Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel
Reactive electrolyte spreading along the surfaces of different conversion films on zinc galvanized steel in humid air was monitored visually and with a height-regulated scanning Kelvin Probe. Electrochemical impedance spectroscopy and current density-potential curves revealed that decelerated spread...
Saved in:
Published in | Surface & coatings technology Vol. 228; pp. 286 - 295 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.08.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reactive electrolyte spreading along the surfaces of different conversion films on zinc galvanized steel in humid air was monitored visually and with a height-regulated scanning Kelvin Probe. Electrochemical impedance spectroscopy and current density-potential curves revealed that decelerated spreading kinetics are connected with increasing pore resistances of the pre-treatment layers and decreasing oxygen reduction current densities in the electron transfer controlled potential region. After a few days the progress ranking of electrolyte spreading along uncoated conversion films reflected the progress tendencies of cathodic delamination observed on epoxy coated conversion layers after long-time exposure to the same corrosive environment. Such correlation was not discovered for pre-treatment films that do not provide relevant electrochemical barrier properties. The results suggest that oxygen reduction driven electrolyte wetting is an option for accelerated performance testing of anticorrosive ultra-thin films on metal substrates that can be subject to cathodic delamination.
•Electrolyte spreading and cathodic delamination are similar on conversion coatings.•Interrelation of electrolyte spreading, barrier properties and oxygen reduction.•Electrolyte spreading kinetics can anticipate the progress of cathodic delamination.•Options for cost-efficient and accelerated corrosion testing are shown. |
---|---|
AbstractList | Reactive electrolyte spreading along the surfaces of different conversion films on zinc galvanized steel in humid air was monitored visually and with a height-regulated scanning Kelvin Probe. Electrochemical impedance spectroscopy and current density-potential curves revealed that decelerated spreading kinetics are connected with increasing pore resistances of the pre-treatment layers and decreasing oxygen reduction current densities in the electron transfer controlled potential region. After a few days the progress ranking of electrolyte spreading along uncoated conversion films reflected the progress tendencies of cathodic delamination observed on epoxy coated conversion layers after long-time exposure to the same corrosive environment. Such correlation was not discovered for pre-treatment films that do not provide relevant electrochemical barrier properties. The results suggest that oxygen reduction driven electrolyte wetting is an option for accelerated performance testing of anticorrosive ultra-thin films on metal substrates that can be subject to cathodic delamination. Reactive electrolyte spreading along the surfaces of different conversion films on zinc galvanized steel in humid air was monitored visually and with a height-regulated scanning Kelvin Probe. Electrochemical impedance spectroscopy and current density-potential curves revealed that decelerated spreading kinetics are connected with increasing pore resistances of the pre-treatment layers and decreasing oxygen reduction current densities in the electron transfer controlled potential region. After a few days the progress ranking of electrolyte spreading along uncoated conversion films reflected the progress tendencies of cathodic delamination observed on epoxy coated conversion layers after long-time exposure to the same corrosive environment. Such correlation was not discovered for pre-treatment films that do not provide relevant electrochemical barrier properties. The results suggest that oxygen reduction driven electrolyte wetting is an option for accelerated performance testing of anticorrosive ultra-thin films on metal substrates that can be subject to cathodic delamination. •Electrolyte spreading and cathodic delamination are similar on conversion coatings.•Interrelation of electrolyte spreading, barrier properties and oxygen reduction.•Electrolyte spreading kinetics can anticipate the progress of cathodic delamination.•Options for cost-efficient and accelerated corrosion testing are shown. |
Author | Fink, N. Wolpers, M. Grundmeier, G. Posner, R. |
Author_xml | – sequence: 1 givenname: R. surname: Posner fullname: Posner, R. email: ralf.posner@web.de organization: Max-Planck-Institut für Eisenforschung GmbH, Department of Interface Chemistry and Surface Engineering, Max-Planck-Str. 1, 40237 Düsseldorf, Germany – sequence: 2 givenname: N. surname: Fink fullname: Fink, N. organization: Max-Planck-Institut für Eisenforschung GmbH, Department of Interface Chemistry and Surface Engineering, Max-Planck-Str. 1, 40237 Düsseldorf, Germany – sequence: 3 givenname: M. surname: Wolpers fullname: Wolpers, M. organization: Henkel AG & Co. KGaA, Henkelstr. 67, 40589 Düsseldorf, Germany – sequence: 4 givenname: G. surname: Grundmeier fullname: Grundmeier, G. organization: University of Paderborn, Department of Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27512560$$DView record in Pascal Francis |
BookMark | eNqFUctqHDEQFMGBrB-_EOYSyGU2eoxGM5BDgnEeYMjFOQuN1OPtRSttJM0G--sje9eXXAwNLXVXlVpd5-QsxACEvGd0zSjrP23XeUmzjaasOWViTbsa_A1ZsUGNrRCdOiMryqVqh1Hxd-Q85y2llKmxW5G_Nx5sSdFuYIfW-AaOd_9QoMn7BMZhuG9yWRxCbuLclA00-xRLheHh-biHVE7NxZdk2rLB0Mzod7UWmkcMtrk3_mACPoKrWgD-krydjc9wdcoX5Pe3m7vrH-3tr-8_r7_etlYoWVpQ3dSPbhqNnCzjHShnlXLGSjoL6EVNXA1mMMpNlsq5V6Y2RylgcoxOnbggH4-6dc4_C-Sid5gteG8CxCVr1g9SKS6EqtAPJ6jJdRNzMsFi1vuEO5MeNFeScdnTivt8xNkUc04wa4vFFIyh_h29ZlQ_-aK3-sUX_eSLpl0NXun9f_SXF14lfjkSoe7rgJB0tgjBgsNUzdAu4msS_wCt5LJ7 |
CODEN | SCTEEJ |
CitedBy_id | crossref_primary_10_1007_s11998_015_9663_6 crossref_primary_10_1007_s42452_022_05244_0 crossref_primary_10_1149_2_0371803jes crossref_primary_10_6000_2369_3355_2014_01_02_1 crossref_primary_10_3389_fmats_2019_00192 crossref_primary_10_1149_2_0121412jes crossref_primary_10_1016_j_surfcoat_2022_128835 crossref_primary_10_1016_j_surfcoat_2014_06_030 crossref_primary_10_1149_1945_7111_ab739d crossref_primary_10_1016_j_apsusc_2016_01_106 crossref_primary_10_1016_j_electacta_2019_134847 crossref_primary_10_1002_maco_201508597 crossref_primary_10_1038_s41529_022_00285_7 crossref_primary_10_3390_met10060730 crossref_primary_10_1002_maco_201709462 crossref_primary_10_1016_j_apsusc_2015_08_205 crossref_primary_10_1016_j_surfcoat_2014_05_041 |
Cites_doi | 10.1088/0022-3727/24/2/019 10.1016/j.electacta.2010.07.037 10.1149/1.1984448 10.1016/j.corsci.2012.04.026 10.1016/j.corsci.2009.08.038 10.1016/j.electacta.2008.11.059 10.1016/j.electacta.2007.05.045 10.1016/j.corsci.2009.04.014 10.1016/S0010-938X(01)00056-7 10.1016/j.electacta.2008.06.074 10.1002/sia.3710 10.1016/S0010-938X(00)00047-0 10.1016/S0010-938X(00)00048-2 10.1016/S0010-938X(98)00168-1 10.1016/j.corsci.2007.06.005 10.1016/j.electacta.2009.10.059 10.1016/S0010-938X(00)00049-4 10.1016/j.electacta.2008.07.011 10.1016/j.corsci.2010.01.034 10.1016/j.electacta.2008.04.022 10.1149/1.2946429 10.1016/S0010-938X(98)00167-X 10.1016/j.electacta.2009.03.089 10.1016/S0010-938X(98)00166-8 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SE 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.surfcoat.2013.04.042 |
DatabaseName | CrossRef Pascal-Francis Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Corrosion Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Applied Sciences Physics |
EISSN | 1879-3347 |
EndPage | 295 |
ExternalDocumentID | 27512560 10_1016_j_surfcoat_2013_04_042 S0257897213003861 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SEW SMS SPG SSH WUQ IQODW 7SE 7SR 7U5 8BQ 8FD AFXIZ JG9 L7M |
ID | FETCH-LOGICAL-c375t-e74b69db9a5bc124e7dc77dac50f3e6350f278a8a7dbc05f67adac953ebd10b43 |
IEDL.DBID | .~1 |
ISSN | 0257-8972 |
IngestDate | Fri Jul 11 02:05:02 EDT 2025 Wed Apr 02 07:26:16 EDT 2025 Tue Jul 01 04:02:14 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Fri Feb 23 02:23:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Zinc galvanized steel Cathodic delamination Conversion coating Accelerated corrosion testing Reactive electrolyte spreading Galvanized steel Surface treatments Coatings Thin films Corrosion Protective layer Corrosion testing Delamination |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-e74b69db9a5bc124e7dc77dac50f3e6350f278a8a7dbc05f67adac953ebd10b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1685772337 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1685772337 pascalfrancis_primary_27512560 crossref_citationtrail_10_1016_j_surfcoat_2013_04_042 crossref_primary_10_1016_j_surfcoat_2013_04_042 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2013_04_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-15 |
PublicationDateYYYYMMDD | 2013-08-15 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Surface & coatings technology |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Kanani (bb0040) 2007 Posner, Giza, Marazita, Grundmeier (bb0120) 2010; 52 Fürbeth, Stratmann (bb0105) 2001; 43 Leng, Streckel, Hofmann, Stratmann (bb0100) 1999; 41 Posner, Marazita, Amthor, Roschmann (bb0070) 2010; 52 Posner, Wapner, Amthor, Roschmann, Grundmeier (bb0065) 2010; 52 Chen, Persson, Leygraf (bb0080) 2008; 50 Williams, McMurray, Loveridge (bb0025) 2010; 55 Leng, Streckel, Stratmann (bb0095) 1999; 41 Chen, Persson, Nazarov, Zakipour, Thierry, Leygraf (bb0085) 2005; 152 Nazarov, Thierry, Volovitch, Ogle (bb0010) 2011; 43 Kinloch (bb0015) 1987 (bb0045) 2003 Vasilakopoulos, Bouroushian, Spyrdlis (bb0140) 2009; 54 S.E. Dolan, “Composition and process for treating metals“, US patent no. US5427632. Walsh (bb0135) 1991; 24 Adhikari, Unocic, Zhai, Frankel, Zimmerman, Fristad (bb0130) 2011; 56 K. Hackbarth, M. Wolpers, W. Lorenz, P. Kuhm, K. Meagher, C. Rosenkranz, M. Roth, R. Wark, G. Sanchis Otero, E. Wilke, “Metallisierende Vorbehandlung von Zinkoberflächen“, European patent no. EP 2 292 808 A1. Wielant, Posner, Hausbrand, Grundmeier, Terryn (bb0060) 2009; 51 Posner, Titz, Wapner, Stratmann, Grundmeier (bb0055) 2009; 54 Fürbeth, Stratmann (bb0110) 2001; 43 Neufeld, Cole, Bond, Furman (bb0145) 2002; 44 Allahar, Hinderliter, Tallman, Bierwagen (bb0030) 2008; 155 Rubina, Oltra, Vuillemin, Ogle (bb0020) 2008; 53 Leng, Streckel, Stratmann (bb0090) 1999; 41 Klimow, Fink, Grundmeier (bb0150) 2007; 53 Posner, Giza, Vlasak, Grundmeier (bb0075) 2009; 54 Posner, Wapner, Stratmann, Grundmeier (bb0050) 2009; 54 Fürbeth, Stratmann (bb0115) 2001; 43 Prosek, Nazarov, Stoulil, Thierry (bb0005) 2012; 61 Posner (10.1016/j.surfcoat.2013.04.042_bb0065) 2010; 52 Prosek (10.1016/j.surfcoat.2013.04.042_bb0005) 2012; 61 Nazarov (10.1016/j.surfcoat.2013.04.042_bb0010) 2011; 43 Kanani (10.1016/j.surfcoat.2013.04.042_bb0040) 2007 Fürbeth (10.1016/j.surfcoat.2013.04.042_bb0105) 2001; 43 Williams (10.1016/j.surfcoat.2013.04.042_bb0025) 2010; 55 Klimow (10.1016/j.surfcoat.2013.04.042_bb0150) 2007; 53 Wielant (10.1016/j.surfcoat.2013.04.042_bb0060) 2009; 51 Posner (10.1016/j.surfcoat.2013.04.042_bb0120) 2010; 52 10.1016/j.surfcoat.2013.04.042_bb0035 Posner (10.1016/j.surfcoat.2013.04.042_bb0075) 2009; 54 Leng (10.1016/j.surfcoat.2013.04.042_bb0100) 1999; 41 Posner (10.1016/j.surfcoat.2013.04.042_bb0050) 2009; 54 Rubina (10.1016/j.surfcoat.2013.04.042_bb0020) 2008; 53 (10.1016/j.surfcoat.2013.04.042_bb0045) 2003 Chen (10.1016/j.surfcoat.2013.04.042_bb0085) 2005; 152 Neufeld (10.1016/j.surfcoat.2013.04.042_bb0145) 2002; 44 Fürbeth (10.1016/j.surfcoat.2013.04.042_bb0115) 2001; 43 Leng (10.1016/j.surfcoat.2013.04.042_bb0090) 1999; 41 Vasilakopoulos (10.1016/j.surfcoat.2013.04.042_bb0140) 2009; 54 Leng (10.1016/j.surfcoat.2013.04.042_bb0095) 1999; 41 Adhikari (10.1016/j.surfcoat.2013.04.042_bb0130) 2011; 56 Walsh (10.1016/j.surfcoat.2013.04.042_bb0135) 1991; 24 Kinloch (10.1016/j.surfcoat.2013.04.042_bb0015) 1987 Posner (10.1016/j.surfcoat.2013.04.042_bb0070) 2010; 52 Chen (10.1016/j.surfcoat.2013.04.042_bb0080) 2008; 50 Fürbeth (10.1016/j.surfcoat.2013.04.042_bb0110) 2001; 43 10.1016/j.surfcoat.2013.04.042_bb0125 Allahar (10.1016/j.surfcoat.2013.04.042_bb0030) 2008; 155 Posner (10.1016/j.surfcoat.2013.04.042_bb0055) 2009; 54 |
References_xml | – volume: 54 start-page: 4837 year: 2009 ident: bb0075 publication-title: Electrochim. Acta – volume: 53 start-page: 1290 year: 2007 ident: bb0150 publication-title: Electrochim. Acta – volume: 41 start-page: 579 year: 1999 ident: bb0095 publication-title: Corros. Sci. – volume: 41 start-page: 599 year: 1999 ident: bb0100 publication-title: Corros. Sci. – volume: 43 start-page: 207 year: 2001 ident: bb0105 publication-title: Corros. Sci. – volume: 41 start-page: 547 year: 1999 ident: bb0090 publication-title: Corros. Sci. – volume: 44 start-page: 555 year: 2002 ident: bb0145 publication-title: Corros. Sci. – volume: 54 start-page: 891 year: 2009 ident: bb0050 publication-title: Electrochim. Acta – volume: 43 start-page: 1286 year: 2011 ident: bb0010 publication-title: Surf. Interface Anal. – volume: 52 start-page: 1838 year: 2010 ident: bb0120 publication-title: Corros. Sci. – volume: 61 start-page: 92 year: 2012 ident: bb0005 publication-title: Corros. Sci. – volume: 56 start-page: 1912 year: 2011 ident: bb0130 publication-title: Electrochim. Acta – volume: 53 start-page: 6484 year: 2008 ident: bb0020 publication-title: Electrochim. Acta – volume: 55 start-page: 1740 year: 2010 ident: bb0025 publication-title: Electrochim. Acta – volume: 43 start-page: 229 year: 2001 ident: bb0110 publication-title: Corros. Sci. – volume: 54 start-page: 2509 year: 2009 ident: bb0140 publication-title: Electrochim. Acta – volume: 155 start-page: F201 year: 2008 ident: bb0030 publication-title: J. Electrochem. Soc. – year: 2007 ident: bb0040 article-title: Chemische Vernicklung: Nickel-Phosphor-Schichten. Herstellung, Eigenschaften, Anwendungen. Ein Handbuch für Theorie und Praxis – reference: K. Hackbarth, M. Wolpers, W. Lorenz, P. Kuhm, K. Meagher, C. Rosenkranz, M. Roth, R. Wark, G. Sanchis Otero, E. Wilke, “Metallisierende Vorbehandlung von Zinkoberflächen“, European patent no. EP 2 292 808 A1. – volume: 54 start-page: 900 year: 2009 ident: bb0055 publication-title: Electrochim. Acta – volume: 52 start-page: 37 year: 2010 ident: bb0065 publication-title: Corros. Sci. – year: 2003 ident: bb0045 publication-title: ASM Handbook, Volume 13A; Corrosion: Fundamentals, Testing, and Protection – year: 1987 ident: bb0015 article-title: Adhesion and Adhesives – volume: 43 start-page: 243 year: 2001 ident: bb0115 publication-title: Corros. Sci. – reference: S.E. Dolan, “Composition and process for treating metals“, US patent no. US5427632. – volume: 51 start-page: 1664 year: 2009 ident: bb0060 publication-title: Corros. Sci. – volume: 52 start-page: 750 year: 2010 ident: bb0070 publication-title: Corros. Sci. – volume: 152 start-page: B342 year: 2005 ident: bb0085 publication-title: J. Electrochem. Soc. – volume: 24 start-page: 217 year: 1991 ident: bb0135 publication-title: J. Phys. D Appl. Phys. – volume: 50 start-page: 111 year: 2008 ident: bb0080 publication-title: Corros. Sci. – year: 2003 ident: 10.1016/j.surfcoat.2013.04.042_bb0045 – volume: 24 start-page: 217 year: 1991 ident: 10.1016/j.surfcoat.2013.04.042_bb0135 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/24/2/019 – volume: 56 start-page: 1912 year: 2011 ident: 10.1016/j.surfcoat.2013.04.042_bb0130 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.07.037 – year: 1987 ident: 10.1016/j.surfcoat.2013.04.042_bb0015 – volume: 152 start-page: B342 year: 2005 ident: 10.1016/j.surfcoat.2013.04.042_bb0085 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1984448 – volume: 61 start-page: 92 year: 2012 ident: 10.1016/j.surfcoat.2013.04.042_bb0005 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.04.026 – volume: 52 start-page: 37 year: 2010 ident: 10.1016/j.surfcoat.2013.04.042_bb0065 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.08.038 – volume: 54 start-page: 2509 year: 2009 ident: 10.1016/j.surfcoat.2013.04.042_bb0140 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.11.059 – ident: 10.1016/j.surfcoat.2013.04.042_bb0125 – volume: 53 start-page: 1290 year: 2007 ident: 10.1016/j.surfcoat.2013.04.042_bb0150 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.05.045 – volume: 51 start-page: 1664 year: 2009 ident: 10.1016/j.surfcoat.2013.04.042_bb0060 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.04.014 – volume: 44 start-page: 555 year: 2002 ident: 10.1016/j.surfcoat.2013.04.042_bb0145 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(01)00056-7 – volume: 54 start-page: 891 year: 2009 ident: 10.1016/j.surfcoat.2013.04.042_bb0050 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.06.074 – volume: 43 start-page: 1286 year: 2011 ident: 10.1016/j.surfcoat.2013.04.042_bb0010 publication-title: Surf. Interface Anal. doi: 10.1002/sia.3710 – ident: 10.1016/j.surfcoat.2013.04.042_bb0035 – volume: 43 start-page: 207 year: 2001 ident: 10.1016/j.surfcoat.2013.04.042_bb0105 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(00)00047-0 – volume: 43 start-page: 229 year: 2001 ident: 10.1016/j.surfcoat.2013.04.042_bb0110 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(00)00048-2 – volume: 41 start-page: 599 year: 1999 ident: 10.1016/j.surfcoat.2013.04.042_bb0100 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(98)00168-1 – volume: 50 start-page: 111 year: 2008 ident: 10.1016/j.surfcoat.2013.04.042_bb0080 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2007.06.005 – volume: 55 start-page: 1740 year: 2010 ident: 10.1016/j.surfcoat.2013.04.042_bb0025 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.10.059 – volume: 43 start-page: 243 year: 2001 ident: 10.1016/j.surfcoat.2013.04.042_bb0115 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(00)00049-4 – volume: 54 start-page: 900 year: 2009 ident: 10.1016/j.surfcoat.2013.04.042_bb0055 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.07.011 – volume: 52 start-page: 1838 year: 2010 ident: 10.1016/j.surfcoat.2013.04.042_bb0120 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.01.034 – volume: 52 start-page: 750 year: 2010 ident: 10.1016/j.surfcoat.2013.04.042_bb0070 publication-title: Corros. Sci. – volume: 53 start-page: 6484 year: 2008 ident: 10.1016/j.surfcoat.2013.04.042_bb0020 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.04.022 – volume: 155 start-page: F201 year: 2008 ident: 10.1016/j.surfcoat.2013.04.042_bb0030 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2946429 – volume: 41 start-page: 579 year: 1999 ident: 10.1016/j.surfcoat.2013.04.042_bb0095 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(98)00167-X – volume: 54 start-page: 4837 year: 2009 ident: 10.1016/j.surfcoat.2013.04.042_bb0075 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.03.089 – volume: 41 start-page: 547 year: 1999 ident: 10.1016/j.surfcoat.2013.04.042_bb0090 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(98)00166-8 – year: 2007 ident: 10.1016/j.surfcoat.2013.04.042_bb0040 |
SSID | ssj0001794 |
Score | 2.1645985 |
Snippet | Reactive electrolyte spreading along the surfaces of different conversion films on zinc galvanized steel in humid air was monitored visually and with a... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 286 |
SubjectTerms | Accelerated corrosion testing Applied sciences Cathodic delamination Conversion coating Corrosion Corrosion environments Cross-disciplinary physics: materials science; rheology Delaminating Delamination Electrochemical impedance spectroscopy Electrolytes Exact sciences and technology Galvanized steels Materials science Metals. Metallurgy Methods of deposition of films and coatings; film growth and epitaxy Physics Production techniques Reactive electrolyte spreading Reduction (electrolytic) Spreading Surface treatment Surface treatments Thin films Zinc Zinc galvanized steel |
Title | Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel |
URI | https://dx.doi.org/10.1016/j.surfcoat.2013.04.042 https://www.proquest.com/docview/1685772337 |
Volume | 228 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9K-6AiRaviVT1W8DXeXrIfyWM5Wk7Fvmihb8t-TDAlzYW7nNI-9G93NtnUFpE-CAksu9lk2RlmfpOdD0I-cAVzkMIlUrEy4XkKSV5gyysGIJlXqQyBwl9P5fKMfz4X5ztkMcbCBLfKKPsHmd5L69gzi7s5a6tq9o0FbgvJZ7JwvNWbQJyrwOUfb_64eQSG6_-zCJTG-PSdKOELlE_r0q1M8KmcZ33KU57-S0E9bc0Gt60c6l38Jbp7fXTyjOxHIEmPhrU-JzvQHJBHi7F-2wF5cifV4Avy63iod-NiggAa69_UVx3QTbsefOnpZnArpKuSIjKkMYsDSsTQbIMP9jC4rbu1SbofVUPLqr7EvoZeV42jqHB-huBO8PgugPolOTs5_r5YJrHoQuIyJboEFLey8LYwwjpU_qC8U8obJ1iZAcITVqYqN7lR3jomSqkMDhYiA-vnzPLsFdltVg28JtQgOLAFs7l1khc8tblBewxvlXulDEyIGHdau5iRPBTGqPXoenahRwrpQCHNOF7phMxu57VDTo4HZxQjIfU97tKoOB6cO71H-dtPpgrBEgLGCXk_soJGEocDF9PAarvRc5kLtF6yTB3-xwLekMdpX4MDzX3xlux26y28QyTU2WnP6lOyd_Tpy_L0N576DYY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9K-tCNMbZuY9m6ToO9mii2JdmPJbSka5uXtdA3oS8zF9cxibOx_fU72XJoKaUPBRuMxNlCd_zuzroPgO-pcFPHmYm4oEWUZrGLshyfrKDOcWpFzH2i8MWCz6_SH9fsegdmQy6MD6sM2N9jeofWYWQSdnPSlOXkJ_XS5ovPJP54y7tAu746FRvB7tHp2XyxBWQvc92vFoaAjAR3EoVvEKJWhVkqH1Y5Tbqqp2n8mI561ag17lzRt7x4gN6dSjp5A6-DLUmO-uW-hR1X78PebGjhtg8v71QbfAd_jvuWNybUCCChBU71t3Vk3az6cHqy7iMLybIgaBySUMgBQdE_Nj4Mu5_cVO1KRe2vsiZFWd3iWE3-lbUhqHN--_xOZ_FdzlXv4erk-HI2j0LfhcgkgrWRE6nmudW5Ytqg_nfCGiGsMowWiUMLhRaxyFSmhNWGsoILhZM5S5y2U6rT5AOM6mXtPgJRaB_onOpMG57maawzhS4Z3iKzQig3BjbstDShKLnvjVHJIfrsRg4ckp5DkqZ4xWOYbOmavizHkxT5wEh5T8Ak6o4naQ_vcX77yVigvYQ24xi-DaIgkcX-zEXVbrlZyynPGDowSSI-PWMBX2FvfnlxLs9PF2ef4UXcteRA758dwKhdbdwXNIxafRgE_z_CqxA3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+electrolyte+spreading+studies+of+the+protective+properties+of+ultra-thin+films+on+zinc+galvanized+steel&rft.jtitle=Surface+%26+coatings+technology&rft.au=Posner%2C+R&rft.au=Fink%2C+N&rft.au=Wolpers%2C+M&rft.au=Grundmeier%2C+G&rft.date=2013-08-15&rft.issn=0257-8972&rft.volume=228&rft.spage=286&rft.epage=295&rft_id=info:doi/10.1016%2Fj.surfcoat.2013.04.042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |