Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing

Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) i...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 46; p. 102089
Main Authors Gunasegaram, D.R., Murphy, A.B., Barnard, A., DebRoy, T., Matthews, M.J., Ladani, L., Gu, D.
Format Journal Article
LanguageEnglish
Published United States Elsevier B.V 01.10.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) is likely to make those processes commercially more attractive. AI capabilities will reside within Digital Twins (DTs) which are living virtual replicas of the physical processes. DTs will be empowered to operate autonomously in a diagnostic control capacity to supervise processes and can be interrogated by the practitioner to inform the optimal processing route for any given product. The utility of the information gained from the DTs would depend on the quality of the digital models and, more importantly, their faster-solving surrogates which dwell within DTs for consultation during rapid decision-making. In this article, we point out the exceptional value of DTs in AM and focus on the need to create high-fidelity multiscale-multiphysics models for AM processes to feed the AI capabilities. We identify technical hurdles for their development, including those arising from the multiscale and multiphysics characteristics of the models, the difficulties in linking models of the subprocesses across scales and physics, and the scarcity of experimental data. We discuss the need for creating surrogate models using machine learning approaches for real-time problem-solving. We further identify non-technical barriers, such as the need for standardization and difficulties in collaborating across different types of institutions. We offer potential solutions for all these challenges, after reflecting on and researching discussions held at an international symposium on the subject in 2019. We argue that a collaborative approach can not only help accelerate their development compared with disparate efforts, but also enhance the quality of the models by allowing modular development and linkages that account for interactions between the various sub-processes in AM. A high-level roadmap is suggested for starting such a collaboration. •We point out the role played by physics-based mechanistic models in the creation of digital twins of the AM process.•We identify technical hurdles for the development and linking of these models, and the scarcity of experimental data.•We discuss the need for creating surrogate models using machine learning approaches forreal-time problem-solving.•We further identify non-technical barriers and difficulties in collaborating across different types of institutions.•We offer potential solutions for all these challenges, based on discussions held at aninternational symposium convened for the purpose.
AbstractList Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) is likely to make those processes commercially more attractive. AI capabilities will reside within Digital Twins (DTs) which are living virtual replicas of the physical processes. DTs will be empowered to operate autonomously in a diagnostic control capacity to supervise processes and can be interrogated by the practitioner to inform the optimal processing route for any given product. The utility of the information gained from the DTs would depend on the quality of the digital models and, more importantly, their faster-solving surrogates which dwell within DTs for consultation during rapid decision-making. In this article, we point out the exceptional value of DTs in AM and focus on the need to create high-fidelity multiscale-multiphysics models for AM processes to feed the AI capabilities. We identify technical hurdles for their development, including those arising from the multiscale and multiphysics characteristics of the models, the difficulties in linking models of the subprocesses across scales and physics, and the scarcity of experimental data. We discuss the need for creating surrogate models using machine learning approaches for real-time problem-solving. We further identify non-technical barriers, such as the need for standardization and difficulties in collaborating across different types of institutions. We offer potential solutions for all these challenges, after reflecting on and researching discussions held at an international symposium on the subject in 2019. We argue that a collaborative approach can not only help accelerate their development compared with disparate efforts, but also enhance the quality of the models by allowing modular development and linkages that account for interactions between the various sub-processes in AM. A high-level roadmap is suggested for starting such a collaboration. •We point out the role played by physics-based mechanistic models in the creation of digital twins of the AM process.•We identify technical hurdles for the development and linking of these models, and the scarcity of experimental data.•We discuss the need for creating surrogate models using machine learning approaches forreal-time problem-solving.•We further identify non-technical barriers and difficulties in collaborating across different types of institutions.•We offer potential solutions for all these challenges, based on discussions held at aninternational symposium convened for the purpose.
Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) is likely to make those processes commercially more attractive. AI capabilities will reside within Digital Twins (DTs) which are living virtual replicas of the physical processes. DTs will be empowered to operate autonomously in a diagnostic control capacity to supervise processes and can be interrogated by the practitioner to inform the optimal processing route for any given product. The utility of the information gained from the DTs would depend on the quality of the digital models and, more importantly, their faster-solving surrogates which dwell within DTs for consultation during rapid decision-making. In this article, we point out the exceptional value of DTs in AM and focus on the need to create high-fidelity multiscale-multiphysics models for AM processes to feed the AI capabilities. We identify technical hurdles for their development, including those arising from the multiscale and multiphysics characteristics of the models, the difficulties in linking models of the subprocesses across scales and physics, and the scarcity of experimental data. We discuss the need for creating surrogate models using machine learning approaches for real-time problem-solving. We further identify non-technical barriers, such as the need for standardization and difficulties in collaborating across different types of institutions. We offer potential solutions for all these challenges, after reflecting on and researching discussions held at an international symposium on the subject in 2019. Here, we argue that a collaborative approach can not only help accelerate their development compared with disparate efforts, but also enhance the quality of the models by allowing modular development and linkages that account for interactions between the various sub-processes in AM. A high-level roadmap is suggested for starting such a collaboration.
ArticleNumber 102089
Author Gu, D.
DebRoy, T.
Matthews, M.J.
Barnard, A.
Gunasegaram, D.R.
Murphy, A.B.
Ladani, L.
Author_xml – sequence: 1
  givenname: D.R.
  surname: Gunasegaram
  fullname: Gunasegaram, D.R.
  email: dayalan.gunasegaram@csiro.au
  organization: CSIRO Manufacturing, Private Bag 10, Clayton, VIC 3169, Australia
– sequence: 2
  givenname: A.B.
  surname: Murphy
  fullname: Murphy, A.B.
  email: tony.murphy@csiro.au
  organization: CSIRO Manufacturing, PO Box 218, Lindfield, NSW 2070, Australia
– sequence: 3
  givenname: A.
  surname: Barnard
  fullname: Barnard, A.
  email: amanda.s.barnard@anu.edu.au
  organization: School of Computing, Australian National University, Acton, ACT 2601, Australia
– sequence: 4
  givenname: T.
  surname: DebRoy
  fullname: DebRoy, T.
  email: debroy@matse.psu.edu
  organization: Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
– sequence: 5
  givenname: M.J.
  surname: Matthews
  fullname: Matthews, M.J.
  email: matthews11@llnl.gov
  organization: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
– sequence: 6
  givenname: L.
  surname: Ladani
  fullname: Ladani, L.
  email: ladani@asu.edu
  organization: Ira A. Fulton Schools of Engineering at Arizona State University, 699 S Mill Ave, Tempe, AZ 85281, USA
– sequence: 7
  givenname: D.
  surname: Gu
  fullname: Gu, D.
  email: dongdonggu@nuaa.edu.cn
  organization: Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
BackLink https://www.osti.gov/servlets/purl/1881614$$D View this record in Osti.gov
BookMark eNqFkD1PHDEQhi1EpBDCL0hjpd_D9n6cXVBEKB9ISDRQW4M9ezenXftk-47w7-PlqFIk1cxY7zPz-v3EzkMMyNgXKVZSyOF6twLvZ1gpoWR9UUKbM3ahlOyatZbi_L3Xg-g-squcd0II2bdro9UF-_0YXyD5zD0ecYp7Chs-H6ZC2cGEzVu7375mcpnP0eOUOQTPyxYp8XxIKW6gYOZjTNzThgpMvLxQyDyOfMZlrO6o0BH5DOEwgiuHVK98Zh9GmDJevddL9vTj--Ptr-b-4efd7bf7xrXrvjTYY6daCcbA4J8H2RkHiCAHMw59i4Pzvldq1Kp-FXuDulUOtOuN0757bqG9ZF9Pe2MuZLOjgm7rYgjoipVay7qzisxJ5FLMOeFoqw4KxVAS0GSlsEvUdmfforZL1PYUdWXbv9h9ohnS63-omxNVE8UjYVqsYXDoKS3OfKR_8n8Ak4SeHg
CitedBy_id crossref_primary_10_1016_j_ifacol_2022_04_143
crossref_primary_10_1016_j_matdes_2021_110167
crossref_primary_10_1515_auto_2023_0227
crossref_primary_10_1088_2631_7990_ada8e4
crossref_primary_10_1007_s10845_024_02490_4
crossref_primary_10_1088_1757_899X_1310_1_012009
crossref_primary_10_1021_acs_chemrev_3c00902
crossref_primary_10_1007_s00170_023_12637_x
crossref_primary_10_1109_TIM_2023_3341124
crossref_primary_10_53941_ijamm_2025_100006
crossref_primary_10_1177_20552076221149651
crossref_primary_10_1088_2515_7639_ac09fb
crossref_primary_10_1080_0951192X_2023_2264820
crossref_primary_10_1186_s10033_024_01108_3
crossref_primary_10_1080_17452759_2022_2141653
crossref_primary_10_1108_RPJ_03_2023_0113
crossref_primary_10_1007_s00170_024_13092_y
crossref_primary_10_1088_1361_6463_adb3b0
crossref_primary_10_1177_13694332241260866
crossref_primary_10_1080_09506608_2023_2169501
crossref_primary_10_1088_2631_7990_ada099
crossref_primary_10_1016_j_matdes_2024_112684
crossref_primary_10_1016_j_cirp_2023_05_007
crossref_primary_10_1021_acs_energyfuels_2c03620
crossref_primary_10_1016_j_foostr_2022_100278
crossref_primary_10_1016_j_jmsy_2024_04_015
crossref_primary_10_1115_1_4063655
crossref_primary_10_1080_17452759_2023_2173615
crossref_primary_10_1017_dce_2022_23
crossref_primary_10_1080_0951192X_2022_2048422
crossref_primary_10_1080_0305215X_2024_2434201
crossref_primary_10_1016_j_procir_2022_05_057
crossref_primary_10_31127_tuje_1502587
crossref_primary_10_1088_1361_6463_ac5e1c
crossref_primary_10_1007_s10845_023_02301_2
crossref_primary_10_1088_2631_7990_ad2545
crossref_primary_10_2139_ssrn_4189610
Cites_doi 10.1016/j.cirpj.2020.02.002
10.1016/J.ENG.2017.05.011
10.3390/su12031088
10.1098/rsta.2013.0407
10.1038/s41598-017-04237-z
10.1016/j.cma.2008.12.026
10.1038/s41746-019-0193-y
10.1007/s00170-015-7576-2
10.1088/1361-651X/ab7150
10.1115/1.4028725
10.1038/s41467-019-10009-2
10.1016/j.cirpj.2020.03.004
10.1016/j.jmatprotec.2015.10.022
10.1007/s11837-019-03618-1
10.1016/j.commatsci.2020.109599
10.1007/s11837-019-03872-3
10.1109/LRA.2018.2851792
10.1016/j.apmt.2018.11.003
10.1016/j.pmatsci.2017.10.001
10.3390/ma10101117
10.2351/1.4817788
10.1016/j.matdes.2016.01.099
10.1126/science.aay7830
10.1016/j.jocs.2017.07.004
10.1016/j.powtec.2017.08.011
10.1098/rsta.2018.0147
10.1557/jmr.2020.120
10.1371/journal.pone.0156574
10.1016/j.actamat.2017.11.033
10.14529/jsfi190402
10.1098/rsta.2013.0377
10.1007/s00466-020-01952-9
10.1115/DETC2019-98415
10.1007/s11837-020-04155-y
10.1007/s40964-019-00108-3
10.1038/s41598-020-60294-x
10.1016/j.futures.2017.03.006
10.3390/app10238350
10.1007/s00170-017-0703-5
10.1115/1.4028540
10.1016/j.actamat.2019.11.053
10.1016/j.future.2018.08.045
10.1115/1.4028669
10.3389/fphys.2019.00721
10.1007/s11837-019-03555-z
10.1016/j.jcp.2019.109049
10.1016/j.actamat.2016.05.017
10.1016/j.jocs.2014.04.004
10.1038/s41563-019-0408-2
10.1016/j.cma.2019.112602
10.1038/s41578-020-00236-1
10.1016/j.actamat.2018.03.036
10.1177/1094342012468181
10.1016/j.actamat.2017.06.039
10.1109/ICSAI48974.2019.9010547
10.1179/1743284714Y.0000000728
10.1016/j.jocs.2018.04.010
10.4043/30533-MS
10.1016/j.proeng.2018.02.088
10.1016/j.eng.2019.01.014
10.1002/latj.201800009
10.1146/annurev-matsci-070115-032158
10.1002/nme.5270
10.1146/annurev-matsci-071312-121708
10.1007/s00170-017-0233-1
10.1016/j.jmatprotec.2008.03.044
10.1016/j.future.2018.07.057
10.1016/j.jclepro.2020.122077
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
CorporateAuthor Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1016/j.addma.2021.102089
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
ExternalDocumentID 1881614
10_1016_j_addma_2021_102089
S2214860421002542
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
6I.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
OIOZB
OTOTI
ID FETCH-LOGICAL-c375t-e5e4231a99a6db6149caeea169f653e6cdd522f82781e59e832ca8c59c8d4b3a3
IEDL.DBID .~1
ISSN 2214-8604
IngestDate Thu May 18 22:32:32 EDT 2023
Tue Jul 01 01:47:06 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
Fri Feb 23 02:43:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multiphysics modeling
Machine learning
Industry 4.0
Additive manufacturing
Digital twins
Artificial intelligence
Multiscale modeling
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-e5e4231a99a6db6149caeea169f653e6cdd522f82781e59e832ca8c59c8d4b3a3
Notes AC52-07NA27344
LLNL-JRNL-838645
USDOE National Nuclear Security Administration (NNSA)
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214860421002542
ParticipantIDs osti_scitechconnect_1881614
crossref_citationtrail_10_1016_j_addma_2021_102089
crossref_primary_10_1016_j_addma_2021_102089
elsevier_sciencedirect_doi_10_1016_j_addma_2021_102089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Additive manufacturing
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhang, Chen, Zhou, Cheng, Chen, Guo, Han, Lu (bib16) 2020; 10
Aydin, Braeu, Cyron (bib110) 2019; 6
Tao, Qi, Wang, Nee (bib15) 2019; 5
Ladani (bib61) 2020
Everton, Hirsch, Stravroulakis, Leach, Clare (bib23) 2016; 95
Gibson, Rosen, Stucker (bib103) 2015
DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski, Beese, Wilson-Heid, De, Zhang (bib58) 2018; 92
Hoekstra, Chopard, Coveney (bib53) 2014; 372
Anon, Virtual Singapore.
Anon, Exascale Computing Project, 2020.
Gunasegaram, Farnsworth, Nguyen (bib56) 2009; 209
Tao, Cheng, Qi, Zhang, Zhang, Sui (bib2) 2018; 94
Shi, Khairallah, Roehling, Heo, McKeown, Matthews (bib63) 2020; 184
Shi, Khairallah, Heo, Rolchigo, McKeown, Matthews (bib62) 2019; 71
Gu, Ma, Xia, Dai, Shi, Multiscale (bib34) 2017; 3
T. Wang, K.W. Leiter, P. Plechac, J. Knap, Accelerated scale bridging with sparsely approximated Gaussian learning, 2019.
Groen, Knap, Neumann, Suleimenova, Veen, Leiter (bib68) 2019; 377
Martis, Gurupur, Lin, Islam, Fernandes (bib30) 2018; 88
DebRoy, Mukherjee, Wei, Elmer, Milewski (bib128) 2021; 6
Stavropoulos, Foteinopoulos, Papacharalampopoulos, Bikas (bib21) 2018; 1
Shevchik, Le-Quang, Meylan, Farahani, Olbinado, Rack, Masinelli, Leinenbach, Wasmer (bib51) 2020; 10
Y. Zheng, X. Fu, Y. Xuan, Data-driven optimization based on random forest surrogate, in: International Conference on Systems and Informatics (ICSAI 2019) IEEE, 2019.
D. Editors, Registration Now Open for America Makes Virtual Mini TRX, 2020.
Johnson, Vulimiri, To, Zhang, Brice, Kappes, Stebner (bib121) 2020; 36
Digital Twin Market by Technology, Type, Application, Industry And Geography - Global Forecast to 2026.
M.J. Garbade, Clearing the Confusion: AI vs Machine Learning vs Deep Learning Differences, 2018. 〈https://towardsdatascience.com/clearing-the-confusion-ai-vs-machine-learning-vs-deep-learning-differences-fce69b21d5eb〉. 2020.
Anon, What is a Digital Twin?
.
(Accessed December 2020).
Chopard, Borgdorff, Hoekstra (bib70) 2021; 372
Li, Fu, Guo, Fang (bib36) 2016; 229
S. Parthasarathy, Machine Learning vs. Traditional Programming, 2020.
King, Anderson, Ferencz, Hodge, Kamath, Khairallah (bib35) 2015; 31
Anon, Solutions - Digital Twins, 2020.
(Accessed February 2021).
Anon, GNU Licenses, 2020
Bevilacqua, Bottani, Ciarapica, Costantino, Di Donato, Ferraro, Mazzuto, Monteriù, Nardini, Ortenzi, Paroncini, Pirozzi, Prist, Quatrini, Tronci, Vignali (bib11) 2020; 12
Yuan, Guss, Wilson, Hau-Riege, DePond, McMains, Matthews, Giera (bib52) 2018; 3
Martin, Calta, Khairallah, Wang, Depond, Fong, Thampy, Guss, Kiss, Stone, Tassone, Nelson Weker, Toney, van Buuren, Matthews (bib88) 2019; 10
Baumgartl, Tomas, Buettner, Merkel (bib49) 2020; 5
Anon, Cheat sheet: What is Digital Twin?
L. Vendra, A. Malkawi, A. Avagliano, Standardization of additive manufacturing for oil and gas applications, in: Offshore Technology Conference, Offshore Technology Conference, Houston, Texas, USA, 2020, p. 9.
Pathmanathan, Cordeiro, Gray (bib98) 2019; 10
van der Giessen, Schultz, Bertin, Bulatov, Cai, Csányi, Foiles, Geers, González, Hütter, Kim, Kochmann, Llorca, Mattsson, Rottler, Shluger, Sills, Steinbach, Strachan, Tadmor (bib96) 2020; 28
Airbus 320 – Autopilot.
Borgdorff, Mamonski, Bosak, Kurowski, Ben Belgacem, Chopard, Groen, Coveney, Hoekstra (bib67) 2014; 5
Wang, Liu, Ji, Mahadevan, Horstemeyer, Hu, Chen, Chen (bib99) 2019; 71
Sahli Costabal, Perdikaris, Kuhl, Hurtado (bib81) 2019; 357
nanoHUB.
Chernatynskiy, Phillpot, LeSar (bib101) 2013; 43
Khairallah, Martin, Lee, Guss, Calta, Hammons, Nielsen, Chaput, Schwalbach, Shah, Chapman, Willey, Rubenchik, Anderson, Wang, Matthews, King (bib41) 2020; 368
D. Gunasegaram, B. Smith, MAGMAsoft helps assure quality in a Progressive Australian Iron Foundry, in: 32nd Annual Convention of the Australian Foundry Institute, Australian Foundry Institute, Fremantle, Australia, 2001, pp. 99–104.
Thacker, Doebling, Hemez, Anderson, Pepin, Rodriguez (bib85) 2004
Denlinger, Irwin, Michaleris (bib108) 2014; 136
Klein (bib112) 2012
Anon, Bridge digital and physical worlds with digital twin technology, 2020.
Zhu, Liu, Yan (bib122) 2021; 67
Yin, Wang, Yang, Wei, Dong, Ke, Wang, Zhu, Zeng (bib91) 2020; 31
Chen, Li, Duan, Li (bib29) 2017
Stavropoulos, Foteinopoulos (bib82) 2018; 5
Schlesinger (bib86) 1979; 32
Powell, Rennie, Geekie, Burns (bib60) 2020; 268
Additive Manufacturing Technology Standards, 2020.
D.R. Gunasegaram, A.B. Murphy, Towards a true digital twin for the metal additive manufcaturing process, Metal Additive Manufacturing, Inovar Communications Ltd, London, 2019, pp. 185–191.
Tapia, Elwany (bib22) 2014; 136
Han, Griffiths, Yu, Zhu (bib118) 2020; 35
Ly, Rubenchik, Khairallah, Guss, Matthews (bib92) 2017; 7
Wang, Chen, Kang, Deng, Jin (bib109) 2020; 35
Anon, Digital Twin - towards a meaningful framework, London, 2019.
Anon, Aconity3D equipment.
Pruett, Hester (bib111) 2016; 11
Alowayyed, Piontek, Suter, Hoenen, Groen, Luk, Bosak, Kopta, Kurowski, Perks, Brabazon, Jancauskas, Coster, Coveney, Hoekstra (bib69) 2019; 91
Gunasegaram, Murphy, Cummins, Lemiale, Delaney, Nguyen, Feng (bib38) 2017
S.S.H. Razvi, S.C. Feng, A. Narayanan, Y.T. Lee, P. Witherell, A review of machine learning applications in additive manufacturing, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Anaheim, CA, USA, 2019.
B. Marr, What Is Digital Twin Technology - And Why Is It So Important?, 2017.
Tapia, Elwany, Sang (bib75) 2016; 12
Mukherjee, DebRoy (bib9) 2019; 14
Ahsan, Ladani (bib39) 2020; 72
Huang, Leu, Mazumder, Donmez (bib46) 2015; 137
Karabasov, Nerukh, Hoekstra, Chopard, Coveney (bib77) 2021; 372
Lu, Sridhar, Zhang (bib32) 2018; 144
K. Tomasz, C. Edward, K. Bogumiła, R. Jacek, Parameters in selective laser melting for processing metallic powders, in: Proc. SPIE, 2012.
Tao, Zhang, Nee (bib12) 2019
Michopoulos, Iliopoulos, Steuben, Birnbaum, Lambrakos (bib76) 2018; 22
Meng, McWilliams, Jarosinski, Park, Jung, Lee, Zhang (bib102) 2020; 72
(Accessed May 6 2020).
T. Bartz-Beielstein, B. Naujoks, J. Stork, M. Zaefferer, D1.2 - Tutorial on surrogate-assisted modelling, 2016.
Makridakis (bib1) 2017; 90
Gaikwad, Giera, Guss, Forien, Matthews, Rao (bib50) 2020; 36
H. Yeung, B. Lane, J. Fox, J. Neira, J. Tarr, AM machine and process control methods for additive manufacturing, 2020.
Anon, AM machine and process control methods for additive manufacturing.
DebRoy, Mukherjee, Milewski, Elmer, Ribic, Blecher, Zhang (bib129) 2019; 18
(Accessed May 10 2020).
Prudhomme, Chamoin, Dhia, Bauman (bib78) 2009; 198
Anonymous, Introduction to measurements & error analysis, 2020.
Mishra, Gupta, Raj, Kumar, Anwer, Pal, Chakravarty, Pal, Chakravarty, Pal, Misra, Misra (bib24) 2020; 30
Rausch, Küng, Pobel, Markl, Körner (bib84) 2017; 10
Borgdorff, Belgacem, Bona-Casas, Fazendeiro, Groen, Hoenen, Mizeranschi, Suter, Coster, Coveney, Dubitzky, Hoekstra, Strand, Chopard (bib66) 2014; 372
Hu, Mahadevan (bib100) 2017; 93
Matthews, Guss, Khairallah, Rubenchik, Depond, King (bib93) 2016; 114
Alowayyed, Groen, Coveney, Hoekstra (bib65) 2017; 22
Markl, Körner (bib37) 2016; 46
Anon, git awards, 2020
P. Dhage, Predicting Porosity and Microstructure of 3D Printed Part Using Machine Learning, Industrial and Systems Engineering, University of Michigan-Dearborn, Michigan, 2020.
Future of Driving, 2021.
J.T. Oden, S. Prudhomme, P.T. Bauman, L. Chamoin, Multiscale methods: bridging the scales in science and engineering, Oxford Scholarship Online, London, 209.
039 Development & Demonstration of Open-Source Protocols for Powder Bed Fusion AM, 2020.
Vandone, Baraldo, Valente (bib25) 2018; 3
S.A. Alowayyed, M. Vassaux, B. Czaja, P.V. Coveney, A.G. Hoekstra, Towards heterogeneous multi-scale computing on large scale parallel supercomputers, 2020 6(4) (2020).
America makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), 2020.
Bikas, Stavropoulos, Chryssolouris (bib45) 2016; 83
Peng, Alber, Buganza Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris, Petzold, Kuhl (bib80) 2020
Knapp, Mukherjee, Zuback, Wei, Palmer, De, DebRoy (bib90) 2017; 135
Leiter, Barnes, Becker, Knap (bib73) 2018; 27
Nandwana, Dehoff, Simkin, Wang (bib120) 2019
Herriott, Spear (bib119) 2020; 175
Huang, Leu, Mazumder, Donmez (bib104) 2015; 137
J.C. Fielding, E. Morris, R. Gorham, E.F. Cory, S. Leonard, When America Makes, America Works A Successful Public Private 3D Printing (Additive Manufacturing) Partnership, 2016.
Vastola, Zhang, Pei, Zhang (bib33) 2016; 12
Haeri (bib59) 2017; 321
Raghavan, Wei, Palmer, DebRoy (bib89) 2013; 25
Sorkin, Tan, Wong (bib71) 2017; 216
Jones, Snider, Nassehi, Yon, Hicks (bib6) 2020; 29
Anon, Forging the Digital Twin in discrete manufacturing.
Keyes, McInnes, Woodward, Gropp, Myra, Pernice, Bell, Brown, Clo, Connors, Constantinescu, Estep, Evans, Farhat, Hakim, Hammond, Hansen, Hill, Isaac, Jiao, Jordan, Kaushik, Kaxiras, Koniges, Lee, Lott, Lu, Magerlein, Maxwell, McCourt, Mehl, Pawlowski, Randles, Reynolds, Rivière, Rüde, Scheibe, Shadid, Sheehan, Shephard, Siegel, Smith, Tang, Wilson, Wohlmuth (bib83) 2013; 27
Alber, Buganza Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris, Petzold, Kuhl (bib57) 2019; 2
B. Marr, 7 Amazing Examples of Digital Twin Technology In Practice, 2019.
Hagedorn, Pastors (bib18) 2018; 15
Guo, Zhao, Escano, Young, Xiong, Fezzaa, Everhart, Brown, Sun, Chen (bib87) 2018; 151
D. Editors, Markforged Debuts Blacksmith Artificial Intelligence (AI) Software for Metal 3D Printing, 2019.
(Accessed May 20 2020).
Diamond (bib95) 2006
Anon, Digital Twin.
Romano, Ladani, Razmi, Sadowski (bib40) 2015; 8
Knap, Spear, Leiter, Becker, Powell (bib64) 2016; 108
Makridakis (10.1016/j.addma.2021.102089_bib1) 2017; 90
10.1016/j.addma.2021.102089_bib43
10.1016/j.addma.2021.102089_bib42
10.1016/j.addma.2021.102089_bib44
Ly (10.1016/j.addma.2021.102089_bib92) 2017; 7
10.1016/j.addma.2021.102089_bib47
Prudhomme (10.1016/j.addma.2021.102089_bib78) 2009; 198
Khairallah (10.1016/j.addma.2021.102089_bib41) 2020; 368
10.1016/j.addma.2021.102089_bib48
Rausch (10.1016/j.addma.2021.102089_bib84) 2017; 10
DebRoy (10.1016/j.addma.2021.102089_bib129) 2019; 18
Vastola (10.1016/j.addma.2021.102089_bib33) 2016; 12
Chopard (10.1016/j.addma.2021.102089_bib70) 2021; 372
Li (10.1016/j.addma.2021.102089_bib36) 2016; 229
Wang (10.1016/j.addma.2021.102089_bib99) 2019; 71
Herriott (10.1016/j.addma.2021.102089_bib119) 2020; 175
Raghavan (10.1016/j.addma.2021.102089_bib89) 2013; 25
Alowayyed (10.1016/j.addma.2021.102089_bib65) 2017; 22
Ahsan (10.1016/j.addma.2021.102089_bib39) 2020; 72
Gunasegaram (10.1016/j.addma.2021.102089_bib38) 2017
10.1016/j.addma.2021.102089_bib54
Zhu (10.1016/j.addma.2021.102089_bib122) 2021; 67
Sahli Costabal (10.1016/j.addma.2021.102089_bib81) 2019; 357
Diamond (10.1016/j.addma.2021.102089_bib95) 2006
10.1016/j.addma.2021.102089_bib55
Romano (10.1016/j.addma.2021.102089_bib40) 2015; 8
Tao (10.1016/j.addma.2021.102089_bib2) 2018; 94
Tao (10.1016/j.addma.2021.102089_bib12) 2019
Bikas (10.1016/j.addma.2021.102089_bib45) 2016; 83
Hoekstra (10.1016/j.addma.2021.102089_bib53) 2014; 372
Shi (10.1016/j.addma.2021.102089_bib62) 2019; 71
Guo (10.1016/j.addma.2021.102089_bib87) 2018; 151
King (10.1016/j.addma.2021.102089_bib35) 2015; 31
Baumgartl (10.1016/j.addma.2021.102089_bib49) 2020; 5
Nandwana (10.1016/j.addma.2021.102089_bib120) 2019
Gu (10.1016/j.addma.2021.102089_bib34) 2017; 3
Knapp (10.1016/j.addma.2021.102089_bib90) 2017; 135
Zhang (10.1016/j.addma.2021.102089_bib16) 2020; 10
Wang (10.1016/j.addma.2021.102089_bib109) 2020; 35
Everton (10.1016/j.addma.2021.102089_bib23) 2016; 95
Karabasov (10.1016/j.addma.2021.102089_bib77) 2021; 372
Groen (10.1016/j.addma.2021.102089_bib68) 2019; 377
Bevilacqua (10.1016/j.addma.2021.102089_bib11) 2020; 12
Gaikwad (10.1016/j.addma.2021.102089_bib50) 2020; 36
Pruett (10.1016/j.addma.2021.102089_bib111) 2016; 11
Powell (10.1016/j.addma.2021.102089_bib60) 2020; 268
Sorkin (10.1016/j.addma.2021.102089_bib71) 2017; 216
Shevchik (10.1016/j.addma.2021.102089_bib51) 2020; 10
van der Giessen (10.1016/j.addma.2021.102089_bib96) 2020; 28
10.1016/j.addma.2021.102089_bib79
Martis (10.1016/j.addma.2021.102089_bib30) 2018; 88
Han (10.1016/j.addma.2021.102089_bib118) 2020; 35
10.1016/j.addma.2021.102089_bib72
10.1016/j.addma.2021.102089_bib74
Tapia (10.1016/j.addma.2021.102089_bib75) 2016; 12
Pathmanathan (10.1016/j.addma.2021.102089_bib98) 2019; 10
Keyes (10.1016/j.addma.2021.102089_bib83) 2013; 27
Thacker (10.1016/j.addma.2021.102089_bib85) 2004
Hagedorn (10.1016/j.addma.2021.102089_bib18) 2018; 15
Jones (10.1016/j.addma.2021.102089_bib6) 2020; 29
Schlesinger (10.1016/j.addma.2021.102089_bib86) 1979; 32
Mishra (10.1016/j.addma.2021.102089_bib24) 2020; 30
Huang (10.1016/j.addma.2021.102089_bib46) 2015; 137
Meng (10.1016/j.addma.2021.102089_bib102) 2020; 72
10.1016/j.addma.2021.102089_bib8
10.1016/j.addma.2021.102089_bib17
Martin (10.1016/j.addma.2021.102089_bib88) 2019; 10
Aydin (10.1016/j.addma.2021.102089_bib110) 2019; 6
10.1016/j.addma.2021.102089_bib7
Gunasegaram (10.1016/j.addma.2021.102089_bib56) 2009; 209
10.1016/j.addma.2021.102089_bib19
Michopoulos (10.1016/j.addma.2021.102089_bib76) 2018; 22
10.1016/j.addma.2021.102089_bib5
10.1016/j.addma.2021.102089_bib4
10.1016/j.addma.2021.102089_bib3
Knap (10.1016/j.addma.2021.102089_bib64) 2016; 108
10.1016/j.addma.2021.102089_bib10
Yin (10.1016/j.addma.2021.102089_bib91) 2020; 31
Gibson (10.1016/j.addma.2021.102089_bib103) 2015
10.1016/j.addma.2021.102089_bib97
10.1016/j.addma.2021.102089_bib14
Klein (10.1016/j.addma.2021.102089_bib112) 2012
10.1016/j.addma.2021.102089_bib13
Borgdorff (10.1016/j.addma.2021.102089_bib67) 2014; 5
Chen (10.1016/j.addma.2021.102089_bib29) 2017
Vandone (10.1016/j.addma.2021.102089_bib25) 2018; 3
10.1016/j.addma.2021.102089_bib94
10.1016/j.addma.2021.102089_bib106
10.1016/j.addma.2021.102089_bib105
10.1016/j.addma.2021.102089_bib107
Matthews (10.1016/j.addma.2021.102089_bib93) 2016; 114
DebRoy (10.1016/j.addma.2021.102089_bib128) 2021; 6
10.1016/j.addma.2021.102089_bib28
DebRoy (10.1016/j.addma.2021.102089_bib58) 2018; 92
Huang (10.1016/j.addma.2021.102089_bib104) 2015; 137
Mukherjee (10.1016/j.addma.2021.102089_bib9) 2019; 14
Alowayyed (10.1016/j.addma.2021.102089_bib69) 2019; 91
10.1016/j.addma.2021.102089_bib20
Tapia (10.1016/j.addma.2021.102089_bib22) 2014; 136
10.1016/j.addma.2021.102089_bib27
Markl (10.1016/j.addma.2021.102089_bib37) 2016; 46
Stavropoulos (10.1016/j.addma.2021.102089_bib82) 2018; 5
10.1016/j.addma.2021.102089_bib26
Ladani (10.1016/j.addma.2021.102089_bib61) 2020
Leiter (10.1016/j.addma.2021.102089_bib73) 2018; 27
Peng (10.1016/j.addma.2021.102089_bib80) 2020
Hu (10.1016/j.addma.2021.102089_bib100) 2017; 93
10.1016/j.addma.2021.102089_bib113
10.1016/j.addma.2021.102089_bib115
10.1016/j.addma.2021.102089_bib114
10.1016/j.addma.2021.102089_bib117
Johnson (10.1016/j.addma.2021.102089_bib121) 2020; 36
10.1016/j.addma.2021.102089_bib116
Alber (10.1016/j.addma.2021.102089_bib57) 2019; 2
Shi (10.1016/j.addma.2021.102089_bib63) 2020; 184
Stavropoulos (10.1016/j.addma.2021.102089_bib21) 2018; 1
Borgdorff (10.1016/j.addma.2021.102089_bib66) 2014; 372
10.1016/j.addma.2021.102089_bib31
Haeri (10.1016/j.addma.2021.102089_bib59) 2017; 321
10.1016/j.addma.2021.102089_bib124
10.1016/j.addma.2021.102089_bib123
10.1016/j.addma.2021.102089_bib126
10.1016/j.addma.2021.102089_bib125
Denlinger (10.1016/j.addma.2021.102089_bib108) 2014; 136
10.1016/j.addma.2021.102089_bib127
Yuan (10.1016/j.addma.2021.102089_bib52) 2018; 3
Tao (10.1016/j.addma.2021.102089_bib15) 2019; 5
Chernatynskiy (10.1016/j.addma.2021.102089_bib101) 2013; 43
Lu (10.1016/j.addma.2021.102089_bib32) 2018; 144
References_xml – reference: Anon, Forging the Digital Twin in discrete manufacturing.
– volume: 198
  start-page: 1887
  year: 2009
  end-page: 1901
  ident: bib78
  article-title: An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 6
  year: 2019
  ident: bib110
  article-title: General multi-fidelity framework for training artificial neural networks with computational models
  publication-title: Front. Mater.
– volume: 1
  start-page: 157
  year: 2018
  end-page: 168
  ident: bib21
  article-title: Addressing the challenges for the industrial application of additive manufacturing: towards a hybrid solution
  publication-title: Int. J. Lightweight Mater. Manuf.
– volume: 372
  year: 2021
  ident: bib77
  article-title: Multiscale modelling: approaches and challenges
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 94
  start-page: 3563
  year: 2018
  end-page: 3576
  ident: bib2
  article-title: Digital twin-driven product design, manufacturing and service with big data
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: D. Editors, Markforged Debuts Blacksmith Artificial Intelligence (AI) Software for Metal 3D Printing, 2019.
– volume: 268
  year: 2020
  ident: bib60
  article-title: Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders
  publication-title: J. Clean. Prod.
– volume: 10
  year: 2017
  ident: bib84
  article-title: Predictive simulation of process windows for powder bed fusion additive manufacturing: influence of the powder bulk density
  publication-title: Materials
– year: 2019
  ident: bib12
  article-title: Digital Twin Driven Smart Manufacturing
– reference: . (Accessed May 10 2020).
– reference: Anon, Digital Twin - towards a meaningful framework, London, 2019.
– volume: 135
  start-page: 390
  year: 2017
  end-page: 399
  ident: bib90
  article-title: Building blocks for a digital twin of additive manufacturing
  publication-title: Acta Mater.
– start-page: 91
  year: 2017
  end-page: 102
  ident: bib38
  article-title: Aiming for Modeling-asssited Tailored Designs for Additive Manufacturing, TMS2017
– volume: 5
  start-page: 653
  year: 2019
  end-page: 661
  ident: bib15
  article-title: Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: correlation and comparison
  publication-title: Engineering
– volume: 144
  start-page: 801
  year: 2018
  end-page: 809
  ident: bib32
  article-title: Phase field simulation of powder bed-based additive manufacturing
  publication-title: Acta Mater.
– reference: D. Gunasegaram, B. Smith, MAGMAsoft helps assure quality in a Progressive Australian Iron Foundry, in: 32nd Annual Convention of the Australian Foundry Institute, Australian Foundry Institute, Fremantle, Australia, 2001, pp. 99–104.
– start-page: 117
  year: 2017
  end-page: 150
  ident: bib29
  article-title: Chapter 6 - extreme learning machine and its applications in big data processing
  publication-title: Big Data Analytics for Sensor-Network Collected Intelligence
– reference: Anon, Virtual Singapore.
– volume: 368
  start-page: 660
  year: 2020
  end-page: 665
  ident: bib41
  article-title: Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing
  publication-title: Science
– volume: 321
  start-page: 94
  year: 2017
  end-page: 104
  ident: bib59
  article-title: Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations
  publication-title: Powder Technol.
– reference: Additive Manufacturing Technology Standards, 2020. 〈
– reference: Anon, Digital Twin.
– volume: 90
  start-page: 46
  year: 2017
  end-page: 60
  ident: bib1
  article-title: The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms
  publication-title: Futures
– volume: 114
  start-page: 33
  year: 2016
  end-page: 42
  ident: bib93
  article-title: Denudation of metal powder layers in laser powder bed fusion processes
  publication-title: Acta Mater.
– volume: 372
  year: 2014
  ident: bib66
  article-title: Performance of distributed multiscale simulations
  publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
– volume: 29
  start-page: 36
  year: 2020
  end-page: 52
  ident: bib6
  article-title: Characterising the Digital Twin: a systematic literature review
  publication-title: CIRP J. Manuf. Sci. Technol.
– volume: 5
  start-page: 719
  year: 2014
  end-page: 731
  ident: bib67
  article-title: Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment
  publication-title: J. Comput. Sci.
– volume: 43
  start-page: 157
  year: 2013
  end-page: 182
  ident: bib101
  article-title: Uncertainty quantification in multiscale simulation of materials: a prospective
  publication-title: Annu. Rev. Mater. Res.
– volume: 175
  year: 2020
  ident: bib119
  article-title: Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods
  publication-title: Comput. Mater. Sci.
– volume: 93
  start-page: 2855
  year: 2017
  end-page: 2874
  ident: bib100
  article-title: Uncertainty quantification and management in additive manufacturing: current status, needs, and opportunities
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: D.R. Gunasegaram, A.B. Murphy, Towards a true digital twin for the metal additive manufcaturing process, Metal Additive Manufacturing, Inovar Communications Ltd, London, 2019, pp. 185–191.
– volume: 209
  start-page: 1209
  year: 2009
  end-page: 1219
  ident: bib56
  article-title: Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments
  publication-title: J. Mater. Process. Technol.
– volume: 72
  start-page: 429
  year: 2020
  end-page: 439
  ident: bib39
  article-title: Temperature profile, bead geometry, and elemental evaporation in laser powder bed fusion additive manufacturing process
  publication-title: JOM
– volume: 6
  start-page: 48
  year: 2021
  end-page: 68
  ident: bib128
  article-title: Metallurgy, mechanistic models and machine learning in metal printing
  publication-title: Nat. Rev. Mater.
– reference: P. Dhage, Predicting Porosity and Microstructure of 3D Printed Part Using Machine Learning, Industrial and Systems Engineering, University of Michigan-Dearborn, Michigan, 2020.
– year: 2004
  ident: bib85
  article-title: Concepts of model verification and vaidation
  publication-title: Loas Alamos National Laboratory
– volume: 2
  start-page: 115
  year: 2019
  ident: bib57
  article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences
  publication-title: npj Digit. Med.
– reference: Anon, Aconity3D equipment.
– volume: 3
  start-page: 675
  year: 2017
  end-page: 684
  ident: bib34
  article-title: Understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing
  publication-title: Engineering
– reference: Y. Zheng, X. Fu, Y. Xuan, Data-driven optimization based on random forest surrogate, in: International Conference on Systems and Informatics (ICSAI 2019) IEEE, 2019.
– reference: Digital Twin Market by Technology, Type, Application, Industry And Geography - Global Forecast to 2026.
– volume: 12
  start-page: 1088
  year: 2020
  ident: bib11
  article-title: Digital twin reference model development to prevent operators’ risk in process plants
  publication-title: Sustainability
– year: 2020
  ident: bib61
  publication-title: Additive Manufacturing of Metals Materials, Processes, Tests, and Standards
– volume: 71
  start-page: 3640
  year: 2019
  end-page: 3655
  ident: bib62
  article-title: Integrated simulation framework for additively manufactured Ti-6Al-4V: melt pool dynamics, microstructure, solid-state phase transformation, and microelastic response
  publication-title: JOM
– volume: 10
  start-page: 721
  year: 2019
  ident: bib98
  article-title: Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models
  publication-title: Front. Physiol.
– reference: . (Accessed May 6 2020).
– volume: 36
  year: 2020
  ident: bib121
  article-title: Invited review: Machine learning for materials developments in metals additive manufacturing
  publication-title: Addit. Manuf.
– volume: 83
  start-page: 389
  year: 2016
  end-page: 405
  ident: bib45
  article-title: Additive manufacturing methods and modelling approaches: a critical review
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: Airbus 320 – Autopilot.
– reference: D. Editors, Registration Now Open for America Makes Virtual Mini TRX, 2020.
– year: 2015
  ident: bib103
  article-title: Additive manufacturing technologies - 3D printing
  publication-title: Rapid Prototyping, and Direct Digital Manufacturing
– volume: 136
  year: 2014
  ident: bib22
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
– volume: 22
  start-page: 15
  year: 2017
  end-page: 25
  ident: bib65
  article-title: Multiscale computing in the exascale era
  publication-title: J. Comput. Sci.
– reference: 039 Development & Demonstration of Open-Source Protocols for Powder Bed Fusion AM, 2020.
– volume: 108
  start-page: 1649
  year: 2016
  end-page: 1666
  ident: bib64
  article-title: A computational framework for scale-bridging in multi-scale simulations
  publication-title: Int. J. Numer. Methods Eng.
– reference: Anon, Bridge digital and physical worlds with digital twin technology, 2020.
– volume: 8
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib40
  article-title: Temperature distribution and melt geometry in laser and electron-beam melting processes – a comparison among common materials
  publication-title: Addit. Manuf.
– volume: 28
  year: 2020
  ident: bib96
  article-title: Roadmap on multiscale materials modeling
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 11
  year: 2016
  ident: bib111
  article-title: The creation of surrogate models for fast estimation of complex model outcomes
  publication-title: PLoS One
– reference: . (Accessed May 20 2020).
– reference: B. Marr, What Is Digital Twin Technology - And Why Is It So Important?, 2017.
– volume: 229
  start-page: 703
  year: 2016
  end-page: 712
  ident: bib36
  article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting
  publication-title: J. Mater. Process. Technol.
– volume: 151
  start-page: 169
  year: 2018
  end-page: 180
  ident: bib87
  article-title: Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging
  publication-title: Acta Mater.
– reference: H. Yeung, B. Lane, J. Fox, J. Neira, J. Tarr, AM machine and process control methods for additive manufacturing, 2020. 〈
– reference: T. Wang, K.W. Leiter, P. Plechac, J. Knap, Accelerated scale bridging with sparsely approximated Gaussian learning, 2019.
– reference: . (Accessed February 2021).
– year: 2020
  ident: bib80
  article-title: Multiscale Modeling Meets Machine Learning: What Can We Learn?
  publication-title: Arch. Comput. Methods Eng.
– volume: 216
  start-page: 51
  year: 2017
  end-page: 57
  ident: bib71
  article-title: Multi-material modelling for selective laser melting
  publication-title: Procedia Eng.
– volume: 25
  year: 2013
  ident: bib89
  article-title: Heat transfer and fluid flow in additive manufacturing
  publication-title: J. Laser Appl.
– volume: 10
  start-page: 1987
  year: 2019
  ident: bib88
  article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing
  publication-title: Nat. Commun.
– volume: 88
  start-page: 696
  year: 2018
  end-page: 698
  ident: bib30
  article-title: Recent advances in big data analytics, internet of things and machine learning
  publication-title: Future Gener. Comput. Syst.
– reference: America makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), 2020. 〈
– reference: T. Bartz-Beielstein, B. Naujoks, J. Stork, M. Zaefferer, D1.2 - Tutorial on surrogate-assisted modelling, 2016.
– reference: Anon, What is a Digital Twin?
– reference: Future of Driving, 2021.
– volume: 184
  start-page: 284
  year: 2020
  end-page: 305
  ident: bib63
  article-title: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy
  publication-title: Acta Mater.
– volume: 357
  year: 2019
  ident: bib81
  article-title: Multi-fidelity classification using Gaussian processes: Accelerating the prediction of large-scale computational models
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 12
  start-page: 231
  year: 2016
  end-page: 239
  ident: bib33
  article-title: Controlling of residual stress in additive manufacturing of Ti
  publication-title: Addit. Manuf.
– year: 2019
  ident: bib120
  publication-title: Collection of Pedigree AM Data for Data Analysis and Correlation
– reference: J.T. Oden, S. Prudhomme, P.T. Bauman, L. Chamoin, Multiscale methods: bridging the scales in science and engineering, Oxford Scholarship Online, London, 209.
– volume: 91
  start-page: 335
  year: 2019
  end-page: 346
  ident: bib69
  article-title: Patterns for high performance multiscale computing
  publication-title: Future Gener. Comput. Syst.
– reference: Anon, git awards, 2020, 〈
– year: 2012
  ident: bib112
  article-title: Sensor and Data Fusion: a Tool for Information Assessment and Decision Making
– reference: S. Parthasarathy, Machine Learning vs. Traditional Programming, 2020. 〈
– volume: 3
  start-page: 3279
  year: 2018
  end-page: 3284
  ident: bib25
  article-title: Multisensor data fusion for additive manufacturing process control
  publication-title: IEEE Robot. Autom. Lett.
– volume: 3
  year: 2018
  ident: bib52
  article-title: Machine-learning-based monitoring of laser powder bed fusion
  publication-title: Adv. Mater. Technol.
– reference: 〉.
– volume: 67
  start-page: 619
  year: 2021
  end-page: 635
  ident: bib122
  article-title: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks
  publication-title: Comput. Mech.
– volume: 137
  start-page: 10
  year: 2015
  ident: bib104
  article-title: Additive manufacturing: current state, future potential, gaps and needs, and recommendations
  publication-title: J. Manuf. Sci. Eng.
– volume: 46
  start-page: 93
  year: 2016
  end-page: 123
  ident: bib37
  article-title: Multiscale modeling of powder bed–based additive manufacturing
  publication-title: Annu. Rev. Mater. Res.
– reference: S.S.H. Razvi, S.C. Feng, A. Narayanan, Y.T. Lee, P. Witherell, A review of machine learning applications in additive manufacturing, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Anaheim, CA, USA, 2019.
– volume: 12
  start-page: 282
  year: 2016
  end-page: 290
  ident: bib75
  article-title: Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models
  publication-title: Addit. Manuf.
– volume: 5
  start-page: 277
  year: 2020
  end-page: 285
  ident: bib49
  article-title: A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring
  publication-title: Prog. Addit. Manuf.
– reference: Anon, Solutions - Digital Twins, 2020.
– reference: M.J. Garbade, Clearing the Confusion: AI vs Machine Learning vs Deep Learning Differences, 2018. 〈https://towardsdatascience.com/clearing-the-confusion-ai-vs-machine-learning-vs-deep-learning-differences-fce69b21d5eb〉. 2020.
– volume: 22
  start-page: 784
  year: 2018
  end-page: 799
  ident: bib76
  article-title: On the multiphysics modeling challenges for metal additive manufacturing processes
  publication-title: Addit. Manuf.
– volume: 372
  year: 2014
  ident: bib53
  article-title: Multiscale modelling and simulation: a position paper
  publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
– volume: 36
  year: 2020
  ident: bib50
  article-title: Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion – A single-track study
  publication-title: Addit. Manuf.
– reference: nanoHUB.
– reference: Anon, Exascale Computing Project, 2020.
– reference: Anon, Cheat sheet: What is Digital Twin?
– volume: 35
  start-page: 1936
  year: 2020
  end-page: 1948
  ident: bib118
  article-title: Quantitative microstructure analysis for solid-state metal additive manufacturing via deep learning
  publication-title: J. Mater. Res.
– volume: 15
  start-page: 54
  year: 2018
  end-page: 57
  ident: bib18
  article-title: Process monitoring of laser beam melting
  publication-title: Laser Tech. J.
– volume: 14
  start-page: 59
  year: 2019
  end-page: 65
  ident: bib9
  article-title: A digital twin for rapid qualification of 3D printed metallic components
  publication-title: Appl. Mater. Today
– reference: K. Tomasz, C. Edward, K. Bogumiła, R. Jacek, Parameters in selective laser melting for processing metallic powders, in: Proc. SPIE, 2012.
– reference: Anonymous, Introduction to measurements & error analysis, 2020. 〈
– volume: 72
  start-page: 2363
  year: 2020
  end-page: 2377
  ident: bib102
  article-title: Machine learning in additive manufacturing: a review
  publication-title: JOM
– volume: 10
  start-page: 3389
  year: 2020
  ident: bib51
  article-title: Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance
  publication-title: Sci. Rep.
– reference: . (Accessed December 2020).
– volume: 27
  start-page: 4
  year: 2013
  end-page: 83
  ident: bib83
  article-title: Multiphysics simulations: challenges and opportunities
  publication-title: Int. J. High Perform. Comput. Appl.
– volume: 18
  start-page: 1026
  year: 2019
  end-page: 1032
  ident: bib129
  article-title: Scientific, technological and economic issues in metal printing and their solutions
  publication-title: Nat. Mater.
– volume: 31
  start-page: 957
  year: 2015
  end-page: 968
  ident: bib35
  article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory
  publication-title: Mater. Sci. Technol.
– volume: 35
  year: 2020
  ident: bib109
  article-title: Meta-modeling of high-fidelity FEA simulation for efficient product and process design in additive manufacturing
  publication-title: Addit. Manuf.
– reference: S.A. Alowayyed, M. Vassaux, B. Czaja, P.V. Coveney, A.G. Hoekstra, Towards heterogeneous multi-scale computing on large scale parallel supercomputers, 2020 6(4) (2020).
– volume: 95
  start-page: 431
  year: 2016
  end-page: 445
  ident: bib23
  article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
  publication-title: Mater. Des.
– volume: 377
  year: 2019
  ident: bib68
  article-title: Mastering the scales: a survey on the benefits of multiscale computing software
  publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
– reference: J.C. Fielding, E. Morris, R. Gorham, E.F. Cory, S. Leonard, When America Makes, America Works A Successful Public Private 3D Printing (Additive Manufacturing) Partnership, 2016.
– volume: 372
  year: 2021
  ident: bib70
  article-title: A framework for multi-scale modelling
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– reference: Anon, AM machine and process control methods for additive manufacturing.
– volume: 31
  year: 2020
  ident: bib91
  article-title: Correlation between forming quality and spatter dynamics in laser powder bed fusion
  publication-title: Addit. Manuf.
– start-page: 1
  year: 2006
  end-page: 2
  ident: bib95
  publication-title: Experience using Phenomena Identification and Ranking Technique (PIRT) for nuclear analysis
– volume: 10
  start-page: 8350
  year: 2020
  ident: bib16
  article-title: Digital twins for additive manufacturing: a state-of-the-art review
  publication-title: Appl. Sci.
– volume: 32
  year: 1979
  ident: bib86
  article-title: Terminology for model credibility
  publication-title: Simulation
– volume: 27
  start-page: 91
  year: 2018
  end-page: 106
  ident: bib73
  article-title: Accelerated scale-bridging through adaptive surrogate model evaluation
  publication-title: J. Comput. Sci.
– volume: 92
  start-page: 112
  year: 2018
  end-page: 224
  ident: bib58
  article-title: Additive manufacturing of metallic components – process, structure and properties
  publication-title: Prog. Mater. Sci.
– volume: 7
  start-page: 4085
  year: 2017
  ident: bib92
  article-title: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing
  publication-title: Sci. Rep.
– reference: Anon, GNU Licenses, 2020, 〈
– volume: 136
  year: 2014
  ident: bib108
  article-title: Thermomechanical modeling of additive manufacturing large parts
  publication-title: J. Manuf. Sci. Eng.
– volume: 30
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib24
  article-title: Real time monitoring and control of friction stir welding process using multiple sensors
  publication-title: CIRP J.Manuf.Sci.Technol.
– reference: L. Vendra, A. Malkawi, A. Avagliano, Standardization of additive manufacturing for oil and gas applications, in: Offshore Technology Conference, Offshore Technology Conference, Houston, Texas, USA, 2020, p. 9.
– reference: B. Marr, 7 Amazing Examples of Digital Twin Technology In Practice, 2019.
– volume: 5
  start-page: 2
  year: 2018
  ident: bib82
  article-title: Modelling of additive manufacturing processes: a review and classification
  publication-title: Manuf. Rev.
– volume: 137
  year: 2015
  ident: bib46
  article-title: Additive manufacturing: current state, future potential, gaps & needs, and recommendations
  publication-title: ASME J. Manuf. Sci. Eng.
– volume: 71
  start-page: 2625
  year: 2019
  end-page: 2634
  ident: bib99
  article-title: Uncertainty quantification in metallic additive manufacturing through physics-informed data-driven modeling
  publication-title: JOM
– volume: 29
  start-page: 36
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib6
  article-title: Characterising the Digital Twin: a systematic literature review
  publication-title: CIRP J. Manuf. Sci. Technol.
  doi: 10.1016/j.cirpj.2020.02.002
– volume: 35
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib109
  article-title: Meta-modeling of high-fidelity FEA simulation for efficient product and process design in additive manufacturing
  publication-title: Addit. Manuf.
– volume: 3
  start-page: 675
  issue: 5
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib34
  article-title: Understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing
  publication-title: Engineering
  doi: 10.1016/J.ENG.2017.05.011
– ident: 10.1016/j.addma.2021.102089_bib7
– year: 2020
  ident: 10.1016/j.addma.2021.102089_bib80
  article-title: Multiscale Modeling Meets Machine Learning: What Can We Learn?
  publication-title: Arch. Comput. Methods Eng.
– volume: 12
  start-page: 231
  year: 2016
  ident: 10.1016/j.addma.2021.102089_bib33
  article-title: Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling
  publication-title: Addit. Manuf.
– volume: 36
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib121
  article-title: Invited review: Machine learning for materials developments in metals additive manufacturing
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 1088
  issue: 3
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib11
  article-title: Digital twin reference model development to prevent operators’ risk in process plants
  publication-title: Sustainability
  doi: 10.3390/su12031088
– ident: 10.1016/j.addma.2021.102089_bib126
– volume: 372
  issue: 2021
  year: 2014
  ident: 10.1016/j.addma.2021.102089_bib66
  article-title: Performance of distributed multiscale simulations
  publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2013.0407
– volume: 7
  start-page: 4085
  issue: 1
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib92
  article-title: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04237-z
– volume: 32
  issue: 3
  year: 1979
  ident: 10.1016/j.addma.2021.102089_bib86
  article-title: Terminology for model credibility
  publication-title: Simulation
– volume: 198
  start-page: 1887
  issue: 21
  year: 2009
  ident: 10.1016/j.addma.2021.102089_bib78
  article-title: An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.12.026
– volume: 2
  start-page: 115
  issue: 1
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib57
  article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-019-0193-y
– volume: 8
  start-page: 1
  year: 2015
  ident: 10.1016/j.addma.2021.102089_bib40
  article-title: Temperature distribution and melt geometry in laser and electron-beam melting processes – a comparison among common materials
  publication-title: Addit. Manuf.
– volume: 83
  start-page: 389
  issue: 1
  year: 2016
  ident: 10.1016/j.addma.2021.102089_bib45
  article-title: Additive manufacturing methods and modelling approaches: a critical review
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7576-2
– volume: 28
  issue: 4
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib96
  article-title: Roadmap on multiscale materials modeling
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/ab7150
– volume: 137
  start-page: 10
  year: 2015
  ident: 10.1016/j.addma.2021.102089_bib104
  article-title: Additive manufacturing: current state, future potential, gaps and needs, and recommendations
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028725
– volume: 10
  start-page: 1987
  issue: 1
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib88
  article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10009-2
– ident: 10.1016/j.addma.2021.102089_bib117
– ident: 10.1016/j.addma.2021.102089_bib4
– volume: 30
  start-page: 1
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib24
  article-title: Real time monitoring and control of friction stir welding process using multiple sensors
  publication-title: CIRP J.Manuf.Sci.Technol.
  doi: 10.1016/j.cirpj.2020.03.004
– volume: 229
  start-page: 703
  year: 2016
  ident: 10.1016/j.addma.2021.102089_bib36
  article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.10.022
– volume: 71
  start-page: 3640
  issue: 10
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib62
  article-title: Integrated simulation framework for additively manufactured Ti-6Al-4V: melt pool dynamics, microstructure, solid-state phase transformation, and microelastic response
  publication-title: JOM
  doi: 10.1007/s11837-019-03618-1
– volume: 175
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib119
  article-title: Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.109599
– volume: 72
  start-page: 429
  issue: 1
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib39
  article-title: Temperature profile, bead geometry, and elemental evaporation in laser powder bed fusion additive manufacturing process
  publication-title: JOM
  doi: 10.1007/s11837-019-03872-3
– year: 2004
  ident: 10.1016/j.addma.2021.102089_bib85
  article-title: Concepts of model verification and vaidation
– volume: 3
  start-page: 3279
  issue: 4
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib25
  article-title: Multisensor data fusion for additive manufacturing process control
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2851792
– ident: 10.1016/j.addma.2021.102089_bib27
– volume: 22
  start-page: 784
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib76
  article-title: On the multiphysics modeling challenges for metal additive manufacturing processes
  publication-title: Addit. Manuf.
– ident: 10.1016/j.addma.2021.102089_bib123
– ident: 10.1016/j.addma.2021.102089_bib55
– ident: 10.1016/j.addma.2021.102089_bib106
– volume: 14
  start-page: 59
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib9
  article-title: A digital twin for rapid qualification of 3D printed metallic components
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.11.003
– year: 2019
  ident: 10.1016/j.addma.2021.102089_bib12
– ident: 10.1016/j.addma.2021.102089_bib17
– ident: 10.1016/j.addma.2021.102089_bib42
– volume: 92
  start-page: 112
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib58
  article-title: Additive manufacturing of metallic components – process, structure and properties
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.10.001
– ident: 10.1016/j.addma.2021.102089_bib114
– volume: 10
  issue: 10
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib84
  article-title: Predictive simulation of process windows for powder bed fusion additive manufacturing: influence of the powder bulk density
  publication-title: Materials
  doi: 10.3390/ma10101117
– ident: 10.1016/j.addma.2021.102089_bib5
– volume: 25
  issue: 5
  year: 2013
  ident: 10.1016/j.addma.2021.102089_bib89
  article-title: Heat transfer and fluid flow in additive manufacturing
  publication-title: J. Laser Appl.
  doi: 10.2351/1.4817788
– volume: 36
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib50
  article-title: Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion – A single-track study
  publication-title: Addit. Manuf.
– volume: 95
  start-page: 431
  year: 2016
  ident: 10.1016/j.addma.2021.102089_bib23
  article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.01.099
– volume: 368
  start-page: 660
  issue: 6491
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib41
  article-title: Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing
  publication-title: Science
  doi: 10.1126/science.aay7830
– volume: 22
  start-page: 15
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib65
  article-title: Multiscale computing in the exascale era
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.07.004
– volume: 372
  issue: 2014
  year: 2021
  ident: 10.1016/j.addma.2021.102089_bib70
  article-title: A framework for multi-scale modelling
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 321
  start-page: 94
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib59
  article-title: Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.08.011
– volume: 377
  issue: 2142
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib68
  article-title: Mastering the scales: a survey on the benefits of multiscale computing software
  publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2018.0147
– ident: 10.1016/j.addma.2021.102089_bib105
– volume: 372
  issue: 2014
  year: 2021
  ident: 10.1016/j.addma.2021.102089_bib77
  article-title: Multiscale modelling: approaches and challenges
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 35
  start-page: 1936
  issue: 15
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib118
  article-title: Quantitative microstructure analysis for solid-state metal additive manufacturing via deep learning
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2020.120
– year: 2012
  ident: 10.1016/j.addma.2021.102089_bib112
– year: 2020
  ident: 10.1016/j.addma.2021.102089_bib61
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.addma.2021.102089_bib111
  article-title: The creation of surrogate models for fast estimation of complex model outcomes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0156574
– ident: 10.1016/j.addma.2021.102089_bib14
– volume: 12
  start-page: 282
  year: 2016
  ident: 10.1016/j.addma.2021.102089_bib75
  article-title: Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models
  publication-title: Addit. Manuf.
– volume: 1
  start-page: 157
  issue: 3
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib21
  article-title: Addressing the challenges for the industrial application of additive manufacturing: towards a hybrid solution
  publication-title: Int. J. Lightweight Mater. Manuf.
– volume: 144
  start-page: 801
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib32
  article-title: Phase field simulation of powder bed-based additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.11.033
– ident: 10.1016/j.addma.2021.102089_bib72
  doi: 10.14529/jsfi190402
– volume: 5
  start-page: 2
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib82
  article-title: Modelling of additive manufacturing processes: a review and classification
  publication-title: Manuf. Rev.
– volume: 372
  issue: 2021
  year: 2014
  ident: 10.1016/j.addma.2021.102089_bib53
  article-title: Multiscale modelling and simulation: a position paper
  publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2013.0377
– volume: 137
  year: 2015
  ident: 10.1016/j.addma.2021.102089_bib46
  article-title: Additive manufacturing: current state, future potential, gaps & needs, and recommendations
  publication-title: ASME J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028725
– ident: 10.1016/j.addma.2021.102089_bib47
– volume: 67
  start-page: 619
  issue: 2
  year: 2021
  ident: 10.1016/j.addma.2021.102089_bib122
  article-title: Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-020-01952-9
– ident: 10.1016/j.addma.2021.102089_bib125
– ident: 10.1016/j.addma.2021.102089_bib44
  doi: 10.1115/DETC2019-98415
– ident: 10.1016/j.addma.2021.102089_bib3
– ident: 10.1016/j.addma.2021.102089_bib19
– volume: 72
  start-page: 2363
  issue: 6
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib102
  article-title: Machine learning in additive manufacturing: a review
  publication-title: JOM
  doi: 10.1007/s11837-020-04155-y
– ident: 10.1016/j.addma.2021.102089_bib116
– volume: 5
  start-page: 277
  issue: 3
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib49
  article-title: A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-019-00108-3
– volume: 10
  start-page: 3389
  issue: 1
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib51
  article-title: Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60294-x
– volume: 90
  start-page: 46
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib1
  article-title: The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms
  publication-title: Futures
  doi: 10.1016/j.futures.2017.03.006
– start-page: 91
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib38
– ident: 10.1016/j.addma.2021.102089_bib54
– volume: 10
  start-page: 8350
  issue: 23
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib16
  article-title: Digital twins for additive manufacturing: a state-of-the-art review
  publication-title: Appl. Sci.
  doi: 10.3390/app10238350
– ident: 10.1016/j.addma.2021.102089_bib28
– volume: 93
  start-page: 2855
  issue: 5
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib100
  article-title: Uncertainty quantification and management in additive manufacturing: current status, needs, and opportunities
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0703-5
– start-page: 117
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib29
  article-title: Chapter 6 - extreme learning machine and its applications in big data processing
– ident: 10.1016/j.addma.2021.102089_bib107
– volume: 136
  issue: 6
  year: 2014
  ident: 10.1016/j.addma.2021.102089_bib22
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028540
– volume: 184
  start-page: 284
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib63
  article-title: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.11.053
– volume: 91
  start-page: 335
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib69
  article-title: Patterns for high performance multiscale computing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.08.045
– volume: 136
  issue: 6
  year: 2014
  ident: 10.1016/j.addma.2021.102089_bib108
  article-title: Thermomechanical modeling of additive manufacturing large parts
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028669
– volume: 10
  start-page: 721
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib98
  article-title: Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00721
– year: 2015
  ident: 10.1016/j.addma.2021.102089_bib103
  article-title: Additive manufacturing technologies - 3D printing
– volume: 71
  start-page: 2625
  issue: 8
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib99
  article-title: Uncertainty quantification in metallic additive manufacturing through physics-informed data-driven modeling
  publication-title: JOM
  doi: 10.1007/s11837-019-03555-z
– ident: 10.1016/j.addma.2021.102089_bib74
  doi: 10.1016/j.jcp.2019.109049
– ident: 10.1016/j.addma.2021.102089_bib113
– ident: 10.1016/j.addma.2021.102089_bib97
– volume: 114
  start-page: 33
  year: 2016
  ident: 10.1016/j.addma.2021.102089_bib93
  article-title: Denudation of metal powder layers in laser powder bed fusion processes
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.017
– ident: 10.1016/j.addma.2021.102089_bib20
– year: 2019
  ident: 10.1016/j.addma.2021.102089_bib120
– ident: 10.1016/j.addma.2021.102089_bib127
– ident: 10.1016/j.addma.2021.102089_bib8
– ident: 10.1016/j.addma.2021.102089_bib48
– volume: 5
  start-page: 719
  issue: 5
  year: 2014
  ident: 10.1016/j.addma.2021.102089_bib67
  article-title: Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2014.04.004
– ident: 10.1016/j.addma.2021.102089_bib13
– volume: 18
  start-page: 1026
  issue: 10
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib129
  article-title: Scientific, technological and economic issues in metal printing and their solutions
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0408-2
– volume: 357
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib81
  article-title: Multi-fidelity classification using Gaussian processes: Accelerating the prediction of large-scale computational models
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112602
– volume: 6
  start-page: 48
  issue: 1
  year: 2021
  ident: 10.1016/j.addma.2021.102089_bib128
  article-title: Metallurgy, mechanistic models and machine learning in metal printing
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00236-1
– volume: 151
  start-page: 169
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib87
  article-title: Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.03.036
– ident: 10.1016/j.addma.2021.102089_bib94
– volume: 27
  start-page: 4
  issue: 1
  year: 2013
  ident: 10.1016/j.addma.2021.102089_bib83
  article-title: Multiphysics simulations: challenges and opportunities
  publication-title: Int. J. High Perform. Comput. Appl.
  doi: 10.1177/1094342012468181
– volume: 6
  issue: 61
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib110
  article-title: General multi-fidelity framework for training artificial neural networks with computational models
  publication-title: Front. Mater.
– volume: 135
  start-page: 390
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib90
  article-title: Building blocks for a digital twin of additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.06.039
– ident: 10.1016/j.addma.2021.102089_bib115
  doi: 10.1109/ICSAI48974.2019.9010547
– volume: 31
  start-page: 957
  issue: 8
  year: 2015
  ident: 10.1016/j.addma.2021.102089_bib35
  article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000728
– ident: 10.1016/j.addma.2021.102089_bib79
– ident: 10.1016/j.addma.2021.102089_bib26
– ident: 10.1016/j.addma.2021.102089_bib124
– ident: 10.1016/j.addma.2021.102089_bib10
– volume: 27
  start-page: 91
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib73
  article-title: Accelerated scale-bridging through adaptive surrogate model evaluation
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.04.010
– ident: 10.1016/j.addma.2021.102089_bib43
– ident: 10.1016/j.addma.2021.102089_bib31
  doi: 10.4043/30533-MS
– volume: 216
  start-page: 51
  year: 2017
  ident: 10.1016/j.addma.2021.102089_bib71
  article-title: Multi-material modelling for selective laser melting
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2018.02.088
– volume: 5
  start-page: 653
  issue: 4
  year: 2019
  ident: 10.1016/j.addma.2021.102089_bib15
  article-title: Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: correlation and comparison
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.01.014
– volume: 15
  start-page: 54
  issue: 2
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib18
  article-title: Process monitoring of laser beam melting
  publication-title: Laser Tech. J.
  doi: 10.1002/latj.201800009
– start-page: 1
  year: 2006
  ident: 10.1016/j.addma.2021.102089_bib95
– volume: 46
  start-page: 93
  issue: 1
  year: 2016
  ident: 10.1016/j.addma.2021.102089_bib37
  article-title: Multiscale modeling of powder bed–based additive manufacturing
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-032158
– volume: 3
  issue: 12
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib52
  article-title: Machine-learning-based monitoring of laser powder bed fusion
  publication-title: Adv. Mater. Technol.
– volume: 108
  start-page: 1649
  issue: 13
  year: 2016
  ident: 10.1016/j.addma.2021.102089_bib64
  article-title: A computational framework for scale-bridging in multi-scale simulations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5270
– volume: 43
  start-page: 157
  issue: 1
  year: 2013
  ident: 10.1016/j.addma.2021.102089_bib101
  article-title: Uncertainty quantification in multiscale simulation of materials: a prospective
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-071312-121708
– volume: 94
  start-page: 3563
  issue: 9
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib2
  article-title: Digital twin-driven product design, manufacturing and service with big data
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0233-1
– volume: 209
  start-page: 1209
  issue: 3
  year: 2009
  ident: 10.1016/j.addma.2021.102089_bib56
  article-title: Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.03.044
– volume: 88
  start-page: 696
  year: 2018
  ident: 10.1016/j.addma.2021.102089_bib30
  article-title: Recent advances in big data analytics, internet of things and machine learning
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.07.057
– volume: 31
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib91
  article-title: Correlation between forming quality and spatter dynamics in laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 268
  year: 2020
  ident: 10.1016/j.addma.2021.102089_bib60
  article-title: Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122077
SSID ssj0001537982
Score 2.548636
Snippet Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 102089
SubjectTerms Additive manufacturing
Artificial intelligence
Digital twins
Industry 4.0
Machine learning
MATERIALS SCIENCE
Multiphysics modeling
Multiscale modeling
Title Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing
URI https://dx.doi.org/10.1016/j.addma.2021.102089
https://www.osti.gov/servlets/purl/1881614
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YER0zpxHh4RAhWQWGilbpFjOygIkqpJBRO_nTsn4SGhDoxOfFF0Z9-d7O--I-QsgxAJ7yQLlZcyIbVhSpqAKSW1imOFl72ItngIx1NxNwtmPXLV1cIgrLL1_Y1Pd966fTJstTmc5_nw0fM4dlASHncl3eiHhYhwlV988O9zlsCPpOsZhfMZCnTkQw7mBfvb8Q95HFkMRtju_e8A1S9hz_2IPTdbZLNNGull81_bpGeLHbLxg0pwl7xPHP61ot9VUNSBBSswgmUNbtDZpKKu-01FVWGouyeg1XKxKPE8raKQw1KTP2ErEVq_5UVFy4y-Whwi9AidI31VxRILIlyF4x6Z3lxPrsas7arAtB8FNbOBhRSKKylVaFKIzmAUaxUPZRYGvg21MZCTZbEXxdyCIWHLg9V0IHVsROorf5_0i7KwB4QaY5AvXiutApFyk2YGJkWjVJhRFnnmkHidKhPdUo5j54uXpMOWPSdO_wnqP2n0f0jOv4TmDePG6ulhZ6Pk18JJICasFjxGi6IQ0uVqxBWBFI9jSILF0X8_e0zWcdTg_U5Iv14s7SnkLXU6cAtzQNYub-_HD585KfAk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7QAcEE8xxiMHjkRbH2mb4zQxDTZ2YZO4VWmSoiHWTesm-PnYaQtDQhw4tomryk5sK_n8mZCbFEIkjAkWSDdhvlCaSaE5k1IoGUUSL3sRbTEOBlP_4Zk_10ivqoVBWGXp-wufbr11-aZdarO9nM3aT67rYAcl33VsSTf44QayU_E6aXTvh4Px91EL90Jh20ahCEOZin_IIr1gi1sKItdBIoMOdnz_PUbVF7DttsJP_4Dsl3kj7Ra_dkhqJjsie1tsgsfkY2IhsDn9LoSiFi-Ygx0MK6CD1iw5tQ1wciozTe1VAc03q9UCj9RyCmks1bMX7CZC1--zLKeLlM4NPiL6CP0jnctsgzURtsjxhEz7d5PegJWNFZjyQr5mhhvIohwphAx0AgEa7GKMdAKRBtwzgdIa0rI0csPIMWBL2PVgOMWFirSfeNI7JfVskZkzQrXWSBmvpJLcTxydpBomhZ3E1500dHWTuJUqY1WyjmPzi7e4gpe9xlb_Meo_LvTfJLdfQsuCdOPv6UFlo_jH2okhLPwt2EKLohAy5iqEFoGUE0WQB_vn__3sNdkZTB5H8eh-PGyRXRwp4H8XpL5ebcwlpDHr5Kpcpp9wTfLV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+developing+multiscale-multiphysics+models+and+their+surrogates+for+digital+twins+of+metal+additive+manufacturing&rft.jtitle=Additive+manufacturing&rft.au=Gunasegaram%2C+D.R.&rft.au=Murphy%2C+A.B.&rft.au=Barnard%2C+A.&rft.au=DebRoy%2C+T.&rft.date=2021-10-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=46&rft_id=info:doi/10.1016%2Fj.addma.2021.102089&rft.externalDocID=S2214860421002542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon