Cross-linked, ETFE-derived and radiation grafted membranes for anion exchange membrane fuel cell applications

To develop a series of cross-linked anion exchange membranes for application in fuel cells, poly(ethylene- co-tetrafluoroethylene) (ETFE) films was radiation grafted with vinyl benzyl chloride (VBC), followed by quaternization and crosslinking with 1,4-Diazabicyclo[2,2,2]octane (DABCO), alkylation w...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 37; no. 1; pp. 594 - 602
Main Authors Fang, Jun, Yang, Yixu, Lu, Xiaohuan, Ye, Meiling, Li, Wei, Zhang, Yanmei
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To develop a series of cross-linked anion exchange membranes for application in fuel cells, poly(ethylene- co-tetrafluoroethylene) (ETFE) films was radiation grafted with vinyl benzyl chloride (VBC), followed by quaternization and crosslinking with 1,4-Diazabicyclo[2,2,2]octane (DABCO), alkylation with p-Xylylenedichloride (DCX), and quaternization again with trimethylamine (TMA). These anion exchange membranes were characterized in terms of water uptake, ion-exchange capacity, ionic conductivity as well as thermal stability. The chemical structures of the membranes were examined by FT-IR. The anion conductivity of the resulting alkaline anion exchange membrane is as high as 0.039 S cm −1 at 30 °C in deionized water and the ionic conductivity increases with the increasing of temperature from 20 to 80 °C. The membrane is stable after being treated by 10 M potassium hydroxide solution at 60 °C for 120 h .The fuel cell performance with the final AAEM obtained in a H 2/O 2 single fuel cell at 40 °C with this AAEM was 48 mW cm −2 at a current density of 69 mA cm −2. ► ETFE-derived and radiation grafted anion exchange membrane were successfully prepared by two times quaternization method. ► 1,4-Diazabicyclo[2,2,2]octane (DABCO) was used to introduce quaternary ammonium groups and crosslinking structure. ► Elemental analysis and FT-IR results indicated the success of grafting reaction. ► The prepared anion exchange membrane was tested in in-house metal-cation-free H 2/O 2 fuel cell system. ► The max power density was found to be 48 mW cm −2.
AbstractList To develop a series of cross-linked anion exchange membranes for application in fuel cells, poly(ethylene-co-tetrafluoroethylene) (ETFE) films was radiation grafted with vinyl benzyl chloride (VBC), followed by quaternization and crosslinking with 1,4-Diazabicyclo[2,2,2]octane (DABCO), alkylation with p-Xylylenedichloride (DCX), and quaternization again with trimethylamine (TMA). These anion exchange membranes were characterized in terms of water uptake, ion-exchange capacity, ionic conductivity as well as thermal stability. The chemical structures of the membranes were examined by FT-IR. The anion conductivity of the resulting alkaline anion exchange membrane is as high as 0.039 S cm-1 at 30 degree C in deionized water and the ionic conductivity increases with the increasing of temperature from 20 to 80 degree C. The membrane is stable after being treated by 10 M potassium hydroxide solution at 60 degree C for 120 h,The fuel cell performance with the final AAEM obtained in a H2/O2 single fuel cell at 40 degree C with this AAEM was 48 mW cm-2 at a current density of 69 mA cm-2.
To develop a series of cross-linked anion exchange membranes for application in fuel cells, poly(ethylene- co-tetrafluoroethylene) (ETFE) films was radiation grafted with vinyl benzyl chloride (VBC), followed by quaternization and crosslinking with 1,4-Diazabicyclo[2,2,2]octane (DABCO), alkylation with p-Xylylenedichloride (DCX), and quaternization again with trimethylamine (TMA). These anion exchange membranes were characterized in terms of water uptake, ion-exchange capacity, ionic conductivity as well as thermal stability. The chemical structures of the membranes were examined by FT-IR. The anion conductivity of the resulting alkaline anion exchange membrane is as high as 0.039 S cm −1 at 30 °C in deionized water and the ionic conductivity increases with the increasing of temperature from 20 to 80 °C. The membrane is stable after being treated by 10 M potassium hydroxide solution at 60 °C for 120 h .The fuel cell performance with the final AAEM obtained in a H 2/O 2 single fuel cell at 40 °C with this AAEM was 48 mW cm −2 at a current density of 69 mA cm −2. ► ETFE-derived and radiation grafted anion exchange membrane were successfully prepared by two times quaternization method. ► 1,4-Diazabicyclo[2,2,2]octane (DABCO) was used to introduce quaternary ammonium groups and crosslinking structure. ► Elemental analysis and FT-IR results indicated the success of grafting reaction. ► The prepared anion exchange membrane was tested in in-house metal-cation-free H 2/O 2 fuel cell system. ► The max power density was found to be 48 mW cm −2.
Author Li, Wei
Yang, Yixu
Zhang, Yanmei
Fang, Jun
Lu, Xiaohuan
Ye, Meiling
Author_xml – sequence: 1
  givenname: Jun
  surname: Fang
  fullname: Fang, Jun
  email: jfang@xmu.edu.cn, fangjun@gic.ac.cn
– sequence: 2
  givenname: Yixu
  surname: Yang
  fullname: Yang, Yixu
– sequence: 3
  givenname: Xiaohuan
  surname: Lu
  fullname: Lu, Xiaohuan
– sequence: 4
  givenname: Meiling
  surname: Ye
  fullname: Ye, Meiling
– sequence: 5
  givenname: Wei
  surname: Li
  fullname: Li, Wei
– sequence: 6
  givenname: Yanmei
  surname: Zhang
  fullname: Zhang, Yanmei
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25413053$$DView record in Pascal Francis
BookMark eNqFkU9rGzEUxEVxoHbar1D2Usghu9GT9p8ghwbjtIFAL8lZaKWnWO6u1pXWofn21cZpDr34JND7zTDMrMjCjx4J-QK0AAr11a5wu-2LQY8FowAFFQUA-0CW0DYi52XbLMiS8prmHIT4SFYx7iiFhpZiSYZ1GGPMe-d_obnMNg-3m9xgcM9oMuVNFpRxanKjz56CslP6HXDogvIYMzuGxMw3_KO3yj_h-zGzB-wzjX2fqf2-d_rVI34iZ1b1ET-_vefk8XbzsP6R3__8fre-uc81b6opR2CqohaqutMtZ0IxIxrbdTXDsgNVa1ZZ22GjqRVM266y2FJhmAIUHW8tPycXR999GH8fME5ycHFOk6KNhyhTb7QVUJUioV_fUBW16m1Kr12U--AGFV4kq0rgtOKJq4-cngsLaN8RoLNfLXfy3w5y3kFSIdMOSXj9n1C76bWOKSjXn5Z_O8ox9fXsMMioHXqNxgXUkzSjO2XxF1yCrLM
CODEN IJHEDX
CitedBy_id crossref_primary_10_1016_j_memsci_2021_119879
crossref_primary_10_1016_j_ijhydene_2013_03_166
crossref_primary_10_1007_s00289_017_1945_y
crossref_primary_10_1179_1432891715Z_0000000001442
crossref_primary_10_1016_j_pecs_2018_01_001
crossref_primary_10_1016_j_ssi_2013_05_005
crossref_primary_10_1002_pen_26907
crossref_primary_10_1039_C4TA00558A
crossref_primary_10_1039_C9NJ02200G
crossref_primary_10_1016_j_memsci_2016_01_008
crossref_primary_10_1039_c3cp50556a
crossref_primary_10_1007_s10853_018_2409_y
crossref_primary_10_1016_j_ces_2016_05_041
crossref_primary_10_1016_j_ijhydene_2012_04_096
crossref_primary_10_1016_j_progpolymsci_2016_05_002
crossref_primary_10_1002_app_45775
crossref_primary_10_1039_C4EE01303D
crossref_primary_10_1039_D0RA06484J
crossref_primary_10_1021_acs_chemmater_7b00958
crossref_primary_10_1016_j_jpowsour_2013_08_141
crossref_primary_10_14723_tmrsj_40_359
crossref_primary_10_1016_j_jelechem_2016_11_024
crossref_primary_10_3390_polym15061534
crossref_primary_10_1002_app_51901
crossref_primary_10_1007_s13233_020_8023_2
crossref_primary_10_1016_j_ijhydene_2016_02_083
crossref_primary_10_1186_s11671_018_2836_3
crossref_primary_10_1002_pol_20200665
crossref_primary_10_1039_C4CP05755D
crossref_primary_10_1016_j_ijhydene_2015_07_074
crossref_primary_10_1016_j_memsci_2017_10_062
crossref_primary_10_1016_j_ijhydene_2023_05_345
crossref_primary_10_1016_j_ijhydene_2012_11_055
crossref_primary_10_1039_D3TA04298G
crossref_primary_10_1016_j_memsci_2016_07_006
crossref_primary_10_1016_j_jpowsour_2017_03_146
crossref_primary_10_1016_j_synthmet_2013_02_008
crossref_primary_10_1002_fuce_201500039
crossref_primary_10_1016_j_jpowsour_2015_03_065
crossref_primary_10_1016_j_memsci_2015_12_012
crossref_primary_10_1016_j_jpowsour_2015_07_048
crossref_primary_10_1016_j_ijhydene_2012_09_089
crossref_primary_10_1016_j_electacta_2013_07_182
crossref_primary_10_1016_j_matdes_2018_05_024
crossref_primary_10_1016_j_ssi_2018_08_009
crossref_primary_10_1002_er_8470
crossref_primary_10_1016_j_ijhydene_2015_04_040
crossref_primary_10_1016_j_ijhydene_2020_12_145
crossref_primary_10_1016_j_jpowsour_2016_07_060
crossref_primary_10_1039_D3CS00186E
crossref_primary_10_1039_C4RA16203J
crossref_primary_10_1039_C6TA08232G
crossref_primary_10_1016_j_jcis_2021_07_043
crossref_primary_10_1080_10601325_2017_1317210
crossref_primary_10_1039_C6TA05611C
crossref_primary_10_1039_C5RA04741B
crossref_primary_10_1016_j_electacta_2015_01_164
crossref_primary_10_1039_C2RA22331G
crossref_primary_10_1016_j_memsci_2019_01_036
crossref_primary_10_1016_j_ijhydene_2012_05_077
crossref_primary_10_1016_j_arabjc_2022_104451
crossref_primary_10_1016_j_ijhydene_2022_06_140
crossref_primary_10_1016_j_electacta_2016_11_137
crossref_primary_10_1016_j_ijhydene_2022_12_293
crossref_primary_10_1016_j_memsci_2015_08_069
crossref_primary_10_1021_acs_jpcc_9b03131
crossref_primary_10_1021_cr4005499
crossref_primary_10_1002_er_4348
crossref_primary_10_1016_j_memsci_2023_122071
crossref_primary_10_1016_j_jpowsour_2013_02_059
crossref_primary_10_1002_cssc_201600468
crossref_primary_10_3390_membranes11060397
crossref_primary_10_1002_cssc_201300560
crossref_primary_10_1016_j_ijhydene_2019_02_233
crossref_primary_10_1016_j_ssi_2015_04_013
crossref_primary_10_1016_j_ijhydene_2014_03_133
crossref_primary_10_1016_j_memsci_2018_12_053
crossref_primary_10_1021_acsmaterialslett_9b00418
crossref_primary_10_1002_app_48656
crossref_primary_10_1021_jacs_5b02879
crossref_primary_10_1016_j_jelechem_2022_116112
crossref_primary_10_1016_j_memsci_2018_03_080
crossref_primary_10_1016_j_jelechem_2023_117547
crossref_primary_10_1016_j_jpowsour_2015_06_026
crossref_primary_10_1016_j_ijhydene_2021_08_184
crossref_primary_10_1039_D1TA05166K
Cites_doi 10.1016/j.ijhydene.2005.04.016
10.1016/j.electacta.2007.03.034
10.1016/j.jpowsour.2008.01.050
10.1016/j.memsci.2008.05.003
10.1039/c1jm11093d
10.1021/cm062407u
10.1016/S0167-2738(02)00315-6
10.1021/ma100260a
10.1016/j.radphyschem.2004.09.020
10.1016/j.radphyschem.2009.08.029
10.1016/j.ijhydene.2010.03.026
10.1016/S0376-7388(03)00167-4
10.1016/S0378-7753(02)00477-9
10.1039/b208627a
10.1021/ma901538c
10.1002/1099-0518(20010315)39:6<807::AID-POLA1054>3.0.CO;2-2
10.1016/j.memsci.2009.04.012
10.1016/j.memsci.2007.07.043
10.1016/j.jpowsour.2005.05.039
10.1149/1.1392591
10.1021/ma7027215
10.1016/j.jpowsour.2008.10.070
10.1002/fuce.200400045
10.1021/ja905242r
10.1016/j.ijhydene.2011.03.074
10.1016/j.memsci.2010.06.026
10.1021/ja908638d
10.1016/S0376-7388(03)00084-X
10.1021/jp7115577
10.1016/j.ssi.2009.01.019
10.1016/j.ijhydene.2011.03.090
10.1016/S0360-3199(01)00181-1
ContentType Journal Article
Copyright 2011 Hydrogen Energy Publications, LLC.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Hydrogen Energy Publications, LLC.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
7SU
8FD
C1K
FR3
H8D
L7M
DOI 10.1016/j.ijhydene.2011.09.112
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3487
EndPage 602
ExternalDocumentID 25413053
10_1016_j_ijhydene_2011_09_112
S0360319911022592
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
T9H
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SP
7SU
8FD
C1K
FR3
H8D
L7M
ID FETCH-LOGICAL-c375t-e12a50f156bc8329a2d97fbb62e4b1a6c25ffbe7c0f92cfb5fe809d2a1e9b38f3
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Fri Jul 11 04:49:07 EDT 2025
Mon Jul 21 09:16:09 EDT 2025
Tue Jul 01 00:58:21 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Fri Feb 23 02:20:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Crosslinking
Anion exchange membrane
DABCO
Fuel cell
ETFE
Radiation grafted
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-e12a50f156bc8329a2d97fbb62e4b1a6c25ffbe7c0f92cfb5fe809d2a1e9b38f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1010891549
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1010891549
pascalfrancis_primary_25413053
crossref_primary_10_1016_j_ijhydene_2011_09_112
crossref_citationtrail_10_1016_j_ijhydene_2011_09_112
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2011_09_112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012
2012-01-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of hydrogen energy
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Pandey, Childs, West, Lott, McCarry, Dickson (bib22) 2001; 39
Poynton, Kizewskim, Slade, Varcoe (bib21) 2009; 181
Pandey, Goswami, Sen, Mazumder, Childs (bib23) 2003; 217
Varcoe, Slade (bib7) 2005; 5
Wang, Li, Zhang (bib16) 2010; 43
Geraldes, Zen, Ribeiro, Ferreira, Souza, Parra (bib27) 2010; 79
Varco, Slade, Yee, Poynton, Driscoll, Apperley (bib19) 2007; 19
Qi, Kaufman (bib2) 2003; 113
Herman, Slade, Varcoe (bib17) 2003; 218
Wu, Wu, Yu, Xu, Fu (bib10) 2008; 307
Hibbs, Fujimoto, Cornelius (bib15) 2009; 42
Park, Caton (bib3) 2008; 179
Robertson, Kostalik, Clark, Mutolo, Abruna, Coates (bib12) 2010; 132
Hermann, Chaudhuri, Spagnol (bib5) 2005; 30
Li, Fang, Lv, Chen, Chi, Yang, Zhang (bib14) 2011; 21
Wu, Wu, Xu, Lin, Fu (bib8) 2009; 338
Xiong, Liu, Zhu, Huang, Zeng (bib26) 2009; 186
Mamlouk, Scott, Horsfall, Willams (bib31) 2011; 36
Kolhe, Kumar (bib20) 2005; 74
Guo, Fang, Hk, Li, Lu, Lan (bib13) 2010; 362
Li, Zhao (bib32) 2011; 36
McLean, Niet, Prince-Richard, Djilali (bib6) 2002; 27
Kim, Robertson, Guiver (bib25) 2008; 41
Danks, Slade, Varco (bib18) 2002; 12
Chempath, Einsla, Pratt, Macomber, Boncella, Rau (bib30) 2008; 112
Cha, Lee (bib1) 1999; 146
Clark, Robertson, Kostalik, Lobkovsky, Mutolo, Coates (bib11) 2009; 131
Wu, Wu, Xu, Yu, Fu (bib9) 2008; 321
Stoica, Ogier, Akrour, Alloin, Fauvarque (bib28) 2007; 53
Iojoiu, Chabert, Marechal, Kissi, Guindet, Sanchez (bib29) 2006; 153
Li, Zhao, Yang (bib24) 2010; 35
Stone, Morrison (bib4) 2002; 152–153
Xiong (10.1016/j.ijhydene.2011.09.112_bib26) 2009; 186
Stoica (10.1016/j.ijhydene.2011.09.112_bib28) 2007; 53
Poynton (10.1016/j.ijhydene.2011.09.112_bib21) 2009; 181
Wu (10.1016/j.ijhydene.2011.09.112_bib8) 2009; 338
Stone (10.1016/j.ijhydene.2011.09.112_bib4) 2002; 152–153
Geraldes (10.1016/j.ijhydene.2011.09.112_bib27) 2010; 79
Hermann (10.1016/j.ijhydene.2011.09.112_bib5) 2005; 30
Herman (10.1016/j.ijhydene.2011.09.112_bib17) 2003; 218
Wang (10.1016/j.ijhydene.2011.09.112_bib16) 2010; 43
Danks (10.1016/j.ijhydene.2011.09.112_bib18) 2002; 12
Mamlouk (10.1016/j.ijhydene.2011.09.112_bib31) 2011; 36
McLean (10.1016/j.ijhydene.2011.09.112_bib6) 2002; 27
Li (10.1016/j.ijhydene.2011.09.112_bib32) 2011; 36
Wu (10.1016/j.ijhydene.2011.09.112_bib10) 2008; 307
Cha (10.1016/j.ijhydene.2011.09.112_bib1) 1999; 146
Varco (10.1016/j.ijhydene.2011.09.112_bib19) 2007; 19
Kolhe (10.1016/j.ijhydene.2011.09.112_bib20) 2005; 74
Pandey (10.1016/j.ijhydene.2011.09.112_bib23) 2003; 217
Clark (10.1016/j.ijhydene.2011.09.112_bib11) 2009; 131
Li (10.1016/j.ijhydene.2011.09.112_bib14) 2011; 21
Kim (10.1016/j.ijhydene.2011.09.112_bib25) 2008; 41
Robertson (10.1016/j.ijhydene.2011.09.112_bib12) 2010; 132
Chempath (10.1016/j.ijhydene.2011.09.112_bib30) 2008; 112
Qi (10.1016/j.ijhydene.2011.09.112_bib2) 2003; 113
Li (10.1016/j.ijhydene.2011.09.112_bib24) 2010; 35
Hibbs (10.1016/j.ijhydene.2011.09.112_bib15) 2009; 42
Iojoiu (10.1016/j.ijhydene.2011.09.112_bib29) 2006; 153
Varcoe (10.1016/j.ijhydene.2011.09.112_bib7) 2005; 5
Guo (10.1016/j.ijhydene.2011.09.112_bib13) 2010; 362
Pandey (10.1016/j.ijhydene.2011.09.112_bib22) 2001; 39
Park (10.1016/j.ijhydene.2011.09.112_bib3) 2008; 179
Wu (10.1016/j.ijhydene.2011.09.112_bib9) 2008; 321
References_xml – volume: 153
  start-page: 198
  year: 2006
  end-page: 209
  ident: bib29
  article-title: From polymer chemistry to membrane elaboration: a global approach of fuel cell polymeric electrolytes
  publication-title: J Power Sources
– volume: 152–153
  start-page: 1
  year: 2002
  end-page: 13
  ident: bib4
  article-title: From curiosity to “power to change the world
  publication-title: Solid State Ionics
– volume: 39
  start-page: 807
  year: 2001
  end-page: 820
  ident: bib22
  article-title: Formation of pore-filled ion-exchange membranes with in situ crosslinking: poly(vinylbenzyl ammonium salt)-filled membranes
  publication-title: J Ploym Sci, Part A: Polym Chem
– volume: 36
  start-page: 7191
  year: 2011
  end-page: 7198
  ident: bib31
  article-title: The effect of electrode parameters on the performance of anion exchange polymer membrane fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 79
  start-page: 246
  year: 2010
  end-page: 249
  ident: bib27
  article-title: Post-irradiation time effects on the graft of poly(ethylene-alt-tetrafluoroethylene) (ETFE) films for ion exchange membrane application
  publication-title: Radiat Phys Chem
– volume: 36
  start-page: 7707
  year: 2011
  end-page: 7713
  ident: bib32
  article-title: A high-performance integrated electrode for anion-exchange membrane direct ethanol fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 181
  start-page: 219
  year: 2009
  end-page: 222
  ident: bib21
  article-title: Novel electrolyte membranes and non-Pt catalysts for low temperature fuel cells
  publication-title: Solid State Ionics
– volume: 307
  start-page: 28
  year: 2008
  end-page: 36
  ident: bib10
  article-title: Free-standing anion-exchange PEO–SiO
  publication-title: J Membr Sci
– volume: 112
  start-page: 3179
  year: 2008
  end-page: 3182
  ident: bib30
  article-title: Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes
  publication-title: J Phys Chem C
– volume: 179
  start-page: 584
  year: 2008
  end-page: 591
  ident: bib3
  article-title: Development of a PEM stack and performance analysis including the effects of water content in the membrane and cooling method
  publication-title: J Power Sources
– volume: 41
  start-page: 2126
  year: 2008
  end-page: 2134
  ident: bib25
  article-title: Comb-shaped poly(arylene ether sulfone)s as proton exchange membranes
  publication-title: Macromolecules
– volume: 321
  start-page: 299
  year: 2008
  end-page: 308
  ident: bib9
  article-title: Novel anion-exchange organic–inorganic hybrid membranes: preparation and characterizations for potential use in fuel cells
  publication-title: J Membr Sci
– volume: 217
  start-page: 117
  year: 2003
  end-page: 130
  ident: bib23
  article-title: Formation and characterization of highly crosslinked anion-exchange membranes
  publication-title: J Membr Sci
– volume: 74
  start-page: 384
  year: 2005
  end-page: 390
  ident: bib20
  article-title: Preparation of strong base anion exchange membrane using
  publication-title: Radiat Phys Chem
– volume: 146
  start-page: 4055
  year: 1999
  end-page: 4060
  ident: bib1
  article-title: Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface
  publication-title: J Electrochem Soc
– volume: 131
  start-page: 12888
  year: 2009
  end-page: 12889
  ident: bib11
  article-title: A ring-opening metathesis polymerization route to alkaline anion exchange membranes: development of hydroxide-conducting thin films from an ammonium-functionalized monomer
  publication-title: J Am Chem Soc
– volume: 43
  start-page: 3890
  year: 2010
  end-page: 3896
  ident: bib16
  article-title: Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications
  publication-title: Macromolecules
– volume: 30
  start-page: 1297
  year: 2005
  end-page: 1302
  ident: bib5
  article-title: Bipolar plates for PEM fuel cells: a review
  publication-title: Int J Hydrogen Energy
– volume: 132
  start-page: 3400
  year: 2010
  end-page: 3404
  ident: bib12
  article-title: Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications
  publication-title: J Am Chem Soc
– volume: 42
  start-page: 8316
  year: 2009
  end-page: 8321
  ident: bib15
  article-title: Synthesis and characterization of poly(phenylene) based anion exchange membranes for alkaline fuel cells
  publication-title: Macromolecules
– volume: 186
  start-page: 328
  year: 2009
  end-page: 333
  ident: bib26
  article-title: Performance of organic–inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells
  publication-title: J Power Sources
– volume: 12
  start-page: 3371
  year: 2002
  end-page: 3373
  ident: bib18
  article-title: Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs
  publication-title: J Mater Chem
– volume: 53
  start-page: 1596
  year: 2007
  end-page: 1603
  ident: bib28
  article-title: Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: synthesis, physical and electrochemical properties
  publication-title: Electrochim Acta
– volume: 19
  start-page: 2686
  year: 2007
  end-page: 2693
  ident: bib19
  article-title: Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specially tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells
  publication-title: Chem Mater
– volume: 113
  start-page: 37
  year: 2003
  end-page: 43
  ident: bib2
  article-title: Low Pt loading high performance cathodes for PEM fuel cells
  publication-title: J Power Sources
– volume: 338
  start-page: 51
  year: 2009
  end-page: 60
  ident: bib8
  article-title: Novel silica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells: effect of heat treatment
  publication-title: J Membr Sci
– volume: 218
  start-page: 147
  year: 2003
  end-page: 163
  ident: bib17
  article-title: The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimisation of the experimental conditions and characterisation
  publication-title: J Membr Sci
– volume: 5
  start-page: 187
  year: 2005
  end-page: 200
  ident: bib7
  article-title: Prospects for alkaline anion-exchange membranes in low temperature fuel cells
  publication-title: Fuel Cells
– volume: 362
  start-page: 97
  year: 2010
  end-page: 104
  ident: bib13
  article-title: Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells
  publication-title: J Membr Sci
– volume: 27
  start-page: 507
  year: 2002
  end-page: 526
  ident: bib6
  article-title: An assessment of alkaline fuel cell technology
  publication-title: Int J Hydrogen Energy
– volume: 21
  start-page: 11340
  year: 2011
  end-page: 11346
  ident: bib14
  article-title: Novel anion exchange membranes based on polymerizable imidazolium salt for alkaline fuel cell applications
  publication-title: J Mater Chem
– volume: 35
  start-page: 5656
  year: 2010
  end-page: 5665
  ident: bib24
  article-title: Measurements of water uptake and transport properties in anion-exchange membranes
  publication-title: Int J Hydrogen Energy
– volume: 30
  start-page: 1297
  year: 2005
  ident: 10.1016/j.ijhydene.2011.09.112_bib5
  article-title: Bipolar plates for PEM fuel cells: a review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2005.04.016
– volume: 53
  start-page: 1596
  year: 2007
  ident: 10.1016/j.ijhydene.2011.09.112_bib28
  article-title: Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: synthesis, physical and electrochemical properties
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2007.03.034
– volume: 179
  start-page: 584
  year: 2008
  ident: 10.1016/j.ijhydene.2011.09.112_bib3
  article-title: Development of a PEM stack and performance analysis including the effects of water content in the membrane and cooling method
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.01.050
– volume: 321
  start-page: 299
  year: 2008
  ident: 10.1016/j.ijhydene.2011.09.112_bib9
  article-title: Novel anion-exchange organic–inorganic hybrid membranes: preparation and characterizations for potential use in fuel cells
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2008.05.003
– volume: 21
  start-page: 11340
  year: 2011
  ident: 10.1016/j.ijhydene.2011.09.112_bib14
  article-title: Novel anion exchange membranes based on polymerizable imidazolium salt for alkaline fuel cell applications
  publication-title: J Mater Chem
  doi: 10.1039/c1jm11093d
– volume: 19
  start-page: 2686
  year: 2007
  ident: 10.1016/j.ijhydene.2011.09.112_bib19
  article-title: Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specially tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells
  publication-title: Chem Mater
  doi: 10.1021/cm062407u
– volume: 152–153
  start-page: 1
  year: 2002
  ident: 10.1016/j.ijhydene.2011.09.112_bib4
  article-title: From curiosity to “power to change the world®”
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00315-6
– volume: 43
  start-page: 3890
  year: 2010
  ident: 10.1016/j.ijhydene.2011.09.112_bib16
  article-title: Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications
  publication-title: Macromolecules
  doi: 10.1021/ma100260a
– volume: 74
  start-page: 384
  year: 2005
  ident: 10.1016/j.ijhydene.2011.09.112_bib20
  article-title: Preparation of strong base anion exchange membrane using 60Co gamma radiation
  publication-title: Radiat Phys Chem
  doi: 10.1016/j.radphyschem.2004.09.020
– volume: 79
  start-page: 246
  year: 2010
  ident: 10.1016/j.ijhydene.2011.09.112_bib27
  article-title: Post-irradiation time effects on the graft of poly(ethylene-alt-tetrafluoroethylene) (ETFE) films for ion exchange membrane application
  publication-title: Radiat Phys Chem
  doi: 10.1016/j.radphyschem.2009.08.029
– volume: 35
  start-page: 5656
  year: 2010
  ident: 10.1016/j.ijhydene.2011.09.112_bib24
  article-title: Measurements of water uptake and transport properties in anion-exchange membranes
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.026
– volume: 218
  start-page: 147
  year: 2003
  ident: 10.1016/j.ijhydene.2011.09.112_bib17
  article-title: The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimisation of the experimental conditions and characterisation
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(03)00167-4
– volume: 113
  start-page: 37
  year: 2003
  ident: 10.1016/j.ijhydene.2011.09.112_bib2
  article-title: Low Pt loading high performance cathodes for PEM fuel cells
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(02)00477-9
– volume: 12
  start-page: 3371
  year: 2002
  ident: 10.1016/j.ijhydene.2011.09.112_bib18
  article-title: Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs
  publication-title: J Mater Chem
  doi: 10.1039/b208627a
– volume: 42
  start-page: 8316
  year: 2009
  ident: 10.1016/j.ijhydene.2011.09.112_bib15
  article-title: Synthesis and characterization of poly(phenylene) based anion exchange membranes for alkaline fuel cells
  publication-title: Macromolecules
  doi: 10.1021/ma901538c
– volume: 39
  start-page: 807
  year: 2001
  ident: 10.1016/j.ijhydene.2011.09.112_bib22
  article-title: Formation of pore-filled ion-exchange membranes with in situ crosslinking: poly(vinylbenzyl ammonium salt)-filled membranes
  publication-title: J Ploym Sci, Part A: Polym Chem
  doi: 10.1002/1099-0518(20010315)39:6<807::AID-POLA1054>3.0.CO;2-2
– volume: 338
  start-page: 51
  year: 2009
  ident: 10.1016/j.ijhydene.2011.09.112_bib8
  article-title: Novel silica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells: effect of heat treatment
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2009.04.012
– volume: 307
  start-page: 28
  year: 2008
  ident: 10.1016/j.ijhydene.2011.09.112_bib10
  article-title: Free-standing anion-exchange PEO–SiO2 hybrid membranes
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2007.07.043
– volume: 153
  start-page: 198
  year: 2006
  ident: 10.1016/j.ijhydene.2011.09.112_bib29
  article-title: From polymer chemistry to membrane elaboration: a global approach of fuel cell polymeric electrolytes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.05.039
– volume: 146
  start-page: 4055
  year: 1999
  ident: 10.1016/j.ijhydene.2011.09.112_bib1
  article-title: Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1392591
– volume: 41
  start-page: 2126
  year: 2008
  ident: 10.1016/j.ijhydene.2011.09.112_bib25
  article-title: Comb-shaped poly(arylene ether sulfone)s as proton exchange membranes
  publication-title: Macromolecules
  doi: 10.1021/ma7027215
– volume: 186
  start-page: 328
  year: 2009
  ident: 10.1016/j.ijhydene.2011.09.112_bib26
  article-title: Performance of organic–inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.10.070
– volume: 5
  start-page: 187
  year: 2005
  ident: 10.1016/j.ijhydene.2011.09.112_bib7
  article-title: Prospects for alkaline anion-exchange membranes in low temperature fuel cells
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200400045
– volume: 131
  start-page: 12888
  year: 2009
  ident: 10.1016/j.ijhydene.2011.09.112_bib11
  article-title: A ring-opening metathesis polymerization route to alkaline anion exchange membranes: development of hydroxide-conducting thin films from an ammonium-functionalized monomer
  publication-title: J Am Chem Soc
  doi: 10.1021/ja905242r
– volume: 36
  start-page: 7191
  year: 2011
  ident: 10.1016/j.ijhydene.2011.09.112_bib31
  article-title: The effect of electrode parameters on the performance of anion exchange polymer membrane fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.03.074
– volume: 362
  start-page: 97
  year: 2010
  ident: 10.1016/j.ijhydene.2011.09.112_bib13
  article-title: Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2010.06.026
– volume: 132
  start-page: 3400
  year: 2010
  ident: 10.1016/j.ijhydene.2011.09.112_bib12
  article-title: Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications
  publication-title: J Am Chem Soc
  doi: 10.1021/ja908638d
– volume: 217
  start-page: 117
  year: 2003
  ident: 10.1016/j.ijhydene.2011.09.112_bib23
  article-title: Formation and characterization of highly crosslinked anion-exchange membranes
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(03)00084-X
– volume: 112
  start-page: 3179
  year: 2008
  ident: 10.1016/j.ijhydene.2011.09.112_bib30
  article-title: Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes
  publication-title: J Phys Chem C
  doi: 10.1021/jp7115577
– volume: 181
  start-page: 219
  year: 2009
  ident: 10.1016/j.ijhydene.2011.09.112_bib21
  article-title: Novel electrolyte membranes and non-Pt catalysts for low temperature fuel cells
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2009.01.019
– volume: 36
  start-page: 7707
  year: 2011
  ident: 10.1016/j.ijhydene.2011.09.112_bib32
  article-title: A high-performance integrated electrode for anion-exchange membrane direct ethanol fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.03.090
– volume: 27
  start-page: 507
  year: 2002
  ident: 10.1016/j.ijhydene.2011.09.112_bib6
  article-title: An assessment of alkaline fuel cell technology
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/S0360-3199(01)00181-1
SSID ssj0017049
Score 2.352782
Snippet To develop a series of cross-linked anion exchange membranes for application in fuel cells, poly(ethylene- co-tetrafluoroethylene) (ETFE) films was radiation...
To develop a series of cross-linked anion exchange membranes for application in fuel cells, poly(ethylene-co-tetrafluoroethylene) (ETFE) films was radiation...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 594
SubjectTerms Anion exchange membrane
Applied sciences
Crosslinking
DABCO
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
ETFE
Exact sciences and technology
Fuel cell
Fuel cells
Radiation grafted
Title Cross-linked, ETFE-derived and radiation grafted membranes for anion exchange membrane fuel cell applications
URI https://dx.doi.org/10.1016/j.ijhydene.2011.09.112
https://www.proquest.com/docview/1010891549
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3Jrtow0EL00uqp6qpHF-RKPdaQOHaCjwiBaKtyKUjcojgevwd6BMRStZd-e2dIgkBVxaHHxKtm84w9C2MfITYWyUQL65wSyoZaZOQ0DkZTeJpP_DG7_rdJPJ6pL3M9b7BBHQtDbpWV7C9l-lFaV3-6FTS7m8Wi-x1lL4XgILfi5NqQHFYqISrv_D65eYRJpQJjZ0G9z6KEl53F8v4XsjdUqTwNBdT864C62WQ7BJsv6138JbqP59HoGXtaKZK8X-71OWtA8YI9OUsv-JKtBrSCoDdacJ_4cDoaCodtP8DxrHB8S3kJCDH8bku1wh1fwQqtZ5R-HHVZ7ENt8LMMDj41cn-AB043_vz8-fsVm42G08FYVOUVRB4lei8glJkOPBpwNke-Npl0JvHWxhIQZ1mcS-29hSQPvJG5t9pDLzBOZiEYG_V89Jo1i3UBt4xrF4HyYeJiLVUc5NYpj3qClSrTaDC5FtM1TNO8yj1OJTAe0trJbJnWuEgJF2lg0DaRLdY9jduU2TeujjA1ytILOkrxiLg6tn2B49OSaETjUa-jFvtQIz1FLiRAI9TXhx3NGvQMpbt78x8beMse45csb3jeseZ-e4D3qPPsbftI1G32qP_563jyB2nsA2w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtswjCjSwzYMw55Y9ug0YMdpcWTLjo5FkCBd21yWAr0JlkVtCZo0SJOi-_uRsRykGIYedjVNSSDFlySSAF8wN462iZbO-0xmrqtlyY_G0WhOTwtF2FbXPx_no4vs-6W-PIB-kwvDzyqj7q91-lZbxy-dSM3Ocjrt_CDdyyk4JK00uDakhw-5OpVuweHxyelovLtMKKIXTP9LRthLFJ59m85-_SYJx1jN03BOzb9s1NNleUOUC3XLi7-099YkDZ_Ds-hLiuN6uS_gABcv4clehcFXMO_zDJKvadF_FYPJcCA9wW7Ri3LhxYpLEzBvxM8Vtwv3Yo5zCqBJAQpyZ-kfhuFdnR-8A4qwwSvBh_5i_wb8NVwMB5P-SMYOC7JKC72W2FWlTgLFcK4i0Tal8qYIzuUKiW1lXikdgsOiSoJRVXA6YC8xXpVdNC7thfQNtBbXC3wLQvsUs9AtfK5VlieV81kgV8GprNQUM_k26Iamtorlx7kLxpVt3pnNbMMLy7ywiaHwRLWhs8Nb1gU4HsQwDcvsva1kyUo8iHt0j8e7KSmOJmuv0zZ8bphuSRCZ0ET1680Nj5r0DFe8e_cfC_gEj0aT8zN7djI-fQ-PCaLqA58P0FqvNviRXKC1O4pb_A8_2gYd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-linked%2C+ETFE-derived+and+radiation+grafted+membranes+for+anion+exchange+membrane+fuel+cell+applications&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Fang%2C+Jun&rft.au=Yang%2C+Yixu&rft.au=Lu%2C+Xiaohuan&rft.au=Ye%2C+Meiling&rft.date=2012&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=37&rft.issue=1&rft.spage=594&rft.epage=602&rft_id=info:doi/10.1016%2Fj.ijhydene.2011.09.112&rft.externalDocID=S0360319911022592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon