Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel

Reactive electrolyte spreading along the surfaces of different conversion films on zinc galvanized steel in humid air was monitored visually and with a height-regulated scanning Kelvin Probe. Electrochemical impedance spectroscopy and current density-potential curves revealed that decelerated spread...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 228; pp. 286 - 295
Main Authors Posner, R., Fink, N., Wolpers, M., Grundmeier, G.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.08.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reactive electrolyte spreading along the surfaces of different conversion films on zinc galvanized steel in humid air was monitored visually and with a height-regulated scanning Kelvin Probe. Electrochemical impedance spectroscopy and current density-potential curves revealed that decelerated spreading kinetics are connected with increasing pore resistances of the pre-treatment layers and decreasing oxygen reduction current densities in the electron transfer controlled potential region. After a few days the progress ranking of electrolyte spreading along uncoated conversion films reflected the progress tendencies of cathodic delamination observed on epoxy coated conversion layers after long-time exposure to the same corrosive environment. Such correlation was not discovered for pre-treatment films that do not provide relevant electrochemical barrier properties. The results suggest that oxygen reduction driven electrolyte wetting is an option for accelerated performance testing of anticorrosive ultra-thin films on metal substrates that can be subject to cathodic delamination. •Electrolyte spreading and cathodic delamination are similar on conversion coatings.•Interrelation of electrolyte spreading, barrier properties and oxygen reduction.•Electrolyte spreading kinetics can anticipate the progress of cathodic delamination.•Options for cost-efficient and accelerated corrosion testing are shown.
AbstractList Reactive electrolyte spreading along the surfaces of different conversion films on zinc galvanized steel in humid air was monitored visually and with a height-regulated scanning Kelvin Probe. Electrochemical impedance spectroscopy and current density-potential curves revealed that decelerated spreading kinetics are connected with increasing pore resistances of the pre-treatment layers and decreasing oxygen reduction current densities in the electron transfer controlled potential region. After a few days the progress ranking of electrolyte spreading along uncoated conversion films reflected the progress tendencies of cathodic delamination observed on epoxy coated conversion layers after long-time exposure to the same corrosive environment. Such correlation was not discovered for pre-treatment films that do not provide relevant electrochemical barrier properties. The results suggest that oxygen reduction driven electrolyte wetting is an option for accelerated performance testing of anticorrosive ultra-thin films on metal substrates that can be subject to cathodic delamination.
Reactive electrolyte spreading along the surfaces of different conversion films on zinc galvanized steel in humid air was monitored visually and with a height-regulated scanning Kelvin Probe. Electrochemical impedance spectroscopy and current density-potential curves revealed that decelerated spreading kinetics are connected with increasing pore resistances of the pre-treatment layers and decreasing oxygen reduction current densities in the electron transfer controlled potential region. After a few days the progress ranking of electrolyte spreading along uncoated conversion films reflected the progress tendencies of cathodic delamination observed on epoxy coated conversion layers after long-time exposure to the same corrosive environment. Such correlation was not discovered for pre-treatment films that do not provide relevant electrochemical barrier properties. The results suggest that oxygen reduction driven electrolyte wetting is an option for accelerated performance testing of anticorrosive ultra-thin films on metal substrates that can be subject to cathodic delamination. •Electrolyte spreading and cathodic delamination are similar on conversion coatings.•Interrelation of electrolyte spreading, barrier properties and oxygen reduction.•Electrolyte spreading kinetics can anticipate the progress of cathodic delamination.•Options for cost-efficient and accelerated corrosion testing are shown.
Author Fink, N.
Wolpers, M.
Grundmeier, G.
Posner, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Posner
  fullname: Posner, R.
  email: ralf.posner@web.de
  organization: Max-Planck-Institut für Eisenforschung GmbH, Department of Interface Chemistry and Surface Engineering, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
– sequence: 2
  givenname: N.
  surname: Fink
  fullname: Fink, N.
  organization: Max-Planck-Institut für Eisenforschung GmbH, Department of Interface Chemistry and Surface Engineering, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
– sequence: 3
  givenname: M.
  surname: Wolpers
  fullname: Wolpers, M.
  organization: Henkel AG & Co. KGaA, Henkelstr. 67, 40589 Düsseldorf, Germany
– sequence: 4
  givenname: G.
  surname: Grundmeier
  fullname: Grundmeier, G.
  organization: University of Paderborn, Department of Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27512560$$DView record in Pascal Francis
BookMark eNqFUctqHDEQFMGBrB-_EOYSyGU2eoxGM5BDgnEeYMjFOQuN1OPtRSttJM0G--sje9eXXAwNLXVXlVpd5-QsxACEvGd0zSjrP23XeUmzjaasOWViTbsa_A1ZsUGNrRCdOiMryqVqh1Hxd-Q85y2llKmxW5G_Nx5sSdFuYIfW-AaOd_9QoMn7BMZhuG9yWRxCbuLclA00-xRLheHh-biHVE7NxZdk2rLB0Mzod7UWmkcMtrk3_mACPoKrWgD-krydjc9wdcoX5Pe3m7vrH-3tr-8_r7_etlYoWVpQ3dSPbhqNnCzjHShnlXLGSjoL6EVNXA1mMMpNlsq5V6Y2RylgcoxOnbggH4-6dc4_C-Sid5gteG8CxCVr1g9SKS6EqtAPJ6jJdRNzMsFi1vuEO5MeNFeScdnTivt8xNkUc04wa4vFFIyh_h29ZlQ_-aK3-sUX_eSLpl0NXun9f_SXF14lfjkSoe7rgJB0tgjBgsNUzdAu4msS_wCt5LJ7
CODEN SCTEEJ
CitedBy_id crossref_primary_10_1007_s11998_015_9663_6
crossref_primary_10_1007_s42452_022_05244_0
crossref_primary_10_1149_2_0371803jes
crossref_primary_10_6000_2369_3355_2014_01_02_1
crossref_primary_10_3389_fmats_2019_00192
crossref_primary_10_1149_2_0121412jes
crossref_primary_10_1016_j_surfcoat_2022_128835
crossref_primary_10_1016_j_surfcoat_2014_06_030
crossref_primary_10_1149_1945_7111_ab739d
crossref_primary_10_1016_j_apsusc_2016_01_106
crossref_primary_10_1016_j_electacta_2019_134847
crossref_primary_10_1002_maco_201508597
crossref_primary_10_1038_s41529_022_00285_7
crossref_primary_10_3390_met10060730
crossref_primary_10_1002_maco_201709462
crossref_primary_10_1016_j_apsusc_2015_08_205
crossref_primary_10_1016_j_surfcoat_2014_05_041
Cites_doi 10.1088/0022-3727/24/2/019
10.1016/j.electacta.2010.07.037
10.1149/1.1984448
10.1016/j.corsci.2012.04.026
10.1016/j.corsci.2009.08.038
10.1016/j.electacta.2008.11.059
10.1016/j.electacta.2007.05.045
10.1016/j.corsci.2009.04.014
10.1016/S0010-938X(01)00056-7
10.1016/j.electacta.2008.06.074
10.1002/sia.3710
10.1016/S0010-938X(00)00047-0
10.1016/S0010-938X(00)00048-2
10.1016/S0010-938X(98)00168-1
10.1016/j.corsci.2007.06.005
10.1016/j.electacta.2009.10.059
10.1016/S0010-938X(00)00049-4
10.1016/j.electacta.2008.07.011
10.1016/j.corsci.2010.01.034
10.1016/j.electacta.2008.04.022
10.1149/1.2946429
10.1016/S0010-938X(98)00167-X
10.1016/j.electacta.2009.03.089
10.1016/S0010-938X(98)00166-8
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SE
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.surfcoat.2013.04.042
DatabaseName CrossRef
Pascal-Francis
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Corrosion Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Applied Sciences
Physics
EISSN 1879-3347
EndPage 295
ExternalDocumentID 27512560
10_1016_j_surfcoat_2013_04_042
S0257897213003861
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
SSH
WUQ
IQODW
7SE
7SR
7U5
8BQ
8FD
AFXIZ
JG9
L7M
ID FETCH-LOGICAL-c375t-e74b69db9a5bc124e7dc77dac50f3e6350f278a8a7dbc05f67adac953ebd10b43
IEDL.DBID .~1
ISSN 0257-8972
IngestDate Fri Jul 11 02:05:02 EDT 2025
Wed Apr 02 07:26:16 EDT 2025
Tue Jul 01 04:02:14 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Fri Feb 23 02:23:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Zinc galvanized steel
Cathodic delamination
Conversion coating
Accelerated corrosion testing
Reactive electrolyte spreading
Galvanized steel
Surface treatments
Coatings
Thin films
Corrosion
Protective layer
Corrosion testing
Delamination
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-e74b69db9a5bc124e7dc77dac50f3e6350f278a8a7dbc05f67adac953ebd10b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1685772337
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1685772337
pascalfrancis_primary_27512560
crossref_citationtrail_10_1016_j_surfcoat_2013_04_042
crossref_primary_10_1016_j_surfcoat_2013_04_042
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2013_04_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-15
PublicationDateYYYYMMDD 2013-08-15
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Surface & coatings technology
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kanani (bb0040) 2007
Posner, Giza, Marazita, Grundmeier (bb0120) 2010; 52
Fürbeth, Stratmann (bb0105) 2001; 43
Leng, Streckel, Hofmann, Stratmann (bb0100) 1999; 41
Posner, Marazita, Amthor, Roschmann (bb0070) 2010; 52
Posner, Wapner, Amthor, Roschmann, Grundmeier (bb0065) 2010; 52
Chen, Persson, Leygraf (bb0080) 2008; 50
Williams, McMurray, Loveridge (bb0025) 2010; 55
Leng, Streckel, Stratmann (bb0095) 1999; 41
Chen, Persson, Nazarov, Zakipour, Thierry, Leygraf (bb0085) 2005; 152
Nazarov, Thierry, Volovitch, Ogle (bb0010) 2011; 43
Kinloch (bb0015) 1987
(bb0045) 2003
Vasilakopoulos, Bouroushian, Spyrdlis (bb0140) 2009; 54
S.E. Dolan, “Composition and process for treating metals“, US patent no. US5427632.
Walsh (bb0135) 1991; 24
Adhikari, Unocic, Zhai, Frankel, Zimmerman, Fristad (bb0130) 2011; 56
K. Hackbarth, M. Wolpers, W. Lorenz, P. Kuhm, K. Meagher, C. Rosenkranz, M. Roth, R. Wark, G. Sanchis Otero, E. Wilke, “Metallisierende Vorbehandlung von Zinkoberflächen“, European patent no. EP 2 292 808 A1.
Wielant, Posner, Hausbrand, Grundmeier, Terryn (bb0060) 2009; 51
Posner, Titz, Wapner, Stratmann, Grundmeier (bb0055) 2009; 54
Fürbeth, Stratmann (bb0110) 2001; 43
Neufeld, Cole, Bond, Furman (bb0145) 2002; 44
Allahar, Hinderliter, Tallman, Bierwagen (bb0030) 2008; 155
Rubina, Oltra, Vuillemin, Ogle (bb0020) 2008; 53
Leng, Streckel, Stratmann (bb0090) 1999; 41
Klimow, Fink, Grundmeier (bb0150) 2007; 53
Posner, Giza, Vlasak, Grundmeier (bb0075) 2009; 54
Posner, Wapner, Stratmann, Grundmeier (bb0050) 2009; 54
Fürbeth, Stratmann (bb0115) 2001; 43
Prosek, Nazarov, Stoulil, Thierry (bb0005) 2012; 61
Posner (10.1016/j.surfcoat.2013.04.042_bb0065) 2010; 52
Prosek (10.1016/j.surfcoat.2013.04.042_bb0005) 2012; 61
Nazarov (10.1016/j.surfcoat.2013.04.042_bb0010) 2011; 43
Kanani (10.1016/j.surfcoat.2013.04.042_bb0040) 2007
Fürbeth (10.1016/j.surfcoat.2013.04.042_bb0105) 2001; 43
Williams (10.1016/j.surfcoat.2013.04.042_bb0025) 2010; 55
Klimow (10.1016/j.surfcoat.2013.04.042_bb0150) 2007; 53
Wielant (10.1016/j.surfcoat.2013.04.042_bb0060) 2009; 51
Posner (10.1016/j.surfcoat.2013.04.042_bb0120) 2010; 52
10.1016/j.surfcoat.2013.04.042_bb0035
Posner (10.1016/j.surfcoat.2013.04.042_bb0075) 2009; 54
Leng (10.1016/j.surfcoat.2013.04.042_bb0100) 1999; 41
Posner (10.1016/j.surfcoat.2013.04.042_bb0050) 2009; 54
Rubina (10.1016/j.surfcoat.2013.04.042_bb0020) 2008; 53
(10.1016/j.surfcoat.2013.04.042_bb0045) 2003
Chen (10.1016/j.surfcoat.2013.04.042_bb0085) 2005; 152
Neufeld (10.1016/j.surfcoat.2013.04.042_bb0145) 2002; 44
Fürbeth (10.1016/j.surfcoat.2013.04.042_bb0115) 2001; 43
Leng (10.1016/j.surfcoat.2013.04.042_bb0090) 1999; 41
Vasilakopoulos (10.1016/j.surfcoat.2013.04.042_bb0140) 2009; 54
Leng (10.1016/j.surfcoat.2013.04.042_bb0095) 1999; 41
Adhikari (10.1016/j.surfcoat.2013.04.042_bb0130) 2011; 56
Walsh (10.1016/j.surfcoat.2013.04.042_bb0135) 1991; 24
Kinloch (10.1016/j.surfcoat.2013.04.042_bb0015) 1987
Posner (10.1016/j.surfcoat.2013.04.042_bb0070) 2010; 52
Chen (10.1016/j.surfcoat.2013.04.042_bb0080) 2008; 50
Fürbeth (10.1016/j.surfcoat.2013.04.042_bb0110) 2001; 43
10.1016/j.surfcoat.2013.04.042_bb0125
Allahar (10.1016/j.surfcoat.2013.04.042_bb0030) 2008; 155
Posner (10.1016/j.surfcoat.2013.04.042_bb0055) 2009; 54
References_xml – volume: 54
  start-page: 4837
  year: 2009
  ident: bb0075
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 1290
  year: 2007
  ident: bb0150
  publication-title: Electrochim. Acta
– volume: 41
  start-page: 579
  year: 1999
  ident: bb0095
  publication-title: Corros. Sci.
– volume: 41
  start-page: 599
  year: 1999
  ident: bb0100
  publication-title: Corros. Sci.
– volume: 43
  start-page: 207
  year: 2001
  ident: bb0105
  publication-title: Corros. Sci.
– volume: 41
  start-page: 547
  year: 1999
  ident: bb0090
  publication-title: Corros. Sci.
– volume: 44
  start-page: 555
  year: 2002
  ident: bb0145
  publication-title: Corros. Sci.
– volume: 54
  start-page: 891
  year: 2009
  ident: bb0050
  publication-title: Electrochim. Acta
– volume: 43
  start-page: 1286
  year: 2011
  ident: bb0010
  publication-title: Surf. Interface Anal.
– volume: 52
  start-page: 1838
  year: 2010
  ident: bb0120
  publication-title: Corros. Sci.
– volume: 61
  start-page: 92
  year: 2012
  ident: bb0005
  publication-title: Corros. Sci.
– volume: 56
  start-page: 1912
  year: 2011
  ident: bb0130
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 6484
  year: 2008
  ident: bb0020
  publication-title: Electrochim. Acta
– volume: 55
  start-page: 1740
  year: 2010
  ident: bb0025
  publication-title: Electrochim. Acta
– volume: 43
  start-page: 229
  year: 2001
  ident: bb0110
  publication-title: Corros. Sci.
– volume: 54
  start-page: 2509
  year: 2009
  ident: bb0140
  publication-title: Electrochim. Acta
– volume: 155
  start-page: F201
  year: 2008
  ident: bb0030
  publication-title: J. Electrochem. Soc.
– year: 2007
  ident: bb0040
  article-title: Chemische Vernicklung: Nickel-Phosphor-Schichten. Herstellung, Eigenschaften, Anwendungen. Ein Handbuch für Theorie und Praxis
– reference: K. Hackbarth, M. Wolpers, W. Lorenz, P. Kuhm, K. Meagher, C. Rosenkranz, M. Roth, R. Wark, G. Sanchis Otero, E. Wilke, “Metallisierende Vorbehandlung von Zinkoberflächen“, European patent no. EP 2 292 808 A1.
– volume: 54
  start-page: 900
  year: 2009
  ident: bb0055
  publication-title: Electrochim. Acta
– volume: 52
  start-page: 37
  year: 2010
  ident: bb0065
  publication-title: Corros. Sci.
– year: 2003
  ident: bb0045
  publication-title: ASM Handbook, Volume 13A; Corrosion: Fundamentals, Testing, and Protection
– year: 1987
  ident: bb0015
  article-title: Adhesion and Adhesives
– volume: 43
  start-page: 243
  year: 2001
  ident: bb0115
  publication-title: Corros. Sci.
– reference: S.E. Dolan, “Composition and process for treating metals“, US patent no. US5427632.
– volume: 51
  start-page: 1664
  year: 2009
  ident: bb0060
  publication-title: Corros. Sci.
– volume: 52
  start-page: 750
  year: 2010
  ident: bb0070
  publication-title: Corros. Sci.
– volume: 152
  start-page: B342
  year: 2005
  ident: bb0085
  publication-title: J. Electrochem. Soc.
– volume: 24
  start-page: 217
  year: 1991
  ident: bb0135
  publication-title: J. Phys. D Appl. Phys.
– volume: 50
  start-page: 111
  year: 2008
  ident: bb0080
  publication-title: Corros. Sci.
– year: 2003
  ident: 10.1016/j.surfcoat.2013.04.042_bb0045
– volume: 24
  start-page: 217
  year: 1991
  ident: 10.1016/j.surfcoat.2013.04.042_bb0135
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/24/2/019
– volume: 56
  start-page: 1912
  year: 2011
  ident: 10.1016/j.surfcoat.2013.04.042_bb0130
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.07.037
– year: 1987
  ident: 10.1016/j.surfcoat.2013.04.042_bb0015
– volume: 152
  start-page: B342
  year: 2005
  ident: 10.1016/j.surfcoat.2013.04.042_bb0085
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1984448
– volume: 61
  start-page: 92
  year: 2012
  ident: 10.1016/j.surfcoat.2013.04.042_bb0005
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.04.026
– volume: 52
  start-page: 37
  year: 2010
  ident: 10.1016/j.surfcoat.2013.04.042_bb0065
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.08.038
– volume: 54
  start-page: 2509
  year: 2009
  ident: 10.1016/j.surfcoat.2013.04.042_bb0140
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.11.059
– ident: 10.1016/j.surfcoat.2013.04.042_bb0125
– volume: 53
  start-page: 1290
  year: 2007
  ident: 10.1016/j.surfcoat.2013.04.042_bb0150
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.05.045
– volume: 51
  start-page: 1664
  year: 2009
  ident: 10.1016/j.surfcoat.2013.04.042_bb0060
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.04.014
– volume: 44
  start-page: 555
  year: 2002
  ident: 10.1016/j.surfcoat.2013.04.042_bb0145
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(01)00056-7
– volume: 54
  start-page: 891
  year: 2009
  ident: 10.1016/j.surfcoat.2013.04.042_bb0050
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.06.074
– volume: 43
  start-page: 1286
  year: 2011
  ident: 10.1016/j.surfcoat.2013.04.042_bb0010
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.3710
– ident: 10.1016/j.surfcoat.2013.04.042_bb0035
– volume: 43
  start-page: 207
  year: 2001
  ident: 10.1016/j.surfcoat.2013.04.042_bb0105
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(00)00047-0
– volume: 43
  start-page: 229
  year: 2001
  ident: 10.1016/j.surfcoat.2013.04.042_bb0110
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(00)00048-2
– volume: 41
  start-page: 599
  year: 1999
  ident: 10.1016/j.surfcoat.2013.04.042_bb0100
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(98)00168-1
– volume: 50
  start-page: 111
  year: 2008
  ident: 10.1016/j.surfcoat.2013.04.042_bb0080
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2007.06.005
– volume: 55
  start-page: 1740
  year: 2010
  ident: 10.1016/j.surfcoat.2013.04.042_bb0025
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.10.059
– volume: 43
  start-page: 243
  year: 2001
  ident: 10.1016/j.surfcoat.2013.04.042_bb0115
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(00)00049-4
– volume: 54
  start-page: 900
  year: 2009
  ident: 10.1016/j.surfcoat.2013.04.042_bb0055
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.07.011
– volume: 52
  start-page: 1838
  year: 2010
  ident: 10.1016/j.surfcoat.2013.04.042_bb0120
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2010.01.034
– volume: 52
  start-page: 750
  year: 2010
  ident: 10.1016/j.surfcoat.2013.04.042_bb0070
  publication-title: Corros. Sci.
– volume: 53
  start-page: 6484
  year: 2008
  ident: 10.1016/j.surfcoat.2013.04.042_bb0020
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.04.022
– volume: 155
  start-page: F201
  year: 2008
  ident: 10.1016/j.surfcoat.2013.04.042_bb0030
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2946429
– volume: 41
  start-page: 579
  year: 1999
  ident: 10.1016/j.surfcoat.2013.04.042_bb0095
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(98)00167-X
– volume: 54
  start-page: 4837
  year: 2009
  ident: 10.1016/j.surfcoat.2013.04.042_bb0075
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.03.089
– volume: 41
  start-page: 547
  year: 1999
  ident: 10.1016/j.surfcoat.2013.04.042_bb0090
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(98)00166-8
– year: 2007
  ident: 10.1016/j.surfcoat.2013.04.042_bb0040
SSID ssj0001794
Score 2.1645985
Snippet Reactive electrolyte spreading along the surfaces of different conversion films on zinc galvanized steel in humid air was monitored visually and with a...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 286
SubjectTerms Accelerated corrosion testing
Applied sciences
Cathodic delamination
Conversion coating
Corrosion
Corrosion environments
Cross-disciplinary physics: materials science; rheology
Delaminating
Delamination
Electrochemical impedance spectroscopy
Electrolytes
Exact sciences and technology
Galvanized steels
Materials science
Metals. Metallurgy
Methods of deposition of films and coatings; film growth and epitaxy
Physics
Production techniques
Reactive electrolyte spreading
Reduction (electrolytic)
Spreading
Surface treatment
Surface treatments
Thin films
Zinc
Zinc galvanized steel
Title Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel
URI https://dx.doi.org/10.1016/j.surfcoat.2013.04.042
https://www.proquest.com/docview/1685772337
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9K-6AiRaviVT1W8DXeXrIfyWM5Wk7Fvmihb8t-TDAlzYW7nNI-9G93NtnUFpE-CAksu9lk2RlmfpOdD0I-cAVzkMIlUrEy4XkKSV5gyysGIJlXqQyBwl9P5fKMfz4X5ztkMcbCBLfKKPsHmd5L69gzi7s5a6tq9o0FbgvJZ7JwvNWbQJyrwOUfb_64eQSG6_-zCJTG-PSdKOELlE_r0q1M8KmcZ33KU57-S0E9bc0Gt60c6l38Jbp7fXTyjOxHIEmPhrU-JzvQHJBHi7F-2wF5cifV4Avy63iod-NiggAa69_UVx3QTbsefOnpZnArpKuSIjKkMYsDSsTQbIMP9jC4rbu1SbofVUPLqr7EvoZeV42jqHB-huBO8PgugPolOTs5_r5YJrHoQuIyJboEFLey8LYwwjpU_qC8U8obJ1iZAcITVqYqN7lR3jomSqkMDhYiA-vnzPLsFdltVg28JtQgOLAFs7l1khc8tblBewxvlXulDEyIGHdau5iRPBTGqPXoenahRwrpQCHNOF7phMxu57VDTo4HZxQjIfU97tKoOB6cO71H-dtPpgrBEgLGCXk_soJGEocDF9PAarvRc5kLtF6yTB3-xwLekMdpX4MDzX3xlux26y28QyTU2WnP6lOyd_Tpy_L0N576DYY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9K-tCNMbZuY9m6ToO9mii2JdmPJbSka5uXtdA3oS8zF9cxibOx_fU72XJoKaUPBRuMxNlCd_zuzroPgO-pcFPHmYm4oEWUZrGLshyfrKDOcWpFzH2i8MWCz6_SH9fsegdmQy6MD6sM2N9jeofWYWQSdnPSlOXkJ_XS5ovPJP54y7tAu746FRvB7tHp2XyxBWQvc92vFoaAjAR3EoVvEKJWhVkqH1Y5Tbqqp2n8mI561ag17lzRt7x4gN6dSjp5A6-DLUmO-uW-hR1X78PebGjhtg8v71QbfAd_jvuWNybUCCChBU71t3Vk3az6cHqy7iMLybIgaBySUMgBQdE_Nj4Mu5_cVO1KRe2vsiZFWd3iWE3-lbUhqHN--_xOZ_FdzlXv4erk-HI2j0LfhcgkgrWRE6nmudW5Ytqg_nfCGiGsMowWiUMLhRaxyFSmhNWGsoILhZM5S5y2U6rT5AOM6mXtPgJRaB_onOpMG57maawzhS4Z3iKzQig3BjbstDShKLnvjVHJIfrsRg4ckp5DkqZ4xWOYbOmavizHkxT5wEh5T8Ak6o4naQ_vcX77yVigvYQ24xi-DaIgkcX-zEXVbrlZyynPGDowSSI-PWMBX2FvfnlxLs9PF2ef4UXcteRA758dwKhdbdwXNIxafRgE_z_CqxA3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+electrolyte+spreading+studies+of+the+protective+properties+of+ultra-thin+films+on+zinc+galvanized+steel&rft.jtitle=Surface+%26+coatings+technology&rft.au=Posner%2C+R&rft.au=Fink%2C+N&rft.au=Wolpers%2C+M&rft.au=Grundmeier%2C+G&rft.date=2013-08-15&rft.issn=0257-8972&rft.volume=228&rft.spage=286&rft.epage=295&rft_id=info:doi/10.1016%2Fj.surfcoat.2013.04.042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon