genb66-Q87ismxF5a_Rij1Y31NUppc6e8t0Rwk9oXlVVV5rxLsibFJnG1TxqDuiCwgLIgO5UpQ9FSfoXldt7idxCuUakn-mQqZFaSVwarFFWSY-GMNz6CdOi40vdy4lzV4r4chZBDZ5fU2eHgnCxNBD_GZx4WYhr_td4d_FH2E6srCWEQJSWgZiM4GG_TlOB9jqrF-RPbWBtk_9MIvi38OL5OEgVLpJYR_Bwc-7fxf3_L9sfMd-BzFgYZn_DZhWXyOO4ReHl0-2GsvgCsYuId priority: 102 providerName: Springer Nature |
Title | Molecular Mechanisms and Structural Basis of Retigabine Analogues in Regulating KCNQ2 Channel |
URI | https://link.springer.com/article/10.1007/s00232-020-00113-6 https://www.ncbi.nlm.nih.gov/pubmed/32170353 https://www.proquest.com/docview/2388400257 https://www.proquest.com/docview/2377352651 |
Volume | 253 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED62lsFexn7PXVc02NsmZluyZD-NpCQtKwlbt0D2MIwtnSHQOR1uH_bf706xXUZZXyywZFvoJN990t13AO90kxXOWCPRWy-10rXMebcpy7wn8yEv4pqB4mJpTlf68zpb9xtuXe9WOfwTw4_abx3vkX8k1UJYhDS0_XT5W3LWKD5d7VNo3Id9pi5jly67HgFXYq3RA1t4alTSB82E0DlWVqlk8MRWkZLmX8V0y9q8dVIaFND8MTzqLUcx2Yn6CdzD9ik82OWS_PMMfi6GRLdigRzOu-l-daJqvfgWKGKZXkNMq27TiW0jzpG5NQgVo2BaEt6_6cSmpfshNT11QJwdL7-mgqMPWrx4Dqv57PvxqexzJ0inbHYl0WaNdR6VsnmtnbMEdWPvisrqKq1dHadNgk1cexc3BrOCzAZUBbXTqTakN9UL2Gu3Lb4CUTc6cQSkTIWMT_LKYJWgjnMsauOMiyAZBq50PbE457e4KEdK5DDYJQ12cKFTpYng_fjM5Y5W487Wh4M8yn6JdeXNhIjg7VhNi4NPPKoWt9fcxtqQACCJ4OVOjuPnFIGxWGUqgg-DYG9e_v--HNzdl9fwMA2Tin17DmGPJIxvyGy5qo_C3KRrPj85gv3JfDpdcnny42xG5XS2_HJOtat08hdZluvb |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviHcDBYwEJ4hIYsdODghBYdmy3ZWAVuoFhcSeVCuVbFGKUP8Uv5EZ51Ghit56TRzHmodnPo9nBuCZqtPcaqNDdMaFSqoqzPi0KU2dI_chy6OKgeJ8oaf76tNBerAGf4ZcGL5WOeyJfqN2K8tn5K_ItBAWIQtt3hz_DLlrFEdXhxYanVjM8PQ3Qbb29c574u_zJJl82Nuehn1XgdBKk56EaNLaWIdSmqxS1hoCgZGzeWlUmVS2ipI6xjqqnI1qjWlOBhVlTuNUojRZFEnzXoGrSsqcNSqbfByjFsZoNVQnT7SM-yQdn6rHxjEJGayxFyZD_a8hPOfdnovMeoM3uQk3ek9VvO1E6xasYXMbrnW9K0_vwLf50FhXzJHTh5ftj1aUjRNffUlaLuch3pXtshWrWnxBruVBKBwFl0Hh86JWLBt6fuj7hzWHYra9-JwIznZo8Ogu7F8KVe_BerNqcBNEVavYEnDTJTIeykqNZYwqyjCvtNU2gHggXGH7QubcT-OoGEswe2IXRGx_ZU8WOoAX4zfHXRmPC0dvDfwoepVuizMBDODp-JqUkSMsZYOrXzzGGN9wIA7gfsfH8XeSwF8kUxnAy4GxZ5P_fy0PLl7LE7g-3ZvvFrs7i9lD2Ei8gPG9oi1YJ27jI3KZTqrHXk4FfL9sxfgLXwMkFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAviDeBAkaCE0RNbMdODghBy6pl2RWvSntBIXEm1UpttihFqH-NX8eM86hQRW-9Jo5jzcMznz0PgOe6TjJnrAmxslWolS7DlE-bkqSqyH1Is6hkoDibm919_WGRLNbgz5ALw2GVw57oN-pq5fiMfItMC2ERstB2q-7DIj7tTN4c_wy5gxTftA7tNDoRmeLpb4Jv7eu9HeL1Cykn779t74Z9h4HQKZuchGiT2roKlbJpqZ2zBAijymWF1YUsXRnJOsY6KisX1QaTjIwrqozGaakNWRdF816Bq1YlMeuYXYxgL7bW6KFSuTQq7hN2fNoeG0oZMnBjj0yF5l-jeM7TPXdL643f5Cbc6L1W8bYTs1uwhs1tuNb1sTy9A99nQ5NdMUNOJV62R60omkp89eVpubSHeFe0y1asavEFua4HIXIUXBKFz45asWzo-YHvJdYciOn2_LMUnPnQ4OFd2L8Uqt6D9WbV4AMQZa1jRyDOFMjYKC0MFjHqKMWsNM64AOKBcLnri5pzb43DfCzH7ImdE7F9-J7KTQAvx2-Ou5IeF47eHPiR9-rd5mfCGMCz8TUpJt-2FA2ufvEYa33zgTiA-x0fx98pAoKRSlQArwbGnk3-_7U8vHgtT-E6qUT-cW8-fQQb0ssXhxhtwjoxGx-T93RSPvFiKuDHZevFX-_oKEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Mechanisms+and+Structural+Basis+of+Retigabine+Analogues+in+Regulating+KCNQ2+Channel&rft.jtitle=The+Journal+of+membrane+biology&rft.au=Shi%2C+Sai&rft.au=Li%2C+Junwei&rft.au=Sun%2C+Fude&rft.au=Chen%2C+Yafei&rft.date=2020-04-01&rft.issn=1432-1424&rft.eissn=1432-1424&rft.volume=253&rft.issue=2&rft.spage=167&rft_id=info:doi/10.1007%2Fs00232-020-00113-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2631&client=summon |