Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity

Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanoshee...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 434; p. 128836
Main Authors Zhang, Yajie, Jiang, Yadong, Duan, Zaihua, Wu, Yingwei, Zhao, Qiuni, Liu, Bohao, Huang, Qi, Yuan, Zhen, Li, Xian, Tai, Huiling
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09–5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors. [Display omitted] •3D porous hierarchical In2O3/MoS2 microflowers were prepared via mechanical mixing.•The In2O3/MoS2 sensor exhibited a response as high as 343.09–5 ppm NO2 at RT.•The In2O3/MoS2 sensor showed short recovery time and ultrahigh selectivity to NO2.•The enhanced properties are due to the n-p heterojunction and increased active sites.
AbstractList Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09-5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors.Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09-5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors.
Nitrogen dioxide (NO₂) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO₂ sensors. Herein, the edge-enriched MoS₂ nanosheets modified porous nanosheets-assembled three-dimensional (3D) In₂O₃ microflowers have been synthesized to improve the sensitivity and selectivity of NO₂ detection at RT. The results show that the In₂O₃/MoS₂ composite sensor exhibits a response as high as 343.09–5 ppm NO₂, which is 309 and 72.5 times higher than the sensors based on the pristine MoS₂ and In₂O₃. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In₂O₃/MoS₂ sensor to NO₂ is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In₂O₃/MoS₂ sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO₂ sensors.
Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09–5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors. [Display omitted] •3D porous hierarchical In2O3/MoS2 microflowers were prepared via mechanical mixing.•The In2O3/MoS2 sensor exhibited a response as high as 343.09–5 ppm NO2 at RT.•The In2O3/MoS2 sensor showed short recovery time and ultrahigh selectivity to NO2.•The enhanced properties are due to the n-p heterojunction and increased active sites.
ArticleNumber 128836
Author Huang, Qi
Yuan, Zhen
Liu, Bohao
Li, Xian
Jiang, Yadong
Wu, Yingwei
Zhao, Qiuni
Zhang, Yajie
Duan, Zaihua
Tai, Huiling
Author_xml – sequence: 1
  givenname: Yajie
  surname: Zhang
  fullname: Zhang, Yajie
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 2
  givenname: Yadong
  surname: Jiang
  fullname: Jiang, Yadong
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 3
  givenname: Zaihua
  surname: Duan
  fullname: Duan, Zaihua
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 4
  givenname: Yingwei
  surname: Wu
  fullname: Wu, Yingwei
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 5
  givenname: Qiuni
  surname: Zhao
  fullname: Zhao, Qiuni
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 6
  givenname: Bohao
  surname: Liu
  fullname: Liu, Bohao
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 7
  givenname: Qi
  surname: Huang
  fullname: Huang, Qi
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 8
  givenname: Zhen
  surname: Yuan
  fullname: Yuan, Zhen
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 9
  givenname: Xian
  surname: Li
  fullname: Li, Xian
  email: lixian@caas.cn
  organization: Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
– sequence: 10
  givenname: Huiling
  surname: Tai
  fullname: Tai, Huiling
  email: taitai1980@uestc.edu.cn
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
BookMark eNqNkc1u1DAUhS1UJKaFR0Dykk0G_yROIhYIVQUqFWYBrC3HvmnuKLEH29OqPBZPiKOphMSmrK6Ozjl38Z1zcuaDB0Jec7bljKu3--1-Mr8Wk7eCCbHlouukekY2vGtlJaVUZ2TDJKsr2fX1C3Ke0p4xxtum3pDfV-4WKvAR7QSOfgnfBPXGhzQB5ESX4HDEYhxCDMf016pMSrAMc7EmhGiindCamV57sZN0QRvDOId7iImOIdIYwkIzLIcSzccI1EEGmzF4Gkb6dSfoPeaJHucczYS3E03gE2a8w_xAjXdFz2t-1S_J89HMCV493gvy4-PV98vP1c3u0_Xlh5vKyrbJFTRqqI2RPR8UdEYNVsm2hp5DB41tWT2ODtrBmE7WvBascco1g22HsWHGDVZekDenv4cYfh4hZb1gsjDPxkNhoYVSBb_oe_Yf0YarXvBelmhzihZCKUUY9SHiYuKD5kyvc-q9fpxTr3Pq05yl9-6fnsVsVoIFGc5Ptt-f2lCA3ZXBdLII3oLDWLhqF_CJD38AGpHG0A
CitedBy_id crossref_primary_10_1016_j_jece_2024_113023
crossref_primary_10_1016_j_snb_2022_133140
crossref_primary_10_1016_j_ceramint_2024_11_298
crossref_primary_10_1021_acssensors_3c01676
crossref_primary_10_3390_chemosensors10070246
crossref_primary_10_1016_j_sna_2024_115719
crossref_primary_10_1016_j_mseb_2023_117066
crossref_primary_10_1016_j_ccr_2023_215542
crossref_primary_10_1016_j_seppur_2024_128392
crossref_primary_10_3390_chemosensors11030200
crossref_primary_10_1016_j_inoche_2023_111524
crossref_primary_10_1088_1402_4896_acfad1
crossref_primary_10_3390_nano14181521
crossref_primary_10_1016_j_snb_2023_133700
crossref_primary_10_1016_j_snb_2023_133822
crossref_primary_10_1021_acs_jpcb_2c07517
crossref_primary_10_1016_j_ccr_2024_215657
crossref_primary_10_1016_j_ijhydene_2024_05_202
crossref_primary_10_1007_s10934_025_01775_0
crossref_primary_10_1016_j_snb_2023_133550
crossref_primary_10_1002_admt_202402018
crossref_primary_10_1002_smtd_202402179
crossref_primary_10_1016_j_apsusc_2025_162304
crossref_primary_10_1002_slct_202304840
crossref_primary_10_1021_acsaelm_3c00725
crossref_primary_10_1002_adfm_202203528
crossref_primary_10_3390_mi14030547
crossref_primary_10_1021_acsanm_3c00446
crossref_primary_10_1016_j_jallcom_2024_175735
crossref_primary_10_1021_acsanm_3c05737
crossref_primary_10_1016_j_inoche_2023_111918
crossref_primary_10_1016_j_sna_2025_116236
crossref_primary_10_1039_D3TA03020B
crossref_primary_10_1038_s41467_024_50443_5
crossref_primary_10_1109_JSEN_2024_3388607
crossref_primary_10_1007_s40843_023_2725_y
crossref_primary_10_1016_j_talanta_2024_125995
crossref_primary_10_1080_00268976_2023_2294154
crossref_primary_10_1039_D4TA00080C
crossref_primary_10_1080_10601325_2022_2111262
crossref_primary_10_1016_j_sna_2024_115971
crossref_primary_10_1016_j_snb_2023_134852
crossref_primary_10_1016_j_snb_2024_136666
crossref_primary_10_1021_acsomega_2c06243
crossref_primary_10_1016_j_jallcom_2023_169984
crossref_primary_10_1016_j_cej_2024_155286
crossref_primary_10_1016_j_snb_2023_134629
crossref_primary_10_1016_j_cej_2024_157906
crossref_primary_10_1016_j_snb_2022_132302
crossref_primary_10_1016_j_flatc_2023_100584
crossref_primary_10_1016_j_snb_2022_133113
crossref_primary_10_1016_j_cplett_2024_141639
crossref_primary_10_1016_j_materresbull_2023_112332
crossref_primary_10_1016_j_synthmet_2023_117348
crossref_primary_10_1016_j_ceramint_2024_07_028
crossref_primary_10_1016_j_microc_2024_112646
crossref_primary_10_1088_1361_6528_acbbd2
crossref_primary_10_1016_j_ceramint_2024_12_221
crossref_primary_10_1016_j_snb_2023_133505
crossref_primary_10_1109_JSEN_2023_3266167
crossref_primary_10_1016_j_jallcom_2024_177562
crossref_primary_10_1016_j_snb_2023_135006
crossref_primary_10_1016_j_snb_2023_134710
crossref_primary_10_1016_j_apsusc_2023_157957
crossref_primary_10_1021_acs_jpclett_2c02788
crossref_primary_10_1109_JSEN_2022_3221997
crossref_primary_10_1039_D3TA03686C
crossref_primary_10_1021_acssensors_4c00866
crossref_primary_10_1109_JSEN_2024_3408471
crossref_primary_10_1016_j_vacuum_2024_113114
crossref_primary_10_1016_j_cej_2024_152394
crossref_primary_10_1038_s41598_024_64534_2
crossref_primary_10_3390_chemosensors10120525
crossref_primary_10_1016_j_compositesb_2024_112102
crossref_primary_10_3390_nano13020237
crossref_primary_10_1016_j_snb_2023_134843
crossref_primary_10_1016_j_vacuum_2022_111616
crossref_primary_10_1063_5_0254686
crossref_primary_10_1016_j_jallcom_2024_177710
crossref_primary_10_1016_j_jmrt_2022_11_142
crossref_primary_10_1016_j_snb_2023_135136
crossref_primary_10_1039_D2CY02140D
crossref_primary_10_1016_j_jiec_2024_02_050
crossref_primary_10_1016_j_apsusc_2023_158478
crossref_primary_10_1016_j_snb_2025_137569
crossref_primary_10_1016_j_cplett_2023_140803
crossref_primary_10_1021_acssensors_3c02148
crossref_primary_10_1016_j_apsusc_2022_156213
crossref_primary_10_1021_acsami_2c09586
crossref_primary_10_1021_acs_jpcc_4c07412
crossref_primary_10_1016_j_matchemphys_2023_127975
crossref_primary_10_1021_acsomega_3c03569
crossref_primary_10_1016_j_snb_2024_135944
crossref_primary_10_1016_j_snb_2024_136474
crossref_primary_10_1002_smll_202303631
crossref_primary_10_1016_j_snb_2024_135788
crossref_primary_10_1016_j_trac_2023_117398
crossref_primary_10_1016_j_snb_2023_133452
crossref_primary_10_1016_j_snb_2023_135230
crossref_primary_10_1016_j_jece_2024_112144
crossref_primary_10_1002_adom_202202697
crossref_primary_10_3390_s24237623
crossref_primary_10_1007_s11664_023_10531_6
crossref_primary_10_1016_j_surfin_2024_104966
crossref_primary_10_1016_j_electacta_2022_140863
crossref_primary_10_1021_acsanm_3c01484
crossref_primary_10_1016_j_jhazmat_2023_131184
crossref_primary_10_1007_s12598_023_02283_3
Cites_doi 10.1007/s40820-020-00558-3
10.1016/j.snb.2015.04.119
10.1016/j.snb.2017.05.113
10.1016/j.jhazmat.2021.125352
10.1016/j.snb.2020.129045
10.1016/j.apsusc.2022.152698
10.1016/j.apsusc.2017.11.222
10.1039/C6CP01362G
10.1016/j.snb.2019.127393
10.1016/j.snb.2020.128204
10.1021/acsami.0c16795
10.1002/aelm.202100271
10.1016/j.ultsonch.2017.04.024
10.1016/j.snb.2018.06.044
10.1039/C7DT03878J
10.1039/C9NH00404A
10.1007/s10854-018-0087-9
10.1016/j.jhazmat.2020.122325
10.1016/j.jallcom.2019.02.176
10.1016/j.snb.2021.129884
10.1016/j.apsusc.2018.10.018
10.1016/j.cej.2020.125919
10.1016/j.snb.2019.127221
10.1016/j.snb.2020.127716
10.1016/j.jallcom.2020.154395
10.1002/adfm.202104416
10.1016/j.snb.2021.130150
10.1021/acsami.5b05675
10.1039/D0TA03037F
10.1016/j.apsusc.2020.148217
10.1021/acsami.8b05811
10.1088/1361-665X/ac1956
10.1021/acsnano.7b07460
10.1016/j.apsusc.2020.147785
10.1039/D1TA03578A
10.1016/j.snb.2019.127037
10.1021/nn500532f
10.1016/j.snb.2020.129230
10.1016/j.jhazmat.2020.122191
10.1039/C8NR01379A
10.1016/j.snb.2021.130267
10.1016/j.jhazmat.2019.121098
10.1021/acsami.1c11262
10.1021/acsami.8b07034
10.1039/D0NA00318B
10.1016/j.snb.2020.128293
10.1021/acsami.8b15284
10.1021/acsami.7b04395
10.1039/D0TA11695E
10.1021/acs.jpcc.5b05818
10.1016/j.matlet.2021.130916
10.1016/j.snb.2021.131300
10.1016/j.snb.2021.129497
10.1021/acsnano.5b04343
10.3390/s21072554
10.1016/j.snb.2006.09.047
10.1039/C6TC03218D
10.1002/admt.201901085
10.1016/j.snb.2021.130268
10.1016/j.jhazmat.2021.128174
10.1023/A:1014405811371
10.1021/acssensors.1c00132
10.1007/s40820-021-00724-1
10.1021/cm500347r
10.1016/j.snb.2020.128828
10.1016/j.apsusc.2018.05.224
10.1002/smll.201402923
10.1021/acssensors.8b00146
10.1016/S0003-2670(99)00104-X
10.1016/j.snb.2019.05.065
10.1016/j.jhazmat.2021.126414
10.1021/acsnano.5b04504
10.1007/s40820-020-00503-4
10.1016/j.snb.2022.131503
10.1016/j.jhazmat.2021.125830
10.1021/acssensors.5b00241
10.1016/j.snb.2019.05.049
10.1002/pssr.202000518
10.1016/j.snb.2019.127430
10.1002/smll.201201224
10.1002/adfm.201101154
10.1016/j.snb.2011.02.024
10.1021/acs.chemmater.0c01468
10.1021/acs.chemmater.6b03733
10.1016/j.jhazmat.2020.122017
10.1016/j.snb.2020.129175
10.1016/j.jallcom.2018.01.209
10.1039/D1TC04904F
10.1016/j.jhazmat.2018.10.016
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jhazmat.2022.128836
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 10_1016_j_jhazmat_2022_128836
S0304389422006252
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c375t-e56b4aa391b6e8a6bc6374e91e8e5c704ffde7baa83414205d6d5bc7bf50adbc3
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Tue Aug 05 10:25:16 EDT 2025
Fri Jul 11 04:23:36 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Tue Jul 01 01:05:42 EDT 2025
Fri Feb 23 02:40:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NO2 sensor
High selectivity
In2O3/MoS2
Edge activity
Heterojunction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-e56b4aa391b6e8a6bc6374e91e8e5c704ffde7baa83414205d6d5bc7bf50adbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2651692193
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2661012990
proquest_miscellaneous_2651692193
crossref_primary_10_1016_j_jhazmat_2022_128836
crossref_citationtrail_10_1016_j_jhazmat_2022_128836
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2022_128836
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of hazardous materials
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cho, Kim, Lee, Kim, Jung, Yoo, Kim, Jung (bib11) 2015; 9
Pasupuleti, Reddeppa, Park, Oh, Kim, Kim (bib52) 2021; 15
Zhang, Wu, Duan, Liu, Zhao, Yuan, Li, Liang, Jiang, Tai (bib80) 2022; 585
Gu, Nie, Han, Wang (bib18) 2015; 219
Zhang, Jiang, Wu (bib76) 2018; 273
Ma, Fan, Zheng, Wang, Zhao, Zhang, Yadav, Wang, Dong, Wang (bib44) 2020; 387
Lim, Reddeppa, Nam, Pasupuleti, Bak, Kim, Cho, Kim (bib39) 2021; 30
Zhou, Shen, Lu, Zhao, Li, Zhong, Cui, Wei, Zhang (bib88) 2020; 828
Currie (bib13) 1999; 391
Bai, Lv, Liu, Chen, Wang, Sun, Zhang, Wang, Shi (bib4) 2021; 416
Patil, Patil, Vanalakar, Shendage, Pawar, Kim, Ryu, Patil, Patil (bib54) 2022; 306
Zhang, Jiang, Duan, Huang, Wu, Liu, Zhao, Wang, Yuan, Tai (bib81) 2021; 344
Pan, Ge, Zhang, Mai, Li, Guo (bib48) 2018; 47
Li, Yang, Cheng, Zhang, Guo, Xu, Gao, Major, Zhao, Huo (bib37) 2021; 419
Nan, Wang, Wang, Liang, Lu, Chen, He, Tan, Miao, Wang, Wang, Ni (bib46) 2014; 8
Kaushik, Varandani, Mehta (bib30) 2015; 119
Hermawan, Septiani, Taufik, Yuliarto, Suyatman, Yin (bib23) 2021; 13
Xie, Liu, Jing, Pang, Liu, Zhang (bib68) 2021; 13
Wang, Yao, Xu, Wu, Lin, Zheng, Feng, Gao (bib65) 2021; 332
Kim, Haensch, Kim, Barsan, Weimar, Lee (bib31) 2011; 21
Wang, Han, Fei, Liu, Zhang (bib66) 2018; 10
Zhang, Zeng, Li (bib82) 2018; 455
Ou, Ge, Carey, Daeneke, Rotbart, Shan, Wang, Fu, Chrimes, Wlodarski, Russo, Li, Kalantar-zadeh (bib47) 2015; 9
Wusiman, Taghipour (bib67) 2021
Amini, Ramazani, Faghihi, Fattahpour (bib3) 2017; 39
Hu, Liang, Sun, Zhao, Zhang, Li, Zhang, Chen, Zhuiykov (bib24) 2017; 252
Karnati, Akbar, Morris (bib28) 2019; 295
Reddeppa, KimPhung, Murali, Pasupuleti, Park, In, Kim (bib56) 2021; 329
Ko, Park, Lee, Kim, Woo, Kim, Song, Park, Kim (bib33) 2018; 10
Liu, Ikram, Ma, Zhang, Lv, Ullah, Khan, Yu, Shi (bib42) 2020; 393
Agrawal, Kumar, Kumar (bib1) 2021; 13
Zhang, Wu, Cao, Zong, Yang (bib77) 2018; 29
Zhang, Zhang, Huang, Xu, Zhang, Lu, Xu, Chu, Ma (bib79) 2021; 537
Du, Qi, Li, He, Yang (bib14) 2021; 344
Liu, Liu, Yuan, Jiang, Su, Ma, Tai (bib40) 2019; 295
Hao, Zhang, Sun, Zheng, Sun, Wang (bib20) 2018; 10
Yang, Chen, Lu (bib72) 2021; 539
Chen, Wang, Su, Han, Zou, Zeng, Hu, Su, Zhou, Yang (bib10) 2020; 305
Yang, Myung, Tran (bib71) 2021; 7
Du, Si, Wang, Lv, Wu, Wang, Liu, Liu (bib15) 2020; 303
Vishnuraj, Karuppanan, Aleem, Pullithadathil (bib62) 2020; 2
Ikram, Liu, Lv, Liu, Rehman, Kan, Zhang, He, Wang, Wang, Shi (bib25) 2019; 466
Zhang, Qin, Tang, Feng, Li (bib78) 2020; 391
Barsan, Weimar (bib6) 2001; 7
Ikram, Lv, Liu, Khan, Liu, Raziq, Bai, Ullah, Zhang, Shi (bib26) 2020; 32
Liang, Zhang, Du, Zhang (bib38) 2021; 329
Wang, Su, Chen, Li, Shi, Zou, Zou (bib64) 2017; 9
Korotcenkov, Cho (bib34) 2011; 156
Yang, Zhang, Chen (bib74) 2019; 300
Zhao, Fuh, Coileáin, Cullen, Stimpel‐Lindner, Duesberg, Leonardo Camargo Moreira, Zhang, Cho, Choi, Chun, Chang, Wu (bib85) 2020; 5
Xu, Tian, Liu, Sun, Du (bib69) 2019; 787
Harathi, Bollu, Pasupuleti, Tauanov, Peta, Kim, Reddeppa, Sarkar, Rao (bib21) 2022; 358
Ikram, Lv, Liu, Shi, Gao (bib27) 2021; 9
Zhou, Chang, Pu, Shi, Mao, Sui, Ren, Cui, Chen (bib87) 2016; 1
Pasupuleti, Reddeppa, Park, Peta, Oh, Kim, Kim (bib53) 2020; 12
Kumar, Liu, Zhang, Kumar (bib35) 2020; 12
Duan, Zhao, Wang, Huang, Yuan, Zhang, Jiang, Tai (bib17) 2020; 317
Purbia, Kwon, Kim, Lee, Shin, Baik (bib55) 2020; 8
Pasupuleti, Reddeppa, Chougule, Bak, Nam, Jung, Cho, Kim, Kim (bib50) 2022; 427
Rong, Li, Hao, Cai, Wolverton, Dravid, Zhai, Liu (bib58) 2021; 9
Zhang, Zhang, Jiang, Duan, Liu, Zhao, Wang, Yuan, Tai (bib83) 2020; 319
Chang, Li, Qiao, Li, Xiong, Li, Guo, Zhu, Xue (bib7) 2020; 304
Marikutsa, Rumyantseva, Konstantinova, Gaskov (bib45) 2021; 21
Senapati, Nanda (bib60) 2015; 7
Chen, Shen, Zhang, Zhang, Wei, Lu, Zhu, Li, Shen (bib9) 2018; 435
Duan, Jiang, Zhao, Huang, Wang, Zhang, Wu, Liu, Zhen, Tai (bib16) 2021; 339
Liu, Zhang, Cheng, Fan, Yu (bib41) 2021; 413
Pasupuleti, Nam, Bak, Reddeppa, Oh, Kim, Cho, Kim (bib49) 2022; 10
Barsan, Koziej, Weimar (bib5) 2007; 121
Yang, Jiang, Wang, Liu, He, Liu, Lv, You, Yan, Sun, Wang, Duan, Lu (bib73) 2021; 326
Liu, Sun, Xu, Zhu, Zhou, Yang, Dong, Bai, Lu, Song (bib43) 2019; 4
Ren, Zhou, Luo, Xu, Zhu, Li, Cheng, Deng, Zhao (bib57) 2016; 28
Yan, Lu, Gao, Zhang, Guo, Ding, Wang, Wei, Zhu, Yang, Wang (bib70) 2018; 741
Roso, Bittencourt, Umek, González, Güell, Urakawa, Llobet (bib59) 2016; 4
Chen, Lu, Li, Zhang, Tian, Gao, Guo, Lu, Gao (bib8) 2020; 308
Han, Huang, Ma, He, Hu, Zhang, Hu, Su, Zhou, Zhang, Yang (bib19) 2018; 10
Zou, Dong, Ke, Ge, Chen, Sun, Cui (bib90) 2020; 400
Kim, Koh, Ren, Kwon, Maleski, Cho, Anasori, Kim, Choi, Kim, Gogotsi, Jung (bib32) 2018; 12
Yuan, Zhao, Xie, Liang, Duan, Duan, Li, Jiang, Tai (bib75) 2022; 355
He, Zeng, Yin, Li, Wu, Huang, Zhang (bib22) 2012; 8
Zhao, Sun, Wang, Duan, Yuan, Wei, Xu, Tai, Jiang (bib84) 2021; 6
Agrawal, Kumar, Venkatesan, Zakhidov, Yang, Bao, Kumar, Kumar (bib2) 2018; 3
Kaur, Zappa, Maraloiu, Comini (bib29) 2021; 31
Li, Huang, Cao (bib36) 2016; 18
Pasupuleti, Reddeppa, Nam, Bak, Peta, Cho, Kim, Kim (bib51) 2021; 344
Cui, Wen, Huang, Chang, Chen (bib12) 2015; 11
Wang, Zhang, Zhang, Li, Leng, Gao, Gao, Lu, Li (bib63) 2021; 328
Zhu, Sun, Xu, Li, Lin, Qin (bib89) 2020; 382
Sonker, Yadav, Gupta, Tomar (bib61) 2019; 370
Zheng, Xu, Yan, Wang, Wang, Yang (bib86) 2014; 26
Du (10.1016/j.jhazmat.2022.128836_bib14) 2021; 344
Li (10.1016/j.jhazmat.2022.128836_bib37) 2021; 419
Xie (10.1016/j.jhazmat.2022.128836_bib68) 2021; 13
Patil (10.1016/j.jhazmat.2022.128836_bib54) 2022; 306
Zhang (10.1016/j.jhazmat.2022.128836_bib82) 2018; 455
Ou (10.1016/j.jhazmat.2022.128836_bib47) 2015; 9
Amini (10.1016/j.jhazmat.2022.128836_bib3) 2017; 39
Ren (10.1016/j.jhazmat.2022.128836_bib57) 2016; 28
Roso (10.1016/j.jhazmat.2022.128836_bib59) 2016; 4
Yan (10.1016/j.jhazmat.2022.128836_bib70) 2018; 741
Zhang (10.1016/j.jhazmat.2022.128836_bib83) 2020; 319
Wang (10.1016/j.jhazmat.2022.128836_bib66) 2018; 10
Harathi (10.1016/j.jhazmat.2022.128836_bib21) 2022; 358
Kaur (10.1016/j.jhazmat.2022.128836_bib29) 2021; 31
Ikram (10.1016/j.jhazmat.2022.128836_bib25) 2019; 466
Yang (10.1016/j.jhazmat.2022.128836_bib73) 2021; 326
Marikutsa (10.1016/j.jhazmat.2022.128836_bib45) 2021; 21
Xu (10.1016/j.jhazmat.2022.128836_bib69) 2019; 787
Bai (10.1016/j.jhazmat.2022.128836_bib4) 2021; 416
He (10.1016/j.jhazmat.2022.128836_bib22) 2012; 8
Purbia (10.1016/j.jhazmat.2022.128836_bib55) 2020; 8
Cui (10.1016/j.jhazmat.2022.128836_bib12) 2015; 11
Chen (10.1016/j.jhazmat.2022.128836_bib9) 2018; 435
Pasupuleti (10.1016/j.jhazmat.2022.128836_bib52) 2021; 15
Vishnuraj (10.1016/j.jhazmat.2022.128836_bib62) 2020; 2
Wang (10.1016/j.jhazmat.2022.128836_bib63) 2021; 328
Hao (10.1016/j.jhazmat.2022.128836_bib20) 2018; 10
Zhou (10.1016/j.jhazmat.2022.128836_bib87) 2016; 1
Ikram (10.1016/j.jhazmat.2022.128836_bib27) 2021; 9
Pasupuleti (10.1016/j.jhazmat.2022.128836_bib49) 2022; 10
Duan (10.1016/j.jhazmat.2022.128836_bib16) 2021; 339
Sonker (10.1016/j.jhazmat.2022.128836_bib61) 2019; 370
Yang (10.1016/j.jhazmat.2022.128836_bib72) 2021; 539
Han (10.1016/j.jhazmat.2022.128836_bib19) 2018; 10
Duan (10.1016/j.jhazmat.2022.128836_bib17) 2020; 317
Li (10.1016/j.jhazmat.2022.128836_bib36) 2016; 18
Barsan (10.1016/j.jhazmat.2022.128836_bib6) 2001; 7
Chen (10.1016/j.jhazmat.2022.128836_bib10) 2020; 305
Cho (10.1016/j.jhazmat.2022.128836_bib11) 2015; 9
Pasupuleti (10.1016/j.jhazmat.2022.128836_bib51) 2021; 344
Zhang (10.1016/j.jhazmat.2022.128836_bib80) 2022; 585
Ma (10.1016/j.jhazmat.2022.128836_bib44) 2020; 387
Karnati (10.1016/j.jhazmat.2022.128836_bib28) 2019; 295
Korotcenkov (10.1016/j.jhazmat.2022.128836_bib34) 2011; 156
Reddeppa (10.1016/j.jhazmat.2022.128836_bib56) 2021; 329
Liu (10.1016/j.jhazmat.2022.128836_bib42) 2020; 393
Kim (10.1016/j.jhazmat.2022.128836_bib32) 2018; 12
Yang (10.1016/j.jhazmat.2022.128836_bib71) 2021; 7
Zou (10.1016/j.jhazmat.2022.128836_bib90) 2020; 400
Zhang (10.1016/j.jhazmat.2022.128836_bib78) 2020; 391
Du (10.1016/j.jhazmat.2022.128836_bib15) 2020; 303
Nan (10.1016/j.jhazmat.2022.128836_bib46) 2014; 8
Hu (10.1016/j.jhazmat.2022.128836_bib24) 2017; 252
Zhang (10.1016/j.jhazmat.2022.128836_bib79) 2021; 537
Liu (10.1016/j.jhazmat.2022.128836_bib43) 2019; 4
Wang (10.1016/j.jhazmat.2022.128836_bib65) 2021; 332
Lim (10.1016/j.jhazmat.2022.128836_bib39) 2021; 30
Currie (10.1016/j.jhazmat.2022.128836_bib13) 1999; 391
Wusiman (10.1016/j.jhazmat.2022.128836_bib67) 2021
Chang (10.1016/j.jhazmat.2022.128836_bib7) 2020; 304
Zheng (10.1016/j.jhazmat.2022.128836_bib86) 2014; 26
Liu (10.1016/j.jhazmat.2022.128836_bib41) 2021; 413
Senapati (10.1016/j.jhazmat.2022.128836_bib60) 2015; 7
Zhu (10.1016/j.jhazmat.2022.128836_bib89) 2020; 382
Ko (10.1016/j.jhazmat.2022.128836_bib33) 2018; 10
Chen (10.1016/j.jhazmat.2022.128836_bib8) 2020; 308
Yang (10.1016/j.jhazmat.2022.128836_bib74) 2019; 300
Pasupuleti (10.1016/j.jhazmat.2022.128836_bib53) 2020; 12
Zhou (10.1016/j.jhazmat.2022.128836_bib88) 2020; 828
Barsan (10.1016/j.jhazmat.2022.128836_bib5) 2007; 121
Kumar (10.1016/j.jhazmat.2022.128836_bib35) 2020; 12
Zhang (10.1016/j.jhazmat.2022.128836_bib81) 2021; 344
Agrawal (10.1016/j.jhazmat.2022.128836_bib1) 2021; 13
Hermawan (10.1016/j.jhazmat.2022.128836_bib23) 2021; 13
Liang (10.1016/j.jhazmat.2022.128836_bib38) 2021; 329
Kaushik (10.1016/j.jhazmat.2022.128836_bib30) 2015; 119
Zhao (10.1016/j.jhazmat.2022.128836_bib85) 2020; 5
Ikram (10.1016/j.jhazmat.2022.128836_bib26) 2020; 32
Zhang (10.1016/j.jhazmat.2022.128836_bib77) 2018; 29
Pan (10.1016/j.jhazmat.2022.128836_bib48) 2018; 47
Rong (10.1016/j.jhazmat.2022.128836_bib58) 2021; 9
Yuan (10.1016/j.jhazmat.2022.128836_bib75) 2022; 355
Gu (10.1016/j.jhazmat.2022.128836_bib18) 2015; 219
Liu (10.1016/j.jhazmat.2022.128836_bib40) 2019; 295
Zhang (10.1016/j.jhazmat.2022.128836_bib76) 2018; 273
Agrawal (10.1016/j.jhazmat.2022.128836_bib2) 2018; 3
Zhao (10.1016/j.jhazmat.2022.128836_bib84) 2021; 6
Pasupuleti (10.1016/j.jhazmat.2022.128836_bib50) 2022; 427
Kim (10.1016/j.jhazmat.2022.128836_bib31) 2011; 21
Wang (10.1016/j.jhazmat.2022.128836_bib64) 2017; 9
References_xml – start-page: 1
  year: 2021
  end-page: 20
  ident: bib67
  article-title: Methods and mechanisms of gas sensor selectivity
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 339
  year: 2021
  ident: bib16
  article-title: Daily writing carbon ink: novel application on humidity sensor with wide detection range, low detection limit and high detection resolution
  publication-title: Sens. Actuators B Chem.
– volume: 13
  start-page: 207
  year: 2021
  ident: bib23
  article-title: Advanced strategies to improve performances of molybdenum-based gas sensors
  publication-title: Nano-Micro Lett.
– volume: 427
  year: 2022
  ident: bib50
  article-title: High performance langasite based SAW NO
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 2858
  year: 2021
  end-page: 2867
  ident: bib84
  article-title: Enhanced blocking effect: a new strategy to improve the NO
  publication-title: ACS Sens
– volume: 31
  year: 2021
  ident: bib29
  article-title: Novel christmas branched like NiO/NiWO
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1361
  year: 2019
  end-page: 1371
  ident: bib43
  article-title: Understanding the noble metal modifying effect on In
  publication-title: Nanoscale Horiz.
– volume: 2
  start-page: 4785
  year: 2020
  end-page: 4797
  ident: bib62
  article-title: Boosting the performance of NO
  publication-title: Nanoscale Adv.
– volume: 344
  year: 2021
  ident: bib51
  article-title: Boosting of NO
  publication-title: Sens. Actuators B Chem.
– volume: 387
  year: 2020
  ident: bib44
  article-title: Facile metal-organic frameworks-templated fabrication of hollow indium oxide microstructures for chlorine detection at low temperature
  publication-title: J. Hazard. Mater.
– volume: 121
  start-page: 18
  year: 2007
  end-page: 35
  ident: bib5
  article-title: Metal oxide-based gas sensor research: how to?
  publication-title: Sens. Actuators B Chem.
– volume: 219
  start-page: 94
  year: 2015
  end-page: 99
  ident: bib18
  article-title: In
  publication-title: Sens. Actuators B Chem.
– volume: 15
  year: 2021
  ident: bib52
  article-title: Efficient charge separation in polypyrrole/GaN-nanorod-based hybrid heterojunctions for high-performance self-powered UV photodetection
  publication-title: Phys. Status Solidi RRL
– volume: 9
  start-page: 16335
  year: 2017
  end-page: 16342
  ident: bib64
  article-title: Ultrathin In
  publication-title: ACS Appl. Mater. Interfaces
– volume: 400
  year: 2020
  ident: bib90
  article-title: Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible-light-driven gaseous toluene degradation
  publication-title: Chem. Eng. J.
– volume: 317
  year: 2020
  ident: bib17
  article-title: Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor
  publication-title: Sens. Actuators B Chem.
– volume: 329
  year: 2021
  ident: bib38
  article-title: Effect of resonant tunneling modulation on ZnO/In
  publication-title: Sens. Actuators B Chem.
– volume: 328
  year: 2021
  ident: bib63
  article-title: Metal–organic framework-derived Cu
  publication-title: Sens. Actuators B Chem.
– volume: 828
  year: 2020
  ident: bib88
  article-title: Highly selective NO
  publication-title: J. Alloy. Compd.
– volume: 303
  year: 2020
  ident: bib15
  article-title: Creating oxygen vacancies on porous indium oxide nanospheres via metallic aluminum reduction for enhanced nitrogen dioxide detection at low temperature
  publication-title: Sens. Actuators B Chem.
– volume: 39
  start-page: 188
  year: 2017
  end-page: 196
  ident: bib3
  article-title: Preparation of nanostructured and nanosheets of MoS
  publication-title: Ultrason. Sonochem.
– volume: 8
  start-page: 5738
  year: 2014
  end-page: 5745
  ident: bib46
  article-title: Strong photoluminescence enhancement of MoS
  publication-title: ACS Nano
– volume: 305
  year: 2020
  ident: bib10
  article-title: Two-dimensional Cd-doped porous Co
  publication-title: Sens. Actuators B Chem.
– volume: 7
  year: 2021
  ident: bib71
  article-title: 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review
  publication-title: Adv. Electron. Mater.
– volume: 585
  year: 2022
  ident: bib80
  article-title: High performance humidity sensor based on 3D mesoporous Co
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 164
  year: 2020
  ident: bib35
  article-title: Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials
  publication-title: Nano-Micro Lett.
– volume: 28
  start-page: 7997
  year: 2016
  end-page: 8005
  ident: bib57
  article-title: Amphiphilic block copolymer templated synthesis of mesoporous indium oxides with nanosheet-assembled pore walls
  publication-title: Chem. Mater.
– volume: 10
  start-page: 7210
  year: 2018
  end-page: 7217
  ident: bib20
  article-title: Hierarchical SnS
  publication-title: Nanoscale
– volume: 30
  year: 2021
  ident: bib39
  article-title: Surface acoustic device for high response NO
  publication-title: Smart Mater. Struct.
– volume: 413
  year: 2021
  ident: bib41
  article-title: A high-response formaldehyde sensor based on fibrous Ag-ZnO/In
  publication-title: J. Hazard. Mater.
– volume: 344
  year: 2021
  ident: bib14
  article-title: Improving anti-humidity property of In
  publication-title: Sens. Actuators B Chem.
– volume: 393
  year: 2020
  ident: bib42
  article-title: Edge-exposed MoS
  publication-title: J. Hazard Mater.
– volume: 419
  year: 2021
  ident: bib37
  article-title: Fast detection of NO
  publication-title: J. Hazard. Mater.
– volume: 787
  start-page: 1063
  year: 2019
  end-page: 1073
  ident: bib69
  article-title: In
  publication-title: J. Alloy. Compd.
– volume: 9
  start-page: 9314
  year: 2015
  end-page: 9321
  ident: bib11
  article-title: Highly enhanced gas adsorption properties in vertically aligned MoS
  publication-title: ACS Nano
– volume: 10
  start-page: 41773
  year: 2018
  end-page: 41783
  ident: bib66
  article-title: Investigation of microstructure effect on NO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 355
  year: 2022
  ident: bib75
  article-title: Gold-loaded tellurium nanobelts gas sensor for ppt-level NO
  publication-title: Sens. Actuators B Chem.
– volume: 537
  year: 2021
  ident: bib79
  article-title: Hexagonal ZnO nanoplates/graphene composites with excellent sensing performance to NO
  publication-title: Appl. Surf. Sci.
– volume: 47
  start-page: 708
  year: 2018
  end-page: 715
  ident: bib48
  article-title: Synthesis and photoelectrocatalytic activity of In
  publication-title: Dalton Trans.
– volume: 21
  start-page: 2554
  year: 2021
  ident: bib45
  article-title: The key role of active sites in the development of selective metal oxide sensor materials
  publication-title: Sens. (Basel)
– volume: 332
  year: 2021
  ident: bib65
  article-title: Enhanced NO
  publication-title: Sens. Actuators B Chem.
– volume: 358
  year: 2022
  ident: bib21
  article-title: PrGO decorated TiO
  publication-title: Sens. Actuators B Chem.
– volume: 326
  year: 2021
  ident: bib73
  article-title: Flexible resistive NO
  publication-title: Sens. Actuators B Chem.
– volume: 319
  year: 2020
  ident: bib83
  article-title: Ultrasensitive flexible NH
  publication-title: Sens. Actuators B Chem.
– volume: 4
  start-page: 9418
  year: 2016
  end-page: 9427
  ident: bib59
  article-title: Synthesis of single crystalline In
  publication-title: J. Mater. Chem. C.
– volume: 455
  start-page: 276
  year: 2018
  end-page: 282
  ident: bib82
  article-title: Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS
  publication-title: Appl. Surf. Sci.
– volume: 382
  year: 2020
  ident: bib89
  article-title: Rational design of 3D/2D In
  publication-title: J. Hazard. Mater.
– volume: 10
  start-page: 22640
  year: 2018
  end-page: 22649
  ident: bib19
  article-title: Design of hetero-nanostructures on MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 329
  year: 2021
  ident: bib56
  article-title: Interaction activated interfacial charge transfer in 2D g-C
  publication-title: Sens. Actuators B Chem.
– volume: 370
  start-page: 126
  year: 2019
  end-page: 137
  ident: bib61
  article-title: Fabrication and characterization of ZnO-TiO
  publication-title: J. Hazard. Mater.
– volume: 300
  year: 2019
  ident: bib74
  article-title: MOF-derived indium oxide hollow microtubes/MoS
  publication-title: Sens. Actuators B Chem.
– volume: 304
  year: 2020
  ident: bib7
  article-title: Metal-organic frameworks derived ZnO@MoS
  publication-title: Sens. Actuators B Chem.
– volume: 26
  start-page: 2344
  year: 2014
  end-page: 2353
  ident: bib86
  article-title: Space-confined growth of MoS
  publication-title: Chem. Mater.
– volume: 295
  start-page: 86
  year: 2019
  end-page: 92
  ident: bib40
  article-title: A flexible NO
  publication-title: Sens. Actuators B Chem.
– volume: 306
  year: 2022
  ident: bib54
  article-title: Porous In
  publication-title: Mater. Lett.
– volume: 252
  start-page: 116
  year: 2017
  end-page: 126
  ident: bib24
  article-title: Highly sensitive NO
  publication-title: Sens. Actuators B Chem.
– volume: 391
  year: 2020
  ident: bib78
  article-title: Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In
  publication-title: J. Hazard. Mater.
– volume: 1
  start-page: 295
  year: 2016
  end-page: 302
  ident: bib87
  article-title: Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device
  publication-title: ACS Sens
– volume: 391
  start-page: 105
  year: 1999
  end-page: 126
  ident: bib13
  article-title: Nomenclature in evaluation of analytical methods includingdetection and quantification capabilities
  publication-title: Anal. Chim. Acta
– volume: 8
  start-page: 11734
  year: 2020
  end-page: 11742
  ident: bib55
  article-title: Zero-dimensional heterostructures: N-doped graphene dots/SnO
  publication-title: J. Mater. Chem. A
– volume: 308
  year: 2020
  ident: bib8
  article-title: Surface functionalization of porous In
  publication-title: Sens. Actuators B Chem.
– volume: 7
  start-page: 143
  year: 2001
  end-page: 167
  ident: bib6
  article-title: Conduction model of metal oxide gas sensors
  publication-title: J. Electroceram
– volume: 539
  year: 2021
  ident: bib72
  article-title: Assembly of stacked In
  publication-title: Appl. Surf. Sci.
– volume: 5
  year: 2020
  ident: bib85
  article-title: Highly sensitive, selective, stable, and flexible NO
  publication-title: Adv. Mater. Technol.
– volume: 3
  start-page: 998
  year: 2018
  end-page: 1004
  ident: bib2
  article-title: Photoactivated mixed in-plane and edge-enriched p-type MoS
  publication-title: ACS Sens
– volume: 416
  year: 2021
  ident: bib4
  article-title: Thin-layered MoS
  publication-title: J. Hazard. Mater.
– volume: 18
  start-page: 15110
  year: 2016
  end-page: 15117
  ident: bib36
  article-title: Markedly different adsorption behaviors of gas molecules on defective monolayer MoS
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 23910
  year: 2018
  end-page: 23917
  ident: bib33
  article-title: Recovery improvement for large-area tungsten diselenide gas sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 344
  year: 2021
  ident: bib81
  article-title: Highly sensitive and selective NO
  publication-title: Sens. Actuators B Chem.
– volume: 12
  start-page: 986
  year: 2018
  end-page: 993
  ident: bib32
  article-title: Metallic Ti
  publication-title: ACS Nano
– volume: 9
  start-page: 14722
  year: 2021
  end-page: 14730
  ident: bib27
  article-title: Hydrothermally derived p–n MoS
  publication-title: J. Mater. Chem. A
– volume: 156
  start-page: 527
  year: 2011
  end-page: 538
  ident: bib34
  article-title: Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey)
  publication-title: Sens. Actuators B Chem.
– volume: 295
  start-page: 127
  year: 2019
  end-page: 143
  ident: bib28
  article-title: Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review
  publication-title: Sens. Actuators B Chem.
– volume: 9
  start-page: 6529
  year: 2021
  end-page: 6537
  ident: bib58
  article-title: Raspberry-like mesoporous Co-doped TiO
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 2305
  year: 2015
  end-page: 2313
  ident: bib12
  article-title: Stabilizing MoS
  publication-title: Small
– volume: 741
  start-page: 908
  year: 2018
  end-page: 917
  ident: bib70
  article-title: Improved NO
  publication-title: J. Alloy. Compd.
– volume: 7
  start-page: 23481
  year: 2015
  end-page: 23488
  ident: bib60
  article-title: Wide-range thermometry at micro/nano length scales with In
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 20136
  year: 2015
  end-page: 20142
  ident: bib30
  article-title: Nanoscale mapping of layer-dependent surface potential and junction properties of CVD-grown MoS
  publication-title: J. Phys. Chem. C.
– volume: 9
  start-page: 10313
  year: 2015
  end-page: 10323
  ident: bib47
  article-title: Physisorption-based charge transfer in two-dimensional SnS
  publication-title: ACS Nano
– volume: 21
  start-page: 4456
  year: 2011
  end-page: 4463
  ident: bib31
  article-title: The role of NiO doping in reducing the impact of humidity on the performance of SnO
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 7215
  year: 2020
  end-page: 7225
  ident: bib26
  article-title: Rational design of MoS
  publication-title: Chem. Mater.
– volume: 13
  start-page: 38
  year: 2021
  ident: bib1
  article-title: Strategy and future prospects to develop room-temperature-recoverable NO
  publication-title: Nano-Micro Lett.
– volume: 273
  start-page: 176
  year: 2018
  end-page: 184
  ident: bib76
  article-title: Layer-by-layer assembled In
  publication-title: Sens. Actuators B Chem.
– volume: 13
  start-page: 39621
  year: 2021
  end-page: 39632
  ident: bib68
  article-title: Chemical and electronic modulation via atomic layer deposition of nio on porous In
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 19558
  year: 2018
  end-page: 19566
  ident: bib77
  article-title: Construction of Co
  publication-title: J. Mater. Sci. -Mater. El.
– volume: 10
  start-page: 160
  year: 2022
  end-page: 170
  ident: bib49
  article-title: Highly sensitive g-C
  publication-title: J. Mater. Chem. C.
– volume: 466
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib25
  article-title: 3D-multilayer MoS
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 2994
  year: 2012
  end-page: 2999
  ident: bib22
  article-title: Fabrication of flexible MoS
  publication-title: Small
– volume: 12
  start-page: 54181
  year: 2020
  end-page: 54190
  ident: bib53
  article-title: Ag nanowire-plasmonic-assisted charge separation in hybrid heterojunctions of Ppy-PEDOT:PSS/GaN nanorods for enhanced UV photodetection
  publication-title: ACS Appl. Mater. Interfaces
– volume: 435
  start-page: 1096
  year: 2018
  end-page: 1104
  ident: bib9
  article-title: In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 38
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib1
  article-title: Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00558-3
– volume: 219
  start-page: 94
  year: 2015
  ident: 10.1016/j.jhazmat.2022.128836_bib18
  article-title: In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.04.119
– volume: 252
  start-page: 116
  year: 2017
  ident: 10.1016/j.jhazmat.2022.128836_bib24
  article-title: Highly sensitive NO2 detection on ppb level by devices based on Pd-loaded In2O3 hierarchical microstructures
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.05.113
– volume: 413
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib41
  article-title: A high-response formaldehyde sensor based on fibrous Ag-ZnO/In2O3 with multi-level heterojunctions
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125352
– volume: 328
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib63
  article-title: Metal–organic framework-derived Cu2O–CuO octahedrons for sensitive and selective detection of ppb-level NO2 at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.129045
– volume: 585
  year: 2022
  ident: 10.1016/j.jhazmat.2022.128836_bib80
  article-title: High performance humidity sensor based on 3D mesoporous Co3O4 hollow polyhedron for multifunctional applications.
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.152698
– volume: 435
  start-page: 1096
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib9
  article-title: In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.11.222
– volume: 18
  start-page: 15110
  year: 2016
  ident: 10.1016/j.jhazmat.2022.128836_bib36
  article-title: Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01362G
– volume: 305
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib10
  article-title: Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.127393
– volume: 317
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib17
  article-title: Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128204
– volume: 12
  start-page: 54181
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib53
  article-title: Ag nanowire-plasmonic-assisted charge separation in hybrid heterojunctions of Ppy-PEDOT:PSS/GaN nanorods for enhanced UV photodetection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c16795
– volume: 7
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib71
  article-title: 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202100271
– volume: 39
  start-page: 188
  year: 2017
  ident: 10.1016/j.jhazmat.2022.128836_bib3
  article-title: Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.04.024
– volume: 273
  start-page: 176
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib76
  article-title: Layer-by-layer assembled In2O3 nanocubes/flower-like MoS2 nanofilm for room temperature formaldehyde sensing
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.06.044
– volume: 47
  start-page: 708
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib48
  article-title: Synthesis and photoelectrocatalytic activity of In2O3 hollow microspheres via a bio-template route using yeast templates
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT03878J
– volume: 4
  start-page: 1361
  year: 2019
  ident: 10.1016/j.jhazmat.2022.128836_bib43
  article-title: Understanding the noble metal modifying effect on In2O3 nanowires: highly sensitive and selective gas sensors for potential early screening of multiple diseases
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00404A
– volume: 29
  start-page: 19558
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib77
  article-title: Construction of Co3O4 nanorods/In2O3 nanocubes heterojunctions for efficient sensing of NO2 gas at low temperature
  publication-title: J. Mater. Sci. -Mater. El.
  doi: 10.1007/s10854-018-0087-9
– volume: 393
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib42
  article-title: Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122325
– volume: 787
  start-page: 1063
  year: 2019
  ident: 10.1016/j.jhazmat.2022.128836_bib69
  article-title: In2O3 nanoplates with different crystallinity and porosity: controllable synthesis and gas-sensing properties investigation
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.02.176
– volume: 339
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib16
  article-title: Daily writing carbon ink: novel application on humidity sensor with wide detection range, low detection limit and high detection resolution
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.129884
– volume: 466
  start-page: 1
  year: 2019
  ident: 10.1016/j.jhazmat.2022.128836_bib25
  article-title: 3D-multilayer MoS2 nanosheets vertically grown on highly mesoporous cubic In2O3 for high-performance gas sensing at room temperature
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.018
– volume: 400
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib90
  article-title: Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible-light-driven gaseous toluene degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125919
– volume: 303
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib15
  article-title: Creating oxygen vacancies on porous indium oxide nanospheres via metallic aluminum reduction for enhanced nitrogen dioxide detection at low temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.127221
– volume: 308
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib8
  article-title: Surface functionalization of porous In2O3 nanofibers with Zn nanoparticles for enhanced low-temperature NO2 sensing properties
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.127716
– volume: 828
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib88
  article-title: Highly selective NO2 chemiresistive gas sensor based on hierarchical In2O3 microflowers grown on clinoptilolite substrates
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.154395
– volume: 31
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib29
  article-title: Novel christmas branched like NiO/NiWO4/WO3 (p–p–n) nanowire heterostructures for chemical sensing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104416
– volume: 344
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib81
  article-title: Highly sensitive and selective NO2 sensor of alkalized V2CTx MXene driven by interlayer swelling
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130150
– volume: 7
  start-page: 23481
  year: 2015
  ident: 10.1016/j.jhazmat.2022.128836_bib60
  article-title: Wide-range thermometry at micro/nano length scales with In2O3 octahedrons as optical probes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05675
– volume: 8
  start-page: 11734
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib55
  article-title: Zero-dimensional heterostructures: N-doped graphene dots/SnO2 for ultrasensitive and selective NO2 gas sensing at low temperatures
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03037F
– volume: 539
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib72
  article-title: Assembly of stacked In2O3 nanosheets for detecting trace NO2 with ultrahigh selectivity and promoted recovery
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148217
– volume: 10
  start-page: 22640
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib19
  article-title: Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05811
– volume: 30
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib39
  article-title: Surface acoustic device for high response NO2 gas sensor using p-phenylenediamine-reduced graphene oxide nanocomposite coated on langasite
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ac1956
– volume: 12
  start-page: 986
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib32
  article-title: Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07460
– volume: 537
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib79
  article-title: Hexagonal ZnO nanoplates/graphene composites with excellent sensing performance to NO2 at room temperature
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147785
– volume: 9
  start-page: 14722
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib27
  article-title: Hydrothermally derived p–n MoS2–ZnO from p–p MoS2-ZIF-8 for an efficient detection of NO2 at room temperature
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA03578A
– volume: 300
  year: 2019
  ident: 10.1016/j.jhazmat.2022.128836_bib74
  article-title: MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.127037
– volume: 8
  start-page: 5738
  year: 2014
  ident: 10.1016/j.jhazmat.2022.128836_bib46
  article-title: Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding
  publication-title: ACS Nano
  doi: 10.1021/nn500532f
– volume: 329
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib38
  article-title: Effect of resonant tunneling modulation on ZnO/In2O3 heterojunction nanocomposite in efficient detection of NO2 gas at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.129230
– volume: 391
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib78
  article-title: Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122191
– volume: 10
  start-page: 7210
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib20
  article-title: Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection
  publication-title: Nanoscale
  doi: 10.1039/C8NR01379A
– volume: 344
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib51
  article-title: Boosting of NO2 gas sensing performances using GO-PEDOT:PSS nanocomposite chemical interface coated on langasite-based surface acoustic wave sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130267
– volume: 382
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib89
  article-title: Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area "high-speed channels" for photocatalytic oxidation of 2,4-dichlorophenol under visible light
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121098
– volume: 13
  start-page: 39621
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib68
  article-title: Chemical and electronic modulation via atomic layer deposition of nio on porous In2O3 films to boost NO2 detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c11262
– volume: 10
  start-page: 23910
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib33
  article-title: Recovery improvement for large-area tungsten diselenide gas sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07034
– volume: 2
  start-page: 4785
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib62
  article-title: Boosting the performance of NO2 gas sensors based on n–n type mesoporous ZnO@In2O3 heterojunction nanowires: in situ conducting probe atomic force microscopic elucidation of room temperature local electron transport
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00318B
– volume: 319
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib83
  article-title: Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128293
– volume: 10
  start-page: 41773
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib66
  article-title: Investigation of microstructure effect on NO2 sensors based on SnO2 nanoparticles/reduced graphene oxide hybrids
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b15284
– volume: 9
  start-page: 16335
  year: 2017
  ident: 10.1016/j.jhazmat.2022.128836_bib64
  article-title: Ultrathin In2O3 nanosheets with uniform mesopores for highly sensitive nitric oxide detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04395
– volume: 9
  start-page: 6529
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib58
  article-title: Raspberry-like mesoporous Co-doped TiO2 nanospheres for a high-performance formaldehyde gas sensor
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11695E
– volume: 119
  start-page: 20136
  year: 2015
  ident: 10.1016/j.jhazmat.2022.128836_bib30
  article-title: Nanoscale mapping of layer-dependent surface potential and junction properties of CVD-grown MoS2 domains
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b05818
– volume: 306
  year: 2022
  ident: 10.1016/j.jhazmat.2022.128836_bib54
  article-title: Porous In2O3 thick films as a low temperature NO2 gas detector
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2021.130916
– volume: 355
  year: 2022
  ident: 10.1016/j.jhazmat.2022.128836_bib75
  article-title: Gold-loaded tellurium nanobelts gas sensor for ppt-level NO2 detection at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.131300
– volume: 332
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib65
  article-title: Enhanced NO2 gas sensing properties based on Rb-doped hierarchical flower-like In2O3 microspheres at low temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.129497
– volume: 9
  start-page: 10313
  year: 2015
  ident: 10.1016/j.jhazmat.2022.128836_bib47
  article-title: Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04343
– volume: 21
  start-page: 2554
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib45
  article-title: The key role of active sites in the development of selective metal oxide sensor materials
  publication-title: Sens. (Basel)
  doi: 10.3390/s21072554
– volume: 121
  start-page: 18
  year: 2007
  ident: 10.1016/j.jhazmat.2022.128836_bib5
  article-title: Metal oxide-based gas sensor research: how to?
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2006.09.047
– volume: 4
  start-page: 9418
  year: 2016
  ident: 10.1016/j.jhazmat.2022.128836_bib59
  article-title: Synthesis of single crystalline In2O3 octahedra for the selective detection of NO2 and H2 at trace levels
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C6TC03218D
– volume: 5
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib85
  article-title: Highly sensitive, selective, stable, and flexible NO2 sensor based on GaSe
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201901085
– volume: 344
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib14
  article-title: Improving anti-humidity property of In2O3 based NO2 sensor by fluorocarbon plasma treatment
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130268
– volume: 427
  year: 2022
  ident: 10.1016/j.jhazmat.2022.128836_bib50
  article-title: High performance langasite based SAW NO2 gas sensor using 2D g-C3N4@TiO2 hybrid nanocomposite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.128174
– volume: 7
  start-page: 143
  year: 2001
  ident: 10.1016/j.jhazmat.2022.128836_bib6
  article-title: Conduction model of metal oxide gas sensors
  publication-title: J. Electroceram
  doi: 10.1023/A:1014405811371
– start-page: 1
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib67
  article-title: Methods and mechanisms of gas sensor selectivity
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 6
  start-page: 2858
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib84
  article-title: Enhanced blocking effect: a new strategy to improve the NO2 sensing performance of Ti3C2Tx by gamma-poly(l-glutamic acid) modification
  publication-title: ACS Sens
  doi: 10.1021/acssensors.1c00132
– volume: 13
  start-page: 207
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib23
  article-title: Advanced strategies to improve performances of molybdenum-based gas sensors
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00724-1
– volume: 26
  start-page: 2344
  year: 2014
  ident: 10.1016/j.jhazmat.2022.128836_bib86
  article-title: Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction
  publication-title: Chem. Mater.
  doi: 10.1021/cm500347r
– volume: 326
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib73
  article-title: Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128828
– volume: 455
  start-page: 276
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib82
  article-title: Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.05.224
– volume: 11
  start-page: 2305
  year: 2015
  ident: 10.1016/j.jhazmat.2022.128836_bib12
  article-title: Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air
  publication-title: Small
  doi: 10.1002/smll.201402923
– volume: 3
  start-page: 998
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib2
  article-title: Photoactivated mixed in-plane and edge-enriched p-type MoS2 flake-based NO2 sensor working at room temperature
  publication-title: ACS Sens
  doi: 10.1021/acssensors.8b00146
– volume: 391
  start-page: 105
  year: 1999
  ident: 10.1016/j.jhazmat.2022.128836_bib13
  article-title: Nomenclature in evaluation of analytical methods includingdetection and quantification capabilities
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(99)00104-X
– volume: 295
  start-page: 86
  year: 2019
  ident: 10.1016/j.jhazmat.2022.128836_bib40
  article-title: A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.05.065
– volume: 419
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib37
  article-title: Fast detection of NO2 by porous SnO2 nanotoast sensor at low temperature
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126414
– volume: 9
  start-page: 9314
  year: 2015
  ident: 10.1016/j.jhazmat.2022.128836_bib11
  article-title: Highly enhanced gas adsorption properties in vertically aligned MoS2 layers
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04504
– volume: 12
  start-page: 164
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib35
  article-title: Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00503-4
– volume: 358
  year: 2022
  ident: 10.1016/j.jhazmat.2022.128836_bib21
  article-title: PrGO decorated TiO2 nanoplates hybrid nanocomposite for augmented NO2 gas detection with faster gas kinetics under UV light irradiation
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2022.131503
– volume: 416
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib4
  article-title: Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125830
– volume: 1
  start-page: 295
  year: 2016
  ident: 10.1016/j.jhazmat.2022.128836_bib87
  article-title: Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device
  publication-title: ACS Sens
  doi: 10.1021/acssensors.5b00241
– volume: 295
  start-page: 127
  year: 2019
  ident: 10.1016/j.jhazmat.2022.128836_bib28
  article-title: Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.05.049
– volume: 15
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib52
  article-title: Efficient charge separation in polypyrrole/GaN-nanorod-based hybrid heterojunctions for high-performance self-powered UV photodetection
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.202000518
– volume: 304
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib7
  article-title: Metal-organic frameworks derived ZnO@MoS2 nanosheets core/shell heterojunctions for ppb-level acetone detection: ultra-fast response and recovery
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.127430
– volume: 8
  start-page: 2994
  year: 2012
  ident: 10.1016/j.jhazmat.2022.128836_bib22
  article-title: Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications
  publication-title: Small
  doi: 10.1002/smll.201201224
– volume: 21
  start-page: 4456
  year: 2011
  ident: 10.1016/j.jhazmat.2022.128836_bib31
  article-title: The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101154
– volume: 156
  start-page: 527
  year: 2011
  ident: 10.1016/j.jhazmat.2022.128836_bib34
  article-title: Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey)
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.02.024
– volume: 32
  start-page: 7215
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib26
  article-title: Rational design of MoS2/C3N4 hybrid aerogel with abundant exposed edges for highly sensitive NO2 detection at room temperature
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01468
– volume: 28
  start-page: 7997
  year: 2016
  ident: 10.1016/j.jhazmat.2022.128836_bib57
  article-title: Amphiphilic block copolymer templated synthesis of mesoporous indium oxides with nanosheet-assembled pore walls
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03733
– volume: 387
  year: 2020
  ident: 10.1016/j.jhazmat.2022.128836_bib44
  article-title: Facile metal-organic frameworks-templated fabrication of hollow indium oxide microstructures for chlorine detection at low temperature
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122017
– volume: 329
  year: 2021
  ident: 10.1016/j.jhazmat.2022.128836_bib56
  article-title: Interaction activated interfacial charge transfer in 2D g-C3N4/GaN nanorods heterostructure for self-powered UV photodetector and room temperature NO2 gas sensor at ppb level
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.129175
– volume: 741
  start-page: 908
  year: 2018
  ident: 10.1016/j.jhazmat.2022.128836_bib70
  article-title: Improved NO2 sensing properties at low temperature using reduced graphene oxide nanosheet–In2O3 heterojunction nanofibers
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.01.209
– volume: 10
  start-page: 160
  year: 2022
  ident: 10.1016/j.jhazmat.2022.128836_bib49
  article-title: Highly sensitive g-C3N4 nanosheets as a potential candidate for the effective detection of NO2 gas via langasite-based surface acoustic wave gas sensor
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D1TC04904F
– volume: 370
  start-page: 126
  year: 2019
  ident: 10.1016/j.jhazmat.2022.128836_bib61
  article-title: Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.10.016
SSID ssj0001754
Score 2.6494932
Snippet Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor...
Nitrogen dioxide (NO₂) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128836
SubjectTerms ambient temperature
Edge activity
Heterojunction
High selectivity
human health
In2O3/MoS2
nanosheets
nitrogen dioxide
NO2 sensor
synergism
toxicity
Title Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity
URI https://dx.doi.org/10.1016/j.jhazmat.2022.128836
https://www.proquest.com/docview/2651692193
https://www.proquest.com/docview/2661012990
Volume 434
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucABQQFRHtUgcc1u1q8kx6pqtQW6PZRKvUV2bHd3tetUbCokDvwofiEzebCABJU4OrYlK2N_841nPMPYOxdS7qqA1ongIZHWiMTowBPhRGEqkSKFpbfDZzM9vZTvr9TVDjsa3sJQWGWP_R2mt2jdfxn3f3N8s1iML8iph-pWcrKKuSIcljKjXT76tg3zQPXYpZAiDwCO3r7iGS9Hy7n5isQQzUTORxMqvKv_pp_-QOpW_Zw8Zo963giH3dKesB0f99jDX7IJ7rF7H82Xp-z7sbv2Ce4KivF0cFZfcIgm1pu5980G1rVbBKSdgLwbjf5tV4Is2q_tCruoPHbrYED5wWnk5wLWFLcXVm1JNUCeC0S4gfJa9UmZwfmmjeqKUAeYnXOgG164XTWIZovrOWwoUr4rVQEmOti0BXja9jN2eXL86Wia9IUZkkpkqkm80lYaI4qJ1T432lZaZNIXE597VWWpDMH5zBqTo46UPFVOO2WrzAaVGmcr8Zztxjr6FwwQYbxQeWVz5HI-d4Up0hwNfF14g-Cg95kcxFFWfdZyKp6xKofwtGXZS7EkKZadFPfZ6Oe0my5tx10T8kHW5W_7r0TVctfUt8PeKPFsksPFRI8iLLkmLyTqBPGvMZpSrCEpePn_S3jFHlCL7pwn6jXbbT7f-jdIlhp70J6GA3b_8PTDdPYD4mgZiA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZG9wA8IBigjZ-HxGva1I6d5HGaNrWs7R62SXuz7NheW7XJRDMh8WfxF3KXpBsgwSQeE-ckK2d_953vfMfYZxdi7oqA3ongIUqsEZFRgUfCidwUIkYKS3eHpzM1uky-XMmrHXa0vQtDaZUd9reY3qB192bQ_c3BzWIxOKegHprbhJNXzCXi8C5Vp5I9tns4Ph3N7gAZLWRbRYqCAChwf5FnsOwv5-Y7ckP0FDnvD6n3rvqbifoDrBsLdPKcPeuoIxy2s3vBdny5x57-UlBwjz2amG8v2Y9jd-0jXBiU5ulgWp1zKE1Zbebe1xtYV24RkHkCUm_0---HIiTSfm1XOEQdspsYA6oQxiU_E7Cm1L2warqqAVJdIM4NVNqqq8sMztdNYlcJVYDZGQc65IXbVY2Atriew4aS5dtuFWBKB5umB0_z_IpdnhxfHI2irjdDVIhU1pGXyibGiHxolc-MsoUSaeLzoc-8LNI4CcH51BqToZlMeCydctIWqQ0yNs4W4jXrlVXp9xkgyHghs8JmSOd85nKTxxn6-Cr3BvFBHbBkqw5ddIXLqX_GSm8z1Ja606ImLepWiwesfyd201bueEgg2-pa_7YENVqXh0Q_bdeGxu1JMRdTelSh5ooCkWgWxL--UVRlDXnBm_-fwkf2eHQxnejJeHb6lj2hETqCHsp3rFd_vfXvkTvV9kO3N34Cal4cOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-enriched+MoS2+nanosheets+modified+porous+nanosheet-assembled+hierarchical+In2O3+microflowers+for+room+temperature+detection+of+NO2+with+ultrahigh+sensitivity+and+selectivity&rft.jtitle=Journal+of+hazardous+materials&rft.au=Zhang%2C+Yajie&rft.au=Jiang%2C+Yadong&rft.au=Duan%2C+Zaihua&rft.au=Wu%2C+Yingwei&rft.date=2022-07-15&rft.issn=0304-3894&rft.volume=434+p.128836-&rft_id=info:doi/10.1016%2Fj.jhazmat.2022.128836&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon