miR-128 as a Regulator of Synaptic Properties in 5xFAD Mice Hippocampal Neurons
Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have...
Saved in:
Published in | Journal of molecular neuroscience Vol. 71; no. 12; pp. 2593 - 2607 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have been shown to have a protective effect by slowing the disease’s progression and reducing AD-like cognitive impairment. However, the molecular mechanism of this mitigating effect is still not understood. One of the mechanisms that has recently been shown to be involved in neuronal degeneration is microRNAs (miRNAs) regulation, which act as a post-transcriptional regulators of gene expression. miR-128 has been shown to be significantly altered in individuals with AD and in mice following exposure to EE. Here, we focused on elucidating the possible role of miR-128 in AD pathology and found that miR-128 regulates the expression of two proteins essential for synaptic transmission, SNAP-25, and synaptotagmin1 (Syt1). Clinically relevant, in 5xFAD mouse model for AD, this miRNA’s expression was found as downregulated, resembling the alteration found in the hippocampi of individuals with AD. Interestingly, exposing WT mice to EE also resulted in downregulation of miR-128 expression levels, although EE and AD conditions demonstrate opposing effects on neuronal functioning and synaptic plasticity. We also found that miR-128 expression downregulation in primary hippocampal cultures from 5xFAD mice results in increased neuronal network activity and neuronal excitability. Altogether, our findings place miR-128 as a synaptic player that may contribute to synaptic functioning and plasticity through regulation of synaptic protein expression and function. |
---|---|
AbstractList | Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have been shown to have a protective effect by slowing the disease's progression and reducing AD-like cognitive impairment. However, the molecular mechanism of this mitigating effect is still not understood. One of the mechanisms that has recently been shown to be involved in neuronal degeneration is microRNAs (miRNAs) regulation, which act as a post-transcriptional regulators of gene expression. miR-128 has been shown to be significantly altered in individuals with AD and in mice following exposure to EE. Here, we focused on elucidating the possible role of miR-128 in AD pathology and found that miR-128 regulates the expression of two proteins essential for synaptic transmission, SNAP-25, and synaptotagmin1 (Syt1). Clinically relevant, in 5xFAD mouse model for AD, this miRNA's expression was found as downregulated, resembling the alteration found in the hippocampi of individuals with AD. Interestingly, exposing WT mice to EE also resulted in downregulation of miR-128 expression levels, although EE and AD conditions demonstrate opposing effects on neuronal functioning and synaptic plasticity. We also found that miR-128 expression downregulation in primary hippocampal cultures from 5xFAD mice results in increased neuronal network activity and neuronal excitability. Altogether, our findings place miR-128 as a synaptic player that may contribute to synaptic functioning and plasticity through regulation of synaptic protein expression and function. Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have been shown to have a protective effect by slowing the disease's progression and reducing AD-like cognitive impairment. However, the molecular mechanism of this mitigating effect is still not understood. One of the mechanisms that has recently been shown to be involved in neuronal degeneration is microRNAs (miRNAs) regulation, which act as a post-transcriptional regulators of gene expression. miR-128 has been shown to be significantly altered in individuals with AD and in mice following exposure to EE. Here, we focused on elucidating the possible role of miR-128 in AD pathology and found that miR-128 regulates the expression of two proteins essential for synaptic transmission, SNAP-25, and synaptotagmin1 (Syt1). Clinically relevant, in 5xFAD mouse model for AD, this miRNA's expression was found as downregulated, resembling the alteration found in the hippocampi of individuals with AD. Interestingly, exposing WT mice to EE also resulted in downregulation of miR-128 expression levels, although EE and AD conditions demonstrate opposing effects on neuronal functioning and synaptic plasticity. We also found that miR-128 expression downregulation in primary hippocampal cultures from 5xFAD mice results in increased neuronal network activity and neuronal excitability. Altogether, our findings place miR-128 as a synaptic player that may contribute to synaptic functioning and plasticity through regulation of synaptic protein expression and function.Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have been shown to have a protective effect by slowing the disease's progression and reducing AD-like cognitive impairment. However, the molecular mechanism of this mitigating effect is still not understood. One of the mechanisms that has recently been shown to be involved in neuronal degeneration is microRNAs (miRNAs) regulation, which act as a post-transcriptional regulators of gene expression. miR-128 has been shown to be significantly altered in individuals with AD and in mice following exposure to EE. Here, we focused on elucidating the possible role of miR-128 in AD pathology and found that miR-128 regulates the expression of two proteins essential for synaptic transmission, SNAP-25, and synaptotagmin1 (Syt1). Clinically relevant, in 5xFAD mouse model for AD, this miRNA's expression was found as downregulated, resembling the alteration found in the hippocampi of individuals with AD. Interestingly, exposing WT mice to EE also resulted in downregulation of miR-128 expression levels, although EE and AD conditions demonstrate opposing effects on neuronal functioning and synaptic plasticity. We also found that miR-128 expression downregulation in primary hippocampal cultures from 5xFAD mice results in increased neuronal network activity and neuronal excitability. Altogether, our findings place miR-128 as a synaptic player that may contribute to synaptic functioning and plasticity through regulation of synaptic protein expression and function. |
Author | Shvarts-Serebro, Inna Barak, Boaz Adler, Lior Sheinin, Anton Gottfried, Irit Schottlender, Nofar Ashery, Uri |
Author_xml | – sequence: 1 givenname: Inna surname: Shvarts-Serebro fullname: Shvarts-Serebro, Inna organization: The Sagol School of Neuroscience, Tel Aviv University – sequence: 2 givenname: Anton surname: Sheinin fullname: Sheinin, Anton organization: The Sagol School of Neuroscience, Tel Aviv University – sequence: 3 givenname: Irit surname: Gottfried fullname: Gottfried, Irit organization: The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University – sequence: 4 givenname: Lior surname: Adler fullname: Adler, Lior organization: The Sagol School of Neuroscience, Tel Aviv University – sequence: 5 givenname: Nofar surname: Schottlender fullname: Schottlender, Nofar organization: The Sagol School of Neuroscience, Tel Aviv University, The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University – sequence: 6 givenname: Uri orcidid: 0000-0001-6338-7888 surname: Ashery fullname: Ashery, Uri email: uriashery@gmail.com organization: The Sagol School of Neuroscience, Tel Aviv University, The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University – sequence: 7 givenname: Boaz orcidid: 0000-0001-9724-4578 surname: Barak fullname: Barak, Boaz email: boazba@tauex.tau.ac.il organization: The Sagol School of Neuroscience, Tel Aviv University, The School of Psychological Sciences, Tel Aviv University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34151409$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1PFTEYhRuDkQv6B1yYJm7cjPZj-jFLAgImKAZ13bz0viUlM-3YziTy7y1e1IQFi6ab52lPzjkgeyknJOQ1Z-85Y-ZD5YJJ3jHRDrdadOIZ2XClho5zrffIhtlBdVYPep8c1HrLGtlz-4Lsy54r3rNhQy6neNVxYSlUCvQKb9YRllxoDvTbXYJ5iZ5-LXnGskSsNCaqfp0endDP0SM9j_OcPUwzjPQLriWn-pI8DzBWfPVwH5Ifpx-_H593F5dnn46PLjovjVo61Db0PIRBW9lbCRB4EMICDsGrQRijDAajg2ctfTDge_C4RZSaSQHba3lI3u3enUv-uWJd3BSrx3GEhHmtTqheGmZaAw19-wi9zWtJLV2jBmultFo26s0DtV5PuHVziROUO_e3qgaIHeBLrrVg-Idw5u73cLs9XGvZ_dnDiSbZR5KPCywxp6VAHJ9W5U6t7Z90g-V_7Ces39ranD8 |
CitedBy_id | crossref_primary_10_1007_s11033_024_09822_w crossref_primary_10_3390_cells11010158 crossref_primary_10_1016_j_prp_2023_154705 crossref_primary_10_3390_cells11233901 crossref_primary_10_3390_nu15173688 crossref_primary_10_2147_JIR_S422114 crossref_primary_10_3390_ijms24076024 crossref_primary_10_3390_life12091439 |
Cites_doi | 10.1016/j.neuron.2012.07.005 10.1002/(SICI)1097-4695(19990615)39:4<569::AID-NEU10>3.0.CO;2-F 10.1016/S0969-9961(02)00009-8 10.1038/nsmb.1763 10.1016/j.neuron.2015.01.025 10.1016/j.neuron.2011.11.010 10.1016/j.bbih.2020.100149 10.1016/j.nbd.2006.12.008 10.1515/rns.2011.035 10.3233/JAD-2006-9S311 10.1038/nn0103-9 10.1016/j.expneurol.2012.09.009 10.2190/UJAQ-4LK5-2WAN-11DL 10.1126/science.1140481 10.1093/brain/awx022 10.1084/jem.20070823 10.1007/s12017-008-8028-z 10.1016/j.neurobiolaging.2005.09.012 10.3389/fnagi.2018.00288 10.1016/j.neurobiolaging.2006.04.009 10.1146/annurev.neuro.26.041002.131412 10.1111/j.1471-4159.2010.06608.x 10.1038/26412 10.1038/nature23484 10.1016/j.conb.2008.07.001 10.7554/eLife.14211 10.1074/jbc.M507892200 10.1038/s41398-020-01184-8 10.1016/j.bbr.2008.02.016 10.1126/science.1244193 10.1177/0891988706291079 10.1007/s00401-010-0756-0 10.1146/annurev-biophys-060414-034057 10.1016/j.nbd.2008.10.006 10.1080/13803395.2012.712676 10.1038/nrn1685 10.1126/science.1589771 10.1016/j.nbd.2008.05.001 10.1016/j.biopsych.2006.04.004 10.1002/emmm.201201974 10.1523/JNEUROSCI.5080-04.2005 10.1093/nar/gkw116 10.1097/00005072-200606000-00007 10.1007/7854_2012_220 10.1038/nrn1970 10.1016/j.nlm.2004.12.001 10.1007/s00018-015-1998-8 10.1155/2009/594678 10.1111/j.1460-9568.2005.04551.x 10.1016/j.expneurol.2008.11.027 10.1016/j.sbi.2019.03.007 10.1186/1750-1326-8-2 10.1113/jphysiol.1970.sp009095 10.1038/tp.2013.77 10.1016/j.conb.2017.02.014 10.1101/cshperspect.a006239 10.1016/j.neuroscience.2012.06.007 10.1073/pnas.97.23.12880 10.1097/01.wad.0000213815.20177.19 10.1097/00005072-199708000-00011 10.1016/S0197-4580(02)00138-0 10.1186/1471-2164-11-409 10.1002/ana.20101 10.1093/hmg/ddt164 10.1016/0006-8993(90)91009-6 10.1523/JNEUROSCI.1202-06.2006 10.1038/emboj.2011.327 10.1016/j.ijdevneu.2018.03.003 10.1016/S0092-8674(04)00045-5 10.1016/j.cell.2005.01.015 10.1016/j.jad.2019.01.031 10.1016/j.tics.2013.08.012 10.1007/s10519-006-9118-z 10.3389/fnagi.2010.00137 10.1111/j.1460-9568.2007.05641.x 10.1016/j.nbd.2011.12.035 10.1523/JNEUROSCI.4815-07.2008 10.1093/jnen/62.12.1220 10.1155/2009/594738 10.1186/1750-1326-4-48 10.1016/0197-4580(90)90059-9 10.1016/j.nbd.2019.104617 10.1038/nn.2891 10.1101/gr.199828.115 10.1523/JNeurosci.1236-13.2013 10.3389/fpsyt.2014.00132 10.1007/s12035-016-0167-x 10.1016/j.nlm.2007.07.007 10.1016/0092-8674(94)90556-8 10.1016/B978-0-12-418675-0.00002-X 10.1073/pnas.251673298 10.1016/S0022-510X(00)00285-9 10.3390/ijms21144977 10.1038/nn783 10.1371/journal.pone.0030803 10.1002/ana.410270502 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QR 7T7 7TK 7U9 7X7 7XB 88E 88G 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 K9. M0S M1P M2M M7N P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
DOI | 10.1007/s12031-021-01862-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Psychology Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1559-1166 |
EndPage | 2607 |
ExternalDocumentID | 34151409 10_1007_s12031_021_01862_2 |
Genre | Journal Article |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VX 0VY 1N0 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3SX 3V. 4.4 406 408 40D 40E 44B 53G 5GY 5RE 5VS 67N 6NX 78A 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HF~ HG6 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM M1P M2M M4Y MA- MVM N2Q N9A NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P2P PF0 PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK6 WK8 YLTOR Z7U Z82 Z83 Z87 Z8O Z8V Z91 ZMTXR ZOVNA ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QR 7T7 7TK 7U9 7XB 8FD 8FK ABRTQ C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-e68f41ff9683483aaf1f228ae9fc5927757ef76fc0696f7ac4acedee36032adb3 |
IEDL.DBID | 7X7 |
ISSN | 0895-8696 1559-1166 |
IngestDate | Thu Jul 10 23:33:28 EDT 2025 Sat Jul 26 02:17:03 EDT 2025 Wed Feb 19 02:27:27 EST 2025 Tue Jul 01 03:06:30 EDT 2025 Thu Apr 24 23:02:50 EDT 2025 Fri Feb 21 02:48:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Neuronal activity Alzheimer’s disease miR-128 Synaptotagmin1 SNAP-25 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-e68f41ff9683483aaf1f228ae9fc5927757ef76fc0696f7ac4acedee36032adb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6338-7888 0000-0001-9724-4578 |
PMID | 34151409 |
PQID | 2598833863 |
PQPubID | 326248 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2543707089 proquest_journals_2598833863 pubmed_primary_34151409 crossref_primary_10_1007_s12031_021_01862_2 crossref_citationtrail_10_1007_s12031_021_01862_2 springer_journals_10_1007_s12031_021_01862_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 2021-12-00 2021-Dec 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Totowa |
PublicationSubtitle | MN |
PublicationTitle | Journal of molecular neuroscience |
PublicationTitleAbbrev | J Mol Neurosci |
PublicationTitleAlternate | J Mol Neurosci |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | SternYCognitive reserve and Alzheimer diseaseAlzheimer’s Disease and Associated Disorders200620112117 LudwigNPetraLDistribution of miRNA expression across human tissuesNucleic Acids Res2016448386538771:CAS:528:DC%2BC28XhslCqur%2FO269214064856985 Chodzko-ZajkoWJSchulerPSolomonJHeinlBEllisNRThe influence of physical fitness on automatic and effortful memory changes in agingInt J Aging Hum Dev1992352652851:STN:280:DyaK3s%2Flt1yitw%3D%3D1428192 HuZLiZmiRNAs in synapse development and synaptic plasticityCurr Opin Neurobiol2017452431283346405554733 KimJInoueKIshiiJVantiWBVoronovSVMurchisonEHannonGAbeliovichAA microRNA feedback circuit in midbrain dopamine neuronsScience (new York, NY)20073172007122012241:CAS:528:DC%2BD2sXps12ms7Y%3D HerringAAmbréeOTommMHabermannHSachserNPaulusWKeyvaniKEnvironmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathologyExp Neurol200921611841921:CAS:528:DC%2BD1MXhvFGntrY%3D19118549 OddoSCaccamoATranLLambertMPGlabeCGKleinWLFrankMLaFerlaFMTemporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease: a link between Aβ and tau pathologyJ Biol Chem2006281159916041:CAS:528:DC%2BD28XksFOlsg%3D%3D16282321 Improta-CariaACNonakaCKCavalcanteBRDe SousaRAAras JúniorRSouzaBSModulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer diseaseInt J Mol Sci2020211449771:CAS:528:DC%2BB3cXitVChtr3M10.3390/ijms211449777403962 MasliahECrewsLSynaptic remodeling during aging and in Alzheimer’s diseaseJ Alzheimers Dis200693 Suppl91991:CAS:528:DC%2BD28XotFKktLg%3D16914848 Bertoni-FreddariCFattorettiPCasoliTMeier-RugeWUlrichJMorphological adaptive response of the synaptic junctional zones in the human dentate gyrus during aging and Alzheimer’s diseaseBrain Res199051769751:STN:280:DyaK3czivFGmtA%3D%3D2376007 Mouillet-RichardSBaudryALaunayJMKellermannOMicroRNAs and depressionNeurobiol Dis20124622722781:CAS:528:DC%2BC38Xltlagur0%3D22226785 VivarCPotterMCvan PraagHAll about running: synaptic plasticity, growth factors and adult hippocampal neurogenesisCurr Top Behav Neurosci2012151892101:CAS:528:DC%2BC2MXjvFCqtb8%3D10.1007/7854_2012_220 SchaieKWThe Seattle Longitudinal Study: a thirty-five-year inquiry of adult intellectual developmentZeitschrift Fur Gerontologie1993126129137 GeppertMGodaYHammerRESynaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapseCell1994797177271:CAS:528:DyaK2MXit1Gks74%3D10.1016/0092-8674(94)90556-87954835 LambertTJFernandezSMDifferent types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female miceNeurobiol Learn Mem20058332062161:CAS:528:DC%2BD2MXjtVyrtrc%3D15820856 KimuraROhnoMImpairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse modelNeurobiol Dis2009332292351:CAS:528:DC%2BD1MXnslSlug%3D%3D19026746 WangWXHuangQHuYStrombergAJNelsonPTPatterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matterActa Neuropathol201112119320520936480 Shomron N, Golan D et al (2009) An evolutionary perspective of animal microRNAs and their targets. J Biomed Biotechnol 594738 CracchioloJRMoriTNazianSJTanJPotterHArendashGWEnhanced cognitive activity–over and above social or physical activity–is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβdeposition, and increase synaptic immunoreactivityNeurobiol Learn Mem2007882772941:CAS:528:DC%2BD2sXhtVSjs77M177149602083653 VergalloAListaSZhaoYMiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaintsTransl Psychiatry2021111111:CAS:528:DC%2BB3MXls1Kmt74%3D10.1038/s41398-020-01184-8 FrickKMFernandezSMEnrichment enhances spatial memory and increases synaptophysin levels in aged female miceNeurobiol Aging20032446156261:CAS:528:DC%2BD3sXjtVKhtL8%3D12714119 Wong HK,Veremeyko T, Patel N, Lemere CA, Walsh DM, Esau C, Vanderburg C, Krichevky AM (2013) De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet 22:3077–3092 LinQWeiWCoelhoCMLiXBaker-AndresenDDudleyKRatnuVSBoskovicZKoborMSSunYEThe brain-specific microRNA miR128b regulates the formation of fear-extinction memoryNat Neurosci201114111511171:CAS:528:DC%2BC3MXhtVWmtbfN21841775 Shomron N, Levy C (2009) MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J Biomed Biotechnol 594678 Eskes GA, Longman S et al (2010) Contribution of physical fitness, cerebrovascular reserve and cognitive stimulation to cognitive function in post-menopausal women. Front Aging Neurosci 2:137 Nakano M, Kubota K, Hashizume S, et al (2020) An enriched environment prevents cognitive impairment in an Alzheimer’s disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexusBrain, Behav Immun - Heal 9 100149 https://doi.org/10.1016/j.bbih.2020.100149 EriksenJLJanusCGPlaques, tangles, and memory loss in mouse models of neurodegenerationBehav Genet2007377910017072762 RamponCJiangCHDongHTangYPLockhartDJSchultzPGTsienJZHuYEffects of environmental enrichment on gene expression in the brainProc Natl Acad Sci2000972312880128841:CAS:528:DC%2BD3cXotFyksLY%3D1107009618858 NithianantharajahJHannanAJEnriched environments, experience-dependent plasticity and disorders of the nervous systemNature Rev Neurosci200676977091:CAS:528:DC%2BD28XotlCgtr0%3D OakleyHColeSLLoganSMausEShaoPCraftJGuillozet-BongaartsAOhnoMDisterhoftJEldikLVIntraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formationJ Neurosci20062610129101401:CAS:528:DC%2BD28XhtVymurbK170211696674618 ShenJLiYQuCThe enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampusJ Affect Disord201924881901:CAS:528:DC%2BC1MXitlOltLc%3D10.1016/j.jad.2019.01.03130716615 HeMLiuYCell-type-based analysis of microRNA profiles in the mouse brainNeuron201273135481:CAS:528:DC%2BC38XosFCgtA%3D%3D222437453270494 Wang S, Li Y, Ma C (2016) Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. eLife 5:209–217 EimerWAVassarRNeuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activationMol Neurodegener2013821:CAS:528:DC%2BC3sXis1aksb0%3D233167653552866 BarulliDSternYEfficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserveTrends Cogn Sci20131750250924018144 LaviolaGHannanAJEffects of enriched environment on animal models of neurodegenerative diseases and psychiatric disordersNeurobiol Dis200831215916818585920 BeauquisJPavíaPPomilioCEnvironmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s diseaseExp Neurol201323928371:CAS:528:DC%2BC3sXhvVygug%3D%3D10.1016/j.expneurol.2012.09.00923022919 OhnoMColeSLYasvoinaMZhaoJCitronMBerryRBACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic miceNeurobiol Dis2007261341451:CAS:528:DC%2BD2sXjsVGhsrg%3D17258906 GregorySLongJDKlöppelSOperationalizing compensation over time in neurodegenerative diseaseBrain20171401158116510.1093/brain/awx022283348885382953 DeKoskySTScheffSWSynapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severityAnn Neurol19902754574641:STN:280:DyaK3c3pslGntg%3D%3D2360787 JankowskyJLXuGFromholtDGonzalesVBorcheltDREnvironmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer diseaseJ Neuropathol Exp Neurol200362122012271:CAS:528:DC%2BD2cXht1Oguw%3D%3D14692698 McNeillEVan VactorDMicroRNAs shape the neuronal landscapeNeuron2012753633791:CAS:528:DC%2BC38XhtFKmsL3N228843213441179 IrvineKLawsKRGaleTMKondelTKGreater cognitive deterioration in women than men with Alzheimer’s disease: a meta analysisJ Clin Exp Neuropsychol201234998999822913619 BarakBShvarts-SerebroIModaiSOpposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNAs in mouse modelsTransl Psychiatry2013310103810771:CAS:528:DC%2BC3sXhtlKqsbrE10.1038/tp.2013.77 OhnoMChangLTsengWOakleyHCitronMTemporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACEEur J Neurosci20062325126016420434 HüttenrauchMWalterSKaufmannMWeggenSWOLimited effects of prolonged environmental enrichment on the pathology of 5XFAD miceMol Neurobiol20175486542655527734334 ZovoilisAAgbemenyahHYAgis-BalboaRCStillingRMEdbauerDRaoPmicroRNA-34c is a novel target to treat dementiasEMBO J201130429943081:CAS:528:DC%2BC3MXht1ajurzK219465623199394 BartelDPMicroRNAs: genomics, biogenesis, mechanism, and functionCell200411622812971:CAS:528:DC%2BD2cXhtVals7o%3D14744438 BushatiNCohenSMMicroRNAs in neurodegenerationCurr Opin Neurobiol20081832922961:CAS:528:DC%2BD1cXhtlSgsr%2FK18662781 SudhofTCThe Synaptic Vesicle Cycle Annu Rev Neurosci20042750954715217342 Wei Z, Meng X, Fatimy El R et al (2020) Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways Neurobiol Dis 134:104617 https://doi.org/10.1016/j.nbd.2019.104617 SchellerEMinkovaLLeitnerMKlöppelSAttempted and successful compensation in preclinical and early manifest neurodegeneration — a review of task FMRI studiesFront Psychiatry20145132253247864179340 ZhouQZhouPWangALWuDZhaoMSüdhofTCBrungerATThe primed SNARE–complexin–synaptotagmin complex for neuronal exocytosisNature20175484204251:CAS:528:DC%2BC2sXhtlGktrvJ288134125757840 BrungerATChoiUBLaiYThe pre-synaptic fusion machineryCurr Opin Struct Biol2019541791881:CAS:528:DC%2BC1MXmsVWmtrk%3D309867536939388 Liu N, He S et al (2012) Early natural stimulat 1862_CR8 JL Eriksen (1862_CR21) 2007; 37 F Trinchese (1862_CR85) 2004; 55 1862_CR1 ML Mustroph (1862_CR56) 2012; 219 1862_CR22 C Vivar (1862_CR88) 2012; 15 B Katz (1862_CR34) 1970; 207 SA Wolf (1862_CR93) 2006; 60 DP Bartel (1862_CR4) 2004; 116 RD Terry (1862_CR84) 2006; 19 C Rampon (1862_CR64) 2000; 97 Z Hu (1862_CR28) 2017; 45 J Beauquis (1862_CR6) 2013; 239 CI Sze (1862_CR81) 1997; 56 Q Lin (1862_CR43) 2011; 14 C Marchetti (1862_CR46) 2011; 22 R Mohrmann (1862_CR54) 2015; 72 UB Choi (1862_CR12) 2010; 17 NY Shao (1862_CR73) 2010; 11 J Kim (1862_CR36) 2007; 317 S Oddo (1862_CR61) 2006; 281 S Mouillet-Richard (1862_CR53) 2012; 46 M Hüttenrauch (1862_CR29) 2017; 54 A Vergallo (1862_CR87) 2021; 11 Ε Dandi (1862_CR16) 2018; 1 TH Davis (1862_CR17) 2008; 28 SW Scheff (1862_CR69) 2006; 27 GM Shankar (1862_CR72) 2009; 4 1862_CR44 M Geppert (1862_CR24) 1994; 79 AC Improta-Caria (1862_CR30) 2020; 21 1862_CR48 R Kimura (1862_CR38) 2010; 113 CI Sze (1862_CR82) 2000; 175 DA Costa (1862_CR13) 2007; 28 KM McSweeney (1862_CR51) 2016; 26 K Irvine (1862_CR31) 2012; 34 WJ Chodzko-Zajko (1862_CR11) 1992; 35 JB Sørensen (1862_CR77) 2002; 99 S Gregory (1862_CR25) 2017; 140 E Masliah (1862_CR47) 2006; 9 1862_CR55 1862_CR57 J Shen (1862_CR74) 2019; 248 N Bushati (1862_CR10) 2008; 18 A Zovoilis (1862_CR97) 2011; 30 P Washbourne (1862_CR91) 2002; 5 JR Cracchiolo (1862_CR15) 2007; 88 E McNeill (1862_CR49) 2012; 75 ST DeKosky (1862_CR18) 1990; 27 B Barak (1862_CR3) 2013; 3 C Bertoni-Freddari (1862_CR7) 1990; 517 H Van Praag (1862_CR86) 2008; 10 N Menkes-Caspi (1862_CR50) 2015; 5 Y Stern (1862_CR78) 2006; 20 JL Jankowsky (1862_CR32) 2003; 62 J Balthazar (1862_CR2) 2018; 10 O Lazarov (1862_CR40) 2005; 120 G Laviola (1862_CR41) 2008; 31 KW Schaie (1862_CR67) 1993; 1 MB Kennedy (1862_CR35) 2005; 6 WA Eimer (1862_CR20) 2013; 8 A Herring (1862_CR27) 2009; 216 TC Sudhof (1862_CR79) 2004; 27 Q Zhou (1862_CR96) 2017; 548 S Dong (1862_CR19) 2007; 26 J Rizo (1862_CR65) 2015; 44 M He (1862_CR26) 2012; 73 H Oakley (1862_CR60) 2006; 26 1862_CR75 1862_CR76 CL Tan (1862_CR83) 2013; 342 M Ohno (1862_CR62) 2006; 23 E Scheller (1862_CR70) 2014; 5 J Nithianantharajah (1862_CR59) 2006; 7 A Schaefer (1862_CR66) 2007; 204 M Ohno (1862_CR63) 2007; 26 AT Brunger (1862_CR9) 2019; 54 RB Sutton (1862_CR80) 1998; 395 DJ Selkoe (1862_CR71) 2008; 192 D Barulli (1862_CR5) 2013; 17 TJ Lambert (1862_CR39) 2005; 83 KM Frick (1862_CR23) 2003; 24 JL Jankowsky (1862_CR33) 2005; 25 R Mohrmann (1862_CR52) 2013; 33 WX Wang (1862_CR89) 2011; 121 R Kimura (1862_CR37) 2009; 33 M Nilsson (1862_CR58) 1999; 39 1862_CR14 N Ludwig (1862_CR45) 2016; 44 SW Scheff (1862_CR68) 1990; 11 1862_CR90 1862_CR92 1862_CR94 P Lau (1862_CR42) 2013; 5 PJ Yao (1862_CR95) 2003; 12 |
References_xml | – reference: SørensenJBMattiUWeiSHThe SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosisProc Natl Acad Sci USA200299162716321:CAS:528:DC%2BD38Xht1Clt7s%3D10.1073/pnas.25167329811830673122241 – reference: Brose N, Petrenko AG, Südhof TC, Jahn R (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256:1021–1025 – reference: Menkes-CaspiNYaminHGKellnerVSpires-JonesTLCohenDSternEAPathological tau disrupts ongoing network activityNeuron20155959966 – reference: VergalloAListaSZhaoYMiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaintsTransl Psychiatry2021111111:CAS:528:DC%2BB3MXls1Kmt74%3D10.1038/s41398-020-01184-8 – reference: SzeCIBiHSelective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer’s disease brainsJ Neurol Sci2000175281901:CAS:528:DC%2BD3cXjsVGht7k%3D10831767 – reference: MustrophMLChenSDesaiSCAerobic exercise is the critical variable in an enriched environment that increases hippocampal neurogenesis and water maze learning in male C57BL/6J miceNeuroscience201221962711:CAS:528:DC%2BC38XhtVOmsL%2FI10.1016/j.neuroscience.2012.06.00722698691 – reference: Ashery U, Bielopolski N, Lavi A, Barak B, Michaeli L, Ben-Simon Y, Sheinin A, Bar-On D, Shapira Z. and Gottfried I (2014) The molecular mechanisms underlying synaptic transmission: a view of the presynaptic terminal. In The synapse pp. 21–109. Academic Press – reference: MohrmannRDharaMBrunsDComplexins: small but capableCell Mol Life Sci201572422142351:CAS:528:DC%2BC2MXht12mtrfJ262453034611016 – reference: GregorySLongJDKlöppelSOperationalizing compensation over time in neurodegenerative diseaseBrain20171401158116510.1093/brain/awx022283348885382953 – reference: MohrmannRde WitHConnellESynaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggeringJ Neurosci20133314417144301:CAS:528:DC%2BC3sXhsVenurbL10.1523/JNeurosci.1236-13.2013240052944104293 – reference: ShenJLiYQuCThe enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampusJ Affect Disord201924881901:CAS:528:DC%2BC1MXitlOltLc%3D10.1016/j.jad.2019.01.03130716615 – reference: TrincheseFLiuSBattagliaFWalterSMathewsPMArancioOProgressive age-related development of Alzheimer-like pathology in APP/PS1 miceAnnals of Neurology: Official J Am Neuro Assoc Child Neuro Soc20045568018141:CAS:528:DC%2BD2cXlsVCktbc%3D – reference: DongSLiCEnvironment enrichment rescues the neurodegenerative phenotypes in presenilins-deficient miceEur J Neurosci200726110111217614943 – reference: SudhofTCThe Synaptic Vesicle Cycle Annu Rev Neurosci20042750954715217342 – reference: BeauquisJPavíaPPomilioCEnvironmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s diseaseExp Neurol201323928371:CAS:528:DC%2BC3sXhvVygug%3D%3D10.1016/j.expneurol.2012.09.00923022919 – reference: LinQWeiWCoelhoCMLiXBaker-AndresenDDudleyKRatnuVSBoskovicZKoborMSSunYEThe brain-specific microRNA miR128b regulates the formation of fear-extinction memoryNat Neurosci201114111511171:CAS:528:DC%2BC3MXhtVWmtbfN21841775 – reference: NithianantharajahJHannanAJEnriched environments, experience-dependent plasticity and disorders of the nervous systemNature Rev Neurosci200676977091:CAS:528:DC%2BD28XotlCgtr0%3D – reference: MasliahECrewsLSynaptic remodeling during aging and in Alzheimer’s diseaseJ Alzheimers Dis200693 Suppl91991:CAS:528:DC%2BD28XotFKktLg%3D16914848 – reference: SzeCITroncosoJCKawasCMoutonPPriceDLMartinLJLoss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer diseaseJ Neuropathol Exp Neurol19975689339441:STN:280:DyaK2svgt1yrtw%3D%3D9258263 – reference: CostaDACracchioloJRBachstetterADHughesTFBalesKRPaulSMMervisRFArendashGWPotterHEnrichment improves cognition in AD mice by amyloid-related and unrelated mechanismsNeurobiol Aging20072868318441:CAS:528:DC%2BD2sXksFWntrg%3D16730391 – reference: BrungerATChoiUBLaiYThe pre-synaptic fusion machineryCurr Opin Struct Biol2019541791881:CAS:528:DC%2BC1MXmsVWmtrk%3D309867536939388 – reference: SchaeferAO’CarrollDTanCLHillmanDSugimoriMLlinasRGreengardPCerebellar neurodegeneration in the absence of microRNAsJ Exp Med20072045531558 – reference: Wong HK,Veremeyko T, Patel N, Lemere CA, Walsh DM, Esau C, Vanderburg C, Krichevky AM (2013) De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet 22:3077–3092 – reference: YaoPJZhuMPyunEIBrooksAITherianosSMeyersVEColemanPDDefects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer’s diseaseNeurobiol Dis2003122971091:CAS:528:DC%2BD3sXitlWgurs%3D12667465 – reference: LauPBossersKAlteration of the microRNA network during the progression of Alzheimer’s diseaseEMBO Mol Med2013510161316341:CAS:528:DC%2BC3sXhsFOgsrjI240142893799583 – reference: Liu N, He S et al (2012) Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus. PLoS One 7(1):e30803 – reference: OddoSCaccamoATranLLambertMPGlabeCGKleinWLFrankMLaFerlaFMTemporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease: a link between Aβ and tau pathologyJ Biol Chem2006281159916041:CAS:528:DC%2BD28XksFOlsg%3D%3D16282321 – reference: SuttonRBFasshauerDJahnRBrungerATCrystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolutionNature19983953473531:CAS:528:DyaK1cXmsVSrsbo%3D9759724 – reference: KatzBMilediRFurther study of the role of calcium in synaptic transmissionJ Physiol197020737898011:CAS:528:DyaE3cXkt1eiur0%3D54997461348742 – reference: OhnoMChangLTsengWOakleyHCitronMTemporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACEEur J Neurosci20062325126016420434 – reference: Murphy TH (2003) Activity-dependent synapse development: changing the rules. Nat Neurosci 6(1):9–11 – reference: IrvineKLawsKRGaleTMKondelTKGreater cognitive deterioration in women than men with Alzheimer’s disease: a meta analysisJ Clin Exp Neuropsychol201234998999822913619 – reference: SternYCognitive reserve and Alzheimer diseaseAlzheimer’s Disease and Associated Disorders200620112117 – reference: MarchettiCMarieHHippocampal synaptic plasticity in Alzheimer’s disease: what have we learned so far from transgenic models?Rev Neurosci20112243734021:CAS:528:DC%2BC3sXhtlWktrjL21732714 – reference: McSweeneyKMGussowABInhibition of microRNA 128 promotes excitability of cultured cortical neuronal networksGenome Res20162614111416275166215052052 – reference: Bertoni-FreddariCFattorettiPCasoliTMeier-RugeWUlrichJMorphological adaptive response of the synaptic junctional zones in the human dentate gyrus during aging and Alzheimer’s diseaseBrain Res199051769751:STN:280:DyaK3czivFGmtA%3D%3D2376007 – reference: Mouillet-RichardSBaudryALaunayJMKellermannOMicroRNAs and depressionNeurobiol Dis20124622722781:CAS:528:DC%2BC38Xltlagur0%3D22226785 – reference: JankowskyJLXuGFromholtDGonzalesVBorcheltDREnvironmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer diseaseJ Neuropathol Exp Neurol200362122012271:CAS:528:DC%2BD2cXht1Oguw%3D%3D14692698 – reference: ShankarGMWalshDMAlzheimer’s disease: synaptic dysfunction and AβMol Neurodegener20094113 – reference: Wang S, Li Y, Ma C (2016) Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. eLife 5:209–217 – reference: GeppertMGodaYHammerRESynaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapseCell1994797177271:CAS:528:DyaK2MXit1Gks74%3D10.1016/0092-8674(94)90556-87954835 – reference: Mayeux R, Stern Y (2012) Epidemiology of Alzheimer disease. Cold Spring Harbor perspectives in medicine 2(8):a006239 – reference: Nakano M, Kubota K, Hashizume S, et al (2020) An enriched environment prevents cognitive impairment in an Alzheimer’s disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexusBrain, Behav Immun - Heal 9 100149 https://doi.org/10.1016/j.bbih.2020.100149 – reference: BarakBShvarts-SerebroIModaiSOpposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNAs in mouse modelsTransl Psychiatry2013310103810771:CAS:528:DC%2BC3sXhtlKqsbrE10.1038/tp.2013.77 – reference: LaviolaGHannanAJEffects of enriched environment on animal models of neurodegenerative diseases and psychiatric disordersNeurobiol Dis200831215916818585920 – reference: SchaieKWThe Seattle Longitudinal Study: a thirty-five-year inquiry of adult intellectual developmentZeitschrift Fur Gerontologie1993126129137 – reference: Wei Z, Meng X, Fatimy El R et al (2020) Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways Neurobiol Dis 134:104617 https://doi.org/10.1016/j.nbd.2019.104617 – reference: EimerWAVassarRNeuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activationMol Neurodegener2013821:CAS:528:DC%2BC3sXis1aksb0%3D233167653552866 – reference: ChoiUBSingle-molecule FRET-derived model of the synaptotagmin 1–SNARE fusion complexNat Struct Mol Biol2010173183241:CAS:528:DC%2BC3cXit1SmtLY%3D201737632922927 – reference: ScheffSWDeKoskySTPriceDAQuantitative assessment of cortical synaptic density in Alzheimer’s diseaseNeurobiol Aging199011129371:STN:280:DyaK3c3itFShug%3D%3D2325814 – reference: BalthazarJSchöweNMCipolliGCEnriched environment significantly reduced senile plaques in a transgenic mice model of Alzheimer’s disease, improving memoryFront Aging Neurosci2018102881:CAS:528:DC%2BC1MXhvFyjurfJ10.3389/fnagi.2018.00288303193946168651 – reference: TerryRDAlzheimer’s disease and the aging brainJ Geriatr Psychiatry Neurol200619312512816880353 – reference: BushatiNCohenSMMicroRNAs in neurodegenerationCurr Opin Neurobiol20081832922961:CAS:528:DC%2BD1cXhtlSgsr%2FK18662781 – reference: HeMLiuYCell-type-based analysis of microRNA profiles in the mouse brainNeuron201273135481:CAS:528:DC%2BC38XosFCgtA%3D%3D222437453270494 – reference: KennedyMBBealeHCCarlisleHJWashburnLRIntegration of biochemical signalling in spinesNat Rev Neurosci2005664234341:CAS:528:DC%2BD2MXks1OitLc%3D15928715 – reference: Chodzko-ZajkoWJSchulerPSolomonJHeinlBEllisNRThe influence of physical fitness on automatic and effortful memory changes in agingInt J Aging Hum Dev1992352652851:STN:280:DyaK3s%2Flt1yitw%3D%3D1428192 – reference: DavisTHCuellarTLKochSMBarkerAJHarfeBDMcManusMTUllianEMConditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampusJ Neurosci200828432243301:CAS:528:DC%2BD1cXlsVWgsrs%3D184345103844796 – reference: SchellerEMinkovaLLeitnerMKlöppelSAttempted and successful compensation in preclinical and early manifest neurodegeneration — a review of task FMRI studiesFront Psychiatry20145132253247864179340 – reference: Van PraagHNeurogenesis and exercise: past and future directionsNeuroMol Med2008102128140 – reference: WangWXHuangQHuYStrombergAJNelsonPTPatterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matterActa Neuropathol201112119320520936480 – reference: RizoJXuJThe synaptic vesicle release machineryAnnu Rev Biophys2015443393671:CAS:528:DC%2BC2MXhsVCju73P10.1146/annurev-biophys-060414-03405726098518 – reference: Eskes GA, Longman S et al (2010) Contribution of physical fitness, cerebrovascular reserve and cognitive stimulation to cognitive function in post-menopausal women. Front Aging Neurosci 2:137 – reference: OakleyHColeSLLoganSMausEShaoPCraftJGuillozet-BongaartsAOhnoMDisterhoftJEldikLVIntraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formationJ Neurosci20062610129101401:CAS:528:DC%2BD28XhtVymurbK170211696674618 – reference: BarulliDSternYEfficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserveTrends Cogn Sci20131750250924018144 – reference: LazarovORobinsonJTangYPHairstonISKorade-MirnicsZLeeVMHershLBSapolskyRMMirnicsKSisodiaSSEnvironmental enrichment reduces Aβ levels and amyloid deposition in transgenic miceCell200512057017131:CAS:528:DC%2BD2MXis1yhtr4%3D15766532 – reference: OhnoMColeSLYasvoinaMZhaoJCitronMBerryRBACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic miceNeurobiol Dis2007261341451:CAS:528:DC%2BD2sXjsVGhsrg%3D17258906 – reference: ZovoilisAAgbemenyahHYAgis-BalboaRCStillingRMEdbauerDRaoPmicroRNA-34c is a novel target to treat dementiasEMBO J201130429943081:CAS:528:DC%2BC3MXht1ajurzK219465623199394 – reference: NilssonMPerfilievaEJohanssonUOrwarOErikssonPSEnriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memoryJ Neurobiol19993945695781:STN:280:DyaK1Mzgs1OntA%3D%3D10380078 – reference: DeKoskySTScheffSWSynapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severityAnn Neurol19902754574641:STN:280:DyaK3c3pslGntg%3D%3D2360787 – reference: ShaoNYHuHYYanZXuYHuHMenzelCLiNChenWKhaitovichPComprehensive survey of human brain microRNA by deep sequencingBMC Genomics201011114 – reference: CracchioloJRMoriTNazianSJTanJPotterHArendashGWEnhanced cognitive activity–over and above social or physical activity–is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβdeposition, and increase synaptic immunoreactivityNeurobiol Learn Mem2007882772941:CAS:528:DC%2BD2sXhtVSjs77M177149602083653 – reference: RamponCJiangCHDongHTangYPLockhartDJSchultzPGTsienJZHuYEffects of environmental enrichment on gene expression in the brainProc Natl Acad Sci2000972312880128841:CAS:528:DC%2BD3cXotFyksLY%3D1107009618858 – reference: Counts SE, Nadeem M, Lad SP, Wuu J, Mufson EJ (2006) Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment. J Neuropathol Exp Neurol 65(6):592–601 – reference: HuZLiZmiRNAs in synapse development and synaptic plasticityCurr Opin Neurobiol2017452431283346405554733 – reference: KimJInoueKIshiiJVantiWBVoronovSVMurchisonEHannonGAbeliovichAA microRNA feedback circuit in midbrain dopamine neuronsScience (new York, NY)20073172007122012241:CAS:528:DC%2BD2sXps12ms7Y%3D – reference: Improta-CariaACNonakaCKCavalcanteBRDe SousaRAAras JúniorRSouzaBSModulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer diseaseInt J Mol Sci2020211449771:CAS:528:DC%2BB3cXitVChtr3M10.3390/ijms211449777403962 – reference: SelkoeDJSoluble oligomers of the amyloid beta-protein impair synaptic plasticity and behaviorBehav Brain Res200819211061131:CAS:528:DC%2BD1cXmvV2itr8%3D183591022601528 – reference: BartelDPMicroRNAs: genomics, biogenesis, mechanism, and functionCell200411622812971:CAS:528:DC%2BD2cXhtVals7o%3D14744438 – reference: LudwigNPetraLDistribution of miRNA expression across human tissuesNucleic Acids Res2016448386538771:CAS:528:DC%2BC28XhslCqur%2FO269214064856985 – reference: KimuraROhnoMImpairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse modelNeurobiol Dis2009332292351:CAS:528:DC%2BD1MXnslSlug%3D%3D19026746 – reference: FrickKMFernandezSMEnrichment enhances spatial memory and increases synaptophysin levels in aged female miceNeurobiol Aging20032446156261:CAS:528:DC%2BD3sXjtVKhtL8%3D12714119 – reference: ScheffSWPriceDASchmittFAMufsonEJHippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairmentNeurobiol Aging20062710137213841:CAS:528:DC%2BD28XoslKrs7s%3D16289476 – reference: VivarCPotterMCvan PraagHAll about running: synaptic plasticity, growth factors and adult hippocampal neurogenesisCurr Top Behav Neurosci2012151892101:CAS:528:DC%2BC2MXjvFCqtb8%3D10.1007/7854_2012_220 – reference: LambertTJFernandezSMDifferent types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female miceNeurobiol Learn Mem20058332062161:CAS:528:DC%2BD2MXjtVyrtrc%3D15820856 – reference: Shomron N, Levy C (2009) MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J Biomed Biotechnol 594678 – reference: TanCLPlotkinJMicroRNA-128 governs neuronal excitability and motor behavior in miceScience2013342125412581:CAS:528:DC%2BC3sXhvVKhtLjK243116943932786 – reference: DandiΕKalamariATouloumiOLagoudakiRNousiopoulouESimeonidouCSpandouETataDABeneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stressInt J Dev Neurosci20181671932 – reference: KimuraRDeviLOhnoMPartial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer’s disease transgenic miceJ Neurochem20101132483261:CAS:528:DC%2BC3cXktVSks7Y%3D200891332921968 – reference: Shomron N, Golan D et al (2009) An evolutionary perspective of animal microRNAs and their targets. J Biomed Biotechnol 594738 – reference: HerringAAmbréeOTommMHabermannHSachserNPaulusWKeyvaniKEnvironmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathologyExp Neurol200921611841921:CAS:528:DC%2BD1MXhvFGntrY%3D19118549 – reference: JankowskyJLMelnikovaTEnvironmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s diseaseJ Neurosci20052521521752241:CAS:528:DC%2BD2MXkslyqsLY%3D159174614440804 – reference: McNeillEVan VactorDMicroRNAs shape the neuronal landscapeNeuron2012753633791:CAS:528:DC%2BC38XhtFKmsL3N228843213441179 – reference: WashbournePThompsonPMCartaMCostaETMathewsJRLopez-BenditoGMolnarZBecherMWValenzuelaCFPartridgeLDWilsonMCGenetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosisNat Neurosci20025200219261:CAS:528:DC%2BD38XjtlCqtQ%3D%3D11753414 – reference: WolfSAKronenbergGLehmannKBlankenshipAOverallRStaufenbielMKempermannGCognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s diseaseBiol Psychiatry200660131413231:CAS:528:DC%2BD28Xht12kt7rM16806094 – reference: ZhouQZhouPWangALWuDZhaoMSüdhofTCBrungerATThe primed SNARE–complexin–synaptotagmin complex for neuronal exocytosisNature20175484204251:CAS:528:DC%2BC2sXhtlGktrvJ288134125757840 – reference: HüttenrauchMWalterSKaufmannMWeggenSWOLimited effects of prolonged environmental enrichment on the pathology of 5XFAD miceMol Neurobiol20175486542655527734334 – reference: EriksenJLJanusCGPlaques, tangles, and memory loss in mouse models of neurodegenerationBehav Genet2007377910017072762 – volume: 75 start-page: 363 year: 2012 ident: 1862_CR49 publication-title: Neuron doi: 10.1016/j.neuron.2012.07.005 – volume: 39 start-page: 569 issue: 4 year: 1999 ident: 1862_CR58 publication-title: J Neurobiol doi: 10.1002/(SICI)1097-4695(19990615)39:4<569::AID-NEU10>3.0.CO;2-F – volume: 12 start-page: 97 issue: 2 year: 2003 ident: 1862_CR95 publication-title: Neurobiol Dis doi: 10.1016/S0969-9961(02)00009-8 – volume: 17 start-page: 318 year: 2010 ident: 1862_CR12 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1763 – volume: 5 start-page: 959 year: 2015 ident: 1862_CR50 publication-title: Neuron doi: 10.1016/j.neuron.2015.01.025 – volume: 73 start-page: 35 issue: 1 year: 2012 ident: 1862_CR26 publication-title: Neuron doi: 10.1016/j.neuron.2011.11.010 – ident: 1862_CR57 doi: 10.1016/j.bbih.2020.100149 – volume: 26 start-page: 134 year: 2007 ident: 1862_CR63 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2006.12.008 – volume: 22 start-page: 373 issue: 4 year: 2011 ident: 1862_CR46 publication-title: Rev Neurosci doi: 10.1515/rns.2011.035 – volume: 9 start-page: 91 issue: 3 Suppl year: 2006 ident: 1862_CR47 publication-title: J Alzheimers Dis doi: 10.3233/JAD-2006-9S311 – ident: 1862_CR55 doi: 10.1038/nn0103-9 – volume: 239 start-page: 28 year: 2013 ident: 1862_CR6 publication-title: Exp Neurol doi: 10.1016/j.expneurol.2012.09.009 – volume: 35 start-page: 265 year: 1992 ident: 1862_CR11 publication-title: Int J Aging Hum Dev doi: 10.2190/UJAQ-4LK5-2WAN-11DL – volume: 317 start-page: 1220 issue: 2007 year: 2007 ident: 1862_CR36 publication-title: Science (new York, NY) doi: 10.1126/science.1140481 – volume: 140 start-page: 1158 year: 2017 ident: 1862_CR25 publication-title: Brain doi: 10.1093/brain/awx022 – volume: 204 start-page: 553 year: 2007 ident: 1862_CR66 publication-title: J Exp Med doi: 10.1084/jem.20070823 – volume: 10 start-page: 128 issue: 2 year: 2008 ident: 1862_CR86 publication-title: NeuroMol Med doi: 10.1007/s12017-008-8028-z – volume: 27 start-page: 1372 issue: 10 year: 2006 ident: 1862_CR69 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2005.09.012 – volume: 10 start-page: 288 year: 2018 ident: 1862_CR2 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2018.00288 – volume: 28 start-page: 831 issue: 6 year: 2007 ident: 1862_CR13 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2006.04.009 – volume: 27 start-page: 509 year: 2004 ident: 1862_CR79 publication-title: The Synaptic Vesicle Cycle Annu Rev Neurosci doi: 10.1146/annurev.neuro.26.041002.131412 – volume: 113 start-page: 248 year: 2010 ident: 1862_CR38 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2010.06608.x – volume: 395 start-page: 347 year: 1998 ident: 1862_CR80 publication-title: Nature doi: 10.1038/26412 – volume: 548 start-page: 420 year: 2017 ident: 1862_CR96 publication-title: Nature doi: 10.1038/nature23484 – volume: 18 start-page: 292 issue: 3 year: 2008 ident: 1862_CR10 publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2008.07.001 – ident: 1862_CR90 doi: 10.7554/eLife.14211 – volume: 281 start-page: 1599 year: 2006 ident: 1862_CR61 publication-title: J Biol Chem doi: 10.1074/jbc.M507892200 – volume: 11 start-page: 1 year: 2021 ident: 1862_CR87 publication-title: Transl Psychiatry doi: 10.1038/s41398-020-01184-8 – volume: 192 start-page: 106 issue: 1 year: 2008 ident: 1862_CR71 publication-title: Behav Brain Res doi: 10.1016/j.bbr.2008.02.016 – volume: 342 start-page: 1254 year: 2013 ident: 1862_CR83 publication-title: Science doi: 10.1126/science.1244193 – volume: 19 start-page: 125 issue: 3 year: 2006 ident: 1862_CR84 publication-title: J Geriatr Psychiatry Neurol doi: 10.1177/0891988706291079 – volume: 121 start-page: 193 year: 2011 ident: 1862_CR89 publication-title: Acta Neuropathol doi: 10.1007/s00401-010-0756-0 – volume: 44 start-page: 339 year: 2015 ident: 1862_CR65 publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-060414-034057 – volume: 33 start-page: 229 year: 2009 ident: 1862_CR37 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2008.10.006 – volume: 34 start-page: 989 issue: 9 year: 2012 ident: 1862_CR31 publication-title: J Clin Exp Neuropsychol doi: 10.1080/13803395.2012.712676 – volume: 6 start-page: 423 issue: 6 year: 2005 ident: 1862_CR35 publication-title: Nat Rev Neurosci doi: 10.1038/nrn1685 – ident: 1862_CR8 doi: 10.1126/science.1589771 – volume: 31 start-page: 159 issue: 2 year: 2008 ident: 1862_CR41 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2008.05.001 – volume: 60 start-page: 1314 year: 2006 ident: 1862_CR93 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.04.004 – volume: 5 start-page: 1613 issue: 10 year: 2013 ident: 1862_CR42 publication-title: EMBO Mol Med doi: 10.1002/emmm.201201974 – volume: 25 start-page: 5217 issue: 21 year: 2005 ident: 1862_CR33 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5080-04.2005 – volume: 44 start-page: 3865 issue: 8 year: 2016 ident: 1862_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw116 – ident: 1862_CR14 doi: 10.1097/00005072-200606000-00007 – volume: 15 start-page: 189 year: 2012 ident: 1862_CR88 publication-title: Curr Top Behav Neurosci doi: 10.1007/7854_2012_220 – volume: 7 start-page: 697 year: 2006 ident: 1862_CR59 publication-title: Nature Rev Neurosci doi: 10.1038/nrn1970 – volume: 83 start-page: 206 issue: 3 year: 2005 ident: 1862_CR39 publication-title: Neurobiol Learn Mem doi: 10.1016/j.nlm.2004.12.001 – volume: 72 start-page: 4221 year: 2015 ident: 1862_CR54 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-015-1998-8 – volume: 1 start-page: 129 issue: 26 year: 1993 ident: 1862_CR67 publication-title: Zeitschrift Fur Gerontologie – ident: 1862_CR76 doi: 10.1155/2009/594678 – volume: 23 start-page: 251 year: 2006 ident: 1862_CR62 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2005.04551.x – volume: 216 start-page: 184 issue: 1 year: 2009 ident: 1862_CR27 publication-title: Exp Neurol doi: 10.1016/j.expneurol.2008.11.027 – volume: 54 start-page: 179 year: 2019 ident: 1862_CR9 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2019.03.007 – volume: 8 start-page: 2 year: 2013 ident: 1862_CR20 publication-title: Mol Neurodegener doi: 10.1186/1750-1326-8-2 – volume: 207 start-page: 789 issue: 3 year: 1970 ident: 1862_CR34 publication-title: J Physiol doi: 10.1113/jphysiol.1970.sp009095 – volume: 3 start-page: 1038 issue: 10 year: 2013 ident: 1862_CR3 publication-title: Transl Psychiatry doi: 10.1038/tp.2013.77 – volume: 45 start-page: 24 year: 2017 ident: 1862_CR28 publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2017.02.014 – ident: 1862_CR48 doi: 10.1101/cshperspect.a006239 – volume: 219 start-page: 62 year: 2012 ident: 1862_CR56 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.06.007 – volume: 97 start-page: 12880 issue: 23 year: 2000 ident: 1862_CR64 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.97.23.12880 – volume: 20 start-page: 112 year: 2006 ident: 1862_CR78 publication-title: Alzheimer’s Disease and Associated Disorders doi: 10.1097/01.wad.0000213815.20177.19 – volume: 56 start-page: 933 issue: 8 year: 1997 ident: 1862_CR81 publication-title: J Neuropathol Exp Neurol doi: 10.1097/00005072-199708000-00011 – volume: 24 start-page: 615 issue: 4 year: 2003 ident: 1862_CR23 publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(02)00138-0 – volume: 11 start-page: 1 issue: 1 year: 2010 ident: 1862_CR73 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-409 – volume: 55 start-page: 801 issue: 6 year: 2004 ident: 1862_CR85 publication-title: Annals of Neurology: Official J Am Neuro Assoc Child Neuro Soc doi: 10.1002/ana.20101 – ident: 1862_CR94 doi: 10.1093/hmg/ddt164 – volume: 517 start-page: 69 year: 1990 ident: 1862_CR7 publication-title: Brain Res doi: 10.1016/0006-8993(90)91009-6 – volume: 26 start-page: 10129 year: 2006 ident: 1862_CR60 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1202-06.2006 – volume: 30 start-page: 4299 year: 2011 ident: 1862_CR97 publication-title: EMBO J doi: 10.1038/emboj.2011.327 – volume: 1 start-page: 19 issue: 67 year: 2018 ident: 1862_CR16 publication-title: Int J Dev Neurosci doi: 10.1016/j.ijdevneu.2018.03.003 – volume: 116 start-page: 281 issue: 2 year: 2004 ident: 1862_CR4 publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 120 start-page: 701 issue: 5 year: 2005 ident: 1862_CR40 publication-title: Cell doi: 10.1016/j.cell.2005.01.015 – volume: 248 start-page: 81 year: 2019 ident: 1862_CR74 publication-title: J Affect Disord doi: 10.1016/j.jad.2019.01.031 – volume: 17 start-page: 502 year: 2013 ident: 1862_CR5 publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2013.08.012 – volume: 37 start-page: 79 year: 2007 ident: 1862_CR21 publication-title: Behav Genet doi: 10.1007/s10519-006-9118-z – ident: 1862_CR22 doi: 10.3389/fnagi.2010.00137 – volume: 26 start-page: 101 issue: 1 year: 2007 ident: 1862_CR19 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2007.05641.x – volume: 46 start-page: 272 issue: 2 year: 2012 ident: 1862_CR53 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2011.12.035 – volume: 28 start-page: 4322 year: 2008 ident: 1862_CR17 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4815-07.2008 – volume: 62 start-page: 1220 year: 2003 ident: 1862_CR32 publication-title: J Neuropathol Exp Neurol doi: 10.1093/jnen/62.12.1220 – ident: 1862_CR75 doi: 10.1155/2009/594738 – volume: 4 start-page: 1 issue: 1 year: 2009 ident: 1862_CR72 publication-title: Mol Neurodegener doi: 10.1186/1750-1326-4-48 – volume: 11 start-page: 29 issue: 1 year: 1990 ident: 1862_CR68 publication-title: Neurobiol Aging doi: 10.1016/0197-4580(90)90059-9 – ident: 1862_CR92 doi: 10.1016/j.nbd.2019.104617 – volume: 14 start-page: 1115 year: 2011 ident: 1862_CR43 publication-title: Nat Neurosci doi: 10.1038/nn.2891 – volume: 26 start-page: 1411 year: 2016 ident: 1862_CR51 publication-title: Genome Res doi: 10.1101/gr.199828.115 – volume: 33 start-page: 14417 year: 2013 ident: 1862_CR52 publication-title: J Neurosci doi: 10.1523/JNeurosci.1236-13.2013 – volume: 5 start-page: 132 year: 2014 ident: 1862_CR70 publication-title: Front Psychiatry doi: 10.3389/fpsyt.2014.00132 – volume: 54 start-page: 6542 issue: 8 year: 2017 ident: 1862_CR29 publication-title: Mol Neurobiol doi: 10.1007/s12035-016-0167-x – volume: 88 start-page: 277 year: 2007 ident: 1862_CR15 publication-title: Neurobiol Learn Mem doi: 10.1016/j.nlm.2007.07.007 – volume: 79 start-page: 717 year: 1994 ident: 1862_CR24 publication-title: Cell doi: 10.1016/0092-8674(94)90556-8 – ident: 1862_CR1 doi: 10.1016/B978-0-12-418675-0.00002-X – volume: 99 start-page: 1627 year: 2002 ident: 1862_CR77 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.251673298 – volume: 175 start-page: 81 issue: 2 year: 2000 ident: 1862_CR82 publication-title: J Neurol Sci doi: 10.1016/S0022-510X(00)00285-9 – volume: 21 start-page: 4977 issue: 14 year: 2020 ident: 1862_CR30 publication-title: Int J Mol Sci doi: 10.3390/ijms21144977 – volume: 5 start-page: 19 issue: 2002 year: 2002 ident: 1862_CR91 publication-title: Nat Neurosci doi: 10.1038/nn783 – ident: 1862_CR44 doi: 10.1371/journal.pone.0030803 – volume: 27 start-page: 457 issue: 5 year: 1990 ident: 1862_CR18 publication-title: Ann Neurol doi: 10.1002/ana.410270502 |
SSID | ssj0021418 |
Score | 2.3759332 |
Snippet | Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death.... Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2593 |
SubjectTerms | Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer's disease Animals Biomedical and Life Sciences Biomedicine Cell Biology Cells, Cultured Cognitive ability Degeneration Enrichment Excitability Exposure Gene expression Hippocampus Hippocampus - cytology Hippocampus - metabolism Mice MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miRNA Neural networks Neurochemistry Neurodegenerative diseases Neurology Neurons - metabolism Neurosciences Plasticity Post-transcription Proteins Proteomics SNAP-25 protein Synapses - metabolism Synaptic plasticity Synaptic transmission Synaptosomal-Associated Protein 25 - genetics Synaptosomal-Associated Protein 25 - metabolism Synaptotagmin I - genetics Synaptotagmin I - metabolism |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iL76It_UigviigTZp0vRxUZdF8EBd8K1MswksaHfZA_TfO8m2u4gH-Nw0LTOTmW8yFyGnAFYa0AlDabIslQ7PXAmC2RyMLq1Am-QLhW_vVKeb3rzIl7oobNxkuzchyaCpF8VuHAWQ-ZSCOEEczlDxrkj03X0iV5e35m5WkoZbvVjnkmmVq7pU5uc9vpqjbxjzW3w0mJ32Olmr8SJtzRi8QZZstUm2WhX6ym8f9IyGDM5wNb5F7t_6jwwtAYUxBfo4mzI_GNGBo08fFaByMPTBX76PfBdV2q-ofG-3rugtKgva6Q-HaNdQO7zS0LGjGm-Tbvv6-bLD6oEJzIhMTphV2qWJc7nSItUCwCWOcw02d0bmPMtkZl2mnImRLC4Dk4KxPWuFigWHXil2yHI1qOweobiRBys8NgiYADFPT-a6x8u0dAaUSSKSNHQrTN1N3A-1eC0WfZA9rQukdRFoXfCInM_fGc56afy5-rBhR1Gfq3GBzpqfjqyViMjJ_DGeCB_mgMoOpn5NKjLUZDqPyO6MjfPPoc2WvsVXRC4avi42__1f9v-3_ICsci9jIevlkCxPRlN7hNhlUh4HUf0E8NDhcw priority: 102 providerName: Springer Nature |
Title | miR-128 as a Regulator of Synaptic Properties in 5xFAD Mice Hippocampal Neurons |
URI | https://link.springer.com/article/10.1007/s12031-021-01862-2 https://www.ncbi.nlm.nih.gov/pubmed/34151409 https://www.proquest.com/docview/2598833863 https://www.proquest.com/docview/2543707089 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9sILAsZHtjEZCfECFokdO84TSqGlAq1MhUrlKXIcW6q0JaXtpO2_5-ykrdDEnvxgx7Huznc_n893AG-1tsJolVCUJktT4XDPVZpTm2ujKsvRJvmHwucTOZ6l3-Zi3jvc1n1Y5VYnBkVdt8b7yD8iTPd1cZXkn5Z_qK8a5W9X-xIaD-HQpy7zUp3N9weuJA3-vVjlgiqZy_7RTPd0jqE4Ux-gECeI6in71zDdQZt3bkqDARo9gcc9ciRFx-qn8MA2z-CoaPDUfHVL3pEQyxmc5Efw42oxpWgTiF4TTaZdvfl2RVpHft42GtWEIRfeDb_y-VTJoiHiZlR8IeeoNsh4sVyihUM9cUlC7o5m_Rxmo-Gvz2Pal06ghmdiQ61ULk2cy6XiqeJau8QxprTNnRE5yzKRWZdJZ2Iki8u0SbWxtbVcxpzpuuIv4KBpG_sKCE7kYQuLDUInjeinRk7UrEorZ7Q0SQTJlm6l6fOK-_IWl-U-I7KndYm0LgOtSxbB-903yy6rxr2jT7fsKPsdti738hDBm1037g1_4aEb2177MSnPUKepPIKXHRt3v0PrLXyyrwg-bPm6n_z_azm-fy0n8Ih5mQrxLqdwsFld29eIWjbVWRDNMzgsRoPBxLdff38fYjsYTi6m2DtjxV8wSepZ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw9GmMA1wQMD4CA4wEXMAisWPHOSBUMaqOrQONTeotOI4tVdqS0naC_il-I89O0gpN7LZzbMd63-_5fQC80toKo1VCkZosTYVDnis1pzbXRpWWo07yhcLjIzk6Tb9MxGQL_vS1MD6tspeJQVBXjfEx8vdopvu5uEryj7Of1E-N8q-r_QiNliwO7OoXumyLD_t7iN_XjA0_n3wa0W6qADU8E0tqpXJp4lwuFU8V19oljjGlbe6MyFmWicy6TDoTy1y6TJtUG1tZy2XMma5KjufegJuoeGPv7GWTjYOXpCGeGKtcUIW7uyKdtlSPIftQnxARJ-hFUPavIrxk3V56mQ0Kb3gX7nSWKhm0pHUPtmx9H3YGNXrp5yvyhoTc0RCU34Gv59NjijqI6AXR5Lidb9_MSePI91WtUSwZ8s2H_ee-fyuZ1kT8Hg72yBjFFBlNZzPUqCiXzkjoFVIvHsDptQD1IWzXTW0fA8GDvJnEYoOmmkZrq0LMV6xMS2e0NEkESQ-3wnR9zP04jbNi04HZw7pAWBcB1gWL4O16z6zt4nHl6t0eHUXH0YtiQ38RvFx_Rl70Dyy6ts2FX5PyDGWoyiN41KJx_Tu0FoRvLhbBux6vm8P_f5cnV9_lBdwanYwPi8P9o4OncJt5-gq5NruwvZxf2GdoMS3L54FMCfy4br74CzzyIz4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9Gh0EuIFAeOSMYaRgBewltiJ4zygqaOrOsZKVZi0t8xxbKnSlnRtJ-iv8XU7zqUVmtjbnmM71rkfnxvAe6VMpJUMKFKToWFkkecyxalJlJaZ4aiTXKHwyVAMTsNvZ9HZBvxta2FcWmUrEytBnZfavZHvoZnu5uJKwfdskxYx6vX3p1fUTZBykdZ2nEZNIsdm-Rvdt_mXox7i-gNj_cNfXwe0mTBANY-jBTVC2jCwNhGSh5IrZQPLmFQmsTpKWBxHsbGxsNoXibCx0qHSJjeGC58zlWccz30Am7HzijqweXA4HI1X7l4QVq-LvkwiKnF_U7JTF-4xZCbq0iP8AH0Kyv5Vi7ds3Vtx2kr99Z_A48ZuJd2a0J7ChimewVa3QJ_9ckk-kiqTtHqi34Ifl5MxRY1E1JwoMq6n3ZczUlryc1koFFKajFwQYOa6uZJJQaI__W6PnKDQIoPJdIr6FaXUBak6hxTz53B6L2B9AZ2iLMwrIHiQM5qYr9FwU2h75UgHOcvCzGoldOBB0MIt1U1Xczdc4yJd92N2sE4R1mkF65R58Gm1Z1r39Lhz9U6LjrTh73m6pkYP3q0-I2e6cIsqTHnt1oQ8RokqEw9e1mhc_Q5th8i1GvPgc4vX9eH_v8v23Xd5Cw-RJ9LvR8Pj1_CIOfKqEm92oLOYXZs3aD4tst2GTgmc3zdr3AAI_SjZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-128+as+a+Regulator+of+Synaptic+Properties+in+5xFAD+Mice+Hippocampal+Neurons&rft.jtitle=Journal+of+molecular+neuroscience&rft.au=Shvarts-Serebro%2C+Inna&rft.au=Sheinin%2C+Anton&rft.au=Gottfried%2C+Irit&rft.au=Adler%2C+Lior&rft.date=2021-12-01&rft.issn=1559-1166&rft.eissn=1559-1166&rft.volume=71&rft.issue=12&rft.spage=2593&rft_id=info:doi/10.1007%2Fs12031-021-01862-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-8696&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-8696&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-8696&client=summon |