Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity
Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanoshee...
Saved in:
Published in | Journal of hazardous materials Vol. 434; p. 128836 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09–5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors.
[Display omitted]
•3D porous hierarchical In2O3/MoS2 microflowers were prepared via mechanical mixing.•The In2O3/MoS2 sensor exhibited a response as high as 343.09–5 ppm NO2 at RT.•The In2O3/MoS2 sensor showed short recovery time and ultrahigh selectivity to NO2.•The enhanced properties are due to the n-p heterojunction and increased active sites. |
---|---|
AbstractList | Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09-5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors.Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09-5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors. Nitrogen dioxide (NO₂) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO₂ sensors. Herein, the edge-enriched MoS₂ nanosheets modified porous nanosheets-assembled three-dimensional (3D) In₂O₃ microflowers have been synthesized to improve the sensitivity and selectivity of NO₂ detection at RT. The results show that the In₂O₃/MoS₂ composite sensor exhibits a response as high as 343.09–5 ppm NO₂, which is 309 and 72.5 times higher than the sensors based on the pristine MoS₂ and In₂O₃. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In₂O₃/MoS₂ sensor to NO₂ is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In₂O₃/MoS₂ sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO₂ sensors. Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09–5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors. [Display omitted] •3D porous hierarchical In2O3/MoS2 microflowers were prepared via mechanical mixing.•The In2O3/MoS2 sensor exhibited a response as high as 343.09–5 ppm NO2 at RT.•The In2O3/MoS2 sensor showed short recovery time and ultrahigh selectivity to NO2.•The enhanced properties are due to the n-p heterojunction and increased active sites. |
ArticleNumber | 128836 |
Author | Huang, Qi Yuan, Zhen Liu, Bohao Li, Xian Jiang, Yadong Wu, Yingwei Zhao, Qiuni Zhang, Yajie Duan, Zaihua Tai, Huiling |
Author_xml | – sequence: 1 givenname: Yajie surname: Zhang fullname: Zhang, Yajie organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 2 givenname: Yadong surname: Jiang fullname: Jiang, Yadong organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 3 givenname: Zaihua surname: Duan fullname: Duan, Zaihua organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 4 givenname: Yingwei surname: Wu fullname: Wu, Yingwei organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 5 givenname: Qiuni surname: Zhao fullname: Zhao, Qiuni organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 6 givenname: Bohao surname: Liu fullname: Liu, Bohao organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 7 givenname: Qi surname: Huang fullname: Huang, Qi organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 8 givenname: Zhen surname: Yuan fullname: Yuan, Zhen organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 9 givenname: Xian surname: Li fullname: Li, Xian email: lixian@caas.cn organization: Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China – sequence: 10 givenname: Huiling surname: Tai fullname: Tai, Huiling email: taitai1980@uestc.edu.cn organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China |
BookMark | eNqNkc1u1DAUhS1UJKaFR0Dykk0G_yROIhYIVQUqFWYBrC3HvmnuKLEH29OqPBZPiKOphMSmrK6Ozjl38Z1zcuaDB0Jec7bljKu3--1-Mr8Wk7eCCbHlouukekY2vGtlJaVUZ2TDJKsr2fX1C3Ke0p4xxtum3pDfV-4WKvAR7QSOfgnfBPXGhzQB5ESX4HDEYhxCDMf016pMSrAMc7EmhGiindCamV57sZN0QRvDOId7iImOIdIYwkIzLIcSzccI1EEGmzF4Gkb6dSfoPeaJHucczYS3E03gE2a8w_xAjXdFz2t-1S_J89HMCV493gvy4-PV98vP1c3u0_Xlh5vKyrbJFTRqqI2RPR8UdEYNVsm2hp5DB41tWT2ODtrBmE7WvBascco1g22HsWHGDVZekDenv4cYfh4hZb1gsjDPxkNhoYVSBb_oe_Yf0YarXvBelmhzihZCKUUY9SHiYuKD5kyvc-q9fpxTr3Pq05yl9-6fnsVsVoIFGc5Ptt-f2lCA3ZXBdLII3oLDWLhqF_CJD38AGpHG0A |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_113023 crossref_primary_10_1016_j_snb_2022_133140 crossref_primary_10_1016_j_ceramint_2024_11_298 crossref_primary_10_1021_acssensors_3c01676 crossref_primary_10_3390_chemosensors10070246 crossref_primary_10_1016_j_sna_2024_115719 crossref_primary_10_1016_j_mseb_2023_117066 crossref_primary_10_1016_j_ccr_2023_215542 crossref_primary_10_1016_j_seppur_2024_128392 crossref_primary_10_3390_chemosensors11030200 crossref_primary_10_1016_j_inoche_2023_111524 crossref_primary_10_1088_1402_4896_acfad1 crossref_primary_10_3390_nano14181521 crossref_primary_10_1016_j_snb_2023_133700 crossref_primary_10_1016_j_snb_2023_133822 crossref_primary_10_1021_acs_jpcb_2c07517 crossref_primary_10_1016_j_ccr_2024_215657 crossref_primary_10_1016_j_ijhydene_2024_05_202 crossref_primary_10_1007_s10934_025_01775_0 crossref_primary_10_1016_j_snb_2023_133550 crossref_primary_10_1002_admt_202402018 crossref_primary_10_1002_smtd_202402179 crossref_primary_10_1016_j_apsusc_2025_162304 crossref_primary_10_1002_slct_202304840 crossref_primary_10_1021_acsaelm_3c00725 crossref_primary_10_1002_adfm_202203528 crossref_primary_10_3390_mi14030547 crossref_primary_10_1021_acsanm_3c00446 crossref_primary_10_1016_j_jallcom_2024_175735 crossref_primary_10_1021_acsanm_3c05737 crossref_primary_10_1016_j_inoche_2023_111918 crossref_primary_10_1016_j_sna_2025_116236 crossref_primary_10_1039_D3TA03020B crossref_primary_10_1038_s41467_024_50443_5 crossref_primary_10_1109_JSEN_2024_3388607 crossref_primary_10_1007_s40843_023_2725_y crossref_primary_10_1016_j_talanta_2024_125995 crossref_primary_10_1080_00268976_2023_2294154 crossref_primary_10_1039_D4TA00080C crossref_primary_10_1080_10601325_2022_2111262 crossref_primary_10_1016_j_sna_2024_115971 crossref_primary_10_1016_j_snb_2023_134852 crossref_primary_10_1016_j_snb_2024_136666 crossref_primary_10_1021_acsomega_2c06243 crossref_primary_10_1016_j_jallcom_2023_169984 crossref_primary_10_1016_j_cej_2024_155286 crossref_primary_10_1016_j_snb_2023_134629 crossref_primary_10_1016_j_cej_2024_157906 crossref_primary_10_1016_j_snb_2022_132302 crossref_primary_10_1016_j_flatc_2023_100584 crossref_primary_10_1016_j_snb_2022_133113 crossref_primary_10_1016_j_cplett_2024_141639 crossref_primary_10_1016_j_materresbull_2023_112332 crossref_primary_10_1016_j_synthmet_2023_117348 crossref_primary_10_1016_j_ceramint_2024_07_028 crossref_primary_10_1016_j_microc_2024_112646 crossref_primary_10_1088_1361_6528_acbbd2 crossref_primary_10_1016_j_ceramint_2024_12_221 crossref_primary_10_1016_j_snb_2023_133505 crossref_primary_10_1109_JSEN_2023_3266167 crossref_primary_10_1016_j_jallcom_2024_177562 crossref_primary_10_1016_j_snb_2023_135006 crossref_primary_10_1016_j_snb_2023_134710 crossref_primary_10_1016_j_apsusc_2023_157957 crossref_primary_10_1021_acs_jpclett_2c02788 crossref_primary_10_1109_JSEN_2022_3221997 crossref_primary_10_1039_D3TA03686C crossref_primary_10_1021_acssensors_4c00866 crossref_primary_10_1109_JSEN_2024_3408471 crossref_primary_10_1016_j_vacuum_2024_113114 crossref_primary_10_1016_j_cej_2024_152394 crossref_primary_10_1038_s41598_024_64534_2 crossref_primary_10_3390_chemosensors10120525 crossref_primary_10_1016_j_compositesb_2024_112102 crossref_primary_10_3390_nano13020237 crossref_primary_10_1016_j_snb_2023_134843 crossref_primary_10_1016_j_vacuum_2022_111616 crossref_primary_10_1063_5_0254686 crossref_primary_10_1016_j_jallcom_2024_177710 crossref_primary_10_1016_j_jmrt_2022_11_142 crossref_primary_10_1016_j_snb_2023_135136 crossref_primary_10_1039_D2CY02140D crossref_primary_10_1016_j_jiec_2024_02_050 crossref_primary_10_1016_j_apsusc_2023_158478 crossref_primary_10_1016_j_snb_2025_137569 crossref_primary_10_1016_j_cplett_2023_140803 crossref_primary_10_1021_acssensors_3c02148 crossref_primary_10_1016_j_apsusc_2022_156213 crossref_primary_10_1021_acsami_2c09586 crossref_primary_10_1021_acs_jpcc_4c07412 crossref_primary_10_1016_j_matchemphys_2023_127975 crossref_primary_10_1021_acsomega_3c03569 crossref_primary_10_1016_j_snb_2024_135944 crossref_primary_10_1016_j_snb_2024_136474 crossref_primary_10_1002_smll_202303631 crossref_primary_10_1016_j_snb_2024_135788 crossref_primary_10_1016_j_trac_2023_117398 crossref_primary_10_1016_j_snb_2023_133452 crossref_primary_10_1016_j_snb_2023_135230 crossref_primary_10_1016_j_jece_2024_112144 crossref_primary_10_1002_adom_202202697 crossref_primary_10_3390_s24237623 crossref_primary_10_1007_s11664_023_10531_6 crossref_primary_10_1016_j_surfin_2024_104966 crossref_primary_10_1016_j_electacta_2022_140863 crossref_primary_10_1021_acsanm_3c01484 crossref_primary_10_1016_j_jhazmat_2023_131184 crossref_primary_10_1007_s12598_023_02283_3 |
Cites_doi | 10.1007/s40820-020-00558-3 10.1016/j.snb.2015.04.119 10.1016/j.snb.2017.05.113 10.1016/j.jhazmat.2021.125352 10.1016/j.snb.2020.129045 10.1016/j.apsusc.2022.152698 10.1016/j.apsusc.2017.11.222 10.1039/C6CP01362G 10.1016/j.snb.2019.127393 10.1016/j.snb.2020.128204 10.1021/acsami.0c16795 10.1002/aelm.202100271 10.1016/j.ultsonch.2017.04.024 10.1016/j.snb.2018.06.044 10.1039/C7DT03878J 10.1039/C9NH00404A 10.1007/s10854-018-0087-9 10.1016/j.jhazmat.2020.122325 10.1016/j.jallcom.2019.02.176 10.1016/j.snb.2021.129884 10.1016/j.apsusc.2018.10.018 10.1016/j.cej.2020.125919 10.1016/j.snb.2019.127221 10.1016/j.snb.2020.127716 10.1016/j.jallcom.2020.154395 10.1002/adfm.202104416 10.1016/j.snb.2021.130150 10.1021/acsami.5b05675 10.1039/D0TA03037F 10.1016/j.apsusc.2020.148217 10.1021/acsami.8b05811 10.1088/1361-665X/ac1956 10.1021/acsnano.7b07460 10.1016/j.apsusc.2020.147785 10.1039/D1TA03578A 10.1016/j.snb.2019.127037 10.1021/nn500532f 10.1016/j.snb.2020.129230 10.1016/j.jhazmat.2020.122191 10.1039/C8NR01379A 10.1016/j.snb.2021.130267 10.1016/j.jhazmat.2019.121098 10.1021/acsami.1c11262 10.1021/acsami.8b07034 10.1039/D0NA00318B 10.1016/j.snb.2020.128293 10.1021/acsami.8b15284 10.1021/acsami.7b04395 10.1039/D0TA11695E 10.1021/acs.jpcc.5b05818 10.1016/j.matlet.2021.130916 10.1016/j.snb.2021.131300 10.1016/j.snb.2021.129497 10.1021/acsnano.5b04343 10.3390/s21072554 10.1016/j.snb.2006.09.047 10.1039/C6TC03218D 10.1002/admt.201901085 10.1016/j.snb.2021.130268 10.1016/j.jhazmat.2021.128174 10.1023/A:1014405811371 10.1021/acssensors.1c00132 10.1007/s40820-021-00724-1 10.1021/cm500347r 10.1016/j.snb.2020.128828 10.1016/j.apsusc.2018.05.224 10.1002/smll.201402923 10.1021/acssensors.8b00146 10.1016/S0003-2670(99)00104-X 10.1016/j.snb.2019.05.065 10.1016/j.jhazmat.2021.126414 10.1021/acsnano.5b04504 10.1007/s40820-020-00503-4 10.1016/j.snb.2022.131503 10.1016/j.jhazmat.2021.125830 10.1021/acssensors.5b00241 10.1016/j.snb.2019.05.049 10.1002/pssr.202000518 10.1016/j.snb.2019.127430 10.1002/smll.201201224 10.1002/adfm.201101154 10.1016/j.snb.2011.02.024 10.1021/acs.chemmater.0c01468 10.1021/acs.chemmater.6b03733 10.1016/j.jhazmat.2020.122017 10.1016/j.snb.2020.129175 10.1016/j.jallcom.2018.01.209 10.1039/D1TC04904F 10.1016/j.jhazmat.2018.10.016 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2022.128836 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 10_1016_j_jhazmat_2022_128836 S0304389422006252 |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c375t-e56b4aa391b6e8a6bc6374e91e8e5c704ffde7baa83414205d6d5bc7bf50adbc3 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Tue Aug 05 10:25:16 EDT 2025 Fri Jul 11 04:23:36 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Tue Jul 01 01:05:42 EDT 2025 Fri Feb 23 02:40:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NO2 sensor High selectivity In2O3/MoS2 Edge activity Heterojunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-e56b4aa391b6e8a6bc6374e91e8e5c704ffde7baa83414205d6d5bc7bf50adbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2651692193 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2661012990 proquest_miscellaneous_2651692193 crossref_primary_10_1016_j_jhazmat_2022_128836 crossref_citationtrail_10_1016_j_jhazmat_2022_128836 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2022_128836 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-15 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cho, Kim, Lee, Kim, Jung, Yoo, Kim, Jung (bib11) 2015; 9 Pasupuleti, Reddeppa, Park, Oh, Kim, Kim (bib52) 2021; 15 Zhang, Wu, Duan, Liu, Zhao, Yuan, Li, Liang, Jiang, Tai (bib80) 2022; 585 Gu, Nie, Han, Wang (bib18) 2015; 219 Zhang, Jiang, Wu (bib76) 2018; 273 Ma, Fan, Zheng, Wang, Zhao, Zhang, Yadav, Wang, Dong, Wang (bib44) 2020; 387 Lim, Reddeppa, Nam, Pasupuleti, Bak, Kim, Cho, Kim (bib39) 2021; 30 Zhou, Shen, Lu, Zhao, Li, Zhong, Cui, Wei, Zhang (bib88) 2020; 828 Currie (bib13) 1999; 391 Bai, Lv, Liu, Chen, Wang, Sun, Zhang, Wang, Shi (bib4) 2021; 416 Patil, Patil, Vanalakar, Shendage, Pawar, Kim, Ryu, Patil, Patil (bib54) 2022; 306 Zhang, Jiang, Duan, Huang, Wu, Liu, Zhao, Wang, Yuan, Tai (bib81) 2021; 344 Pan, Ge, Zhang, Mai, Li, Guo (bib48) 2018; 47 Li, Yang, Cheng, Zhang, Guo, Xu, Gao, Major, Zhao, Huo (bib37) 2021; 419 Nan, Wang, Wang, Liang, Lu, Chen, He, Tan, Miao, Wang, Wang, Ni (bib46) 2014; 8 Kaushik, Varandani, Mehta (bib30) 2015; 119 Hermawan, Septiani, Taufik, Yuliarto, Suyatman, Yin (bib23) 2021; 13 Xie, Liu, Jing, Pang, Liu, Zhang (bib68) 2021; 13 Wang, Yao, Xu, Wu, Lin, Zheng, Feng, Gao (bib65) 2021; 332 Kim, Haensch, Kim, Barsan, Weimar, Lee (bib31) 2011; 21 Wang, Han, Fei, Liu, Zhang (bib66) 2018; 10 Zhang, Zeng, Li (bib82) 2018; 455 Ou, Ge, Carey, Daeneke, Rotbart, Shan, Wang, Fu, Chrimes, Wlodarski, Russo, Li, Kalantar-zadeh (bib47) 2015; 9 Wusiman, Taghipour (bib67) 2021 Amini, Ramazani, Faghihi, Fattahpour (bib3) 2017; 39 Hu, Liang, Sun, Zhao, Zhang, Li, Zhang, Chen, Zhuiykov (bib24) 2017; 252 Karnati, Akbar, Morris (bib28) 2019; 295 Reddeppa, KimPhung, Murali, Pasupuleti, Park, In, Kim (bib56) 2021; 329 Ko, Park, Lee, Kim, Woo, Kim, Song, Park, Kim (bib33) 2018; 10 Liu, Ikram, Ma, Zhang, Lv, Ullah, Khan, Yu, Shi (bib42) 2020; 393 Agrawal, Kumar, Kumar (bib1) 2021; 13 Zhang, Wu, Cao, Zong, Yang (bib77) 2018; 29 Zhang, Zhang, Huang, Xu, Zhang, Lu, Xu, Chu, Ma (bib79) 2021; 537 Du, Qi, Li, He, Yang (bib14) 2021; 344 Liu, Liu, Yuan, Jiang, Su, Ma, Tai (bib40) 2019; 295 Hao, Zhang, Sun, Zheng, Sun, Wang (bib20) 2018; 10 Yang, Chen, Lu (bib72) 2021; 539 Chen, Wang, Su, Han, Zou, Zeng, Hu, Su, Zhou, Yang (bib10) 2020; 305 Yang, Myung, Tran (bib71) 2021; 7 Du, Si, Wang, Lv, Wu, Wang, Liu, Liu (bib15) 2020; 303 Vishnuraj, Karuppanan, Aleem, Pullithadathil (bib62) 2020; 2 Ikram, Liu, Lv, Liu, Rehman, Kan, Zhang, He, Wang, Wang, Shi (bib25) 2019; 466 Zhang, Qin, Tang, Feng, Li (bib78) 2020; 391 Barsan, Weimar (bib6) 2001; 7 Ikram, Lv, Liu, Khan, Liu, Raziq, Bai, Ullah, Zhang, Shi (bib26) 2020; 32 Liang, Zhang, Du, Zhang (bib38) 2021; 329 Wang, Su, Chen, Li, Shi, Zou, Zou (bib64) 2017; 9 Korotcenkov, Cho (bib34) 2011; 156 Yang, Zhang, Chen (bib74) 2019; 300 Zhao, Fuh, Coileáin, Cullen, Stimpel‐Lindner, Duesberg, Leonardo Camargo Moreira, Zhang, Cho, Choi, Chun, Chang, Wu (bib85) 2020; 5 Xu, Tian, Liu, Sun, Du (bib69) 2019; 787 Harathi, Bollu, Pasupuleti, Tauanov, Peta, Kim, Reddeppa, Sarkar, Rao (bib21) 2022; 358 Ikram, Lv, Liu, Shi, Gao (bib27) 2021; 9 Zhou, Chang, Pu, Shi, Mao, Sui, Ren, Cui, Chen (bib87) 2016; 1 Pasupuleti, Reddeppa, Park, Peta, Oh, Kim, Kim (bib53) 2020; 12 Kumar, Liu, Zhang, Kumar (bib35) 2020; 12 Duan, Zhao, Wang, Huang, Yuan, Zhang, Jiang, Tai (bib17) 2020; 317 Purbia, Kwon, Kim, Lee, Shin, Baik (bib55) 2020; 8 Pasupuleti, Reddeppa, Chougule, Bak, Nam, Jung, Cho, Kim, Kim (bib50) 2022; 427 Rong, Li, Hao, Cai, Wolverton, Dravid, Zhai, Liu (bib58) 2021; 9 Zhang, Zhang, Jiang, Duan, Liu, Zhao, Wang, Yuan, Tai (bib83) 2020; 319 Chang, Li, Qiao, Li, Xiong, Li, Guo, Zhu, Xue (bib7) 2020; 304 Marikutsa, Rumyantseva, Konstantinova, Gaskov (bib45) 2021; 21 Senapati, Nanda (bib60) 2015; 7 Chen, Shen, Zhang, Zhang, Wei, Lu, Zhu, Li, Shen (bib9) 2018; 435 Duan, Jiang, Zhao, Huang, Wang, Zhang, Wu, Liu, Zhen, Tai (bib16) 2021; 339 Liu, Zhang, Cheng, Fan, Yu (bib41) 2021; 413 Pasupuleti, Nam, Bak, Reddeppa, Oh, Kim, Cho, Kim (bib49) 2022; 10 Barsan, Koziej, Weimar (bib5) 2007; 121 Yang, Jiang, Wang, Liu, He, Liu, Lv, You, Yan, Sun, Wang, Duan, Lu (bib73) 2021; 326 Liu, Sun, Xu, Zhu, Zhou, Yang, Dong, Bai, Lu, Song (bib43) 2019; 4 Ren, Zhou, Luo, Xu, Zhu, Li, Cheng, Deng, Zhao (bib57) 2016; 28 Yan, Lu, Gao, Zhang, Guo, Ding, Wang, Wei, Zhu, Yang, Wang (bib70) 2018; 741 Roso, Bittencourt, Umek, González, Güell, Urakawa, Llobet (bib59) 2016; 4 Chen, Lu, Li, Zhang, Tian, Gao, Guo, Lu, Gao (bib8) 2020; 308 Han, Huang, Ma, He, Hu, Zhang, Hu, Su, Zhou, Zhang, Yang (bib19) 2018; 10 Zou, Dong, Ke, Ge, Chen, Sun, Cui (bib90) 2020; 400 Kim, Koh, Ren, Kwon, Maleski, Cho, Anasori, Kim, Choi, Kim, Gogotsi, Jung (bib32) 2018; 12 Yuan, Zhao, Xie, Liang, Duan, Duan, Li, Jiang, Tai (bib75) 2022; 355 He, Zeng, Yin, Li, Wu, Huang, Zhang (bib22) 2012; 8 Zhao, Sun, Wang, Duan, Yuan, Wei, Xu, Tai, Jiang (bib84) 2021; 6 Agrawal, Kumar, Venkatesan, Zakhidov, Yang, Bao, Kumar, Kumar (bib2) 2018; 3 Kaur, Zappa, Maraloiu, Comini (bib29) 2021; 31 Li, Huang, Cao (bib36) 2016; 18 Pasupuleti, Reddeppa, Nam, Bak, Peta, Cho, Kim, Kim (bib51) 2021; 344 Cui, Wen, Huang, Chang, Chen (bib12) 2015; 11 Wang, Zhang, Zhang, Li, Leng, Gao, Gao, Lu, Li (bib63) 2021; 328 Zhu, Sun, Xu, Li, Lin, Qin (bib89) 2020; 382 Sonker, Yadav, Gupta, Tomar (bib61) 2019; 370 Zheng, Xu, Yan, Wang, Wang, Yang (bib86) 2014; 26 Du (10.1016/j.jhazmat.2022.128836_bib14) 2021; 344 Li (10.1016/j.jhazmat.2022.128836_bib37) 2021; 419 Xie (10.1016/j.jhazmat.2022.128836_bib68) 2021; 13 Patil (10.1016/j.jhazmat.2022.128836_bib54) 2022; 306 Zhang (10.1016/j.jhazmat.2022.128836_bib82) 2018; 455 Ou (10.1016/j.jhazmat.2022.128836_bib47) 2015; 9 Amini (10.1016/j.jhazmat.2022.128836_bib3) 2017; 39 Ren (10.1016/j.jhazmat.2022.128836_bib57) 2016; 28 Roso (10.1016/j.jhazmat.2022.128836_bib59) 2016; 4 Yan (10.1016/j.jhazmat.2022.128836_bib70) 2018; 741 Zhang (10.1016/j.jhazmat.2022.128836_bib83) 2020; 319 Wang (10.1016/j.jhazmat.2022.128836_bib66) 2018; 10 Harathi (10.1016/j.jhazmat.2022.128836_bib21) 2022; 358 Kaur (10.1016/j.jhazmat.2022.128836_bib29) 2021; 31 Ikram (10.1016/j.jhazmat.2022.128836_bib25) 2019; 466 Yang (10.1016/j.jhazmat.2022.128836_bib73) 2021; 326 Marikutsa (10.1016/j.jhazmat.2022.128836_bib45) 2021; 21 Xu (10.1016/j.jhazmat.2022.128836_bib69) 2019; 787 Bai (10.1016/j.jhazmat.2022.128836_bib4) 2021; 416 He (10.1016/j.jhazmat.2022.128836_bib22) 2012; 8 Purbia (10.1016/j.jhazmat.2022.128836_bib55) 2020; 8 Cui (10.1016/j.jhazmat.2022.128836_bib12) 2015; 11 Chen (10.1016/j.jhazmat.2022.128836_bib9) 2018; 435 Pasupuleti (10.1016/j.jhazmat.2022.128836_bib52) 2021; 15 Vishnuraj (10.1016/j.jhazmat.2022.128836_bib62) 2020; 2 Wang (10.1016/j.jhazmat.2022.128836_bib63) 2021; 328 Hao (10.1016/j.jhazmat.2022.128836_bib20) 2018; 10 Zhou (10.1016/j.jhazmat.2022.128836_bib87) 2016; 1 Ikram (10.1016/j.jhazmat.2022.128836_bib27) 2021; 9 Pasupuleti (10.1016/j.jhazmat.2022.128836_bib49) 2022; 10 Duan (10.1016/j.jhazmat.2022.128836_bib16) 2021; 339 Sonker (10.1016/j.jhazmat.2022.128836_bib61) 2019; 370 Yang (10.1016/j.jhazmat.2022.128836_bib72) 2021; 539 Han (10.1016/j.jhazmat.2022.128836_bib19) 2018; 10 Duan (10.1016/j.jhazmat.2022.128836_bib17) 2020; 317 Li (10.1016/j.jhazmat.2022.128836_bib36) 2016; 18 Barsan (10.1016/j.jhazmat.2022.128836_bib6) 2001; 7 Chen (10.1016/j.jhazmat.2022.128836_bib10) 2020; 305 Cho (10.1016/j.jhazmat.2022.128836_bib11) 2015; 9 Pasupuleti (10.1016/j.jhazmat.2022.128836_bib51) 2021; 344 Zhang (10.1016/j.jhazmat.2022.128836_bib80) 2022; 585 Ma (10.1016/j.jhazmat.2022.128836_bib44) 2020; 387 Karnati (10.1016/j.jhazmat.2022.128836_bib28) 2019; 295 Korotcenkov (10.1016/j.jhazmat.2022.128836_bib34) 2011; 156 Reddeppa (10.1016/j.jhazmat.2022.128836_bib56) 2021; 329 Liu (10.1016/j.jhazmat.2022.128836_bib42) 2020; 393 Kim (10.1016/j.jhazmat.2022.128836_bib32) 2018; 12 Yang (10.1016/j.jhazmat.2022.128836_bib71) 2021; 7 Zou (10.1016/j.jhazmat.2022.128836_bib90) 2020; 400 Zhang (10.1016/j.jhazmat.2022.128836_bib78) 2020; 391 Du (10.1016/j.jhazmat.2022.128836_bib15) 2020; 303 Nan (10.1016/j.jhazmat.2022.128836_bib46) 2014; 8 Hu (10.1016/j.jhazmat.2022.128836_bib24) 2017; 252 Zhang (10.1016/j.jhazmat.2022.128836_bib79) 2021; 537 Liu (10.1016/j.jhazmat.2022.128836_bib43) 2019; 4 Wang (10.1016/j.jhazmat.2022.128836_bib65) 2021; 332 Lim (10.1016/j.jhazmat.2022.128836_bib39) 2021; 30 Currie (10.1016/j.jhazmat.2022.128836_bib13) 1999; 391 Wusiman (10.1016/j.jhazmat.2022.128836_bib67) 2021 Chang (10.1016/j.jhazmat.2022.128836_bib7) 2020; 304 Zheng (10.1016/j.jhazmat.2022.128836_bib86) 2014; 26 Liu (10.1016/j.jhazmat.2022.128836_bib41) 2021; 413 Senapati (10.1016/j.jhazmat.2022.128836_bib60) 2015; 7 Zhu (10.1016/j.jhazmat.2022.128836_bib89) 2020; 382 Ko (10.1016/j.jhazmat.2022.128836_bib33) 2018; 10 Chen (10.1016/j.jhazmat.2022.128836_bib8) 2020; 308 Yang (10.1016/j.jhazmat.2022.128836_bib74) 2019; 300 Pasupuleti (10.1016/j.jhazmat.2022.128836_bib53) 2020; 12 Zhou (10.1016/j.jhazmat.2022.128836_bib88) 2020; 828 Barsan (10.1016/j.jhazmat.2022.128836_bib5) 2007; 121 Kumar (10.1016/j.jhazmat.2022.128836_bib35) 2020; 12 Zhang (10.1016/j.jhazmat.2022.128836_bib81) 2021; 344 Agrawal (10.1016/j.jhazmat.2022.128836_bib1) 2021; 13 Hermawan (10.1016/j.jhazmat.2022.128836_bib23) 2021; 13 Liang (10.1016/j.jhazmat.2022.128836_bib38) 2021; 329 Kaushik (10.1016/j.jhazmat.2022.128836_bib30) 2015; 119 Zhao (10.1016/j.jhazmat.2022.128836_bib85) 2020; 5 Ikram (10.1016/j.jhazmat.2022.128836_bib26) 2020; 32 Zhang (10.1016/j.jhazmat.2022.128836_bib77) 2018; 29 Pan (10.1016/j.jhazmat.2022.128836_bib48) 2018; 47 Rong (10.1016/j.jhazmat.2022.128836_bib58) 2021; 9 Yuan (10.1016/j.jhazmat.2022.128836_bib75) 2022; 355 Gu (10.1016/j.jhazmat.2022.128836_bib18) 2015; 219 Liu (10.1016/j.jhazmat.2022.128836_bib40) 2019; 295 Zhang (10.1016/j.jhazmat.2022.128836_bib76) 2018; 273 Agrawal (10.1016/j.jhazmat.2022.128836_bib2) 2018; 3 Zhao (10.1016/j.jhazmat.2022.128836_bib84) 2021; 6 Pasupuleti (10.1016/j.jhazmat.2022.128836_bib50) 2022; 427 Kim (10.1016/j.jhazmat.2022.128836_bib31) 2011; 21 Wang (10.1016/j.jhazmat.2022.128836_bib64) 2017; 9 |
References_xml | – start-page: 1 year: 2021 end-page: 20 ident: bib67 article-title: Methods and mechanisms of gas sensor selectivity publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 339 year: 2021 ident: bib16 article-title: Daily writing carbon ink: novel application on humidity sensor with wide detection range, low detection limit and high detection resolution publication-title: Sens. Actuators B Chem. – volume: 13 start-page: 207 year: 2021 ident: bib23 article-title: Advanced strategies to improve performances of molybdenum-based gas sensors publication-title: Nano-Micro Lett. – volume: 427 year: 2022 ident: bib50 article-title: High performance langasite based SAW NO publication-title: J. Hazard. Mater. – volume: 6 start-page: 2858 year: 2021 end-page: 2867 ident: bib84 article-title: Enhanced blocking effect: a new strategy to improve the NO publication-title: ACS Sens – volume: 31 year: 2021 ident: bib29 article-title: Novel christmas branched like NiO/NiWO publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1361 year: 2019 end-page: 1371 ident: bib43 article-title: Understanding the noble metal modifying effect on In publication-title: Nanoscale Horiz. – volume: 2 start-page: 4785 year: 2020 end-page: 4797 ident: bib62 article-title: Boosting the performance of NO publication-title: Nanoscale Adv. – volume: 344 year: 2021 ident: bib51 article-title: Boosting of NO publication-title: Sens. Actuators B Chem. – volume: 387 year: 2020 ident: bib44 article-title: Facile metal-organic frameworks-templated fabrication of hollow indium oxide microstructures for chlorine detection at low temperature publication-title: J. Hazard. Mater. – volume: 121 start-page: 18 year: 2007 end-page: 35 ident: bib5 article-title: Metal oxide-based gas sensor research: how to? publication-title: Sens. Actuators B Chem. – volume: 219 start-page: 94 year: 2015 end-page: 99 ident: bib18 article-title: In publication-title: Sens. Actuators B Chem. – volume: 15 year: 2021 ident: bib52 article-title: Efficient charge separation in polypyrrole/GaN-nanorod-based hybrid heterojunctions for high-performance self-powered UV photodetection publication-title: Phys. Status Solidi RRL – volume: 9 start-page: 16335 year: 2017 end-page: 16342 ident: bib64 article-title: Ultrathin In publication-title: ACS Appl. Mater. Interfaces – volume: 400 year: 2020 ident: bib90 article-title: Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible-light-driven gaseous toluene degradation publication-title: Chem. Eng. J. – volume: 317 year: 2020 ident: bib17 article-title: Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor publication-title: Sens. Actuators B Chem. – volume: 329 year: 2021 ident: bib38 article-title: Effect of resonant tunneling modulation on ZnO/In publication-title: Sens. Actuators B Chem. – volume: 328 year: 2021 ident: bib63 article-title: Metal–organic framework-derived Cu publication-title: Sens. Actuators B Chem. – volume: 828 year: 2020 ident: bib88 article-title: Highly selective NO publication-title: J. Alloy. Compd. – volume: 303 year: 2020 ident: bib15 article-title: Creating oxygen vacancies on porous indium oxide nanospheres via metallic aluminum reduction for enhanced nitrogen dioxide detection at low temperature publication-title: Sens. Actuators B Chem. – volume: 39 start-page: 188 year: 2017 end-page: 196 ident: bib3 article-title: Preparation of nanostructured and nanosheets of MoS publication-title: Ultrason. Sonochem. – volume: 8 start-page: 5738 year: 2014 end-page: 5745 ident: bib46 article-title: Strong photoluminescence enhancement of MoS publication-title: ACS Nano – volume: 305 year: 2020 ident: bib10 article-title: Two-dimensional Cd-doped porous Co publication-title: Sens. Actuators B Chem. – volume: 7 year: 2021 ident: bib71 article-title: 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review publication-title: Adv. Electron. Mater. – volume: 585 year: 2022 ident: bib80 article-title: High performance humidity sensor based on 3D mesoporous Co publication-title: Appl. Surf. Sci. – volume: 12 start-page: 164 year: 2020 ident: bib35 article-title: Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials publication-title: Nano-Micro Lett. – volume: 28 start-page: 7997 year: 2016 end-page: 8005 ident: bib57 article-title: Amphiphilic block copolymer templated synthesis of mesoporous indium oxides with nanosheet-assembled pore walls publication-title: Chem. Mater. – volume: 10 start-page: 7210 year: 2018 end-page: 7217 ident: bib20 article-title: Hierarchical SnS publication-title: Nanoscale – volume: 30 year: 2021 ident: bib39 article-title: Surface acoustic device for high response NO publication-title: Smart Mater. Struct. – volume: 413 year: 2021 ident: bib41 article-title: A high-response formaldehyde sensor based on fibrous Ag-ZnO/In publication-title: J. Hazard. Mater. – volume: 344 year: 2021 ident: bib14 article-title: Improving anti-humidity property of In publication-title: Sens. Actuators B Chem. – volume: 393 year: 2020 ident: bib42 article-title: Edge-exposed MoS publication-title: J. Hazard Mater. – volume: 419 year: 2021 ident: bib37 article-title: Fast detection of NO publication-title: J. Hazard. Mater. – volume: 787 start-page: 1063 year: 2019 end-page: 1073 ident: bib69 article-title: In publication-title: J. Alloy. Compd. – volume: 9 start-page: 9314 year: 2015 end-page: 9321 ident: bib11 article-title: Highly enhanced gas adsorption properties in vertically aligned MoS publication-title: ACS Nano – volume: 10 start-page: 41773 year: 2018 end-page: 41783 ident: bib66 article-title: Investigation of microstructure effect on NO publication-title: ACS Appl. Mater. Interfaces – volume: 355 year: 2022 ident: bib75 article-title: Gold-loaded tellurium nanobelts gas sensor for ppt-level NO publication-title: Sens. Actuators B Chem. – volume: 537 year: 2021 ident: bib79 article-title: Hexagonal ZnO nanoplates/graphene composites with excellent sensing performance to NO publication-title: Appl. Surf. Sci. – volume: 47 start-page: 708 year: 2018 end-page: 715 ident: bib48 article-title: Synthesis and photoelectrocatalytic activity of In publication-title: Dalton Trans. – volume: 21 start-page: 2554 year: 2021 ident: bib45 article-title: The key role of active sites in the development of selective metal oxide sensor materials publication-title: Sens. (Basel) – volume: 332 year: 2021 ident: bib65 article-title: Enhanced NO publication-title: Sens. Actuators B Chem. – volume: 358 year: 2022 ident: bib21 article-title: PrGO decorated TiO publication-title: Sens. Actuators B Chem. – volume: 326 year: 2021 ident: bib73 article-title: Flexible resistive NO publication-title: Sens. Actuators B Chem. – volume: 319 year: 2020 ident: bib83 article-title: Ultrasensitive flexible NH publication-title: Sens. Actuators B Chem. – volume: 4 start-page: 9418 year: 2016 end-page: 9427 ident: bib59 article-title: Synthesis of single crystalline In publication-title: J. Mater. Chem. C. – volume: 455 start-page: 276 year: 2018 end-page: 282 ident: bib82 article-title: Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS publication-title: Appl. Surf. Sci. – volume: 382 year: 2020 ident: bib89 article-title: Rational design of 3D/2D In publication-title: J. Hazard. Mater. – volume: 10 start-page: 22640 year: 2018 end-page: 22649 ident: bib19 article-title: Design of hetero-nanostructures on MoS publication-title: ACS Appl. Mater. Interfaces – volume: 329 year: 2021 ident: bib56 article-title: Interaction activated interfacial charge transfer in 2D g-C publication-title: Sens. Actuators B Chem. – volume: 370 start-page: 126 year: 2019 end-page: 137 ident: bib61 article-title: Fabrication and characterization of ZnO-TiO publication-title: J. Hazard. Mater. – volume: 300 year: 2019 ident: bib74 article-title: MOF-derived indium oxide hollow microtubes/MoS publication-title: Sens. Actuators B Chem. – volume: 304 year: 2020 ident: bib7 article-title: Metal-organic frameworks derived ZnO@MoS publication-title: Sens. Actuators B Chem. – volume: 26 start-page: 2344 year: 2014 end-page: 2353 ident: bib86 article-title: Space-confined growth of MoS publication-title: Chem. Mater. – volume: 295 start-page: 86 year: 2019 end-page: 92 ident: bib40 article-title: A flexible NO publication-title: Sens. Actuators B Chem. – volume: 306 year: 2022 ident: bib54 article-title: Porous In publication-title: Mater. Lett. – volume: 252 start-page: 116 year: 2017 end-page: 126 ident: bib24 article-title: Highly sensitive NO publication-title: Sens. Actuators B Chem. – volume: 391 year: 2020 ident: bib78 article-title: Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In publication-title: J. Hazard. Mater. – volume: 1 start-page: 295 year: 2016 end-page: 302 ident: bib87 article-title: Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device publication-title: ACS Sens – volume: 391 start-page: 105 year: 1999 end-page: 126 ident: bib13 article-title: Nomenclature in evaluation of analytical methods includingdetection and quantification capabilities publication-title: Anal. Chim. Acta – volume: 8 start-page: 11734 year: 2020 end-page: 11742 ident: bib55 article-title: Zero-dimensional heterostructures: N-doped graphene dots/SnO publication-title: J. Mater. Chem. A – volume: 308 year: 2020 ident: bib8 article-title: Surface functionalization of porous In publication-title: Sens. Actuators B Chem. – volume: 7 start-page: 143 year: 2001 end-page: 167 ident: bib6 article-title: Conduction model of metal oxide gas sensors publication-title: J. Electroceram – volume: 539 year: 2021 ident: bib72 article-title: Assembly of stacked In publication-title: Appl. Surf. Sci. – volume: 5 year: 2020 ident: bib85 article-title: Highly sensitive, selective, stable, and flexible NO publication-title: Adv. Mater. Technol. – volume: 3 start-page: 998 year: 2018 end-page: 1004 ident: bib2 article-title: Photoactivated mixed in-plane and edge-enriched p-type MoS publication-title: ACS Sens – volume: 416 year: 2021 ident: bib4 article-title: Thin-layered MoS publication-title: J. Hazard. Mater. – volume: 18 start-page: 15110 year: 2016 end-page: 15117 ident: bib36 article-title: Markedly different adsorption behaviors of gas molecules on defective monolayer MoS publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 23910 year: 2018 end-page: 23917 ident: bib33 article-title: Recovery improvement for large-area tungsten diselenide gas sensors publication-title: ACS Appl. Mater. Interfaces – volume: 344 year: 2021 ident: bib81 article-title: Highly sensitive and selective NO publication-title: Sens. Actuators B Chem. – volume: 12 start-page: 986 year: 2018 end-page: 993 ident: bib32 article-title: Metallic Ti publication-title: ACS Nano – volume: 9 start-page: 14722 year: 2021 end-page: 14730 ident: bib27 article-title: Hydrothermally derived p–n MoS publication-title: J. Mater. Chem. A – volume: 156 start-page: 527 year: 2011 end-page: 538 ident: bib34 article-title: Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) publication-title: Sens. Actuators B Chem. – volume: 295 start-page: 127 year: 2019 end-page: 143 ident: bib28 article-title: Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review publication-title: Sens. Actuators B Chem. – volume: 9 start-page: 6529 year: 2021 end-page: 6537 ident: bib58 article-title: Raspberry-like mesoporous Co-doped TiO publication-title: J. Mater. Chem. A – volume: 11 start-page: 2305 year: 2015 end-page: 2313 ident: bib12 article-title: Stabilizing MoS publication-title: Small – volume: 741 start-page: 908 year: 2018 end-page: 917 ident: bib70 article-title: Improved NO publication-title: J. Alloy. Compd. – volume: 7 start-page: 23481 year: 2015 end-page: 23488 ident: bib60 article-title: Wide-range thermometry at micro/nano length scales with In publication-title: ACS Appl. Mater. Interfaces – volume: 119 start-page: 20136 year: 2015 end-page: 20142 ident: bib30 article-title: Nanoscale mapping of layer-dependent surface potential and junction properties of CVD-grown MoS publication-title: J. Phys. Chem. C. – volume: 9 start-page: 10313 year: 2015 end-page: 10323 ident: bib47 article-title: Physisorption-based charge transfer in two-dimensional SnS publication-title: ACS Nano – volume: 21 start-page: 4456 year: 2011 end-page: 4463 ident: bib31 article-title: The role of NiO doping in reducing the impact of humidity on the performance of SnO publication-title: Adv. Funct. Mater. – volume: 32 start-page: 7215 year: 2020 end-page: 7225 ident: bib26 article-title: Rational design of MoS publication-title: Chem. Mater. – volume: 13 start-page: 38 year: 2021 ident: bib1 article-title: Strategy and future prospects to develop room-temperature-recoverable NO publication-title: Nano-Micro Lett. – volume: 273 start-page: 176 year: 2018 end-page: 184 ident: bib76 article-title: Layer-by-layer assembled In publication-title: Sens. Actuators B Chem. – volume: 13 start-page: 39621 year: 2021 end-page: 39632 ident: bib68 article-title: Chemical and electronic modulation via atomic layer deposition of nio on porous In publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 19558 year: 2018 end-page: 19566 ident: bib77 article-title: Construction of Co publication-title: J. Mater. Sci. -Mater. El. – volume: 10 start-page: 160 year: 2022 end-page: 170 ident: bib49 article-title: Highly sensitive g-C publication-title: J. Mater. Chem. C. – volume: 466 start-page: 1 year: 2019 end-page: 11 ident: bib25 article-title: 3D-multilayer MoS publication-title: Appl. Surf. Sci. – volume: 8 start-page: 2994 year: 2012 end-page: 2999 ident: bib22 article-title: Fabrication of flexible MoS publication-title: Small – volume: 12 start-page: 54181 year: 2020 end-page: 54190 ident: bib53 article-title: Ag nanowire-plasmonic-assisted charge separation in hybrid heterojunctions of Ppy-PEDOT:PSS/GaN nanorods for enhanced UV photodetection publication-title: ACS Appl. Mater. Interfaces – volume: 435 start-page: 1096 year: 2018 end-page: 1104 ident: bib9 article-title: In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO publication-title: Appl. Surf. Sci. – volume: 13 start-page: 38 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib1 article-title: Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00558-3 – volume: 219 start-page: 94 year: 2015 ident: 10.1016/j.jhazmat.2022.128836_bib18 article-title: In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.04.119 – volume: 252 start-page: 116 year: 2017 ident: 10.1016/j.jhazmat.2022.128836_bib24 article-title: Highly sensitive NO2 detection on ppb level by devices based on Pd-loaded In2O3 hierarchical microstructures publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.05.113 – volume: 413 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib41 article-title: A high-response formaldehyde sensor based on fibrous Ag-ZnO/In2O3 with multi-level heterojunctions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125352 – volume: 328 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib63 article-title: Metal–organic framework-derived Cu2O–CuO octahedrons for sensitive and selective detection of ppb-level NO2 at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.129045 – volume: 585 year: 2022 ident: 10.1016/j.jhazmat.2022.128836_bib80 article-title: High performance humidity sensor based on 3D mesoporous Co3O4 hollow polyhedron for multifunctional applications. publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.152698 – volume: 435 start-page: 1096 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib9 article-title: In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.11.222 – volume: 18 start-page: 15110 year: 2016 ident: 10.1016/j.jhazmat.2022.128836_bib36 article-title: Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP01362G – volume: 305 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib10 article-title: Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.127393 – volume: 317 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib17 article-title: Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128204 – volume: 12 start-page: 54181 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib53 article-title: Ag nanowire-plasmonic-assisted charge separation in hybrid heterojunctions of Ppy-PEDOT:PSS/GaN nanorods for enhanced UV photodetection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c16795 – volume: 7 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib71 article-title: 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202100271 – volume: 39 start-page: 188 year: 2017 ident: 10.1016/j.jhazmat.2022.128836_bib3 article-title: Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.04.024 – volume: 273 start-page: 176 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib76 article-title: Layer-by-layer assembled In2O3 nanocubes/flower-like MoS2 nanofilm for room temperature formaldehyde sensing publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.06.044 – volume: 47 start-page: 708 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib48 article-title: Synthesis and photoelectrocatalytic activity of In2O3 hollow microspheres via a bio-template route using yeast templates publication-title: Dalton Trans. doi: 10.1039/C7DT03878J – volume: 4 start-page: 1361 year: 2019 ident: 10.1016/j.jhazmat.2022.128836_bib43 article-title: Understanding the noble metal modifying effect on In2O3 nanowires: highly sensitive and selective gas sensors for potential early screening of multiple diseases publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00404A – volume: 29 start-page: 19558 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib77 article-title: Construction of Co3O4 nanorods/In2O3 nanocubes heterojunctions for efficient sensing of NO2 gas at low temperature publication-title: J. Mater. Sci. -Mater. El. doi: 10.1007/s10854-018-0087-9 – volume: 393 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib42 article-title: Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122325 – volume: 787 start-page: 1063 year: 2019 ident: 10.1016/j.jhazmat.2022.128836_bib69 article-title: In2O3 nanoplates with different crystallinity and porosity: controllable synthesis and gas-sensing properties investigation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.02.176 – volume: 339 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib16 article-title: Daily writing carbon ink: novel application on humidity sensor with wide detection range, low detection limit and high detection resolution publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.129884 – volume: 466 start-page: 1 year: 2019 ident: 10.1016/j.jhazmat.2022.128836_bib25 article-title: 3D-multilayer MoS2 nanosheets vertically grown on highly mesoporous cubic In2O3 for high-performance gas sensing at room temperature publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.018 – volume: 400 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib90 article-title: Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible-light-driven gaseous toluene degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125919 – volume: 303 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib15 article-title: Creating oxygen vacancies on porous indium oxide nanospheres via metallic aluminum reduction for enhanced nitrogen dioxide detection at low temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.127221 – volume: 308 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib8 article-title: Surface functionalization of porous In2O3 nanofibers with Zn nanoparticles for enhanced low-temperature NO2 sensing properties publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.127716 – volume: 828 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib88 article-title: Highly selective NO2 chemiresistive gas sensor based on hierarchical In2O3 microflowers grown on clinoptilolite substrates publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.154395 – volume: 31 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib29 article-title: Novel christmas branched like NiO/NiWO4/WO3 (p–p–n) nanowire heterostructures for chemical sensing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104416 – volume: 344 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib81 article-title: Highly sensitive and selective NO2 sensor of alkalized V2CTx MXene driven by interlayer swelling publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130150 – volume: 7 start-page: 23481 year: 2015 ident: 10.1016/j.jhazmat.2022.128836_bib60 article-title: Wide-range thermometry at micro/nano length scales with In2O3 octahedrons as optical probes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05675 – volume: 8 start-page: 11734 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib55 article-title: Zero-dimensional heterostructures: N-doped graphene dots/SnO2 for ultrasensitive and selective NO2 gas sensing at low temperatures publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03037F – volume: 539 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib72 article-title: Assembly of stacked In2O3 nanosheets for detecting trace NO2 with ultrahigh selectivity and promoted recovery publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148217 – volume: 10 start-page: 22640 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib19 article-title: Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05811 – volume: 30 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib39 article-title: Surface acoustic device for high response NO2 gas sensor using p-phenylenediamine-reduced graphene oxide nanocomposite coated on langasite publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ac1956 – volume: 12 start-page: 986 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib32 article-title: Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio publication-title: ACS Nano doi: 10.1021/acsnano.7b07460 – volume: 537 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib79 article-title: Hexagonal ZnO nanoplates/graphene composites with excellent sensing performance to NO2 at room temperature publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147785 – volume: 9 start-page: 14722 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib27 article-title: Hydrothermally derived p–n MoS2–ZnO from p–p MoS2-ZIF-8 for an efficient detection of NO2 at room temperature publication-title: J. Mater. Chem. A doi: 10.1039/D1TA03578A – volume: 300 year: 2019 ident: 10.1016/j.jhazmat.2022.128836_bib74 article-title: MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.127037 – volume: 8 start-page: 5738 year: 2014 ident: 10.1016/j.jhazmat.2022.128836_bib46 article-title: Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding publication-title: ACS Nano doi: 10.1021/nn500532f – volume: 329 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib38 article-title: Effect of resonant tunneling modulation on ZnO/In2O3 heterojunction nanocomposite in efficient detection of NO2 gas at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.129230 – volume: 391 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib78 article-title: Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122191 – volume: 10 start-page: 7210 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib20 article-title: Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection publication-title: Nanoscale doi: 10.1039/C8NR01379A – volume: 344 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib51 article-title: Boosting of NO2 gas sensing performances using GO-PEDOT:PSS nanocomposite chemical interface coated on langasite-based surface acoustic wave sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130267 – volume: 382 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib89 article-title: Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area "high-speed channels" for photocatalytic oxidation of 2,4-dichlorophenol under visible light publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121098 – volume: 13 start-page: 39621 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib68 article-title: Chemical and electronic modulation via atomic layer deposition of nio on porous In2O3 films to boost NO2 detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11262 – volume: 10 start-page: 23910 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib33 article-title: Recovery improvement for large-area tungsten diselenide gas sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07034 – volume: 2 start-page: 4785 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib62 article-title: Boosting the performance of NO2 gas sensors based on n–n type mesoporous ZnO@In2O3 heterojunction nanowires: in situ conducting probe atomic force microscopic elucidation of room temperature local electron transport publication-title: Nanoscale Adv. doi: 10.1039/D0NA00318B – volume: 319 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib83 article-title: Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128293 – volume: 10 start-page: 41773 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib66 article-title: Investigation of microstructure effect on NO2 sensors based on SnO2 nanoparticles/reduced graphene oxide hybrids publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b15284 – volume: 9 start-page: 16335 year: 2017 ident: 10.1016/j.jhazmat.2022.128836_bib64 article-title: Ultrathin In2O3 nanosheets with uniform mesopores for highly sensitive nitric oxide detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04395 – volume: 9 start-page: 6529 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib58 article-title: Raspberry-like mesoporous Co-doped TiO2 nanospheres for a high-performance formaldehyde gas sensor publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11695E – volume: 119 start-page: 20136 year: 2015 ident: 10.1016/j.jhazmat.2022.128836_bib30 article-title: Nanoscale mapping of layer-dependent surface potential and junction properties of CVD-grown MoS2 domains publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.5b05818 – volume: 306 year: 2022 ident: 10.1016/j.jhazmat.2022.128836_bib54 article-title: Porous In2O3 thick films as a low temperature NO2 gas detector publication-title: Mater. Lett. doi: 10.1016/j.matlet.2021.130916 – volume: 355 year: 2022 ident: 10.1016/j.jhazmat.2022.128836_bib75 article-title: Gold-loaded tellurium nanobelts gas sensor for ppt-level NO2 detection at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.131300 – volume: 332 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib65 article-title: Enhanced NO2 gas sensing properties based on Rb-doped hierarchical flower-like In2O3 microspheres at low temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.129497 – volume: 9 start-page: 10313 year: 2015 ident: 10.1016/j.jhazmat.2022.128836_bib47 article-title: Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing publication-title: ACS Nano doi: 10.1021/acsnano.5b04343 – volume: 21 start-page: 2554 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib45 article-title: The key role of active sites in the development of selective metal oxide sensor materials publication-title: Sens. (Basel) doi: 10.3390/s21072554 – volume: 121 start-page: 18 year: 2007 ident: 10.1016/j.jhazmat.2022.128836_bib5 article-title: Metal oxide-based gas sensor research: how to? publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2006.09.047 – volume: 4 start-page: 9418 year: 2016 ident: 10.1016/j.jhazmat.2022.128836_bib59 article-title: Synthesis of single crystalline In2O3 octahedra for the selective detection of NO2 and H2 at trace levels publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC03218D – volume: 5 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib85 article-title: Highly sensitive, selective, stable, and flexible NO2 sensor based on GaSe publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201901085 – volume: 344 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib14 article-title: Improving anti-humidity property of In2O3 based NO2 sensor by fluorocarbon plasma treatment publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130268 – volume: 427 year: 2022 ident: 10.1016/j.jhazmat.2022.128836_bib50 article-title: High performance langasite based SAW NO2 gas sensor using 2D g-C3N4@TiO2 hybrid nanocomposite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.128174 – volume: 7 start-page: 143 year: 2001 ident: 10.1016/j.jhazmat.2022.128836_bib6 article-title: Conduction model of metal oxide gas sensors publication-title: J. Electroceram doi: 10.1023/A:1014405811371 – start-page: 1 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib67 article-title: Methods and mechanisms of gas sensor selectivity publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 6 start-page: 2858 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib84 article-title: Enhanced blocking effect: a new strategy to improve the NO2 sensing performance of Ti3C2Tx by gamma-poly(l-glutamic acid) modification publication-title: ACS Sens doi: 10.1021/acssensors.1c00132 – volume: 13 start-page: 207 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib23 article-title: Advanced strategies to improve performances of molybdenum-based gas sensors publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00724-1 – volume: 26 start-page: 2344 year: 2014 ident: 10.1016/j.jhazmat.2022.128836_bib86 article-title: Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction publication-title: Chem. Mater. doi: 10.1021/cm500347r – volume: 326 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib73 article-title: Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128828 – volume: 455 start-page: 276 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib82 article-title: Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.05.224 – volume: 11 start-page: 2305 year: 2015 ident: 10.1016/j.jhazmat.2022.128836_bib12 article-title: Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air publication-title: Small doi: 10.1002/smll.201402923 – volume: 3 start-page: 998 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib2 article-title: Photoactivated mixed in-plane and edge-enriched p-type MoS2 flake-based NO2 sensor working at room temperature publication-title: ACS Sens doi: 10.1021/acssensors.8b00146 – volume: 391 start-page: 105 year: 1999 ident: 10.1016/j.jhazmat.2022.128836_bib13 article-title: Nomenclature in evaluation of analytical methods includingdetection and quantification capabilities publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(99)00104-X – volume: 295 start-page: 86 year: 2019 ident: 10.1016/j.jhazmat.2022.128836_bib40 article-title: A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.05.065 – volume: 419 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib37 article-title: Fast detection of NO2 by porous SnO2 nanotoast sensor at low temperature publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126414 – volume: 9 start-page: 9314 year: 2015 ident: 10.1016/j.jhazmat.2022.128836_bib11 article-title: Highly enhanced gas adsorption properties in vertically aligned MoS2 layers publication-title: ACS Nano doi: 10.1021/acsnano.5b04504 – volume: 12 start-page: 164 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib35 article-title: Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00503-4 – volume: 358 year: 2022 ident: 10.1016/j.jhazmat.2022.128836_bib21 article-title: PrGO decorated TiO2 nanoplates hybrid nanocomposite for augmented NO2 gas detection with faster gas kinetics under UV light irradiation publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.131503 – volume: 416 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib4 article-title: Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125830 – volume: 1 start-page: 295 year: 2016 ident: 10.1016/j.jhazmat.2022.128836_bib87 article-title: Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device publication-title: ACS Sens doi: 10.1021/acssensors.5b00241 – volume: 295 start-page: 127 year: 2019 ident: 10.1016/j.jhazmat.2022.128836_bib28 article-title: Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.05.049 – volume: 15 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib52 article-title: Efficient charge separation in polypyrrole/GaN-nanorod-based hybrid heterojunctions for high-performance self-powered UV photodetection publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.202000518 – volume: 304 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib7 article-title: Metal-organic frameworks derived ZnO@MoS2 nanosheets core/shell heterojunctions for ppb-level acetone detection: ultra-fast response and recovery publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.127430 – volume: 8 start-page: 2994 year: 2012 ident: 10.1016/j.jhazmat.2022.128836_bib22 article-title: Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications publication-title: Small doi: 10.1002/smll.201201224 – volume: 21 start-page: 4456 year: 2011 ident: 10.1016/j.jhazmat.2022.128836_bib31 article-title: The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101154 – volume: 156 start-page: 527 year: 2011 ident: 10.1016/j.jhazmat.2022.128836_bib34 article-title: Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.02.024 – volume: 32 start-page: 7215 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib26 article-title: Rational design of MoS2/C3N4 hybrid aerogel with abundant exposed edges for highly sensitive NO2 detection at room temperature publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01468 – volume: 28 start-page: 7997 year: 2016 ident: 10.1016/j.jhazmat.2022.128836_bib57 article-title: Amphiphilic block copolymer templated synthesis of mesoporous indium oxides with nanosheet-assembled pore walls publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03733 – volume: 387 year: 2020 ident: 10.1016/j.jhazmat.2022.128836_bib44 article-title: Facile metal-organic frameworks-templated fabrication of hollow indium oxide microstructures for chlorine detection at low temperature publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122017 – volume: 329 year: 2021 ident: 10.1016/j.jhazmat.2022.128836_bib56 article-title: Interaction activated interfacial charge transfer in 2D g-C3N4/GaN nanorods heterostructure for self-powered UV photodetector and room temperature NO2 gas sensor at ppb level publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.129175 – volume: 741 start-page: 908 year: 2018 ident: 10.1016/j.jhazmat.2022.128836_bib70 article-title: Improved NO2 sensing properties at low temperature using reduced graphene oxide nanosheet–In2O3 heterojunction nanofibers publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.01.209 – volume: 10 start-page: 160 year: 2022 ident: 10.1016/j.jhazmat.2022.128836_bib49 article-title: Highly sensitive g-C3N4 nanosheets as a potential candidate for the effective detection of NO2 gas via langasite-based surface acoustic wave gas sensor publication-title: J. Mater. Chem. C. doi: 10.1039/D1TC04904F – volume: 370 start-page: 126 year: 2019 ident: 10.1016/j.jhazmat.2022.128836_bib61 article-title: Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.10.016 |
SSID | ssj0001754 |
Score | 2.6494932 |
Snippet | Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor... Nitrogen dioxide (NO₂) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 128836 |
SubjectTerms | ambient temperature Edge activity Heterojunction High selectivity human health In2O3/MoS2 nanosheets nitrogen dioxide NO2 sensor synergism toxicity |
Title | Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity |
URI | https://dx.doi.org/10.1016/j.jhazmat.2022.128836 https://www.proquest.com/docview/2651692193 https://www.proquest.com/docview/2661012990 |
Volume | 434 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucABQQFRHtUgcc1u1q8kx6pqtQW6PZRKvUV2bHd3tetUbCokDvwofiEzebCABJU4OrYlK2N_841nPMPYOxdS7qqA1ongIZHWiMTowBPhRGEqkSKFpbfDZzM9vZTvr9TVDjsa3sJQWGWP_R2mt2jdfxn3f3N8s1iML8iph-pWcrKKuSIcljKjXT76tg3zQPXYpZAiDwCO3r7iGS9Hy7n5isQQzUTORxMqvKv_pp_-QOpW_Zw8Zo963giH3dKesB0f99jDX7IJ7rF7H82Xp-z7sbv2Ce4KivF0cFZfcIgm1pu5980G1rVbBKSdgLwbjf5tV4Is2q_tCruoPHbrYED5wWnk5wLWFLcXVm1JNUCeC0S4gfJa9UmZwfmmjeqKUAeYnXOgG164XTWIZovrOWwoUr4rVQEmOti0BXja9jN2eXL86Wia9IUZkkpkqkm80lYaI4qJ1T432lZaZNIXE597VWWpDMH5zBqTo46UPFVOO2WrzAaVGmcr8Zztxjr6FwwQYbxQeWVz5HI-d4Up0hwNfF14g-Cg95kcxFFWfdZyKp6xKofwtGXZS7EkKZadFPfZ6Oe0my5tx10T8kHW5W_7r0TVctfUt8PeKPFsksPFRI8iLLkmLyTqBPGvMZpSrCEpePn_S3jFHlCL7pwn6jXbbT7f-jdIlhp70J6GA3b_8PTDdPYD4mgZiA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZG9wA8IBigjZ-HxGva1I6d5HGaNrWs7R62SXuz7NheW7XJRDMh8WfxF3KXpBsgwSQeE-ckK2d_953vfMfYZxdi7oqA3ongIUqsEZFRgUfCidwUIkYKS3eHpzM1uky-XMmrHXa0vQtDaZUd9reY3qB192bQ_c3BzWIxOKegHprbhJNXzCXi8C5Vp5I9tns4Ph3N7gAZLWRbRYqCAChwf5FnsOwv5-Y7ckP0FDnvD6n3rvqbifoDrBsLdPKcPeuoIxy2s3vBdny5x57-UlBwjz2amG8v2Y9jd-0jXBiU5ulgWp1zKE1Zbebe1xtYV24RkHkCUm_0---HIiTSfm1XOEQdspsYA6oQxiU_E7Cm1L2warqqAVJdIM4NVNqqq8sMztdNYlcJVYDZGQc65IXbVY2Atriew4aS5dtuFWBKB5umB0_z_IpdnhxfHI2irjdDVIhU1pGXyibGiHxolc-MsoUSaeLzoc-8LNI4CcH51BqToZlMeCydctIWqQ0yNs4W4jXrlVXp9xkgyHghs8JmSOd85nKTxxn6-Cr3BvFBHbBkqw5ddIXLqX_GSm8z1Ja606ImLepWiwesfyd201bueEgg2-pa_7YENVqXh0Q_bdeGxu1JMRdTelSh5ooCkWgWxL--UVRlDXnBm_-fwkf2eHQxnejJeHb6lj2hETqCHsp3rFd_vfXvkTvV9kO3N34Cal4cOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-enriched+MoS2+nanosheets+modified+porous+nanosheet-assembled+hierarchical+In2O3+microflowers+for+room+temperature+detection+of+NO2+with+ultrahigh+sensitivity+and+selectivity&rft.jtitle=Journal+of+hazardous+materials&rft.au=Zhang%2C+Yajie&rft.au=Jiang%2C+Yadong&rft.au=Duan%2C+Zaihua&rft.au=Wu%2C+Yingwei&rft.date=2022-07-15&rft.issn=0304-3894&rft.volume=434+p.128836-&rft_id=info:doi/10.1016%2Fj.jhazmat.2022.128836&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |