Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing
Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) i...
Saved in:
Published in | Additive manufacturing Vol. 46; p. 102089 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.10.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) is likely to make those processes commercially more attractive. AI capabilities will reside within Digital Twins (DTs) which are living virtual replicas of the physical processes. DTs will be empowered to operate autonomously in a diagnostic control capacity to supervise processes and can be interrogated by the practitioner to inform the optimal processing route for any given product. The utility of the information gained from the DTs would depend on the quality of the digital models and, more importantly, their faster-solving surrogates which dwell within DTs for consultation during rapid decision-making. In this article, we point out the exceptional value of DTs in AM and focus on the need to create high-fidelity multiscale-multiphysics models for AM processes to feed the AI capabilities. We identify technical hurdles for their development, including those arising from the multiscale and multiphysics characteristics of the models, the difficulties in linking models of the subprocesses across scales and physics, and the scarcity of experimental data. We discuss the need for creating surrogate models using machine learning approaches for real-time problem-solving. We further identify non-technical barriers, such as the need for standardization and difficulties in collaborating across different types of institutions. We offer potential solutions for all these challenges, after reflecting on and researching discussions held at an international symposium on the subject in 2019. We argue that a collaborative approach can not only help accelerate their development compared with disparate efforts, but also enhance the quality of the models by allowing modular development and linkages that account for interactions between the various sub-processes in AM. A high-level roadmap is suggested for starting such a collaboration.
•We point out the role played by physics-based mechanistic models in the creation of digital twins of the AM process.•We identify technical hurdles for the development and linking of these models, and the scarcity of experimental data.•We discuss the need for creating surrogate models using machine learning approaches forreal-time problem-solving.•We further identify non-technical barriers and difficulties in collaborating across different types of institutions.•We offer potential solutions for all these challenges, based on discussions held at aninternational symposium convened for the purpose. |
---|---|
AbstractList | Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) is likely to make those processes commercially more attractive. AI capabilities will reside within Digital Twins (DTs) which are living virtual replicas of the physical processes. DTs will be empowered to operate autonomously in a diagnostic control capacity to supervise processes and can be interrogated by the practitioner to inform the optimal processing route for any given product. The utility of the information gained from the DTs would depend on the quality of the digital models and, more importantly, their faster-solving surrogates which dwell within DTs for consultation during rapid decision-making. In this article, we point out the exceptional value of DTs in AM and focus on the need to create high-fidelity multiscale-multiphysics models for AM processes to feed the AI capabilities. We identify technical hurdles for their development, including those arising from the multiscale and multiphysics characteristics of the models, the difficulties in linking models of the subprocesses across scales and physics, and the scarcity of experimental data. We discuss the need for creating surrogate models using machine learning approaches for real-time problem-solving. We further identify non-technical barriers, such as the need for standardization and difficulties in collaborating across different types of institutions. We offer potential solutions for all these challenges, after reflecting on and researching discussions held at an international symposium on the subject in 2019. We argue that a collaborative approach can not only help accelerate their development compared with disparate efforts, but also enhance the quality of the models by allowing modular development and linkages that account for interactions between the various sub-processes in AM. A high-level roadmap is suggested for starting such a collaboration.
•We point out the role played by physics-based mechanistic models in the creation of digital twins of the AM process.•We identify technical hurdles for the development and linking of these models, and the scarcity of experimental data.•We discuss the need for creating surrogate models using machine learning approaches forreal-time problem-solving.•We further identify non-technical barriers and difficulties in collaborating across different types of institutions.•We offer potential solutions for all these challenges, based on discussions held at aninternational symposium convened for the purpose. Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) is likely to make those processes commercially more attractive. AI capabilities will reside within Digital Twins (DTs) which are living virtual replicas of the physical processes. DTs will be empowered to operate autonomously in a diagnostic control capacity to supervise processes and can be interrogated by the practitioner to inform the optimal processing route for any given product. The utility of the information gained from the DTs would depend on the quality of the digital models and, more importantly, their faster-solving surrogates which dwell within DTs for consultation during rapid decision-making. In this article, we point out the exceptional value of DTs in AM and focus on the need to create high-fidelity multiscale-multiphysics models for AM processes to feed the AI capabilities. We identify technical hurdles for their development, including those arising from the multiscale and multiphysics characteristics of the models, the difficulties in linking models of the subprocesses across scales and physics, and the scarcity of experimental data. We discuss the need for creating surrogate models using machine learning approaches for real-time problem-solving. We further identify non-technical barriers, such as the need for standardization and difficulties in collaborating across different types of institutions. We offer potential solutions for all these challenges, after reflecting on and researching discussions held at an international symposium on the subject in 2019. Here, we argue that a collaborative approach can not only help accelerate their development compared with disparate efforts, but also enhance the quality of the models by allowing modular development and linkages that account for interactions between the various sub-processes in AM. A high-level roadmap is suggested for starting such a collaboration. |
ArticleNumber | 102089 |
Author | Gu, D. DebRoy, T. Matthews, M.J. Barnard, A. Gunasegaram, D.R. Murphy, A.B. Ladani, L. |
Author_xml | – sequence: 1 givenname: D.R. surname: Gunasegaram fullname: Gunasegaram, D.R. email: dayalan.gunasegaram@csiro.au organization: CSIRO Manufacturing, Private Bag 10, Clayton, VIC 3169, Australia – sequence: 2 givenname: A.B. surname: Murphy fullname: Murphy, A.B. email: tony.murphy@csiro.au organization: CSIRO Manufacturing, PO Box 218, Lindfield, NSW 2070, Australia – sequence: 3 givenname: A. surname: Barnard fullname: Barnard, A. email: amanda.s.barnard@anu.edu.au organization: School of Computing, Australian National University, Acton, ACT 2601, Australia – sequence: 4 givenname: T. surname: DebRoy fullname: DebRoy, T. email: debroy@matse.psu.edu organization: Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA – sequence: 5 givenname: M.J. surname: Matthews fullname: Matthews, M.J. email: matthews11@llnl.gov organization: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA – sequence: 6 givenname: L. surname: Ladani fullname: Ladani, L. email: ladani@asu.edu organization: Ira A. Fulton Schools of Engineering at Arizona State University, 699 S Mill Ave, Tempe, AZ 85281, USA – sequence: 7 givenname: D. surname: Gu fullname: Gu, D. email: dongdonggu@nuaa.edu.cn organization: Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China |
BackLink | https://www.osti.gov/servlets/purl/1881614$$D View this record in Osti.gov |
BookMark | eNqFkD1PHDEQhi1EpBDCL0hjpd_D9n6cXVBEKB9ISDRQW4M9ezenXftk-47w7-PlqFIk1cxY7zPz-v3EzkMMyNgXKVZSyOF6twLvZ1gpoWR9UUKbM3ahlOyatZbi_L3Xg-g-squcd0II2bdro9UF-_0YXyD5zD0ecYp7Chs-H6ZC2cGEzVu7375mcpnP0eOUOQTPyxYp8XxIKW6gYOZjTNzThgpMvLxQyDyOfMZlrO6o0BH5DOEwgiuHVK98Zh9GmDJevddL9vTj--Ptr-b-4efd7bf7xrXrvjTYY6daCcbA4J8H2RkHiCAHMw59i4Pzvldq1Kp-FXuDulUOtOuN0757bqG9ZF9Pe2MuZLOjgm7rYgjoipVay7qzisxJ5FLMOeFoqw4KxVAS0GSlsEvUdmfforZL1PYUdWXbv9h9ohnS63-omxNVE8UjYVqsYXDoKS3OfKR_8n8Ak4SeHg |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2022_04_143 crossref_primary_10_1016_j_matdes_2021_110167 crossref_primary_10_1515_auto_2023_0227 crossref_primary_10_1088_2631_7990_ada8e4 crossref_primary_10_1007_s10845_024_02490_4 crossref_primary_10_1088_1757_899X_1310_1_012009 crossref_primary_10_1021_acs_chemrev_3c00902 crossref_primary_10_1007_s00170_023_12637_x crossref_primary_10_1109_TIM_2023_3341124 crossref_primary_10_53941_ijamm_2025_100006 crossref_primary_10_1177_20552076221149651 crossref_primary_10_1088_2515_7639_ac09fb crossref_primary_10_1080_0951192X_2023_2264820 crossref_primary_10_1186_s10033_024_01108_3 crossref_primary_10_1080_17452759_2022_2141653 crossref_primary_10_1108_RPJ_03_2023_0113 crossref_primary_10_1007_s00170_024_13092_y crossref_primary_10_1088_1361_6463_adb3b0 crossref_primary_10_1177_13694332241260866 crossref_primary_10_1080_09506608_2023_2169501 crossref_primary_10_1088_2631_7990_ada099 crossref_primary_10_1016_j_matdes_2024_112684 crossref_primary_10_1016_j_cirp_2023_05_007 crossref_primary_10_1021_acs_energyfuels_2c03620 crossref_primary_10_1016_j_foostr_2022_100278 crossref_primary_10_1016_j_jmsy_2024_04_015 crossref_primary_10_1115_1_4063655 crossref_primary_10_1080_17452759_2023_2173615 crossref_primary_10_1017_dce_2022_23 crossref_primary_10_1080_0951192X_2022_2048422 crossref_primary_10_1080_0305215X_2024_2434201 crossref_primary_10_1016_j_procir_2022_05_057 crossref_primary_10_31127_tuje_1502587 crossref_primary_10_1088_1361_6463_ac5e1c crossref_primary_10_1007_s10845_023_02301_2 crossref_primary_10_1088_2631_7990_ad2545 crossref_primary_10_2139_ssrn_4189610 |
Cites_doi | 10.1016/j.cirpj.2020.02.002 10.1016/J.ENG.2017.05.011 10.3390/su12031088 10.1098/rsta.2013.0407 10.1038/s41598-017-04237-z 10.1016/j.cma.2008.12.026 10.1038/s41746-019-0193-y 10.1007/s00170-015-7576-2 10.1088/1361-651X/ab7150 10.1115/1.4028725 10.1038/s41467-019-10009-2 10.1016/j.cirpj.2020.03.004 10.1016/j.jmatprotec.2015.10.022 10.1007/s11837-019-03618-1 10.1016/j.commatsci.2020.109599 10.1007/s11837-019-03872-3 10.1109/LRA.2018.2851792 10.1016/j.apmt.2018.11.003 10.1016/j.pmatsci.2017.10.001 10.3390/ma10101117 10.2351/1.4817788 10.1016/j.matdes.2016.01.099 10.1126/science.aay7830 10.1016/j.jocs.2017.07.004 10.1016/j.powtec.2017.08.011 10.1098/rsta.2018.0147 10.1557/jmr.2020.120 10.1371/journal.pone.0156574 10.1016/j.actamat.2017.11.033 10.14529/jsfi190402 10.1098/rsta.2013.0377 10.1007/s00466-020-01952-9 10.1115/DETC2019-98415 10.1007/s11837-020-04155-y 10.1007/s40964-019-00108-3 10.1038/s41598-020-60294-x 10.1016/j.futures.2017.03.006 10.3390/app10238350 10.1007/s00170-017-0703-5 10.1115/1.4028540 10.1016/j.actamat.2019.11.053 10.1016/j.future.2018.08.045 10.1115/1.4028669 10.3389/fphys.2019.00721 10.1007/s11837-019-03555-z 10.1016/j.jcp.2019.109049 10.1016/j.actamat.2016.05.017 10.1016/j.jocs.2014.04.004 10.1038/s41563-019-0408-2 10.1016/j.cma.2019.112602 10.1038/s41578-020-00236-1 10.1016/j.actamat.2018.03.036 10.1177/1094342012468181 10.1016/j.actamat.2017.06.039 10.1109/ICSAI48974.2019.9010547 10.1179/1743284714Y.0000000728 10.1016/j.jocs.2018.04.010 10.4043/30533-MS 10.1016/j.proeng.2018.02.088 10.1016/j.eng.2019.01.014 10.1002/latj.201800009 10.1146/annurev-matsci-070115-032158 10.1002/nme.5270 10.1146/annurev-matsci-071312-121708 10.1007/s00170-017-0233-1 10.1016/j.jmatprotec.2008.03.044 10.1016/j.future.2018.07.057 10.1016/j.jclepro.2020.122077 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
CorporateAuthor | Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) |
DBID | 6I. AAFTH AAYXX CITATION OIOZB OTOTI |
DOI | 10.1016/j.addma.2021.102089 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
ExternalDocumentID | 1881614 10_1016_j_addma_2021_102089 S2214860421002542 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 6I. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AALMO ABPIF OIOZB OTOTI |
ID | FETCH-LOGICAL-c375t-e5e4231a99a6db6149caeea169f653e6cdd522f82781e59e832ca8c59c8d4b3a3 |
IEDL.DBID | .~1 |
ISSN | 2214-8604 |
IngestDate | Thu May 18 22:32:32 EDT 2023 Tue Jul 01 01:47:06 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 Fri Feb 23 02:43:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multiphysics modeling Machine learning Industry 4.0 Additive manufacturing Digital twins Artificial intelligence Multiscale modeling |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-e5e4231a99a6db6149caeea169f653e6cdd522f82781e59e832ca8c59c8d4b3a3 |
Notes | AC52-07NA27344 LLNL-JRNL-838645 USDOE National Nuclear Security Administration (NNSA) |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214860421002542 |
ParticipantIDs | osti_scitechconnect_1881614 crossref_citationtrail_10_1016_j_addma_2021_102089 crossref_primary_10_1016_j_addma_2021_102089 elsevier_sciencedirect_doi_10_1016_j_addma_2021_102089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Additive manufacturing |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zhang, Chen, Zhou, Cheng, Chen, Guo, Han, Lu (bib16) 2020; 10 Aydin, Braeu, Cyron (bib110) 2019; 6 Tao, Qi, Wang, Nee (bib15) 2019; 5 Ladani (bib61) 2020 Everton, Hirsch, Stravroulakis, Leach, Clare (bib23) 2016; 95 Gibson, Rosen, Stucker (bib103) 2015 DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski, Beese, Wilson-Heid, De, Zhang (bib58) 2018; 92 Hoekstra, Chopard, Coveney (bib53) 2014; 372 Anon, Virtual Singapore. Anon, Exascale Computing Project, 2020. Gunasegaram, Farnsworth, Nguyen (bib56) 2009; 209 Tao, Cheng, Qi, Zhang, Zhang, Sui (bib2) 2018; 94 Shi, Khairallah, Roehling, Heo, McKeown, Matthews (bib63) 2020; 184 Shi, Khairallah, Heo, Rolchigo, McKeown, Matthews (bib62) 2019; 71 Gu, Ma, Xia, Dai, Shi, Multiscale (bib34) 2017; 3 T. Wang, K.W. Leiter, P. Plechac, J. Knap, Accelerated scale bridging with sparsely approximated Gaussian learning, 2019. Groen, Knap, Neumann, Suleimenova, Veen, Leiter (bib68) 2019; 377 Martis, Gurupur, Lin, Islam, Fernandes (bib30) 2018; 88 DebRoy, Mukherjee, Wei, Elmer, Milewski (bib128) 2021; 6 Stavropoulos, Foteinopoulos, Papacharalampopoulos, Bikas (bib21) 2018; 1 Shevchik, Le-Quang, Meylan, Farahani, Olbinado, Rack, Masinelli, Leinenbach, Wasmer (bib51) 2020; 10 Y. Zheng, X. Fu, Y. Xuan, Data-driven optimization based on random forest surrogate, in: International Conference on Systems and Informatics (ICSAI 2019) IEEE, 2019. D. Editors, Registration Now Open for America Makes Virtual Mini TRX, 2020. Johnson, Vulimiri, To, Zhang, Brice, Kappes, Stebner (bib121) 2020; 36 Digital Twin Market by Technology, Type, Application, Industry And Geography - Global Forecast to 2026. M.J. Garbade, Clearing the Confusion: AI vs Machine Learning vs Deep Learning Differences, 2018. 〈https://towardsdatascience.com/clearing-the-confusion-ai-vs-machine-learning-vs-deep-learning-differences-fce69b21d5eb〉. 2020. Anon, What is a Digital Twin? . (Accessed December 2020). Chopard, Borgdorff, Hoekstra (bib70) 2021; 372 Li, Fu, Guo, Fang (bib36) 2016; 229 S. Parthasarathy, Machine Learning vs. Traditional Programming, 2020. King, Anderson, Ferencz, Hodge, Kamath, Khairallah (bib35) 2015; 31 Anon, Solutions - Digital Twins, 2020. (Accessed February 2021). Anon, GNU Licenses, 2020 Bevilacqua, Bottani, Ciarapica, Costantino, Di Donato, Ferraro, Mazzuto, Monteriù, Nardini, Ortenzi, Paroncini, Pirozzi, Prist, Quatrini, Tronci, Vignali (bib11) 2020; 12 Yuan, Guss, Wilson, Hau-Riege, DePond, McMains, Matthews, Giera (bib52) 2018; 3 Martin, Calta, Khairallah, Wang, Depond, Fong, Thampy, Guss, Kiss, Stone, Tassone, Nelson Weker, Toney, van Buuren, Matthews (bib88) 2019; 10 Baumgartl, Tomas, Buettner, Merkel (bib49) 2020; 5 Anon, Cheat sheet: What is Digital Twin? L. Vendra, A. Malkawi, A. Avagliano, Standardization of additive manufacturing for oil and gas applications, in: Offshore Technology Conference, Offshore Technology Conference, Houston, Texas, USA, 2020, p. 9. Pathmanathan, Cordeiro, Gray (bib98) 2019; 10 van der Giessen, Schultz, Bertin, Bulatov, Cai, Csányi, Foiles, Geers, González, Hütter, Kim, Kochmann, Llorca, Mattsson, Rottler, Shluger, Sills, Steinbach, Strachan, Tadmor (bib96) 2020; 28 Airbus 320 – Autopilot. Borgdorff, Mamonski, Bosak, Kurowski, Ben Belgacem, Chopard, Groen, Coveney, Hoekstra (bib67) 2014; 5 Wang, Liu, Ji, Mahadevan, Horstemeyer, Hu, Chen, Chen (bib99) 2019; 71 Sahli Costabal, Perdikaris, Kuhl, Hurtado (bib81) 2019; 357 nanoHUB. Chernatynskiy, Phillpot, LeSar (bib101) 2013; 43 Khairallah, Martin, Lee, Guss, Calta, Hammons, Nielsen, Chaput, Schwalbach, Shah, Chapman, Willey, Rubenchik, Anderson, Wang, Matthews, King (bib41) 2020; 368 D. Gunasegaram, B. Smith, MAGMAsoft helps assure quality in a Progressive Australian Iron Foundry, in: 32nd Annual Convention of the Australian Foundry Institute, Australian Foundry Institute, Fremantle, Australia, 2001, pp. 99–104. Thacker, Doebling, Hemez, Anderson, Pepin, Rodriguez (bib85) 2004 Denlinger, Irwin, Michaleris (bib108) 2014; 136 Klein (bib112) 2012 Anon, Bridge digital and physical worlds with digital twin technology, 2020. Zhu, Liu, Yan (bib122) 2021; 67 Yin, Wang, Yang, Wei, Dong, Ke, Wang, Zhu, Zeng (bib91) 2020; 31 Chen, Li, Duan, Li (bib29) 2017 Stavropoulos, Foteinopoulos (bib82) 2018; 5 Schlesinger (bib86) 1979; 32 Powell, Rennie, Geekie, Burns (bib60) 2020; 268 Additive Manufacturing Technology Standards, 2020. D.R. Gunasegaram, A.B. Murphy, Towards a true digital twin for the metal additive manufcaturing process, Metal Additive Manufacturing, Inovar Communications Ltd, London, 2019, pp. 185–191. Tapia, Elwany (bib22) 2014; 136 Han, Griffiths, Yu, Zhu (bib118) 2020; 35 Ly, Rubenchik, Khairallah, Guss, Matthews (bib92) 2017; 7 Wang, Chen, Kang, Deng, Jin (bib109) 2020; 35 Anon, Digital Twin - towards a meaningful framework, London, 2019. Anon, Aconity3D equipment. Pruett, Hester (bib111) 2016; 11 Alowayyed, Piontek, Suter, Hoenen, Groen, Luk, Bosak, Kopta, Kurowski, Perks, Brabazon, Jancauskas, Coster, Coveney, Hoekstra (bib69) 2019; 91 Gunasegaram, Murphy, Cummins, Lemiale, Delaney, Nguyen, Feng (bib38) 2017 S.S.H. Razvi, S.C. Feng, A. Narayanan, Y.T. Lee, P. Witherell, A review of machine learning applications in additive manufacturing, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Anaheim, CA, USA, 2019. B. Marr, What Is Digital Twin Technology - And Why Is It So Important?, 2017. Tapia, Elwany, Sang (bib75) 2016; 12 Mukherjee, DebRoy (bib9) 2019; 14 Ahsan, Ladani (bib39) 2020; 72 Huang, Leu, Mazumder, Donmez (bib46) 2015; 137 Karabasov, Nerukh, Hoekstra, Chopard, Coveney (bib77) 2021; 372 Lu, Sridhar, Zhang (bib32) 2018; 144 K. Tomasz, C. Edward, K. Bogumiła, R. Jacek, Parameters in selective laser melting for processing metallic powders, in: Proc. SPIE, 2012. Tao, Zhang, Nee (bib12) 2019 Michopoulos, Iliopoulos, Steuben, Birnbaum, Lambrakos (bib76) 2018; 22 Meng, McWilliams, Jarosinski, Park, Jung, Lee, Zhang (bib102) 2020; 72 (Accessed May 6 2020). T. Bartz-Beielstein, B. Naujoks, J. Stork, M. Zaefferer, D1.2 - Tutorial on surrogate-assisted modelling, 2016. Makridakis (bib1) 2017; 90 Gaikwad, Giera, Guss, Forien, Matthews, Rao (bib50) 2020; 36 H. Yeung, B. Lane, J. Fox, J. Neira, J. Tarr, AM machine and process control methods for additive manufacturing, 2020. Anon, AM machine and process control methods for additive manufacturing. DebRoy, Mukherjee, Milewski, Elmer, Ribic, Blecher, Zhang (bib129) 2019; 18 (Accessed May 10 2020). Prudhomme, Chamoin, Dhia, Bauman (bib78) 2009; 198 Anonymous, Introduction to measurements & error analysis, 2020. Mishra, Gupta, Raj, Kumar, Anwer, Pal, Chakravarty, Pal, Chakravarty, Pal, Misra, Misra (bib24) 2020; 30 Rausch, Küng, Pobel, Markl, Körner (bib84) 2017; 10 Borgdorff, Belgacem, Bona-Casas, Fazendeiro, Groen, Hoenen, Mizeranschi, Suter, Coster, Coveney, Dubitzky, Hoekstra, Strand, Chopard (bib66) 2014; 372 Hu, Mahadevan (bib100) 2017; 93 Matthews, Guss, Khairallah, Rubenchik, Depond, King (bib93) 2016; 114 Alowayyed, Groen, Coveney, Hoekstra (bib65) 2017; 22 Markl, Körner (bib37) 2016; 46 Anon, git awards, 2020 P. Dhage, Predicting Porosity and Microstructure of 3D Printed Part Using Machine Learning, Industrial and Systems Engineering, University of Michigan-Dearborn, Michigan, 2020. Future of Driving, 2021. J.T. Oden, S. Prudhomme, P.T. Bauman, L. Chamoin, Multiscale methods: bridging the scales in science and engineering, Oxford Scholarship Online, London, 209. 039 Development & Demonstration of Open-Source Protocols for Powder Bed Fusion AM, 2020. Vandone, Baraldo, Valente (bib25) 2018; 3 S.A. Alowayyed, M. Vassaux, B. Czaja, P.V. Coveney, A.G. Hoekstra, Towards heterogeneous multi-scale computing on large scale parallel supercomputers, 2020 6(4) (2020). America makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), 2020. Bikas, Stavropoulos, Chryssolouris (bib45) 2016; 83 Peng, Alber, Buganza Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris, Petzold, Kuhl (bib80) 2020 Knapp, Mukherjee, Zuback, Wei, Palmer, De, DebRoy (bib90) 2017; 135 Leiter, Barnes, Becker, Knap (bib73) 2018; 27 Nandwana, Dehoff, Simkin, Wang (bib120) 2019 Herriott, Spear (bib119) 2020; 175 Huang, Leu, Mazumder, Donmez (bib104) 2015; 137 J.C. Fielding, E. Morris, R. Gorham, E.F. Cory, S. Leonard, When America Makes, America Works A Successful Public Private 3D Printing (Additive Manufacturing) Partnership, 2016. Vastola, Zhang, Pei, Zhang (bib33) 2016; 12 Haeri (bib59) 2017; 321 Raghavan, Wei, Palmer, DebRoy (bib89) 2013; 25 Sorkin, Tan, Wong (bib71) 2017; 216 Jones, Snider, Nassehi, Yon, Hicks (bib6) 2020; 29 Anon, Forging the Digital Twin in discrete manufacturing. Keyes, McInnes, Woodward, Gropp, Myra, Pernice, Bell, Brown, Clo, Connors, Constantinescu, Estep, Evans, Farhat, Hakim, Hammond, Hansen, Hill, Isaac, Jiao, Jordan, Kaushik, Kaxiras, Koniges, Lee, Lott, Lu, Magerlein, Maxwell, McCourt, Mehl, Pawlowski, Randles, Reynolds, Rivière, Rüde, Scheibe, Shadid, Sheehan, Shephard, Siegel, Smith, Tang, Wilson, Wohlmuth (bib83) 2013; 27 Alber, Buganza Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris, Petzold, Kuhl (bib57) 2019; 2 B. Marr, 7 Amazing Examples of Digital Twin Technology In Practice, 2019. Hagedorn, Pastors (bib18) 2018; 15 Guo, Zhao, Escano, Young, Xiong, Fezzaa, Everhart, Brown, Sun, Chen (bib87) 2018; 151 D. Editors, Markforged Debuts Blacksmith Artificial Intelligence (AI) Software for Metal 3D Printing, 2019. (Accessed May 20 2020). Diamond (bib95) 2006 Anon, Digital Twin. Romano, Ladani, Razmi, Sadowski (bib40) 2015; 8 Knap, Spear, Leiter, Becker, Powell (bib64) 2016; 108 Makridakis (10.1016/j.addma.2021.102089_bib1) 2017; 90 10.1016/j.addma.2021.102089_bib43 10.1016/j.addma.2021.102089_bib42 10.1016/j.addma.2021.102089_bib44 Ly (10.1016/j.addma.2021.102089_bib92) 2017; 7 10.1016/j.addma.2021.102089_bib47 Prudhomme (10.1016/j.addma.2021.102089_bib78) 2009; 198 Khairallah (10.1016/j.addma.2021.102089_bib41) 2020; 368 10.1016/j.addma.2021.102089_bib48 Rausch (10.1016/j.addma.2021.102089_bib84) 2017; 10 DebRoy (10.1016/j.addma.2021.102089_bib129) 2019; 18 Vastola (10.1016/j.addma.2021.102089_bib33) 2016; 12 Chopard (10.1016/j.addma.2021.102089_bib70) 2021; 372 Li (10.1016/j.addma.2021.102089_bib36) 2016; 229 Wang (10.1016/j.addma.2021.102089_bib99) 2019; 71 Herriott (10.1016/j.addma.2021.102089_bib119) 2020; 175 Raghavan (10.1016/j.addma.2021.102089_bib89) 2013; 25 Alowayyed (10.1016/j.addma.2021.102089_bib65) 2017; 22 Ahsan (10.1016/j.addma.2021.102089_bib39) 2020; 72 Gunasegaram (10.1016/j.addma.2021.102089_bib38) 2017 10.1016/j.addma.2021.102089_bib54 Zhu (10.1016/j.addma.2021.102089_bib122) 2021; 67 Sahli Costabal (10.1016/j.addma.2021.102089_bib81) 2019; 357 Diamond (10.1016/j.addma.2021.102089_bib95) 2006 10.1016/j.addma.2021.102089_bib55 Romano (10.1016/j.addma.2021.102089_bib40) 2015; 8 Tao (10.1016/j.addma.2021.102089_bib2) 2018; 94 Tao (10.1016/j.addma.2021.102089_bib12) 2019 Bikas (10.1016/j.addma.2021.102089_bib45) 2016; 83 Hoekstra (10.1016/j.addma.2021.102089_bib53) 2014; 372 Shi (10.1016/j.addma.2021.102089_bib62) 2019; 71 Guo (10.1016/j.addma.2021.102089_bib87) 2018; 151 King (10.1016/j.addma.2021.102089_bib35) 2015; 31 Baumgartl (10.1016/j.addma.2021.102089_bib49) 2020; 5 Nandwana (10.1016/j.addma.2021.102089_bib120) 2019 Gu (10.1016/j.addma.2021.102089_bib34) 2017; 3 Knapp (10.1016/j.addma.2021.102089_bib90) 2017; 135 Zhang (10.1016/j.addma.2021.102089_bib16) 2020; 10 Wang (10.1016/j.addma.2021.102089_bib109) 2020; 35 Everton (10.1016/j.addma.2021.102089_bib23) 2016; 95 Karabasov (10.1016/j.addma.2021.102089_bib77) 2021; 372 Groen (10.1016/j.addma.2021.102089_bib68) 2019; 377 Bevilacqua (10.1016/j.addma.2021.102089_bib11) 2020; 12 Gaikwad (10.1016/j.addma.2021.102089_bib50) 2020; 36 Pruett (10.1016/j.addma.2021.102089_bib111) 2016; 11 Powell (10.1016/j.addma.2021.102089_bib60) 2020; 268 Sorkin (10.1016/j.addma.2021.102089_bib71) 2017; 216 Shevchik (10.1016/j.addma.2021.102089_bib51) 2020; 10 van der Giessen (10.1016/j.addma.2021.102089_bib96) 2020; 28 10.1016/j.addma.2021.102089_bib79 Martis (10.1016/j.addma.2021.102089_bib30) 2018; 88 Han (10.1016/j.addma.2021.102089_bib118) 2020; 35 10.1016/j.addma.2021.102089_bib72 10.1016/j.addma.2021.102089_bib74 Tapia (10.1016/j.addma.2021.102089_bib75) 2016; 12 Pathmanathan (10.1016/j.addma.2021.102089_bib98) 2019; 10 Keyes (10.1016/j.addma.2021.102089_bib83) 2013; 27 Thacker (10.1016/j.addma.2021.102089_bib85) 2004 Hagedorn (10.1016/j.addma.2021.102089_bib18) 2018; 15 Jones (10.1016/j.addma.2021.102089_bib6) 2020; 29 Schlesinger (10.1016/j.addma.2021.102089_bib86) 1979; 32 Mishra (10.1016/j.addma.2021.102089_bib24) 2020; 30 Huang (10.1016/j.addma.2021.102089_bib46) 2015; 137 Meng (10.1016/j.addma.2021.102089_bib102) 2020; 72 10.1016/j.addma.2021.102089_bib8 10.1016/j.addma.2021.102089_bib17 Martin (10.1016/j.addma.2021.102089_bib88) 2019; 10 Aydin (10.1016/j.addma.2021.102089_bib110) 2019; 6 10.1016/j.addma.2021.102089_bib7 Gunasegaram (10.1016/j.addma.2021.102089_bib56) 2009; 209 10.1016/j.addma.2021.102089_bib19 Michopoulos (10.1016/j.addma.2021.102089_bib76) 2018; 22 10.1016/j.addma.2021.102089_bib5 10.1016/j.addma.2021.102089_bib4 10.1016/j.addma.2021.102089_bib3 Knap (10.1016/j.addma.2021.102089_bib64) 2016; 108 10.1016/j.addma.2021.102089_bib10 Yin (10.1016/j.addma.2021.102089_bib91) 2020; 31 Gibson (10.1016/j.addma.2021.102089_bib103) 2015 10.1016/j.addma.2021.102089_bib97 10.1016/j.addma.2021.102089_bib14 Klein (10.1016/j.addma.2021.102089_bib112) 2012 10.1016/j.addma.2021.102089_bib13 Borgdorff (10.1016/j.addma.2021.102089_bib67) 2014; 5 Chen (10.1016/j.addma.2021.102089_bib29) 2017 Vandone (10.1016/j.addma.2021.102089_bib25) 2018; 3 10.1016/j.addma.2021.102089_bib94 10.1016/j.addma.2021.102089_bib106 10.1016/j.addma.2021.102089_bib105 10.1016/j.addma.2021.102089_bib107 Matthews (10.1016/j.addma.2021.102089_bib93) 2016; 114 DebRoy (10.1016/j.addma.2021.102089_bib128) 2021; 6 10.1016/j.addma.2021.102089_bib28 DebRoy (10.1016/j.addma.2021.102089_bib58) 2018; 92 Huang (10.1016/j.addma.2021.102089_bib104) 2015; 137 Mukherjee (10.1016/j.addma.2021.102089_bib9) 2019; 14 Alowayyed (10.1016/j.addma.2021.102089_bib69) 2019; 91 10.1016/j.addma.2021.102089_bib20 Tapia (10.1016/j.addma.2021.102089_bib22) 2014; 136 10.1016/j.addma.2021.102089_bib27 Markl (10.1016/j.addma.2021.102089_bib37) 2016; 46 Stavropoulos (10.1016/j.addma.2021.102089_bib82) 2018; 5 10.1016/j.addma.2021.102089_bib26 Ladani (10.1016/j.addma.2021.102089_bib61) 2020 Leiter (10.1016/j.addma.2021.102089_bib73) 2018; 27 Peng (10.1016/j.addma.2021.102089_bib80) 2020 Hu (10.1016/j.addma.2021.102089_bib100) 2017; 93 10.1016/j.addma.2021.102089_bib113 10.1016/j.addma.2021.102089_bib115 10.1016/j.addma.2021.102089_bib114 10.1016/j.addma.2021.102089_bib117 Johnson (10.1016/j.addma.2021.102089_bib121) 2020; 36 10.1016/j.addma.2021.102089_bib116 Alber (10.1016/j.addma.2021.102089_bib57) 2019; 2 Shi (10.1016/j.addma.2021.102089_bib63) 2020; 184 Stavropoulos (10.1016/j.addma.2021.102089_bib21) 2018; 1 Borgdorff (10.1016/j.addma.2021.102089_bib66) 2014; 372 10.1016/j.addma.2021.102089_bib31 Haeri (10.1016/j.addma.2021.102089_bib59) 2017; 321 10.1016/j.addma.2021.102089_bib124 10.1016/j.addma.2021.102089_bib123 10.1016/j.addma.2021.102089_bib126 10.1016/j.addma.2021.102089_bib125 Denlinger (10.1016/j.addma.2021.102089_bib108) 2014; 136 10.1016/j.addma.2021.102089_bib127 Yuan (10.1016/j.addma.2021.102089_bib52) 2018; 3 Tao (10.1016/j.addma.2021.102089_bib15) 2019; 5 Chernatynskiy (10.1016/j.addma.2021.102089_bib101) 2013; 43 Lu (10.1016/j.addma.2021.102089_bib32) 2018; 144 |
References_xml | – reference: Anon, Forging the Digital Twin in discrete manufacturing. – volume: 198 start-page: 1887 year: 2009 end-page: 1901 ident: bib78 article-title: An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations publication-title: Comput. Methods Appl. Mech. Eng. – volume: 6 year: 2019 ident: bib110 article-title: General multi-fidelity framework for training artificial neural networks with computational models publication-title: Front. Mater. – volume: 1 start-page: 157 year: 2018 end-page: 168 ident: bib21 article-title: Addressing the challenges for the industrial application of additive manufacturing: towards a hybrid solution publication-title: Int. J. Lightweight Mater. Manuf. – volume: 372 year: 2021 ident: bib77 article-title: Multiscale modelling: approaches and challenges publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 94 start-page: 3563 year: 2018 end-page: 3576 ident: bib2 article-title: Digital twin-driven product design, manufacturing and service with big data publication-title: Int. J. Adv. Manuf. Technol. – reference: D. Editors, Markforged Debuts Blacksmith Artificial Intelligence (AI) Software for Metal 3D Printing, 2019. – volume: 268 year: 2020 ident: bib60 article-title: Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders publication-title: J. Clean. Prod. – volume: 10 year: 2017 ident: bib84 article-title: Predictive simulation of process windows for powder bed fusion additive manufacturing: influence of the powder bulk density publication-title: Materials – year: 2019 ident: bib12 article-title: Digital Twin Driven Smart Manufacturing – reference: . (Accessed May 10 2020). – reference: Anon, Digital Twin - towards a meaningful framework, London, 2019. – volume: 135 start-page: 390 year: 2017 end-page: 399 ident: bib90 article-title: Building blocks for a digital twin of additive manufacturing publication-title: Acta Mater. – start-page: 91 year: 2017 end-page: 102 ident: bib38 article-title: Aiming for Modeling-asssited Tailored Designs for Additive Manufacturing, TMS2017 – volume: 5 start-page: 653 year: 2019 end-page: 661 ident: bib15 article-title: Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: correlation and comparison publication-title: Engineering – volume: 144 start-page: 801 year: 2018 end-page: 809 ident: bib32 article-title: Phase field simulation of powder bed-based additive manufacturing publication-title: Acta Mater. – reference: D. Gunasegaram, B. Smith, MAGMAsoft helps assure quality in a Progressive Australian Iron Foundry, in: 32nd Annual Convention of the Australian Foundry Institute, Australian Foundry Institute, Fremantle, Australia, 2001, pp. 99–104. – start-page: 117 year: 2017 end-page: 150 ident: bib29 article-title: Chapter 6 - extreme learning machine and its applications in big data processing publication-title: Big Data Analytics for Sensor-Network Collected Intelligence – reference: Anon, Virtual Singapore. – volume: 368 start-page: 660 year: 2020 end-page: 665 ident: bib41 article-title: Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing publication-title: Science – volume: 321 start-page: 94 year: 2017 end-page: 104 ident: bib59 article-title: Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations publication-title: Powder Technol. – reference: Additive Manufacturing Technology Standards, 2020. 〈 – reference: Anon, Digital Twin. – volume: 90 start-page: 46 year: 2017 end-page: 60 ident: bib1 article-title: The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms publication-title: Futures – volume: 114 start-page: 33 year: 2016 end-page: 42 ident: bib93 article-title: Denudation of metal powder layers in laser powder bed fusion processes publication-title: Acta Mater. – volume: 372 year: 2014 ident: bib66 article-title: Performance of distributed multiscale simulations publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. – volume: 29 start-page: 36 year: 2020 end-page: 52 ident: bib6 article-title: Characterising the Digital Twin: a systematic literature review publication-title: CIRP J. Manuf. Sci. Technol. – volume: 5 start-page: 719 year: 2014 end-page: 731 ident: bib67 article-title: Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment publication-title: J. Comput. Sci. – volume: 43 start-page: 157 year: 2013 end-page: 182 ident: bib101 article-title: Uncertainty quantification in multiscale simulation of materials: a prospective publication-title: Annu. Rev. Mater. Res. – volume: 175 year: 2020 ident: bib119 article-title: Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods publication-title: Comput. Mater. Sci. – volume: 93 start-page: 2855 year: 2017 end-page: 2874 ident: bib100 article-title: Uncertainty quantification and management in additive manufacturing: current status, needs, and opportunities publication-title: Int. J. Adv. Manuf. Technol. – reference: D.R. Gunasegaram, A.B. Murphy, Towards a true digital twin for the metal additive manufcaturing process, Metal Additive Manufacturing, Inovar Communications Ltd, London, 2019, pp. 185–191. – volume: 209 start-page: 1209 year: 2009 end-page: 1219 ident: bib56 article-title: Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments publication-title: J. Mater. Process. Technol. – volume: 72 start-page: 429 year: 2020 end-page: 439 ident: bib39 article-title: Temperature profile, bead geometry, and elemental evaporation in laser powder bed fusion additive manufacturing process publication-title: JOM – volume: 6 start-page: 48 year: 2021 end-page: 68 ident: bib128 article-title: Metallurgy, mechanistic models and machine learning in metal printing publication-title: Nat. Rev. Mater. – reference: P. Dhage, Predicting Porosity and Microstructure of 3D Printed Part Using Machine Learning, Industrial and Systems Engineering, University of Michigan-Dearborn, Michigan, 2020. – year: 2004 ident: bib85 article-title: Concepts of model verification and vaidation publication-title: Loas Alamos National Laboratory – volume: 2 start-page: 115 year: 2019 ident: bib57 article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences publication-title: npj Digit. Med. – reference: Anon, Aconity3D equipment. – volume: 3 start-page: 675 year: 2017 end-page: 684 ident: bib34 article-title: Understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing publication-title: Engineering – reference: Y. Zheng, X. Fu, Y. Xuan, Data-driven optimization based on random forest surrogate, in: International Conference on Systems and Informatics (ICSAI 2019) IEEE, 2019. – reference: Digital Twin Market by Technology, Type, Application, Industry And Geography - Global Forecast to 2026. – volume: 12 start-page: 1088 year: 2020 ident: bib11 article-title: Digital twin reference model development to prevent operators’ risk in process plants publication-title: Sustainability – year: 2020 ident: bib61 publication-title: Additive Manufacturing of Metals Materials, Processes, Tests, and Standards – volume: 71 start-page: 3640 year: 2019 end-page: 3655 ident: bib62 article-title: Integrated simulation framework for additively manufactured Ti-6Al-4V: melt pool dynamics, microstructure, solid-state phase transformation, and microelastic response publication-title: JOM – volume: 10 start-page: 721 year: 2019 ident: bib98 article-title: Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models publication-title: Front. Physiol. – reference: . (Accessed May 6 2020). – volume: 36 year: 2020 ident: bib121 article-title: Invited review: Machine learning for materials developments in metals additive manufacturing publication-title: Addit. Manuf. – volume: 83 start-page: 389 year: 2016 end-page: 405 ident: bib45 article-title: Additive manufacturing methods and modelling approaches: a critical review publication-title: Int. J. Adv. Manuf. Technol. – reference: Airbus 320 – Autopilot. – reference: D. Editors, Registration Now Open for America Makes Virtual Mini TRX, 2020. – year: 2015 ident: bib103 article-title: Additive manufacturing technologies - 3D printing publication-title: Rapid Prototyping, and Direct Digital Manufacturing – volume: 136 year: 2014 ident: bib22 article-title: A review on process monitoring and control in metal-based additive manufacturing publication-title: J. Manuf. Sci. Eng. – volume: 22 start-page: 15 year: 2017 end-page: 25 ident: bib65 article-title: Multiscale computing in the exascale era publication-title: J. Comput. Sci. – reference: 039 Development & Demonstration of Open-Source Protocols for Powder Bed Fusion AM, 2020. – volume: 108 start-page: 1649 year: 2016 end-page: 1666 ident: bib64 article-title: A computational framework for scale-bridging in multi-scale simulations publication-title: Int. J. Numer. Methods Eng. – reference: Anon, Bridge digital and physical worlds with digital twin technology, 2020. – volume: 8 start-page: 1 year: 2015 end-page: 11 ident: bib40 article-title: Temperature distribution and melt geometry in laser and electron-beam melting processes – a comparison among common materials publication-title: Addit. Manuf. – volume: 28 year: 2020 ident: bib96 article-title: Roadmap on multiscale materials modeling publication-title: Model. Simul. Mater. Sci. Eng. – volume: 11 year: 2016 ident: bib111 article-title: The creation of surrogate models for fast estimation of complex model outcomes publication-title: PLoS One – reference: . (Accessed May 20 2020). – reference: B. Marr, What Is Digital Twin Technology - And Why Is It So Important?, 2017. – volume: 229 start-page: 703 year: 2016 end-page: 712 ident: bib36 article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting publication-title: J. Mater. Process. Technol. – volume: 151 start-page: 169 year: 2018 end-page: 180 ident: bib87 article-title: Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging publication-title: Acta Mater. – reference: H. Yeung, B. Lane, J. Fox, J. Neira, J. Tarr, AM machine and process control methods for additive manufacturing, 2020. 〈 – reference: T. Wang, K.W. Leiter, P. Plechac, J. Knap, Accelerated scale bridging with sparsely approximated Gaussian learning, 2019. – reference: . (Accessed February 2021). – year: 2020 ident: bib80 article-title: Multiscale Modeling Meets Machine Learning: What Can We Learn? publication-title: Arch. Comput. Methods Eng. – volume: 216 start-page: 51 year: 2017 end-page: 57 ident: bib71 article-title: Multi-material modelling for selective laser melting publication-title: Procedia Eng. – volume: 25 year: 2013 ident: bib89 article-title: Heat transfer and fluid flow in additive manufacturing publication-title: J. Laser Appl. – volume: 10 start-page: 1987 year: 2019 ident: bib88 article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing publication-title: Nat. Commun. – volume: 88 start-page: 696 year: 2018 end-page: 698 ident: bib30 article-title: Recent advances in big data analytics, internet of things and machine learning publication-title: Future Gener. Comput. Syst. – reference: America makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), 2020. 〈 – reference: T. Bartz-Beielstein, B. Naujoks, J. Stork, M. Zaefferer, D1.2 - Tutorial on surrogate-assisted modelling, 2016. – reference: Anon, What is a Digital Twin? – reference: Future of Driving, 2021. – volume: 184 start-page: 284 year: 2020 end-page: 305 ident: bib63 article-title: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy publication-title: Acta Mater. – volume: 357 year: 2019 ident: bib81 article-title: Multi-fidelity classification using Gaussian processes: Accelerating the prediction of large-scale computational models publication-title: Comput. Methods Appl. Mech. Eng. – volume: 12 start-page: 231 year: 2016 end-page: 239 ident: bib33 article-title: Controlling of residual stress in additive manufacturing of Ti publication-title: Addit. Manuf. – year: 2019 ident: bib120 publication-title: Collection of Pedigree AM Data for Data Analysis and Correlation – reference: J.T. Oden, S. Prudhomme, P.T. Bauman, L. Chamoin, Multiscale methods: bridging the scales in science and engineering, Oxford Scholarship Online, London, 209. – volume: 91 start-page: 335 year: 2019 end-page: 346 ident: bib69 article-title: Patterns for high performance multiscale computing publication-title: Future Gener. Comput. Syst. – reference: Anon, git awards, 2020, 〈 – year: 2012 ident: bib112 article-title: Sensor and Data Fusion: a Tool for Information Assessment and Decision Making – reference: S. Parthasarathy, Machine Learning vs. Traditional Programming, 2020. 〈 – volume: 3 start-page: 3279 year: 2018 end-page: 3284 ident: bib25 article-title: Multisensor data fusion for additive manufacturing process control publication-title: IEEE Robot. Autom. Lett. – volume: 3 year: 2018 ident: bib52 article-title: Machine-learning-based monitoring of laser powder bed fusion publication-title: Adv. Mater. Technol. – reference: 〉. – volume: 67 start-page: 619 year: 2021 end-page: 635 ident: bib122 article-title: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks publication-title: Comput. Mech. – volume: 137 start-page: 10 year: 2015 ident: bib104 article-title: Additive manufacturing: current state, future potential, gaps and needs, and recommendations publication-title: J. Manuf. Sci. Eng. – volume: 46 start-page: 93 year: 2016 end-page: 123 ident: bib37 article-title: Multiscale modeling of powder bed–based additive manufacturing publication-title: Annu. Rev. Mater. Res. – reference: S.S.H. Razvi, S.C. Feng, A. Narayanan, Y.T. Lee, P. Witherell, A review of machine learning applications in additive manufacturing, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Anaheim, CA, USA, 2019. – volume: 12 start-page: 282 year: 2016 end-page: 290 ident: bib75 article-title: Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models publication-title: Addit. Manuf. – volume: 5 start-page: 277 year: 2020 end-page: 285 ident: bib49 article-title: A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring publication-title: Prog. Addit. Manuf. – reference: Anon, Solutions - Digital Twins, 2020. – reference: M.J. Garbade, Clearing the Confusion: AI vs Machine Learning vs Deep Learning Differences, 2018. 〈https://towardsdatascience.com/clearing-the-confusion-ai-vs-machine-learning-vs-deep-learning-differences-fce69b21d5eb〉. 2020. – volume: 22 start-page: 784 year: 2018 end-page: 799 ident: bib76 article-title: On the multiphysics modeling challenges for metal additive manufacturing processes publication-title: Addit. Manuf. – volume: 372 year: 2014 ident: bib53 article-title: Multiscale modelling and simulation: a position paper publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. – volume: 36 year: 2020 ident: bib50 article-title: Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion – A single-track study publication-title: Addit. Manuf. – reference: nanoHUB. – reference: Anon, Exascale Computing Project, 2020. – reference: Anon, Cheat sheet: What is Digital Twin? – volume: 35 start-page: 1936 year: 2020 end-page: 1948 ident: bib118 article-title: Quantitative microstructure analysis for solid-state metal additive manufacturing via deep learning publication-title: J. Mater. Res. – volume: 15 start-page: 54 year: 2018 end-page: 57 ident: bib18 article-title: Process monitoring of laser beam melting publication-title: Laser Tech. J. – volume: 14 start-page: 59 year: 2019 end-page: 65 ident: bib9 article-title: A digital twin for rapid qualification of 3D printed metallic components publication-title: Appl. Mater. Today – reference: K. Tomasz, C. Edward, K. Bogumiła, R. Jacek, Parameters in selective laser melting for processing metallic powders, in: Proc. SPIE, 2012. – reference: Anonymous, Introduction to measurements & error analysis, 2020. 〈 – volume: 72 start-page: 2363 year: 2020 end-page: 2377 ident: bib102 article-title: Machine learning in additive manufacturing: a review publication-title: JOM – volume: 10 start-page: 3389 year: 2020 ident: bib51 article-title: Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance publication-title: Sci. Rep. – reference: . (Accessed December 2020). – volume: 27 start-page: 4 year: 2013 end-page: 83 ident: bib83 article-title: Multiphysics simulations: challenges and opportunities publication-title: Int. J. High Perform. Comput. Appl. – volume: 18 start-page: 1026 year: 2019 end-page: 1032 ident: bib129 article-title: Scientific, technological and economic issues in metal printing and their solutions publication-title: Nat. Mater. – volume: 31 start-page: 957 year: 2015 end-page: 968 ident: bib35 article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory publication-title: Mater. Sci. Technol. – volume: 35 year: 2020 ident: bib109 article-title: Meta-modeling of high-fidelity FEA simulation for efficient product and process design in additive manufacturing publication-title: Addit. Manuf. – reference: S.A. Alowayyed, M. Vassaux, B. Czaja, P.V. Coveney, A.G. Hoekstra, Towards heterogeneous multi-scale computing on large scale parallel supercomputers, 2020 6(4) (2020). – volume: 95 start-page: 431 year: 2016 end-page: 445 ident: bib23 article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing publication-title: Mater. Des. – volume: 377 year: 2019 ident: bib68 article-title: Mastering the scales: a survey on the benefits of multiscale computing software publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. – reference: J.C. Fielding, E. Morris, R. Gorham, E.F. Cory, S. Leonard, When America Makes, America Works A Successful Public Private 3D Printing (Additive Manufacturing) Partnership, 2016. – volume: 372 year: 2021 ident: bib70 article-title: A framework for multi-scale modelling publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – reference: Anon, AM machine and process control methods for additive manufacturing. – volume: 31 year: 2020 ident: bib91 article-title: Correlation between forming quality and spatter dynamics in laser powder bed fusion publication-title: Addit. Manuf. – start-page: 1 year: 2006 end-page: 2 ident: bib95 publication-title: Experience using Phenomena Identification and Ranking Technique (PIRT) for nuclear analysis – volume: 10 start-page: 8350 year: 2020 ident: bib16 article-title: Digital twins for additive manufacturing: a state-of-the-art review publication-title: Appl. Sci. – volume: 32 year: 1979 ident: bib86 article-title: Terminology for model credibility publication-title: Simulation – volume: 27 start-page: 91 year: 2018 end-page: 106 ident: bib73 article-title: Accelerated scale-bridging through adaptive surrogate model evaluation publication-title: J. Comput. Sci. – volume: 92 start-page: 112 year: 2018 end-page: 224 ident: bib58 article-title: Additive manufacturing of metallic components – process, structure and properties publication-title: Prog. Mater. Sci. – volume: 7 start-page: 4085 year: 2017 ident: bib92 article-title: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing publication-title: Sci. Rep. – reference: Anon, GNU Licenses, 2020, 〈 – volume: 136 year: 2014 ident: bib108 article-title: Thermomechanical modeling of additive manufacturing large parts publication-title: J. Manuf. Sci. Eng. – volume: 30 start-page: 1 year: 2020 end-page: 11 ident: bib24 article-title: Real time monitoring and control of friction stir welding process using multiple sensors publication-title: CIRP J.Manuf.Sci.Technol. – reference: L. Vendra, A. Malkawi, A. Avagliano, Standardization of additive manufacturing for oil and gas applications, in: Offshore Technology Conference, Offshore Technology Conference, Houston, Texas, USA, 2020, p. 9. – reference: B. Marr, 7 Amazing Examples of Digital Twin Technology In Practice, 2019. – volume: 5 start-page: 2 year: 2018 ident: bib82 article-title: Modelling of additive manufacturing processes: a review and classification publication-title: Manuf. Rev. – volume: 137 year: 2015 ident: bib46 article-title: Additive manufacturing: current state, future potential, gaps & needs, and recommendations publication-title: ASME J. Manuf. Sci. Eng. – volume: 71 start-page: 2625 year: 2019 end-page: 2634 ident: bib99 article-title: Uncertainty quantification in metallic additive manufacturing through physics-informed data-driven modeling publication-title: JOM – volume: 29 start-page: 36 year: 2020 ident: 10.1016/j.addma.2021.102089_bib6 article-title: Characterising the Digital Twin: a systematic literature review publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2020.02.002 – volume: 35 year: 2020 ident: 10.1016/j.addma.2021.102089_bib109 article-title: Meta-modeling of high-fidelity FEA simulation for efficient product and process design in additive manufacturing publication-title: Addit. Manuf. – volume: 3 start-page: 675 issue: 5 year: 2017 ident: 10.1016/j.addma.2021.102089_bib34 article-title: Understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing publication-title: Engineering doi: 10.1016/J.ENG.2017.05.011 – ident: 10.1016/j.addma.2021.102089_bib7 – year: 2020 ident: 10.1016/j.addma.2021.102089_bib80 article-title: Multiscale Modeling Meets Machine Learning: What Can We Learn? publication-title: Arch. Comput. Methods Eng. – volume: 12 start-page: 231 year: 2016 ident: 10.1016/j.addma.2021.102089_bib33 article-title: Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling publication-title: Addit. Manuf. – volume: 36 year: 2020 ident: 10.1016/j.addma.2021.102089_bib121 article-title: Invited review: Machine learning for materials developments in metals additive manufacturing publication-title: Addit. Manuf. – volume: 12 start-page: 1088 issue: 3 year: 2020 ident: 10.1016/j.addma.2021.102089_bib11 article-title: Digital twin reference model development to prevent operators’ risk in process plants publication-title: Sustainability doi: 10.3390/su12031088 – ident: 10.1016/j.addma.2021.102089_bib126 – volume: 372 issue: 2021 year: 2014 ident: 10.1016/j.addma.2021.102089_bib66 article-title: Performance of distributed multiscale simulations publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. doi: 10.1098/rsta.2013.0407 – volume: 7 start-page: 4085 issue: 1 year: 2017 ident: 10.1016/j.addma.2021.102089_bib92 article-title: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing publication-title: Sci. Rep. doi: 10.1038/s41598-017-04237-z – volume: 32 issue: 3 year: 1979 ident: 10.1016/j.addma.2021.102089_bib86 article-title: Terminology for model credibility publication-title: Simulation – volume: 198 start-page: 1887 issue: 21 year: 2009 ident: 10.1016/j.addma.2021.102089_bib78 article-title: An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.12.026 – volume: 2 start-page: 115 issue: 1 year: 2019 ident: 10.1016/j.addma.2021.102089_bib57 article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences publication-title: npj Digit. Med. doi: 10.1038/s41746-019-0193-y – volume: 8 start-page: 1 year: 2015 ident: 10.1016/j.addma.2021.102089_bib40 article-title: Temperature distribution and melt geometry in laser and electron-beam melting processes – a comparison among common materials publication-title: Addit. Manuf. – volume: 83 start-page: 389 issue: 1 year: 2016 ident: 10.1016/j.addma.2021.102089_bib45 article-title: Additive manufacturing methods and modelling approaches: a critical review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7576-2 – volume: 28 issue: 4 year: 2020 ident: 10.1016/j.addma.2021.102089_bib96 article-title: Roadmap on multiscale materials modeling publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/ab7150 – volume: 137 start-page: 10 year: 2015 ident: 10.1016/j.addma.2021.102089_bib104 article-title: Additive manufacturing: current state, future potential, gaps and needs, and recommendations publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4028725 – volume: 10 start-page: 1987 issue: 1 year: 2019 ident: 10.1016/j.addma.2021.102089_bib88 article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing publication-title: Nat. Commun. doi: 10.1038/s41467-019-10009-2 – ident: 10.1016/j.addma.2021.102089_bib117 – ident: 10.1016/j.addma.2021.102089_bib4 – volume: 30 start-page: 1 year: 2020 ident: 10.1016/j.addma.2021.102089_bib24 article-title: Real time monitoring and control of friction stir welding process using multiple sensors publication-title: CIRP J.Manuf.Sci.Technol. doi: 10.1016/j.cirpj.2020.03.004 – volume: 229 start-page: 703 year: 2016 ident: 10.1016/j.addma.2021.102089_bib36 article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.10.022 – volume: 71 start-page: 3640 issue: 10 year: 2019 ident: 10.1016/j.addma.2021.102089_bib62 article-title: Integrated simulation framework for additively manufactured Ti-6Al-4V: melt pool dynamics, microstructure, solid-state phase transformation, and microelastic response publication-title: JOM doi: 10.1007/s11837-019-03618-1 – volume: 175 year: 2020 ident: 10.1016/j.addma.2021.102089_bib119 article-title: Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109599 – volume: 72 start-page: 429 issue: 1 year: 2020 ident: 10.1016/j.addma.2021.102089_bib39 article-title: Temperature profile, bead geometry, and elemental evaporation in laser powder bed fusion additive manufacturing process publication-title: JOM doi: 10.1007/s11837-019-03872-3 – year: 2004 ident: 10.1016/j.addma.2021.102089_bib85 article-title: Concepts of model verification and vaidation – volume: 3 start-page: 3279 issue: 4 year: 2018 ident: 10.1016/j.addma.2021.102089_bib25 article-title: Multisensor data fusion for additive manufacturing process control publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2851792 – ident: 10.1016/j.addma.2021.102089_bib27 – volume: 22 start-page: 784 year: 2018 ident: 10.1016/j.addma.2021.102089_bib76 article-title: On the multiphysics modeling challenges for metal additive manufacturing processes publication-title: Addit. Manuf. – ident: 10.1016/j.addma.2021.102089_bib123 – ident: 10.1016/j.addma.2021.102089_bib55 – ident: 10.1016/j.addma.2021.102089_bib106 – volume: 14 start-page: 59 year: 2019 ident: 10.1016/j.addma.2021.102089_bib9 article-title: A digital twin for rapid qualification of 3D printed metallic components publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.11.003 – year: 2019 ident: 10.1016/j.addma.2021.102089_bib12 – ident: 10.1016/j.addma.2021.102089_bib17 – ident: 10.1016/j.addma.2021.102089_bib42 – volume: 92 start-page: 112 year: 2018 ident: 10.1016/j.addma.2021.102089_bib58 article-title: Additive manufacturing of metallic components – process, structure and properties publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.10.001 – ident: 10.1016/j.addma.2021.102089_bib114 – volume: 10 issue: 10 year: 2017 ident: 10.1016/j.addma.2021.102089_bib84 article-title: Predictive simulation of process windows for powder bed fusion additive manufacturing: influence of the powder bulk density publication-title: Materials doi: 10.3390/ma10101117 – ident: 10.1016/j.addma.2021.102089_bib5 – volume: 25 issue: 5 year: 2013 ident: 10.1016/j.addma.2021.102089_bib89 article-title: Heat transfer and fluid flow in additive manufacturing publication-title: J. Laser Appl. doi: 10.2351/1.4817788 – volume: 36 year: 2020 ident: 10.1016/j.addma.2021.102089_bib50 article-title: Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion – A single-track study publication-title: Addit. Manuf. – volume: 95 start-page: 431 year: 2016 ident: 10.1016/j.addma.2021.102089_bib23 article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.01.099 – volume: 368 start-page: 660 issue: 6491 year: 2020 ident: 10.1016/j.addma.2021.102089_bib41 article-title: Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing publication-title: Science doi: 10.1126/science.aay7830 – volume: 22 start-page: 15 year: 2017 ident: 10.1016/j.addma.2021.102089_bib65 article-title: Multiscale computing in the exascale era publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.07.004 – volume: 372 issue: 2014 year: 2021 ident: 10.1016/j.addma.2021.102089_bib70 article-title: A framework for multi-scale modelling publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 321 start-page: 94 year: 2017 ident: 10.1016/j.addma.2021.102089_bib59 article-title: Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.08.011 – volume: 377 issue: 2142 year: 2019 ident: 10.1016/j.addma.2021.102089_bib68 article-title: Mastering the scales: a survey on the benefits of multiscale computing software publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. doi: 10.1098/rsta.2018.0147 – ident: 10.1016/j.addma.2021.102089_bib105 – volume: 372 issue: 2014 year: 2021 ident: 10.1016/j.addma.2021.102089_bib77 article-title: Multiscale modelling: approaches and challenges publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 35 start-page: 1936 issue: 15 year: 2020 ident: 10.1016/j.addma.2021.102089_bib118 article-title: Quantitative microstructure analysis for solid-state metal additive manufacturing via deep learning publication-title: J. Mater. Res. doi: 10.1557/jmr.2020.120 – year: 2012 ident: 10.1016/j.addma.2021.102089_bib112 – year: 2020 ident: 10.1016/j.addma.2021.102089_bib61 – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.addma.2021.102089_bib111 article-title: The creation of surrogate models for fast estimation of complex model outcomes publication-title: PLoS One doi: 10.1371/journal.pone.0156574 – ident: 10.1016/j.addma.2021.102089_bib14 – volume: 12 start-page: 282 year: 2016 ident: 10.1016/j.addma.2021.102089_bib75 article-title: Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models publication-title: Addit. Manuf. – volume: 1 start-page: 157 issue: 3 year: 2018 ident: 10.1016/j.addma.2021.102089_bib21 article-title: Addressing the challenges for the industrial application of additive manufacturing: towards a hybrid solution publication-title: Int. J. Lightweight Mater. Manuf. – volume: 144 start-page: 801 year: 2018 ident: 10.1016/j.addma.2021.102089_bib32 article-title: Phase field simulation of powder bed-based additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.11.033 – ident: 10.1016/j.addma.2021.102089_bib72 doi: 10.14529/jsfi190402 – volume: 5 start-page: 2 year: 2018 ident: 10.1016/j.addma.2021.102089_bib82 article-title: Modelling of additive manufacturing processes: a review and classification publication-title: Manuf. Rev. – volume: 372 issue: 2021 year: 2014 ident: 10.1016/j.addma.2021.102089_bib53 article-title: Multiscale modelling and simulation: a position paper publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. doi: 10.1098/rsta.2013.0377 – volume: 137 year: 2015 ident: 10.1016/j.addma.2021.102089_bib46 article-title: Additive manufacturing: current state, future potential, gaps & needs, and recommendations publication-title: ASME J. Manuf. Sci. Eng. doi: 10.1115/1.4028725 – ident: 10.1016/j.addma.2021.102089_bib47 – volume: 67 start-page: 619 issue: 2 year: 2021 ident: 10.1016/j.addma.2021.102089_bib122 article-title: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks publication-title: Comput. Mech. doi: 10.1007/s00466-020-01952-9 – ident: 10.1016/j.addma.2021.102089_bib125 – ident: 10.1016/j.addma.2021.102089_bib44 doi: 10.1115/DETC2019-98415 – ident: 10.1016/j.addma.2021.102089_bib3 – ident: 10.1016/j.addma.2021.102089_bib19 – volume: 72 start-page: 2363 issue: 6 year: 2020 ident: 10.1016/j.addma.2021.102089_bib102 article-title: Machine learning in additive manufacturing: a review publication-title: JOM doi: 10.1007/s11837-020-04155-y – ident: 10.1016/j.addma.2021.102089_bib116 – volume: 5 start-page: 277 issue: 3 year: 2020 ident: 10.1016/j.addma.2021.102089_bib49 article-title: A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-019-00108-3 – volume: 10 start-page: 3389 issue: 1 year: 2020 ident: 10.1016/j.addma.2021.102089_bib51 article-title: Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance publication-title: Sci. Rep. doi: 10.1038/s41598-020-60294-x – volume: 90 start-page: 46 year: 2017 ident: 10.1016/j.addma.2021.102089_bib1 article-title: The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms publication-title: Futures doi: 10.1016/j.futures.2017.03.006 – start-page: 91 year: 2017 ident: 10.1016/j.addma.2021.102089_bib38 – ident: 10.1016/j.addma.2021.102089_bib54 – volume: 10 start-page: 8350 issue: 23 year: 2020 ident: 10.1016/j.addma.2021.102089_bib16 article-title: Digital twins for additive manufacturing: a state-of-the-art review publication-title: Appl. Sci. doi: 10.3390/app10238350 – ident: 10.1016/j.addma.2021.102089_bib28 – volume: 93 start-page: 2855 issue: 5 year: 2017 ident: 10.1016/j.addma.2021.102089_bib100 article-title: Uncertainty quantification and management in additive manufacturing: current status, needs, and opportunities publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0703-5 – start-page: 117 year: 2017 ident: 10.1016/j.addma.2021.102089_bib29 article-title: Chapter 6 - extreme learning machine and its applications in big data processing – ident: 10.1016/j.addma.2021.102089_bib107 – volume: 136 issue: 6 year: 2014 ident: 10.1016/j.addma.2021.102089_bib22 article-title: A review on process monitoring and control in metal-based additive manufacturing publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4028540 – volume: 184 start-page: 284 year: 2020 ident: 10.1016/j.addma.2021.102089_bib63 article-title: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.11.053 – volume: 91 start-page: 335 year: 2019 ident: 10.1016/j.addma.2021.102089_bib69 article-title: Patterns for high performance multiscale computing publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.08.045 – volume: 136 issue: 6 year: 2014 ident: 10.1016/j.addma.2021.102089_bib108 article-title: Thermomechanical modeling of additive manufacturing large parts publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4028669 – volume: 10 start-page: 721 year: 2019 ident: 10.1016/j.addma.2021.102089_bib98 article-title: Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00721 – year: 2015 ident: 10.1016/j.addma.2021.102089_bib103 article-title: Additive manufacturing technologies - 3D printing – volume: 71 start-page: 2625 issue: 8 year: 2019 ident: 10.1016/j.addma.2021.102089_bib99 article-title: Uncertainty quantification in metallic additive manufacturing through physics-informed data-driven modeling publication-title: JOM doi: 10.1007/s11837-019-03555-z – ident: 10.1016/j.addma.2021.102089_bib74 doi: 10.1016/j.jcp.2019.109049 – ident: 10.1016/j.addma.2021.102089_bib113 – ident: 10.1016/j.addma.2021.102089_bib97 – volume: 114 start-page: 33 year: 2016 ident: 10.1016/j.addma.2021.102089_bib93 article-title: Denudation of metal powder layers in laser powder bed fusion processes publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.017 – ident: 10.1016/j.addma.2021.102089_bib20 – year: 2019 ident: 10.1016/j.addma.2021.102089_bib120 – ident: 10.1016/j.addma.2021.102089_bib127 – ident: 10.1016/j.addma.2021.102089_bib8 – ident: 10.1016/j.addma.2021.102089_bib48 – volume: 5 start-page: 719 issue: 5 year: 2014 ident: 10.1016/j.addma.2021.102089_bib67 article-title: Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2014.04.004 – ident: 10.1016/j.addma.2021.102089_bib13 – volume: 18 start-page: 1026 issue: 10 year: 2019 ident: 10.1016/j.addma.2021.102089_bib129 article-title: Scientific, technological and economic issues in metal printing and their solutions publication-title: Nat. Mater. doi: 10.1038/s41563-019-0408-2 – volume: 357 year: 2019 ident: 10.1016/j.addma.2021.102089_bib81 article-title: Multi-fidelity classification using Gaussian processes: Accelerating the prediction of large-scale computational models publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112602 – volume: 6 start-page: 48 issue: 1 year: 2021 ident: 10.1016/j.addma.2021.102089_bib128 article-title: Metallurgy, mechanistic models and machine learning in metal printing publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00236-1 – volume: 151 start-page: 169 year: 2018 ident: 10.1016/j.addma.2021.102089_bib87 article-title: Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.03.036 – ident: 10.1016/j.addma.2021.102089_bib94 – volume: 27 start-page: 4 issue: 1 year: 2013 ident: 10.1016/j.addma.2021.102089_bib83 article-title: Multiphysics simulations: challenges and opportunities publication-title: Int. J. High Perform. Comput. Appl. doi: 10.1177/1094342012468181 – volume: 6 issue: 61 year: 2019 ident: 10.1016/j.addma.2021.102089_bib110 article-title: General multi-fidelity framework for training artificial neural networks with computational models publication-title: Front. Mater. – volume: 135 start-page: 390 year: 2017 ident: 10.1016/j.addma.2021.102089_bib90 article-title: Building blocks for a digital twin of additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.06.039 – ident: 10.1016/j.addma.2021.102089_bib115 doi: 10.1109/ICSAI48974.2019.9010547 – volume: 31 start-page: 957 issue: 8 year: 2015 ident: 10.1016/j.addma.2021.102089_bib35 article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000728 – ident: 10.1016/j.addma.2021.102089_bib79 – ident: 10.1016/j.addma.2021.102089_bib26 – ident: 10.1016/j.addma.2021.102089_bib124 – ident: 10.1016/j.addma.2021.102089_bib10 – volume: 27 start-page: 91 year: 2018 ident: 10.1016/j.addma.2021.102089_bib73 article-title: Accelerated scale-bridging through adaptive surrogate model evaluation publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.04.010 – ident: 10.1016/j.addma.2021.102089_bib43 – ident: 10.1016/j.addma.2021.102089_bib31 doi: 10.4043/30533-MS – volume: 216 start-page: 51 year: 2017 ident: 10.1016/j.addma.2021.102089_bib71 article-title: Multi-material modelling for selective laser melting publication-title: Procedia Eng. doi: 10.1016/j.proeng.2018.02.088 – volume: 5 start-page: 653 issue: 4 year: 2019 ident: 10.1016/j.addma.2021.102089_bib15 article-title: Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: correlation and comparison publication-title: Engineering doi: 10.1016/j.eng.2019.01.014 – volume: 15 start-page: 54 issue: 2 year: 2018 ident: 10.1016/j.addma.2021.102089_bib18 article-title: Process monitoring of laser beam melting publication-title: Laser Tech. J. doi: 10.1002/latj.201800009 – start-page: 1 year: 2006 ident: 10.1016/j.addma.2021.102089_bib95 – volume: 46 start-page: 93 issue: 1 year: 2016 ident: 10.1016/j.addma.2021.102089_bib37 article-title: Multiscale modeling of powder bed–based additive manufacturing publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-032158 – volume: 3 issue: 12 year: 2018 ident: 10.1016/j.addma.2021.102089_bib52 article-title: Machine-learning-based monitoring of laser powder bed fusion publication-title: Adv. Mater. Technol. – volume: 108 start-page: 1649 issue: 13 year: 2016 ident: 10.1016/j.addma.2021.102089_bib64 article-title: A computational framework for scale-bridging in multi-scale simulations publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5270 – volume: 43 start-page: 157 issue: 1 year: 2013 ident: 10.1016/j.addma.2021.102089_bib101 article-title: Uncertainty quantification in multiscale simulation of materials: a prospective publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-071312-121708 – volume: 94 start-page: 3563 issue: 9 year: 2018 ident: 10.1016/j.addma.2021.102089_bib2 article-title: Digital twin-driven product design, manufacturing and service with big data publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0233-1 – volume: 209 start-page: 1209 issue: 3 year: 2009 ident: 10.1016/j.addma.2021.102089_bib56 article-title: Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2008.03.044 – volume: 88 start-page: 696 year: 2018 ident: 10.1016/j.addma.2021.102089_bib30 article-title: Recent advances in big data analytics, internet of things and machine learning publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.07.057 – volume: 31 year: 2020 ident: 10.1016/j.addma.2021.102089_bib91 article-title: Correlation between forming quality and spatter dynamics in laser powder bed fusion publication-title: Addit. Manuf. – volume: 268 year: 2020 ident: 10.1016/j.addma.2021.102089_bib60 article-title: Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122077 |
SSID | ssj0001537982 |
Score | 2.548636 |
Snippet | Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 102089 |
SubjectTerms | Additive manufacturing Artificial intelligence Digital twins Industry 4.0 Machine learning MATERIALS SCIENCE Multiphysics modeling Multiscale modeling |
Title | Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing |
URI | https://dx.doi.org/10.1016/j.addma.2021.102089 https://www.osti.gov/servlets/purl/1881614 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YER0zpxHh4RAhWQWGilbpFjOygIkqpJBRO_nTsn4SGhDoxOfFF0Z9-d7O--I-QsgxAJ7yQLlZcyIbVhSpqAKSW1imOFl72ItngIx1NxNwtmPXLV1cIgrLL1_Y1Pd966fTJstTmc5_nw0fM4dlASHncl3eiHhYhwlV988O9zlsCPpOsZhfMZCnTkQw7mBfvb8Q95HFkMRtju_e8A1S9hz_2IPTdbZLNNGull81_bpGeLHbLxg0pwl7xPHP61ot9VUNSBBSswgmUNbtDZpKKu-01FVWGouyeg1XKxKPE8raKQw1KTP2ErEVq_5UVFy4y-Whwi9AidI31VxRILIlyF4x6Z3lxPrsas7arAtB8FNbOBhRSKKylVaFKIzmAUaxUPZRYGvg21MZCTZbEXxdyCIWHLg9V0IHVsROorf5_0i7KwB4QaY5AvXiutApFyk2YGJkWjVJhRFnnmkHidKhPdUo5j54uXpMOWPSdO_wnqP2n0f0jOv4TmDePG6ulhZ6Pk18JJICasFjxGi6IQ0uVqxBWBFI9jSILF0X8_e0zWcdTg_U5Iv14s7SnkLXU6cAtzQNYub-_HD585KfAk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7QAcEE8xxiMHjkRbH2mb4zQxDTZ2YZO4VWmSoiHWTesm-PnYaQtDQhw4tomryk5sK_n8mZCbFEIkjAkWSDdhvlCaSaE5k1IoGUUSL3sRbTEOBlP_4Zk_10ivqoVBWGXp-wufbr11-aZdarO9nM3aT67rYAcl33VsSTf44QayU_E6aXTvh4Px91EL90Jh20ahCEOZin_IIr1gi1sKItdBIoMOdnz_PUbVF7DttsJP_4Dsl3kj7Ra_dkhqJjsie1tsgsfkY2IhsDn9LoSiFi-Ygx0MK6CD1iw5tQ1wciozTe1VAc03q9UCj9RyCmks1bMX7CZC1--zLKeLlM4NPiL6CP0jnctsgzURtsjxhEz7d5PegJWNFZjyQr5mhhvIohwphAx0AgEa7GKMdAKRBtwzgdIa0rI0csPIMWBL2PVgOMWFirSfeNI7JfVskZkzQrXWSBmvpJLcTxydpBomhZ3E1500dHWTuJUqY1WyjmPzi7e4gpe9xlb_Meo_LvTfJLdfQsuCdOPv6UFlo_jH2okhLPwt2EKLohAy5iqEFoGUE0WQB_vn__3sNdkZTB5H8eh-PGyRXRwp4H8XpL5ebcwlpDHr5Kpcpp9wTfLV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+developing+multiscale-multiphysics+models+and+their+surrogates+for+digital+twins+of+metal+additive+manufacturing&rft.jtitle=Additive+manufacturing&rft.au=Gunasegaram%2C+D.R.&rft.au=Murphy%2C+A.B.&rft.au=Barnard%2C+A.&rft.au=DebRoy%2C+T.&rft.date=2021-10-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=46&rft_id=info:doi/10.1016%2Fj.addma.2021.102089&rft.externalDocID=S2214860421002542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |