miR-128 as a Regulator of Synaptic Properties in 5xFAD Mice Hippocampal Neurons

Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular neuroscience Vol. 71; no. 12; pp. 2593 - 2607
Main Authors Shvarts-Serebro, Inna, Sheinin, Anton, Gottfried, Irit, Adler, Lior, Schottlender, Nofar, Ashery, Uri, Barak, Boaz
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have been shown to have a protective effect by slowing the disease’s progression and reducing AD-like cognitive impairment. However, the molecular mechanism of this mitigating effect is still not understood. One of the mechanisms that has recently been shown to be involved in neuronal degeneration is microRNAs (miRNAs) regulation, which act as a post-transcriptional regulators of gene expression. miR-128 has been shown to be significantly altered in individuals with AD and in mice following exposure to EE. Here, we focused on elucidating the possible role of miR-128 in AD pathology and found that miR-128 regulates the expression of two proteins essential for synaptic transmission, SNAP-25, and synaptotagmin1 (Syt1). Clinically relevant, in 5xFAD mouse model for AD, this miRNA’s expression was found as downregulated, resembling the alteration found in the hippocampi of individuals with AD. Interestingly, exposing WT mice to EE also resulted in downregulation of miR-128 expression levels, although EE and AD conditions demonstrate opposing effects on neuronal functioning and synaptic plasticity. We also found that miR-128 expression downregulation in primary hippocampal cultures from 5xFAD mice results in increased neuronal network activity and neuronal excitability. Altogether, our findings place miR-128 as a synaptic player that may contribute to synaptic functioning and plasticity through regulation of synaptic protein expression and function.
AbstractList Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have been shown to have a protective effect by slowing the disease's progression and reducing AD-like cognitive impairment. However, the molecular mechanism of this mitigating effect is still not understood. One of the mechanisms that has recently been shown to be involved in neuronal degeneration is microRNAs (miRNAs) regulation, which act as a post-transcriptional regulators of gene expression. miR-128 has been shown to be significantly altered in individuals with AD and in mice following exposure to EE. Here, we focused on elucidating the possible role of miR-128 in AD pathology and found that miR-128 regulates the expression of two proteins essential for synaptic transmission, SNAP-25, and synaptotagmin1 (Syt1). Clinically relevant, in 5xFAD mouse model for AD, this miRNA's expression was found as downregulated, resembling the alteration found in the hippocampi of individuals with AD. Interestingly, exposing WT mice to EE also resulted in downregulation of miR-128 expression levels, although EE and AD conditions demonstrate opposing effects on neuronal functioning and synaptic plasticity. We also found that miR-128 expression downregulation in primary hippocampal cultures from 5xFAD mice results in increased neuronal network activity and neuronal excitability. Altogether, our findings place miR-128 as a synaptic player that may contribute to synaptic functioning and plasticity through regulation of synaptic protein expression and function.
Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have been shown to have a protective effect by slowing the disease's progression and reducing AD-like cognitive impairment. However, the molecular mechanism of this mitigating effect is still not understood. One of the mechanisms that has recently been shown to be involved in neuronal degeneration is microRNAs (miRNAs) regulation, which act as a post-transcriptional regulators of gene expression. miR-128 has been shown to be significantly altered in individuals with AD and in mice following exposure to EE. Here, we focused on elucidating the possible role of miR-128 in AD pathology and found that miR-128 regulates the expression of two proteins essential for synaptic transmission, SNAP-25, and synaptotagmin1 (Syt1). Clinically relevant, in 5xFAD mouse model for AD, this miRNA's expression was found as downregulated, resembling the alteration found in the hippocampi of individuals with AD. Interestingly, exposing WT mice to EE also resulted in downregulation of miR-128 expression levels, although EE and AD conditions demonstrate opposing effects on neuronal functioning and synaptic plasticity. We also found that miR-128 expression downregulation in primary hippocampal cultures from 5xFAD mice results in increased neuronal network activity and neuronal excitability. Altogether, our findings place miR-128 as a synaptic player that may contribute to synaptic functioning and plasticity through regulation of synaptic protein expression and function.Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have been shown to have a protective effect by slowing the disease's progression and reducing AD-like cognitive impairment. However, the molecular mechanism of this mitigating effect is still not understood. One of the mechanisms that has recently been shown to be involved in neuronal degeneration is microRNAs (miRNAs) regulation, which act as a post-transcriptional regulators of gene expression. miR-128 has been shown to be significantly altered in individuals with AD and in mice following exposure to EE. Here, we focused on elucidating the possible role of miR-128 in AD pathology and found that miR-128 regulates the expression of two proteins essential for synaptic transmission, SNAP-25, and synaptotagmin1 (Syt1). Clinically relevant, in 5xFAD mouse model for AD, this miRNA's expression was found as downregulated, resembling the alteration found in the hippocampi of individuals with AD. Interestingly, exposing WT mice to EE also resulted in downregulation of miR-128 expression levels, although EE and AD conditions demonstrate opposing effects on neuronal functioning and synaptic plasticity. We also found that miR-128 expression downregulation in primary hippocampal cultures from 5xFAD mice results in increased neuronal network activity and neuronal excitability. Altogether, our findings place miR-128 as a synaptic player that may contribute to synaptic functioning and plasticity through regulation of synaptic protein expression and function.
Author Shvarts-Serebro, Inna
Barak, Boaz
Adler, Lior
Sheinin, Anton
Gottfried, Irit
Schottlender, Nofar
Ashery, Uri
Author_xml – sequence: 1
  givenname: Inna
  surname: Shvarts-Serebro
  fullname: Shvarts-Serebro, Inna
  organization: The Sagol School of Neuroscience, Tel Aviv University
– sequence: 2
  givenname: Anton
  surname: Sheinin
  fullname: Sheinin, Anton
  organization: The Sagol School of Neuroscience, Tel Aviv University
– sequence: 3
  givenname: Irit
  surname: Gottfried
  fullname: Gottfried, Irit
  organization: The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University
– sequence: 4
  givenname: Lior
  surname: Adler
  fullname: Adler, Lior
  organization: The Sagol School of Neuroscience, Tel Aviv University
– sequence: 5
  givenname: Nofar
  surname: Schottlender
  fullname: Schottlender, Nofar
  organization: The Sagol School of Neuroscience, Tel Aviv University, The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University
– sequence: 6
  givenname: Uri
  orcidid: 0000-0001-6338-7888
  surname: Ashery
  fullname: Ashery, Uri
  email: uriashery@gmail.com
  organization: The Sagol School of Neuroscience, Tel Aviv University, The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University
– sequence: 7
  givenname: Boaz
  orcidid: 0000-0001-9724-4578
  surname: Barak
  fullname: Barak, Boaz
  email: boazba@tauex.tau.ac.il
  organization: The Sagol School of Neuroscience, Tel Aviv University, The School of Psychological Sciences, Tel Aviv University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34151409$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PFTEYhRuDkQv6B1yYJm7cjPZj-jFLAgImKAZ13bz0viUlM-3YziTy7y1e1IQFi6ab52lPzjkgeyknJOQ1Z-85Y-ZD5YJJ3jHRDrdadOIZ2XClho5zrffIhtlBdVYPep8c1HrLGtlz-4Lsy54r3rNhQy6neNVxYSlUCvQKb9YRllxoDvTbXYJ5iZ5-LXnGskSsNCaqfp0endDP0SM9j_OcPUwzjPQLriWn-pI8DzBWfPVwH5Ifpx-_H593F5dnn46PLjovjVo61Db0PIRBW9lbCRB4EMICDsGrQRijDAajg2ctfTDge_C4RZSaSQHba3lI3u3enUv-uWJd3BSrx3GEhHmtTqheGmZaAw19-wi9zWtJLV2jBmultFo26s0DtV5PuHVziROUO_e3qgaIHeBLrrVg-Idw5u73cLs9XGvZ_dnDiSbZR5KPCywxp6VAHJ9W5U6t7Z90g-V_7Ces39ranD8
CitedBy_id crossref_primary_10_1007_s11033_024_09822_w
crossref_primary_10_3390_cells11010158
crossref_primary_10_1016_j_prp_2023_154705
crossref_primary_10_3390_cells11233901
crossref_primary_10_3390_nu15173688
crossref_primary_10_2147_JIR_S422114
crossref_primary_10_3390_ijms24076024
crossref_primary_10_3390_life12091439
Cites_doi 10.1016/j.neuron.2012.07.005
10.1002/(SICI)1097-4695(19990615)39:4<569::AID-NEU10>3.0.CO;2-F
10.1016/S0969-9961(02)00009-8
10.1038/nsmb.1763
10.1016/j.neuron.2015.01.025
10.1016/j.neuron.2011.11.010
10.1016/j.bbih.2020.100149
10.1016/j.nbd.2006.12.008
10.1515/rns.2011.035
10.3233/JAD-2006-9S311
10.1038/nn0103-9
10.1016/j.expneurol.2012.09.009
10.2190/UJAQ-4LK5-2WAN-11DL
10.1126/science.1140481
10.1093/brain/awx022
10.1084/jem.20070823
10.1007/s12017-008-8028-z
10.1016/j.neurobiolaging.2005.09.012
10.3389/fnagi.2018.00288
10.1016/j.neurobiolaging.2006.04.009
10.1146/annurev.neuro.26.041002.131412
10.1111/j.1471-4159.2010.06608.x
10.1038/26412
10.1038/nature23484
10.1016/j.conb.2008.07.001
10.7554/eLife.14211
10.1074/jbc.M507892200
10.1038/s41398-020-01184-8
10.1016/j.bbr.2008.02.016
10.1126/science.1244193
10.1177/0891988706291079
10.1007/s00401-010-0756-0
10.1146/annurev-biophys-060414-034057
10.1016/j.nbd.2008.10.006
10.1080/13803395.2012.712676
10.1038/nrn1685
10.1126/science.1589771
10.1016/j.nbd.2008.05.001
10.1016/j.biopsych.2006.04.004
10.1002/emmm.201201974
10.1523/JNEUROSCI.5080-04.2005
10.1093/nar/gkw116
10.1097/00005072-200606000-00007
10.1007/7854_2012_220
10.1038/nrn1970
10.1016/j.nlm.2004.12.001
10.1007/s00018-015-1998-8
10.1155/2009/594678
10.1111/j.1460-9568.2005.04551.x
10.1016/j.expneurol.2008.11.027
10.1016/j.sbi.2019.03.007
10.1186/1750-1326-8-2
10.1113/jphysiol.1970.sp009095
10.1038/tp.2013.77
10.1016/j.conb.2017.02.014
10.1101/cshperspect.a006239
10.1016/j.neuroscience.2012.06.007
10.1073/pnas.97.23.12880
10.1097/01.wad.0000213815.20177.19
10.1097/00005072-199708000-00011
10.1016/S0197-4580(02)00138-0
10.1186/1471-2164-11-409
10.1002/ana.20101
10.1093/hmg/ddt164
10.1016/0006-8993(90)91009-6
10.1523/JNEUROSCI.1202-06.2006
10.1038/emboj.2011.327
10.1016/j.ijdevneu.2018.03.003
10.1016/S0092-8674(04)00045-5
10.1016/j.cell.2005.01.015
10.1016/j.jad.2019.01.031
10.1016/j.tics.2013.08.012
10.1007/s10519-006-9118-z
10.3389/fnagi.2010.00137
10.1111/j.1460-9568.2007.05641.x
10.1016/j.nbd.2011.12.035
10.1523/JNEUROSCI.4815-07.2008
10.1093/jnen/62.12.1220
10.1155/2009/594738
10.1186/1750-1326-4-48
10.1016/0197-4580(90)90059-9
10.1016/j.nbd.2019.104617
10.1038/nn.2891
10.1101/gr.199828.115
10.1523/JNeurosci.1236-13.2013
10.3389/fpsyt.2014.00132
10.1007/s12035-016-0167-x
10.1016/j.nlm.2007.07.007
10.1016/0092-8674(94)90556-8
10.1016/B978-0-12-418675-0.00002-X
10.1073/pnas.251673298
10.1016/S0022-510X(00)00285-9
10.3390/ijms21144977
10.1038/nn783
10.1371/journal.pone.0030803
10.1002/ana.410270502
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QR
7T7
7TK
7U9
7X7
7XB
88E
88G
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
K9.
M0S
M1P
M2M
M7N
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1007/s12031-021-01862-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1559-1166
EndPage 2607
ExternalDocumentID 34151409
10_1007_s12031_021_01862_2
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VX
0VY
1N0
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3SX
3V.
4.4
406
408
40D
40E
44B
53G
5GY
5RE
5VS
67N
6NX
78A
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M4Y
MA-
MVM
N2Q
N9A
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK6
WK8
YLTOR
Z7U
Z82
Z83
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QR
7T7
7TK
7U9
7XB
8FD
8FK
ABRTQ
C1K
FR3
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-e68f41ff9683483aaf1f228ae9fc5927757ef76fc0696f7ac4acedee36032adb3
IEDL.DBID 7X7
ISSN 0895-8696
1559-1166
IngestDate Thu Jul 10 23:33:28 EDT 2025
Sat Jul 26 02:17:03 EDT 2025
Wed Feb 19 02:27:27 EST 2025
Tue Jul 01 03:06:30 EDT 2025
Thu Apr 24 23:02:50 EDT 2025
Fri Feb 21 02:48:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Neuronal activity
Alzheimer’s disease
miR-128
Synaptotagmin1
SNAP-25
Language English
License 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-e68f41ff9683483aaf1f228ae9fc5927757ef76fc0696f7ac4acedee36032adb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6338-7888
0000-0001-9724-4578
PMID 34151409
PQID 2598833863
PQPubID 326248
PageCount 15
ParticipantIDs proquest_miscellaneous_2543707089
proquest_journals_2598833863
pubmed_primary_34151409
crossref_primary_10_1007_s12031_021_01862_2
crossref_citationtrail_10_1007_s12031_021_01862_2
springer_journals_10_1007_s12031_021_01862_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
2021-Dec
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Totowa
PublicationSubtitle MN
PublicationTitle Journal of molecular neuroscience
PublicationTitleAbbrev J Mol Neurosci
PublicationTitleAlternate J Mol Neurosci
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References SternYCognitive reserve and Alzheimer diseaseAlzheimer’s Disease and Associated Disorders200620112117
LudwigNPetraLDistribution of miRNA expression across human tissuesNucleic Acids Res2016448386538771:CAS:528:DC%2BC28XhslCqur%2FO269214064856985
Chodzko-ZajkoWJSchulerPSolomonJHeinlBEllisNRThe influence of physical fitness on automatic and effortful memory changes in agingInt J Aging Hum Dev1992352652851:STN:280:DyaK3s%2Flt1yitw%3D%3D1428192
HuZLiZmiRNAs in synapse development and synaptic plasticityCurr Opin Neurobiol2017452431283346405554733
KimJInoueKIshiiJVantiWBVoronovSVMurchisonEHannonGAbeliovichAA microRNA feedback circuit in midbrain dopamine neuronsScience (new York, NY)20073172007122012241:CAS:528:DC%2BD2sXps12ms7Y%3D
HerringAAmbréeOTommMHabermannHSachserNPaulusWKeyvaniKEnvironmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathologyExp Neurol200921611841921:CAS:528:DC%2BD1MXhvFGntrY%3D19118549
OddoSCaccamoATranLLambertMPGlabeCGKleinWLFrankMLaFerlaFMTemporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease: a link between Aβ and tau pathologyJ Biol Chem2006281159916041:CAS:528:DC%2BD28XksFOlsg%3D%3D16282321
Improta-CariaACNonakaCKCavalcanteBRDe SousaRAAras JúniorRSouzaBSModulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer diseaseInt J Mol Sci2020211449771:CAS:528:DC%2BB3cXitVChtr3M10.3390/ijms211449777403962
MasliahECrewsLSynaptic remodeling during aging and in Alzheimer’s diseaseJ Alzheimers Dis200693 Suppl91991:CAS:528:DC%2BD28XotFKktLg%3D16914848
Bertoni-FreddariCFattorettiPCasoliTMeier-RugeWUlrichJMorphological adaptive response of the synaptic junctional zones in the human dentate gyrus during aging and Alzheimer’s diseaseBrain Res199051769751:STN:280:DyaK3czivFGmtA%3D%3D2376007
Mouillet-RichardSBaudryALaunayJMKellermannOMicroRNAs and depressionNeurobiol Dis20124622722781:CAS:528:DC%2BC38Xltlagur0%3D22226785
VivarCPotterMCvan PraagHAll about running: synaptic plasticity, growth factors and adult hippocampal neurogenesisCurr Top Behav Neurosci2012151892101:CAS:528:DC%2BC2MXjvFCqtb8%3D10.1007/7854_2012_220
SchaieKWThe Seattle Longitudinal Study: a thirty-five-year inquiry of adult intellectual developmentZeitschrift Fur Gerontologie1993126129137
GeppertMGodaYHammerRESynaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapseCell1994797177271:CAS:528:DyaK2MXit1Gks74%3D10.1016/0092-8674(94)90556-87954835
LambertTJFernandezSMDifferent types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female miceNeurobiol Learn Mem20058332062161:CAS:528:DC%2BD2MXjtVyrtrc%3D15820856
KimuraROhnoMImpairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse modelNeurobiol Dis2009332292351:CAS:528:DC%2BD1MXnslSlug%3D%3D19026746
WangWXHuangQHuYStrombergAJNelsonPTPatterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matterActa Neuropathol201112119320520936480
Shomron N, Golan D et al (2009) An evolutionary perspective of animal microRNAs and their targets. J Biomed Biotechnol 594738
CracchioloJRMoriTNazianSJTanJPotterHArendashGWEnhanced cognitive activity–over and above social or physical activity–is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβdeposition, and increase synaptic immunoreactivityNeurobiol Learn Mem2007882772941:CAS:528:DC%2BD2sXhtVSjs77M177149602083653
VergalloAListaSZhaoYMiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaintsTransl Psychiatry2021111111:CAS:528:DC%2BB3MXls1Kmt74%3D10.1038/s41398-020-01184-8
FrickKMFernandezSMEnrichment enhances spatial memory and increases synaptophysin levels in aged female miceNeurobiol Aging20032446156261:CAS:528:DC%2BD3sXjtVKhtL8%3D12714119
Wong HK,Veremeyko T, Patel N, Lemere CA, Walsh DM, Esau C, Vanderburg C, Krichevky AM (2013) De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet 22:3077–3092
LinQWeiWCoelhoCMLiXBaker-AndresenDDudleyKRatnuVSBoskovicZKoborMSSunYEThe brain-specific microRNA miR128b regulates the formation of fear-extinction memoryNat Neurosci201114111511171:CAS:528:DC%2BC3MXhtVWmtbfN21841775
Shomron N, Levy C (2009) MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J Biomed Biotechnol 594678
Eskes GA, Longman S et al (2010) Contribution of physical fitness, cerebrovascular reserve and cognitive stimulation to cognitive function in post-menopausal women. Front Aging Neurosci 2:137
Nakano M, Kubota K, Hashizume S, et al (2020) An enriched environment prevents cognitive impairment in an Alzheimer’s disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexusBrain, Behav Immun - Heal 9 100149 https://doi.org/10.1016/j.bbih.2020.100149
EriksenJLJanusCGPlaques, tangles, and memory loss in mouse models of neurodegenerationBehav Genet2007377910017072762
RamponCJiangCHDongHTangYPLockhartDJSchultzPGTsienJZHuYEffects of environmental enrichment on gene expression in the brainProc Natl Acad Sci2000972312880128841:CAS:528:DC%2BD3cXotFyksLY%3D1107009618858
NithianantharajahJHannanAJEnriched environments, experience-dependent plasticity and disorders of the nervous systemNature Rev Neurosci200676977091:CAS:528:DC%2BD28XotlCgtr0%3D
OakleyHColeSLLoganSMausEShaoPCraftJGuillozet-BongaartsAOhnoMDisterhoftJEldikLVIntraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formationJ Neurosci20062610129101401:CAS:528:DC%2BD28XhtVymurbK170211696674618
ShenJLiYQuCThe enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampusJ Affect Disord201924881901:CAS:528:DC%2BC1MXitlOltLc%3D10.1016/j.jad.2019.01.03130716615
HeMLiuYCell-type-based analysis of microRNA profiles in the mouse brainNeuron201273135481:CAS:528:DC%2BC38XosFCgtA%3D%3D222437453270494
Wang S, Li Y, Ma C (2016) Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. eLife 5:209–217
EimerWAVassarRNeuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activationMol Neurodegener2013821:CAS:528:DC%2BC3sXis1aksb0%3D233167653552866
BarulliDSternYEfficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserveTrends Cogn Sci20131750250924018144
LaviolaGHannanAJEffects of enriched environment on animal models of neurodegenerative diseases and psychiatric disordersNeurobiol Dis200831215916818585920
BeauquisJPavíaPPomilioCEnvironmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s diseaseExp Neurol201323928371:CAS:528:DC%2BC3sXhvVygug%3D%3D10.1016/j.expneurol.2012.09.00923022919
OhnoMColeSLYasvoinaMZhaoJCitronMBerryRBACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic miceNeurobiol Dis2007261341451:CAS:528:DC%2BD2sXjsVGhsrg%3D17258906
GregorySLongJDKlöppelSOperationalizing compensation over time in neurodegenerative diseaseBrain20171401158116510.1093/brain/awx022283348885382953
DeKoskySTScheffSWSynapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severityAnn Neurol19902754574641:STN:280:DyaK3c3pslGntg%3D%3D2360787
JankowskyJLXuGFromholtDGonzalesVBorcheltDREnvironmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer diseaseJ Neuropathol Exp Neurol200362122012271:CAS:528:DC%2BD2cXht1Oguw%3D%3D14692698
McNeillEVan VactorDMicroRNAs shape the neuronal landscapeNeuron2012753633791:CAS:528:DC%2BC38XhtFKmsL3N228843213441179
IrvineKLawsKRGaleTMKondelTKGreater cognitive deterioration in women than men with Alzheimer’s disease: a meta analysisJ Clin Exp Neuropsychol201234998999822913619
BarakBShvarts-SerebroIModaiSOpposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNAs in mouse modelsTransl Psychiatry2013310103810771:CAS:528:DC%2BC3sXhtlKqsbrE10.1038/tp.2013.77
OhnoMChangLTsengWOakleyHCitronMTemporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACEEur J Neurosci20062325126016420434
HüttenrauchMWalterSKaufmannMWeggenSWOLimited effects of prolonged environmental enrichment on the pathology of 5XFAD miceMol Neurobiol20175486542655527734334
ZovoilisAAgbemenyahHYAgis-BalboaRCStillingRMEdbauerDRaoPmicroRNA-34c is a novel target to treat dementiasEMBO J201130429943081:CAS:528:DC%2BC3MXht1ajurzK219465623199394
BartelDPMicroRNAs: genomics, biogenesis, mechanism, and functionCell200411622812971:CAS:528:DC%2BD2cXhtVals7o%3D14744438
BushatiNCohenSMMicroRNAs in neurodegenerationCurr Opin Neurobiol20081832922961:CAS:528:DC%2BD1cXhtlSgsr%2FK18662781
SudhofTCThe Synaptic Vesicle Cycle Annu Rev Neurosci20042750954715217342
Wei Z, Meng X, Fatimy El R et al (2020) Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways Neurobiol Dis 134:104617 https://doi.org/10.1016/j.nbd.2019.104617
SchellerEMinkovaLLeitnerMKlöppelSAttempted and successful compensation in preclinical and early manifest neurodegeneration — a review of task FMRI studiesFront Psychiatry20145132253247864179340
ZhouQZhouPWangALWuDZhaoMSüdhofTCBrungerATThe primed SNARE–complexin–synaptotagmin complex for neuronal exocytosisNature20175484204251:CAS:528:DC%2BC2sXhtlGktrvJ288134125757840
BrungerATChoiUBLaiYThe pre-synaptic fusion machineryCurr Opin Struct Biol2019541791881:CAS:528:DC%2BC1MXmsVWmtrk%3D309867536939388
Liu N, He S et al (2012) Early natural stimulat
1862_CR8
JL Eriksen (1862_CR21) 2007; 37
F Trinchese (1862_CR85) 2004; 55
1862_CR1
ML Mustroph (1862_CR56) 2012; 219
1862_CR22
C Vivar (1862_CR88) 2012; 15
B Katz (1862_CR34) 1970; 207
SA Wolf (1862_CR93) 2006; 60
DP Bartel (1862_CR4) 2004; 116
RD Terry (1862_CR84) 2006; 19
C Rampon (1862_CR64) 2000; 97
Z Hu (1862_CR28) 2017; 45
J Beauquis (1862_CR6) 2013; 239
CI Sze (1862_CR81) 1997; 56
Q Lin (1862_CR43) 2011; 14
C Marchetti (1862_CR46) 2011; 22
R Mohrmann (1862_CR54) 2015; 72
UB Choi (1862_CR12) 2010; 17
NY Shao (1862_CR73) 2010; 11
J Kim (1862_CR36) 2007; 317
S Oddo (1862_CR61) 2006; 281
S Mouillet-Richard (1862_CR53) 2012; 46
M Hüttenrauch (1862_CR29) 2017; 54
A Vergallo (1862_CR87) 2021; 11
Ε Dandi (1862_CR16) 2018; 1
TH Davis (1862_CR17) 2008; 28
SW Scheff (1862_CR69) 2006; 27
GM Shankar (1862_CR72) 2009; 4
1862_CR44
M Geppert (1862_CR24) 1994; 79
AC Improta-Caria (1862_CR30) 2020; 21
1862_CR48
R Kimura (1862_CR38) 2010; 113
CI Sze (1862_CR82) 2000; 175
DA Costa (1862_CR13) 2007; 28
KM McSweeney (1862_CR51) 2016; 26
K Irvine (1862_CR31) 2012; 34
WJ Chodzko-Zajko (1862_CR11) 1992; 35
JB Sørensen (1862_CR77) 2002; 99
S Gregory (1862_CR25) 2017; 140
E Masliah (1862_CR47) 2006; 9
1862_CR55
1862_CR57
J Shen (1862_CR74) 2019; 248
N Bushati (1862_CR10) 2008; 18
A Zovoilis (1862_CR97) 2011; 30
P Washbourne (1862_CR91) 2002; 5
JR Cracchiolo (1862_CR15) 2007; 88
E McNeill (1862_CR49) 2012; 75
ST DeKosky (1862_CR18) 1990; 27
B Barak (1862_CR3) 2013; 3
C Bertoni-Freddari (1862_CR7) 1990; 517
H Van Praag (1862_CR86) 2008; 10
N Menkes-Caspi (1862_CR50) 2015; 5
Y Stern (1862_CR78) 2006; 20
JL Jankowsky (1862_CR32) 2003; 62
J Balthazar (1862_CR2) 2018; 10
O Lazarov (1862_CR40) 2005; 120
G Laviola (1862_CR41) 2008; 31
KW Schaie (1862_CR67) 1993; 1
MB Kennedy (1862_CR35) 2005; 6
WA Eimer (1862_CR20) 2013; 8
A Herring (1862_CR27) 2009; 216
TC Sudhof (1862_CR79) 2004; 27
Q Zhou (1862_CR96) 2017; 548
S Dong (1862_CR19) 2007; 26
J Rizo (1862_CR65) 2015; 44
M He (1862_CR26) 2012; 73
H Oakley (1862_CR60) 2006; 26
1862_CR75
1862_CR76
CL Tan (1862_CR83) 2013; 342
M Ohno (1862_CR62) 2006; 23
E Scheller (1862_CR70) 2014; 5
J Nithianantharajah (1862_CR59) 2006; 7
A Schaefer (1862_CR66) 2007; 204
M Ohno (1862_CR63) 2007; 26
AT Brunger (1862_CR9) 2019; 54
RB Sutton (1862_CR80) 1998; 395
DJ Selkoe (1862_CR71) 2008; 192
D Barulli (1862_CR5) 2013; 17
TJ Lambert (1862_CR39) 2005; 83
KM Frick (1862_CR23) 2003; 24
JL Jankowsky (1862_CR33) 2005; 25
R Mohrmann (1862_CR52) 2013; 33
WX Wang (1862_CR89) 2011; 121
R Kimura (1862_CR37) 2009; 33
M Nilsson (1862_CR58) 1999; 39
1862_CR14
N Ludwig (1862_CR45) 2016; 44
SW Scheff (1862_CR68) 1990; 11
1862_CR90
1862_CR92
1862_CR94
P Lau (1862_CR42) 2013; 5
PJ Yao (1862_CR95) 2003; 12
References_xml – reference: SørensenJBMattiUWeiSHThe SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosisProc Natl Acad Sci USA200299162716321:CAS:528:DC%2BD38Xht1Clt7s%3D10.1073/pnas.25167329811830673122241
– reference: Brose N, Petrenko AG, Südhof TC, Jahn R (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256:1021–1025
– reference: Menkes-CaspiNYaminHGKellnerVSpires-JonesTLCohenDSternEAPathological tau disrupts ongoing network activityNeuron20155959966
– reference: VergalloAListaSZhaoYMiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaintsTransl Psychiatry2021111111:CAS:528:DC%2BB3MXls1Kmt74%3D10.1038/s41398-020-01184-8
– reference: SzeCIBiHSelective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer’s disease brainsJ Neurol Sci2000175281901:CAS:528:DC%2BD3cXjsVGht7k%3D10831767
– reference: MustrophMLChenSDesaiSCAerobic exercise is the critical variable in an enriched environment that increases hippocampal neurogenesis and water maze learning in male C57BL/6J miceNeuroscience201221962711:CAS:528:DC%2BC38XhtVOmsL%2FI10.1016/j.neuroscience.2012.06.00722698691
– reference: Ashery U, Bielopolski N, Lavi A, Barak B, Michaeli L, Ben-Simon Y, Sheinin A, Bar-On D, Shapira Z. and Gottfried I (2014) The molecular mechanisms underlying synaptic transmission: a view of the presynaptic terminal. In The synapse pp. 21–109. Academic Press
– reference: MohrmannRDharaMBrunsDComplexins: small but capableCell Mol Life Sci201572422142351:CAS:528:DC%2BC2MXht12mtrfJ262453034611016
– reference: GregorySLongJDKlöppelSOperationalizing compensation over time in neurodegenerative diseaseBrain20171401158116510.1093/brain/awx022283348885382953
– reference: MohrmannRde WitHConnellESynaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggeringJ Neurosci20133314417144301:CAS:528:DC%2BC3sXhsVenurbL10.1523/JNeurosci.1236-13.2013240052944104293
– reference: ShenJLiYQuCThe enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampusJ Affect Disord201924881901:CAS:528:DC%2BC1MXitlOltLc%3D10.1016/j.jad.2019.01.03130716615
– reference: TrincheseFLiuSBattagliaFWalterSMathewsPMArancioOProgressive age-related development of Alzheimer-like pathology in APP/PS1 miceAnnals of Neurology: Official J Am Neuro Assoc Child Neuro Soc20045568018141:CAS:528:DC%2BD2cXlsVCktbc%3D
– reference: DongSLiCEnvironment enrichment rescues the neurodegenerative phenotypes in presenilins-deficient miceEur J Neurosci200726110111217614943
– reference: SudhofTCThe Synaptic Vesicle Cycle Annu Rev Neurosci20042750954715217342
– reference: BeauquisJPavíaPPomilioCEnvironmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s diseaseExp Neurol201323928371:CAS:528:DC%2BC3sXhvVygug%3D%3D10.1016/j.expneurol.2012.09.00923022919
– reference: LinQWeiWCoelhoCMLiXBaker-AndresenDDudleyKRatnuVSBoskovicZKoborMSSunYEThe brain-specific microRNA miR128b regulates the formation of fear-extinction memoryNat Neurosci201114111511171:CAS:528:DC%2BC3MXhtVWmtbfN21841775
– reference: NithianantharajahJHannanAJEnriched environments, experience-dependent plasticity and disorders of the nervous systemNature Rev Neurosci200676977091:CAS:528:DC%2BD28XotlCgtr0%3D
– reference: MasliahECrewsLSynaptic remodeling during aging and in Alzheimer’s diseaseJ Alzheimers Dis200693 Suppl91991:CAS:528:DC%2BD28XotFKktLg%3D16914848
– reference: SzeCITroncosoJCKawasCMoutonPPriceDLMartinLJLoss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer diseaseJ Neuropathol Exp Neurol19975689339441:STN:280:DyaK2svgt1yrtw%3D%3D9258263
– reference: CostaDACracchioloJRBachstetterADHughesTFBalesKRPaulSMMervisRFArendashGWPotterHEnrichment improves cognition in AD mice by amyloid-related and unrelated mechanismsNeurobiol Aging20072868318441:CAS:528:DC%2BD2sXksFWntrg%3D16730391
– reference: BrungerATChoiUBLaiYThe pre-synaptic fusion machineryCurr Opin Struct Biol2019541791881:CAS:528:DC%2BC1MXmsVWmtrk%3D309867536939388
– reference: SchaeferAO’CarrollDTanCLHillmanDSugimoriMLlinasRGreengardPCerebellar neurodegeneration in the absence of microRNAsJ Exp Med20072045531558
– reference: Wong HK,Veremeyko T, Patel N, Lemere CA, Walsh DM, Esau C, Vanderburg C, Krichevky AM (2013) De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet 22:3077–3092
– reference: YaoPJZhuMPyunEIBrooksAITherianosSMeyersVEColemanPDDefects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer’s diseaseNeurobiol Dis2003122971091:CAS:528:DC%2BD3sXitlWgurs%3D12667465
– reference: LauPBossersKAlteration of the microRNA network during the progression of Alzheimer’s diseaseEMBO Mol Med2013510161316341:CAS:528:DC%2BC3sXhsFOgsrjI240142893799583
– reference: Liu N, He S et al (2012) Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus. PLoS One 7(1):e30803
– reference: OddoSCaccamoATranLLambertMPGlabeCGKleinWLFrankMLaFerlaFMTemporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease: a link between Aβ and tau pathologyJ Biol Chem2006281159916041:CAS:528:DC%2BD28XksFOlsg%3D%3D16282321
– reference: SuttonRBFasshauerDJahnRBrungerATCrystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolutionNature19983953473531:CAS:528:DyaK1cXmsVSrsbo%3D9759724
– reference: KatzBMilediRFurther study of the role of calcium in synaptic transmissionJ Physiol197020737898011:CAS:528:DyaE3cXkt1eiur0%3D54997461348742
– reference: OhnoMChangLTsengWOakleyHCitronMTemporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACEEur J Neurosci20062325126016420434
– reference: Murphy TH (2003) Activity-dependent synapse development: changing the rules. Nat Neurosci 6(1):9–11
– reference: IrvineKLawsKRGaleTMKondelTKGreater cognitive deterioration in women than men with Alzheimer’s disease: a meta analysisJ Clin Exp Neuropsychol201234998999822913619
– reference: SternYCognitive reserve and Alzheimer diseaseAlzheimer’s Disease and Associated Disorders200620112117
– reference: MarchettiCMarieHHippocampal synaptic plasticity in Alzheimer’s disease: what have we learned so far from transgenic models?Rev Neurosci20112243734021:CAS:528:DC%2BC3sXhtlWktrjL21732714
– reference: McSweeneyKMGussowABInhibition of microRNA 128 promotes excitability of cultured cortical neuronal networksGenome Res20162614111416275166215052052
– reference: Bertoni-FreddariCFattorettiPCasoliTMeier-RugeWUlrichJMorphological adaptive response of the synaptic junctional zones in the human dentate gyrus during aging and Alzheimer’s diseaseBrain Res199051769751:STN:280:DyaK3czivFGmtA%3D%3D2376007
– reference: Mouillet-RichardSBaudryALaunayJMKellermannOMicroRNAs and depressionNeurobiol Dis20124622722781:CAS:528:DC%2BC38Xltlagur0%3D22226785
– reference: JankowskyJLXuGFromholtDGonzalesVBorcheltDREnvironmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer diseaseJ Neuropathol Exp Neurol200362122012271:CAS:528:DC%2BD2cXht1Oguw%3D%3D14692698
– reference: ShankarGMWalshDMAlzheimer’s disease: synaptic dysfunction and AβMol Neurodegener20094113
– reference: Wang S, Li Y, Ma C (2016) Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. eLife 5:209–217
– reference: GeppertMGodaYHammerRESynaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapseCell1994797177271:CAS:528:DyaK2MXit1Gks74%3D10.1016/0092-8674(94)90556-87954835
– reference: Mayeux R, Stern Y (2012) Epidemiology of Alzheimer disease. Cold Spring Harbor perspectives in medicine 2(8):a006239
– reference: Nakano M, Kubota K, Hashizume S, et al (2020) An enriched environment prevents cognitive impairment in an Alzheimer’s disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexusBrain, Behav Immun - Heal 9 100149 https://doi.org/10.1016/j.bbih.2020.100149
– reference: BarakBShvarts-SerebroIModaiSOpposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNAs in mouse modelsTransl Psychiatry2013310103810771:CAS:528:DC%2BC3sXhtlKqsbrE10.1038/tp.2013.77
– reference: LaviolaGHannanAJEffects of enriched environment on animal models of neurodegenerative diseases and psychiatric disordersNeurobiol Dis200831215916818585920
– reference: SchaieKWThe Seattle Longitudinal Study: a thirty-five-year inquiry of adult intellectual developmentZeitschrift Fur Gerontologie1993126129137
– reference: Wei Z, Meng X, Fatimy El R et al (2020) Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways Neurobiol Dis 134:104617 https://doi.org/10.1016/j.nbd.2019.104617
– reference: EimerWAVassarRNeuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activationMol Neurodegener2013821:CAS:528:DC%2BC3sXis1aksb0%3D233167653552866
– reference: ChoiUBSingle-molecule FRET-derived model of the synaptotagmin 1–SNARE fusion complexNat Struct Mol Biol2010173183241:CAS:528:DC%2BC3cXit1SmtLY%3D201737632922927
– reference: ScheffSWDeKoskySTPriceDAQuantitative assessment of cortical synaptic density in Alzheimer’s diseaseNeurobiol Aging199011129371:STN:280:DyaK3c3itFShug%3D%3D2325814
– reference: BalthazarJSchöweNMCipolliGCEnriched environment significantly reduced senile plaques in a transgenic mice model of Alzheimer’s disease, improving memoryFront Aging Neurosci2018102881:CAS:528:DC%2BC1MXhvFyjurfJ10.3389/fnagi.2018.00288303193946168651
– reference: TerryRDAlzheimer’s disease and the aging brainJ Geriatr Psychiatry Neurol200619312512816880353
– reference: BushatiNCohenSMMicroRNAs in neurodegenerationCurr Opin Neurobiol20081832922961:CAS:528:DC%2BD1cXhtlSgsr%2FK18662781
– reference: HeMLiuYCell-type-based analysis of microRNA profiles in the mouse brainNeuron201273135481:CAS:528:DC%2BC38XosFCgtA%3D%3D222437453270494
– reference: KennedyMBBealeHCCarlisleHJWashburnLRIntegration of biochemical signalling in spinesNat Rev Neurosci2005664234341:CAS:528:DC%2BD2MXks1OitLc%3D15928715
– reference: Chodzko-ZajkoWJSchulerPSolomonJHeinlBEllisNRThe influence of physical fitness on automatic and effortful memory changes in agingInt J Aging Hum Dev1992352652851:STN:280:DyaK3s%2Flt1yitw%3D%3D1428192
– reference: DavisTHCuellarTLKochSMBarkerAJHarfeBDMcManusMTUllianEMConditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampusJ Neurosci200828432243301:CAS:528:DC%2BD1cXlsVWgsrs%3D184345103844796
– reference: SchellerEMinkovaLLeitnerMKlöppelSAttempted and successful compensation in preclinical and early manifest neurodegeneration — a review of task FMRI studiesFront Psychiatry20145132253247864179340
– reference: Van PraagHNeurogenesis and exercise: past and future directionsNeuroMol Med2008102128140
– reference: WangWXHuangQHuYStrombergAJNelsonPTPatterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matterActa Neuropathol201112119320520936480
– reference: RizoJXuJThe synaptic vesicle release machineryAnnu Rev Biophys2015443393671:CAS:528:DC%2BC2MXhsVCju73P10.1146/annurev-biophys-060414-03405726098518
– reference: Eskes GA, Longman S et al (2010) Contribution of physical fitness, cerebrovascular reserve and cognitive stimulation to cognitive function in post-menopausal women. Front Aging Neurosci 2:137
– reference: OakleyHColeSLLoganSMausEShaoPCraftJGuillozet-BongaartsAOhnoMDisterhoftJEldikLVIntraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formationJ Neurosci20062610129101401:CAS:528:DC%2BD28XhtVymurbK170211696674618
– reference: BarulliDSternYEfficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserveTrends Cogn Sci20131750250924018144
– reference: LazarovORobinsonJTangYPHairstonISKorade-MirnicsZLeeVMHershLBSapolskyRMMirnicsKSisodiaSSEnvironmental enrichment reduces Aβ levels and amyloid deposition in transgenic miceCell200512057017131:CAS:528:DC%2BD2MXis1yhtr4%3D15766532
– reference: OhnoMColeSLYasvoinaMZhaoJCitronMBerryRBACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic miceNeurobiol Dis2007261341451:CAS:528:DC%2BD2sXjsVGhsrg%3D17258906
– reference: ZovoilisAAgbemenyahHYAgis-BalboaRCStillingRMEdbauerDRaoPmicroRNA-34c is a novel target to treat dementiasEMBO J201130429943081:CAS:528:DC%2BC3MXht1ajurzK219465623199394
– reference: NilssonMPerfilievaEJohanssonUOrwarOErikssonPSEnriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memoryJ Neurobiol19993945695781:STN:280:DyaK1Mzgs1OntA%3D%3D10380078
– reference: DeKoskySTScheffSWSynapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severityAnn Neurol19902754574641:STN:280:DyaK3c3pslGntg%3D%3D2360787
– reference: ShaoNYHuHYYanZXuYHuHMenzelCLiNChenWKhaitovichPComprehensive survey of human brain microRNA by deep sequencingBMC Genomics201011114
– reference: CracchioloJRMoriTNazianSJTanJPotterHArendashGWEnhanced cognitive activity–over and above social or physical activity–is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβdeposition, and increase synaptic immunoreactivityNeurobiol Learn Mem2007882772941:CAS:528:DC%2BD2sXhtVSjs77M177149602083653
– reference: RamponCJiangCHDongHTangYPLockhartDJSchultzPGTsienJZHuYEffects of environmental enrichment on gene expression in the brainProc Natl Acad Sci2000972312880128841:CAS:528:DC%2BD3cXotFyksLY%3D1107009618858
– reference: Counts SE, Nadeem M, Lad SP, Wuu J, Mufson EJ (2006) Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment. J Neuropathol Exp Neurol 65(6):592–601
– reference: HuZLiZmiRNAs in synapse development and synaptic plasticityCurr Opin Neurobiol2017452431283346405554733
– reference: KimJInoueKIshiiJVantiWBVoronovSVMurchisonEHannonGAbeliovichAA microRNA feedback circuit in midbrain dopamine neuronsScience (new York, NY)20073172007122012241:CAS:528:DC%2BD2sXps12ms7Y%3D
– reference: Improta-CariaACNonakaCKCavalcanteBRDe SousaRAAras JúniorRSouzaBSModulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer diseaseInt J Mol Sci2020211449771:CAS:528:DC%2BB3cXitVChtr3M10.3390/ijms211449777403962
– reference: SelkoeDJSoluble oligomers of the amyloid beta-protein impair synaptic plasticity and behaviorBehav Brain Res200819211061131:CAS:528:DC%2BD1cXmvV2itr8%3D183591022601528
– reference: BartelDPMicroRNAs: genomics, biogenesis, mechanism, and functionCell200411622812971:CAS:528:DC%2BD2cXhtVals7o%3D14744438
– reference: LudwigNPetraLDistribution of miRNA expression across human tissuesNucleic Acids Res2016448386538771:CAS:528:DC%2BC28XhslCqur%2FO269214064856985
– reference: KimuraROhnoMImpairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse modelNeurobiol Dis2009332292351:CAS:528:DC%2BD1MXnslSlug%3D%3D19026746
– reference: FrickKMFernandezSMEnrichment enhances spatial memory and increases synaptophysin levels in aged female miceNeurobiol Aging20032446156261:CAS:528:DC%2BD3sXjtVKhtL8%3D12714119
– reference: ScheffSWPriceDASchmittFAMufsonEJHippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairmentNeurobiol Aging20062710137213841:CAS:528:DC%2BD28XoslKrs7s%3D16289476
– reference: VivarCPotterMCvan PraagHAll about running: synaptic plasticity, growth factors and adult hippocampal neurogenesisCurr Top Behav Neurosci2012151892101:CAS:528:DC%2BC2MXjvFCqtb8%3D10.1007/7854_2012_220
– reference: LambertTJFernandezSMDifferent types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female miceNeurobiol Learn Mem20058332062161:CAS:528:DC%2BD2MXjtVyrtrc%3D15820856
– reference: Shomron N, Levy C (2009) MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J Biomed Biotechnol 594678
– reference: TanCLPlotkinJMicroRNA-128 governs neuronal excitability and motor behavior in miceScience2013342125412581:CAS:528:DC%2BC3sXhvVKhtLjK243116943932786
– reference: DandiΕKalamariATouloumiOLagoudakiRNousiopoulouESimeonidouCSpandouETataDABeneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stressInt J Dev Neurosci20181671932
– reference: KimuraRDeviLOhnoMPartial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer’s disease transgenic miceJ Neurochem20101132483261:CAS:528:DC%2BC3cXktVSks7Y%3D200891332921968
– reference: Shomron N, Golan D et al (2009) An evolutionary perspective of animal microRNAs and their targets. J Biomed Biotechnol 594738
– reference: HerringAAmbréeOTommMHabermannHSachserNPaulusWKeyvaniKEnvironmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathologyExp Neurol200921611841921:CAS:528:DC%2BD1MXhvFGntrY%3D19118549
– reference: JankowskyJLMelnikovaTEnvironmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s diseaseJ Neurosci20052521521752241:CAS:528:DC%2BD2MXkslyqsLY%3D159174614440804
– reference: McNeillEVan VactorDMicroRNAs shape the neuronal landscapeNeuron2012753633791:CAS:528:DC%2BC38XhtFKmsL3N228843213441179
– reference: WashbournePThompsonPMCartaMCostaETMathewsJRLopez-BenditoGMolnarZBecherMWValenzuelaCFPartridgeLDWilsonMCGenetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosisNat Neurosci20025200219261:CAS:528:DC%2BD38XjtlCqtQ%3D%3D11753414
– reference: WolfSAKronenbergGLehmannKBlankenshipAOverallRStaufenbielMKempermannGCognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s diseaseBiol Psychiatry200660131413231:CAS:528:DC%2BD28Xht12kt7rM16806094
– reference: ZhouQZhouPWangALWuDZhaoMSüdhofTCBrungerATThe primed SNARE–complexin–synaptotagmin complex for neuronal exocytosisNature20175484204251:CAS:528:DC%2BC2sXhtlGktrvJ288134125757840
– reference: HüttenrauchMWalterSKaufmannMWeggenSWOLimited effects of prolonged environmental enrichment on the pathology of 5XFAD miceMol Neurobiol20175486542655527734334
– reference: EriksenJLJanusCGPlaques, tangles, and memory loss in mouse models of neurodegenerationBehav Genet2007377910017072762
– volume: 75
  start-page: 363
  year: 2012
  ident: 1862_CR49
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.07.005
– volume: 39
  start-page: 569
  issue: 4
  year: 1999
  ident: 1862_CR58
  publication-title: J Neurobiol
  doi: 10.1002/(SICI)1097-4695(19990615)39:4<569::AID-NEU10>3.0.CO;2-F
– volume: 12
  start-page: 97
  issue: 2
  year: 2003
  ident: 1862_CR95
  publication-title: Neurobiol Dis
  doi: 10.1016/S0969-9961(02)00009-8
– volume: 17
  start-page: 318
  year: 2010
  ident: 1862_CR12
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1763
– volume: 5
  start-page: 959
  year: 2015
  ident: 1862_CR50
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.01.025
– volume: 73
  start-page: 35
  issue: 1
  year: 2012
  ident: 1862_CR26
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.11.010
– ident: 1862_CR57
  doi: 10.1016/j.bbih.2020.100149
– volume: 26
  start-page: 134
  year: 2007
  ident: 1862_CR63
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2006.12.008
– volume: 22
  start-page: 373
  issue: 4
  year: 2011
  ident: 1862_CR46
  publication-title: Rev Neurosci
  doi: 10.1515/rns.2011.035
– volume: 9
  start-page: 91
  issue: 3 Suppl
  year: 2006
  ident: 1862_CR47
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2006-9S311
– ident: 1862_CR55
  doi: 10.1038/nn0103-9
– volume: 239
  start-page: 28
  year: 2013
  ident: 1862_CR6
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2012.09.009
– volume: 35
  start-page: 265
  year: 1992
  ident: 1862_CR11
  publication-title: Int J Aging Hum Dev
  doi: 10.2190/UJAQ-4LK5-2WAN-11DL
– volume: 317
  start-page: 1220
  issue: 2007
  year: 2007
  ident: 1862_CR36
  publication-title: Science (new York, NY)
  doi: 10.1126/science.1140481
– volume: 140
  start-page: 1158
  year: 2017
  ident: 1862_CR25
  publication-title: Brain
  doi: 10.1093/brain/awx022
– volume: 204
  start-page: 553
  year: 2007
  ident: 1862_CR66
  publication-title: J Exp Med
  doi: 10.1084/jem.20070823
– volume: 10
  start-page: 128
  issue: 2
  year: 2008
  ident: 1862_CR86
  publication-title: NeuroMol Med
  doi: 10.1007/s12017-008-8028-z
– volume: 27
  start-page: 1372
  issue: 10
  year: 2006
  ident: 1862_CR69
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2005.09.012
– volume: 10
  start-page: 288
  year: 2018
  ident: 1862_CR2
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00288
– volume: 28
  start-page: 831
  issue: 6
  year: 2007
  ident: 1862_CR13
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2006.04.009
– volume: 27
  start-page: 509
  year: 2004
  ident: 1862_CR79
  publication-title: The Synaptic Vesicle Cycle Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.26.041002.131412
– volume: 113
  start-page: 248
  year: 2010
  ident: 1862_CR38
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2010.06608.x
– volume: 395
  start-page: 347
  year: 1998
  ident: 1862_CR80
  publication-title: Nature
  doi: 10.1038/26412
– volume: 548
  start-page: 420
  year: 2017
  ident: 1862_CR96
  publication-title: Nature
  doi: 10.1038/nature23484
– volume: 18
  start-page: 292
  issue: 3
  year: 2008
  ident: 1862_CR10
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2008.07.001
– ident: 1862_CR90
  doi: 10.7554/eLife.14211
– volume: 281
  start-page: 1599
  year: 2006
  ident: 1862_CR61
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M507892200
– volume: 11
  start-page: 1
  year: 2021
  ident: 1862_CR87
  publication-title: Transl Psychiatry
  doi: 10.1038/s41398-020-01184-8
– volume: 192
  start-page: 106
  issue: 1
  year: 2008
  ident: 1862_CR71
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2008.02.016
– volume: 342
  start-page: 1254
  year: 2013
  ident: 1862_CR83
  publication-title: Science
  doi: 10.1126/science.1244193
– volume: 19
  start-page: 125
  issue: 3
  year: 2006
  ident: 1862_CR84
  publication-title: J Geriatr Psychiatry Neurol
  doi: 10.1177/0891988706291079
– volume: 121
  start-page: 193
  year: 2011
  ident: 1862_CR89
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-010-0756-0
– volume: 44
  start-page: 339
  year: 2015
  ident: 1862_CR65
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev-biophys-060414-034057
– volume: 33
  start-page: 229
  year: 2009
  ident: 1862_CR37
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2008.10.006
– volume: 34
  start-page: 989
  issue: 9
  year: 2012
  ident: 1862_CR31
  publication-title: J Clin Exp Neuropsychol
  doi: 10.1080/13803395.2012.712676
– volume: 6
  start-page: 423
  issue: 6
  year: 2005
  ident: 1862_CR35
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1685
– ident: 1862_CR8
  doi: 10.1126/science.1589771
– volume: 31
  start-page: 159
  issue: 2
  year: 2008
  ident: 1862_CR41
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2008.05.001
– volume: 60
  start-page: 1314
  year: 2006
  ident: 1862_CR93
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2006.04.004
– volume: 5
  start-page: 1613
  issue: 10
  year: 2013
  ident: 1862_CR42
  publication-title: EMBO Mol Med
  doi: 10.1002/emmm.201201974
– volume: 25
  start-page: 5217
  issue: 21
  year: 2005
  ident: 1862_CR33
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5080-04.2005
– volume: 44
  start-page: 3865
  issue: 8
  year: 2016
  ident: 1862_CR45
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw116
– ident: 1862_CR14
  doi: 10.1097/00005072-200606000-00007
– volume: 15
  start-page: 189
  year: 2012
  ident: 1862_CR88
  publication-title: Curr Top Behav Neurosci
  doi: 10.1007/7854_2012_220
– volume: 7
  start-page: 697
  year: 2006
  ident: 1862_CR59
  publication-title: Nature Rev Neurosci
  doi: 10.1038/nrn1970
– volume: 83
  start-page: 206
  issue: 3
  year: 2005
  ident: 1862_CR39
  publication-title: Neurobiol Learn Mem
  doi: 10.1016/j.nlm.2004.12.001
– volume: 72
  start-page: 4221
  year: 2015
  ident: 1862_CR54
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-015-1998-8
– volume: 1
  start-page: 129
  issue: 26
  year: 1993
  ident: 1862_CR67
  publication-title: Zeitschrift Fur Gerontologie
– ident: 1862_CR76
  doi: 10.1155/2009/594678
– volume: 23
  start-page: 251
  year: 2006
  ident: 1862_CR62
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2005.04551.x
– volume: 216
  start-page: 184
  issue: 1
  year: 2009
  ident: 1862_CR27
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2008.11.027
– volume: 54
  start-page: 179
  year: 2019
  ident: 1862_CR9
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2019.03.007
– volume: 8
  start-page: 2
  year: 2013
  ident: 1862_CR20
  publication-title: Mol Neurodegener
  doi: 10.1186/1750-1326-8-2
– volume: 207
  start-page: 789
  issue: 3
  year: 1970
  ident: 1862_CR34
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1970.sp009095
– volume: 3
  start-page: 1038
  issue: 10
  year: 2013
  ident: 1862_CR3
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2013.77
– volume: 45
  start-page: 24
  year: 2017
  ident: 1862_CR28
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2017.02.014
– ident: 1862_CR48
  doi: 10.1101/cshperspect.a006239
– volume: 219
  start-page: 62
  year: 2012
  ident: 1862_CR56
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2012.06.007
– volume: 97
  start-page: 12880
  issue: 23
  year: 2000
  ident: 1862_CR64
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.97.23.12880
– volume: 20
  start-page: 112
  year: 2006
  ident: 1862_CR78
  publication-title: Alzheimer’s Disease and Associated Disorders
  doi: 10.1097/01.wad.0000213815.20177.19
– volume: 56
  start-page: 933
  issue: 8
  year: 1997
  ident: 1862_CR81
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/00005072-199708000-00011
– volume: 24
  start-page: 615
  issue: 4
  year: 2003
  ident: 1862_CR23
  publication-title: Neurobiol Aging
  doi: 10.1016/S0197-4580(02)00138-0
– volume: 11
  start-page: 1
  issue: 1
  year: 2010
  ident: 1862_CR73
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-409
– volume: 55
  start-page: 801
  issue: 6
  year: 2004
  ident: 1862_CR85
  publication-title: Annals of Neurology: Official J Am Neuro Assoc Child Neuro Soc
  doi: 10.1002/ana.20101
– ident: 1862_CR94
  doi: 10.1093/hmg/ddt164
– volume: 517
  start-page: 69
  year: 1990
  ident: 1862_CR7
  publication-title: Brain Res
  doi: 10.1016/0006-8993(90)91009-6
– volume: 26
  start-page: 10129
  year: 2006
  ident: 1862_CR60
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1202-06.2006
– volume: 30
  start-page: 4299
  year: 2011
  ident: 1862_CR97
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.327
– volume: 1
  start-page: 19
  issue: 67
  year: 2018
  ident: 1862_CR16
  publication-title: Int J Dev Neurosci
  doi: 10.1016/j.ijdevneu.2018.03.003
– volume: 116
  start-page: 281
  issue: 2
  year: 2004
  ident: 1862_CR4
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 120
  start-page: 701
  issue: 5
  year: 2005
  ident: 1862_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2005.01.015
– volume: 248
  start-page: 81
  year: 2019
  ident: 1862_CR74
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2019.01.031
– volume: 17
  start-page: 502
  year: 2013
  ident: 1862_CR5
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2013.08.012
– volume: 37
  start-page: 79
  year: 2007
  ident: 1862_CR21
  publication-title: Behav Genet
  doi: 10.1007/s10519-006-9118-z
– ident: 1862_CR22
  doi: 10.3389/fnagi.2010.00137
– volume: 26
  start-page: 101
  issue: 1
  year: 2007
  ident: 1862_CR19
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2007.05641.x
– volume: 46
  start-page: 272
  issue: 2
  year: 2012
  ident: 1862_CR53
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2011.12.035
– volume: 28
  start-page: 4322
  year: 2008
  ident: 1862_CR17
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4815-07.2008
– volume: 62
  start-page: 1220
  year: 2003
  ident: 1862_CR32
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1093/jnen/62.12.1220
– ident: 1862_CR75
  doi: 10.1155/2009/594738
– volume: 4
  start-page: 1
  issue: 1
  year: 2009
  ident: 1862_CR72
  publication-title: Mol Neurodegener
  doi: 10.1186/1750-1326-4-48
– volume: 11
  start-page: 29
  issue: 1
  year: 1990
  ident: 1862_CR68
  publication-title: Neurobiol Aging
  doi: 10.1016/0197-4580(90)90059-9
– ident: 1862_CR92
  doi: 10.1016/j.nbd.2019.104617
– volume: 14
  start-page: 1115
  year: 2011
  ident: 1862_CR43
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2891
– volume: 26
  start-page: 1411
  year: 2016
  ident: 1862_CR51
  publication-title: Genome Res
  doi: 10.1101/gr.199828.115
– volume: 33
  start-page: 14417
  year: 2013
  ident: 1862_CR52
  publication-title: J Neurosci
  doi: 10.1523/JNeurosci.1236-13.2013
– volume: 5
  start-page: 132
  year: 2014
  ident: 1862_CR70
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2014.00132
– volume: 54
  start-page: 6542
  issue: 8
  year: 2017
  ident: 1862_CR29
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-016-0167-x
– volume: 88
  start-page: 277
  year: 2007
  ident: 1862_CR15
  publication-title: Neurobiol Learn Mem
  doi: 10.1016/j.nlm.2007.07.007
– volume: 79
  start-page: 717
  year: 1994
  ident: 1862_CR24
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90556-8
– ident: 1862_CR1
  doi: 10.1016/B978-0-12-418675-0.00002-X
– volume: 99
  start-page: 1627
  year: 2002
  ident: 1862_CR77
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.251673298
– volume: 175
  start-page: 81
  issue: 2
  year: 2000
  ident: 1862_CR82
  publication-title: J Neurol Sci
  doi: 10.1016/S0022-510X(00)00285-9
– volume: 21
  start-page: 4977
  issue: 14
  year: 2020
  ident: 1862_CR30
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21144977
– volume: 5
  start-page: 19
  issue: 2002
  year: 2002
  ident: 1862_CR91
  publication-title: Nat Neurosci
  doi: 10.1038/nn783
– ident: 1862_CR44
  doi: 10.1371/journal.pone.0030803
– volume: 27
  start-page: 457
  issue: 5
  year: 1990
  ident: 1862_CR18
  publication-title: Ann Neurol
  doi: 10.1002/ana.410270502
SSID ssj0021418
Score 2.3759332
Snippet Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death....
Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2593
SubjectTerms Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer's disease
Animals
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cells, Cultured
Cognitive ability
Degeneration
Enrichment
Excitability
Exposure
Gene expression
Hippocampus
Hippocampus - cytology
Hippocampus - metabolism
Mice
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Neural networks
Neurochemistry
Neurodegenerative diseases
Neurology
Neurons - metabolism
Neurosciences
Plasticity
Post-transcription
Proteins
Proteomics
SNAP-25 protein
Synapses - metabolism
Synaptic plasticity
Synaptic transmission
Synaptosomal-Associated Protein 25 - genetics
Synaptosomal-Associated Protein 25 - metabolism
Synaptotagmin I - genetics
Synaptotagmin I - metabolism
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iL76It_UigviigTZp0vRxUZdF8EBd8K1MswksaHfZA_TfO8m2u4gH-Nw0LTOTmW8yFyGnAFYa0AlDabIslQ7PXAmC2RyMLq1Am-QLhW_vVKeb3rzIl7oobNxkuzchyaCpF8VuHAWQ-ZSCOEEczlDxrkj03X0iV5e35m5WkoZbvVjnkmmVq7pU5uc9vpqjbxjzW3w0mJ32Olmr8SJtzRi8QZZstUm2WhX6ym8f9IyGDM5wNb5F7t_6jwwtAYUxBfo4mzI_GNGBo08fFaByMPTBX76PfBdV2q-ofG-3rugtKgva6Q-HaNdQO7zS0LGjGm-Tbvv6-bLD6oEJzIhMTphV2qWJc7nSItUCwCWOcw02d0bmPMtkZl2mnImRLC4Dk4KxPWuFigWHXil2yHI1qOweobiRBys8NgiYADFPT-a6x8u0dAaUSSKSNHQrTN1N3A-1eC0WfZA9rQukdRFoXfCInM_fGc56afy5-rBhR1Gfq3GBzpqfjqyViMjJ_DGeCB_mgMoOpn5NKjLUZDqPyO6MjfPPoc2WvsVXRC4avi42__1f9v-3_ICsci9jIevlkCxPRlN7hNhlUh4HUf0E8NDhcw
  priority: 102
  providerName: Springer Nature
Title miR-128 as a Regulator of Synaptic Properties in 5xFAD Mice Hippocampal Neurons
URI https://link.springer.com/article/10.1007/s12031-021-01862-2
https://www.ncbi.nlm.nih.gov/pubmed/34151409
https://www.proquest.com/docview/2598833863
https://www.proquest.com/docview/2543707089
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9sILAsZHtjEZCfECFokdO84TSqGlAq1MhUrlKXIcW6q0JaXtpO2_5-ykrdDEnvxgx7Huznc_n893AG-1tsJolVCUJktT4XDPVZpTm2ujKsvRJvmHwucTOZ6l3-Zi3jvc1n1Y5VYnBkVdt8b7yD8iTPd1cZXkn5Z_qK8a5W9X-xIaD-HQpy7zUp3N9weuJA3-vVjlgiqZy_7RTPd0jqE4Ux-gECeI6in71zDdQZt3bkqDARo9gcc9ciRFx-qn8MA2z-CoaPDUfHVL3pEQyxmc5Efw42oxpWgTiF4TTaZdvfl2RVpHft42GtWEIRfeDb_y-VTJoiHiZlR8IeeoNsh4sVyihUM9cUlC7o5m_Rxmo-Gvz2Pal06ghmdiQ61ULk2cy6XiqeJau8QxprTNnRE5yzKRWZdJZ2Iki8u0SbWxtbVcxpzpuuIv4KBpG_sKCE7kYQuLDUInjeinRk7UrEorZ7Q0SQTJlm6l6fOK-_IWl-U-I7KndYm0LgOtSxbB-903yy6rxr2jT7fsKPsdti738hDBm1037g1_4aEb2177MSnPUKepPIKXHRt3v0PrLXyyrwg-bPm6n_z_azm-fy0n8Ih5mQrxLqdwsFld29eIWjbVWRDNMzgsRoPBxLdff38fYjsYTi6m2DtjxV8wSepZ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw9GmMA1wQMD4CA4wEXMAisWPHOSBUMaqOrQONTeotOI4tVdqS0naC_il-I89O0gpN7LZzbMd63-_5fQC80toKo1VCkZosTYVDnis1pzbXRpWWo07yhcLjIzk6Tb9MxGQL_vS1MD6tspeJQVBXjfEx8vdopvu5uEryj7Of1E-N8q-r_QiNliwO7OoXumyLD_t7iN_XjA0_n3wa0W6qADU8E0tqpXJp4lwuFU8V19oljjGlbe6MyFmWicy6TDoTy1y6TJtUG1tZy2XMma5KjufegJuoeGPv7GWTjYOXpCGeGKtcUIW7uyKdtlSPIftQnxARJ-hFUPavIrxk3V56mQ0Kb3gX7nSWKhm0pHUPtmx9H3YGNXrp5yvyhoTc0RCU34Gv59NjijqI6AXR5Lidb9_MSePI91WtUSwZ8s2H_ee-fyuZ1kT8Hg72yBjFFBlNZzPUqCiXzkjoFVIvHsDptQD1IWzXTW0fA8GDvJnEYoOmmkZrq0LMV6xMS2e0NEkESQ-3wnR9zP04jbNi04HZw7pAWBcB1gWL4O16z6zt4nHl6t0eHUXH0YtiQ38RvFx_Rl70Dyy6ts2FX5PyDGWoyiN41KJx_Tu0FoRvLhbBux6vm8P_f5cnV9_lBdwanYwPi8P9o4OncJt5-gq5NruwvZxf2GdoMS3L54FMCfy4br74CzzyIz4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9Gh0EuIFAeOSMYaRgBewltiJ4zygqaOrOsZKVZi0t8xxbKnSlnRtJ-iv8XU7zqUVmtjbnmM71rkfnxvAe6VMpJUMKFKToWFkkecyxalJlJaZ4aiTXKHwyVAMTsNvZ9HZBvxta2FcWmUrEytBnZfavZHvoZnu5uJKwfdskxYx6vX3p1fUTZBykdZ2nEZNIsdm-Rvdt_mXox7i-gNj_cNfXwe0mTBANY-jBTVC2jCwNhGSh5IrZQPLmFQmsTpKWBxHsbGxsNoXibCx0qHSJjeGC58zlWccz30Am7HzijqweXA4HI1X7l4QVq-LvkwiKnF_U7JTF-4xZCbq0iP8AH0Kyv5Vi7ds3Vtx2kr99Z_A48ZuJd2a0J7ChimewVa3QJ_9ckk-kiqTtHqi34Ifl5MxRY1E1JwoMq6n3ZczUlryc1koFFKajFwQYOa6uZJJQaI__W6PnKDQIoPJdIr6FaXUBak6hxTz53B6L2B9AZ2iLMwrIHiQM5qYr9FwU2h75UgHOcvCzGoldOBB0MIt1U1Xczdc4yJd92N2sE4R1mkF65R58Gm1Z1r39Lhz9U6LjrTh73m6pkYP3q0-I2e6cIsqTHnt1oQ8RokqEw9e1mhc_Q5th8i1GvPgc4vX9eH_v8v23Xd5Cw-RJ9LvR8Pj1_CIOfKqEm92oLOYXZs3aD4tst2GTgmc3zdr3AAI_SjZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-128+as+a+Regulator+of+Synaptic+Properties+in+5xFAD+Mice+Hippocampal+Neurons&rft.jtitle=Journal+of+molecular+neuroscience&rft.au=Shvarts-Serebro%2C+Inna&rft.au=Sheinin%2C+Anton&rft.au=Gottfried%2C+Irit&rft.au=Adler%2C+Lior&rft.date=2021-12-01&rft.issn=1559-1166&rft.eissn=1559-1166&rft.volume=71&rft.issue=12&rft.spage=2593&rft_id=info:doi/10.1007%2Fs12031-021-01862-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-8696&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-8696&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-8696&client=summon