Alleviating effects of exogenous melatonin on salt stress in cucumber

•Melatonin effectively alleviate the damage of salt stress on cucumber seedlings.•The alleviation of melatonin to salt stress in cucumber seedlings is related to the production of hydrogen peroxide.•MAP kinase pathway may be involved in melatonin-mediated salt tolerance. Melatonin (N-acetyl-5-methox...

Full description

Saved in:
Bibliographic Details
Published inScientia horticulturae Vol. 262; p. 109070
Main Authors Zhang, Tengguo, Shi, Zhongfei, Zhang, Xiaohua, Zheng, Sheng, Wang, Juan, Mo, Jiangnan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 27.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Melatonin effectively alleviate the damage of salt stress on cucumber seedlings.•The alleviation of melatonin to salt stress in cucumber seedlings is related to the production of hydrogen peroxide.•MAP kinase pathway may be involved in melatonin-mediated salt tolerance. Melatonin (N-acetyl-5-methoxytryptamine) is an important molecule in plants that regulates growth and development and responds to abiotic stresses. In this study, we studied the role of exogenous melatonin in alleviating salt stress in cucumber. The results showed that exogenous melatonin pretreatment could improve cell viability, protect photosynthesis, increase antioxidant enzyme activity, inhibit active oxygen explosion, reduce malondialdehyde (MDA) content and relative conductivity in cucumber Seedlings under salt stress compared with salt stress alone. Gene expression analysis showed that melatonin significantly increased the expression of antioxidant enzyme gene, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes, mitogen-activated protein kinase (MAPK) genes (MAPK3, MAPK4, MAPK6) and salt overly sensitive (SOS) genes (SOS1, SOS2, SOS3) under salt stress. diphenyleneiodonium (DPI) or dimethylthiourea (DMTU) significantly reduced melatonin-induced defense responses, including decreased antioxidant enzyme activity and photosynthesis protection, as well as the expression of stress-related genes. Similar to DPI and DMTU, U0126 (MEK inhibitor) also reduces melatonin-induced defense responses. In conclusion, our study shows that exogenous melatonin treatment can effectively alleviate the damage of salt stress on cucumber seedlings, and the alleviation effect is related to hydrogen peroxide (H2O2). And there may be interactions between melatonin-mediated salt tolerance and the MAP kinase signaling pathway.
AbstractList •Melatonin effectively alleviate the damage of salt stress on cucumber seedlings.•The alleviation of melatonin to salt stress in cucumber seedlings is related to the production of hydrogen peroxide.•MAP kinase pathway may be involved in melatonin-mediated salt tolerance. Melatonin (N-acetyl-5-methoxytryptamine) is an important molecule in plants that regulates growth and development and responds to abiotic stresses. In this study, we studied the role of exogenous melatonin in alleviating salt stress in cucumber. The results showed that exogenous melatonin pretreatment could improve cell viability, protect photosynthesis, increase antioxidant enzyme activity, inhibit active oxygen explosion, reduce malondialdehyde (MDA) content and relative conductivity in cucumber Seedlings under salt stress compared with salt stress alone. Gene expression analysis showed that melatonin significantly increased the expression of antioxidant enzyme gene, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes, mitogen-activated protein kinase (MAPK) genes (MAPK3, MAPK4, MAPK6) and salt overly sensitive (SOS) genes (SOS1, SOS2, SOS3) under salt stress. diphenyleneiodonium (DPI) or dimethylthiourea (DMTU) significantly reduced melatonin-induced defense responses, including decreased antioxidant enzyme activity and photosynthesis protection, as well as the expression of stress-related genes. Similar to DPI and DMTU, U0126 (MEK inhibitor) also reduces melatonin-induced defense responses. In conclusion, our study shows that exogenous melatonin treatment can effectively alleviate the damage of salt stress on cucumber seedlings, and the alleviation effect is related to hydrogen peroxide (H2O2). And there may be interactions between melatonin-mediated salt tolerance and the MAP kinase signaling pathway.
ArticleNumber 109070
Author Mo, Jiangnan
Shi, Zhongfei
Zheng, Sheng
Zhang, Xiaohua
Wang, Juan
Zhang, Tengguo
Author_xml – sequence: 1
  givenname: Tengguo
  surname: Zhang
  fullname: Zhang, Tengguo
  email: zhangtg@nwnu.edu.cn
– sequence: 2
  givenname: Zhongfei
  surname: Shi
  fullname: Shi, Zhongfei
– sequence: 3
  givenname: Xiaohua
  surname: Zhang
  fullname: Zhang, Xiaohua
– sequence: 4
  givenname: Sheng
  surname: Zheng
  fullname: Zheng, Sheng
– sequence: 5
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
– sequence: 6
  givenname: Jiangnan
  surname: Mo
  fullname: Mo, Jiangnan
BookMark eNqFkN1KAzEQhYNUsK0-gpAX2DrZ7C9eSCm1CgVv9Dpks5OSsk0kSYu-vSnbK28KAwPDOYcz34xMrLNIyCODBQNWPe0XQRm0US5yYG26tVDDDZmypm6zpGgmZAociqzIeXNHZiHsAYCxop2S9XIY8GRkNHZHUWtUMVCnKf64HVp3DPSAg4zOGkudpUEOkYboMQSaLuqojocO_T251XII-HDZc_L1uv5cvWXbj837arnNFK_LmPV9qlQr3XdM5botsO2LruxrJvOCI-SoK6Y0VG3D0zTAK560ZZXXDLqy1HxOnsdc5V0IHrVQJqbuzkYvzSAYiDMRsRcXIuJMRIxEkrv85_725iD971Xfy-jD9NrJoB9VCnvjEy_RO3Ml4Q8CjYDG
CitedBy_id crossref_primary_10_1016_j_scienta_2023_112720
crossref_primary_10_1016_j_plaphy_2023_108194
crossref_primary_10_1002_biof_1882
crossref_primary_10_1111_ppl_70062
crossref_primary_10_48130_FruRes_2023_0030
crossref_primary_10_3390_plants9070854
crossref_primary_10_3389_fpls_2023_1200898
crossref_primary_10_1016_j_scienta_2021_110145
crossref_primary_10_1007_s00344_024_11257_3
crossref_primary_10_3390_horticulturae9060711
crossref_primary_10_1016_j_plaphy_2024_108639
crossref_primary_10_1111_jpi_12891
crossref_primary_10_1016_j_plaphy_2020_11_006
crossref_primary_10_1016_j_plaphy_2021_07_023
crossref_primary_10_1007_s00344_021_10317_2
crossref_primary_10_3389_fpls_2022_946922
crossref_primary_10_1016_j_plaphy_2023_03_004
crossref_primary_10_1080_13102818_2022_2128875
crossref_primary_10_1186_s12870_024_05506_6
crossref_primary_10_3390_ijms24076134
crossref_primary_10_1016_j_plaphy_2024_109294
crossref_primary_10_1038_s41598_023_47260_z
crossref_primary_10_7717_peerj_16838
crossref_primary_10_3389_fpls_2021_779382
crossref_primary_10_3389_fpls_2023_1209999
crossref_primary_10_1016_j_jplph_2022_153640
crossref_primary_10_1071_FP22139
crossref_primary_10_1080_00380768_2024_2405834
crossref_primary_10_1111_ppl_14419
crossref_primary_10_3390_ijms25105092
crossref_primary_10_3390_plants10050886
crossref_primary_10_1007_s00344_024_11567_6
crossref_primary_10_1007_s11738_023_03634_4
crossref_primary_10_3390_antiox9080681
crossref_primary_10_1016_j_scienta_2023_112468
crossref_primary_10_3390_antiox11081610
crossref_primary_10_1016_j_scienta_2024_113836
crossref_primary_10_1007_s00344_021_10513_0
crossref_primary_10_1016_j_plaphy_2022_08_007
crossref_primary_10_3389_fpls_2020_575829
crossref_primary_10_1007_s00299_024_03332_6
crossref_primary_10_1007_s10725_022_00905_x
crossref_primary_10_1016_j_plantsci_2021_111093
crossref_primary_10_1016_j_plaphy_2025_109704
crossref_primary_10_7235_HORT_20240038
crossref_primary_10_48130_vegres_0024_0024
crossref_primary_10_1016_j_sajb_2022_10_012
crossref_primary_10_1093_jxb_erac224
crossref_primary_10_1111_ppl_70055
crossref_primary_10_3390_plants12132450
crossref_primary_10_1002_jsfa_12638
crossref_primary_10_3389_fpls_2023_1142753
crossref_primary_10_1016_j_plaphy_2021_11_036
crossref_primary_10_1016_j_scienta_2024_112911
crossref_primary_10_1080_15592324_2020_1737450
crossref_primary_10_3390_ijms23158260
crossref_primary_10_31015_jaefs_2022_2_11
crossref_primary_10_3390_antiox11122414
crossref_primary_10_3390_plants13121672
crossref_primary_10_3389_fpls_2022_890613
crossref_primary_10_1007_s40415_024_01013_y
crossref_primary_10_1007_s12298_021_01009_y
crossref_primary_10_21273_HORTSCI16083_21
crossref_primary_10_1166_mex_2023_2370
crossref_primary_10_1186_s12870_022_03728_0
crossref_primary_10_3390_horticulturae8111066
crossref_primary_10_1080_15592324_2023_2290336
crossref_primary_10_1111_ppl_13983
crossref_primary_10_3390_antiox11020309
crossref_primary_10_3390_agronomy13020386
crossref_primary_10_1016_j_plaphy_2021_03_058
crossref_primary_10_1016_j_plaphy_2025_109810
crossref_primary_10_1007_s00299_021_02759_5
crossref_primary_10_1016_j_sajb_2023_10_045
crossref_primary_10_1016_j_plaphy_2024_108398
crossref_primary_10_3390_plants14050824
crossref_primary_10_3390_horticulturae9080913
crossref_primary_10_1071_FP21233
crossref_primary_10_1016_j_stress_2022_100071
crossref_primary_10_3390_ijms25052844
crossref_primary_10_3390_cells10071631
crossref_primary_10_1111_ppl_13912
crossref_primary_10_3389_fpls_2022_1061921
crossref_primary_10_1007_s10725_024_01233_y
crossref_primary_10_1007_s42729_024_01830_w
crossref_primary_10_3389_fpls_2022_998293
crossref_primary_10_53518_mjavl_1237413
crossref_primary_10_3390_ijms23158480
crossref_primary_10_1007_s10265_022_01391_y
crossref_primary_10_3390_horticulturae9040514
crossref_primary_10_1186_s12864_025_11368_5
crossref_primary_10_1002_fft2_180
crossref_primary_10_1016_j_scienta_2023_112594
crossref_primary_10_1016_j_sajb_2024_05_034
crossref_primary_10_3390_plants11091147
crossref_primary_10_1111_jfpp_16363
crossref_primary_10_61186_JCT_14_1_17
crossref_primary_10_1016_j_scienta_2023_112508
crossref_primary_10_1007_s10725_023_01011_2
crossref_primary_10_3390_horticulturae7030061
crossref_primary_10_3389_fpls_2022_950392
crossref_primary_10_3390_foods11244097
crossref_primary_10_3390_horticulturae10060627
crossref_primary_10_3390_nano12152667
crossref_primary_10_1016_j_scienta_2023_112665
crossref_primary_10_1016_j_scienta_2022_110962
crossref_primary_10_1007_s00344_022_10805_z
crossref_primary_10_1016_j_scienta_2021_110566
crossref_primary_10_1007_s11356_023_25903_y
crossref_primary_10_1016_j_chemosphere_2024_141120
crossref_primary_10_3389_fpls_2023_1073434
crossref_primary_10_1016_j_sajb_2023_08_055
crossref_primary_10_3390_su15097426
crossref_primary_10_1007_s40415_025_01068_5
crossref_primary_10_1016_j_sajb_2023_07_014
crossref_primary_10_1016_j_plaphy_2024_109424
crossref_primary_10_3390_agronomy12092098
crossref_primary_10_1016_j_scienta_2021_110392
crossref_primary_10_3390_agronomy11020400
crossref_primary_10_1016_j_scienta_2023_112495
crossref_primary_10_32615_bp_2020_090
crossref_primary_10_21926_obm_genet_2402242
crossref_primary_10_29050_harranziraat_1065707
crossref_primary_10_3389_fpls_2022_1095363
crossref_primary_10_1111_ppl_13262
crossref_primary_10_1111_ppl_14592
crossref_primary_10_3389_fpls_2023_1140803
crossref_primary_10_1016_j_plaphy_2021_05_003
crossref_primary_10_1007_s00344_020_10273_3
Cites_doi 10.1111/j.1600-079X.2008.00625.x
10.1016/j.freeradbiomed.2017.04.009
10.1007/s11099-015-0097-2
10.1111/ppl.12581
10.1111/jpi.12267
10.1111/jpi.12017
10.1016/S1369-5266(03)00085-2
10.1016/j.molcel.2004.06.023
10.4161/psb.2.5.4260
10.1016/j.tplants.2014.07.006
10.1111/jpi.12500
10.1111/jpi.12095
10.1016/j.jplph.2014.08.022
10.3389/fpls.2015.00601
10.1093/jxb/eru373
10.4161/psb.6.2.14701
10.3389/fpls.2018.00914
10.1111/j.1600-079X.1995.tb00136.x
10.1074/jbc.M801392200
10.1111/j.1600-079X.2012.01015.x
10.1371/journal.pone.0093462
10.1093/aob/mcx114
10.1007/BF00620064
10.1104/pp.24.1.1
10.1111/jpi.12232
10.1093/aob/mcx207
10.1007/BF00037585
10.1016/j.plaphy.2018.09.039
10.1111/jpi.12167
10.1016/j.cell.2016.08.029
10.1007/s11099-015-0140-3
10.1016/j.plaphy.2016.01.008
10.1111/jpi.12253
10.1007/s10725-015-0066-6
10.1016/j.bbrc.2017.11.043
10.1111/jpi.12038
10.1016/S0014-5793(99)01451-9
10.1016/S0168-9452(99)00197-1
10.1007/s11738-016-2101-2
10.1093/jxb/erx473
10.1111/jpi.12243
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.scienta.2019.109070
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-1018
ExternalDocumentID 10_1016_j_scienta_2019_109070
S0304423819309562
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSZ
T5K
Y6R
~G-
~KM
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HVGLF
HZ~
R2-
RIG
SEW
SSH
WUQ
XOL
ID FETCH-LOGICAL-c375t-dd1877cfdb1c2f94e9d4b5d71a243e02ef61cf0698398380363fdb562710b55f3
IEDL.DBID .~1
ISSN 0304-4238
IngestDate Tue Jul 01 02:35:42 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Fri Feb 23 02:50:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Melatonin
Salt stress
Hydrogen peroxide
Cucumber
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-dd1877cfdb1c2f94e9d4b5d71a243e02ef61cf0698398380363fdb562710b55f3
ParticipantIDs crossref_citationtrail_10_1016_j_scienta_2019_109070
crossref_primary_10_1016_j_scienta_2019_109070
elsevier_sciencedirect_doi_10_1016_j_scienta_2019_109070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-27
PublicationDateYYYYMMDD 2020-02-27
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-27
  day: 27
PublicationDecade 2020
PublicationTitle Scientia horticulturae
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yin, Wang, Li, Ke, Li, Liang, Wu, Ma, Li, Zou, Ma (bib0185) 2013; 54
Achary, Patnaik, Panda (bib0005) 2012; 75
Gong, Yan, Wen, Shi (bib0080) 2017; 160
Arnao, Hernández‐Ruiz (bib0015) 2009; 46
Baker, Mock (bib0040) 1994; 39
Li, Brestic, Tan, Zivcak, Zhu, Liu, Song, Reiter, Liu (bib0105) 2017; 64
Shi, Jiang, Ye, Tan, Reiter, Zhang, Liu, Chan (bib0135) 2015; 66
Feng, Jiao, Sun, Jia, Tian (bib0075) 2015; 53
Sinha, Jaggi, Raghuram, Tuteja (bib0140) 2011; 6
Ben Rejeb, Benzarti, Debez, Bailly, Savoure, Abdelly (bib0045) 2015; 174
Zhang, Zhao, Zhang, Weeda, Yang, Yang, Ren, Guo (bib0200) 2013; 54
Manchester, Coto-Montes, Boga, Andersen, Zhou, Galano, Vriend, Tan, Reiter (bib0125) 2015; 59
Arnon (bib0035) 1949; 24
Byeon, Lee, Hwang, Lee, Lee, Back (bib0050) 2015; 58
Chen, Gu, Yu, Huang, Xu, Wang, Shen, Shen (bib0055) 2018; 121
Hasan, Ahammed, Yin, Shi, Xia, Zhou, Yu, Zhou (bib0085) 2015; 6
Chen, Xie, Gu, Zhao, Zhang, Cui, Xu, Wang, Shen (bib0060) 2017; 108
Wang, Liu, Wang, Sun (bib0155) 2016; 54
Liang, Zheng, Li, Wang, Hu, Wang, Wu, Qian, Zhu, Tan, Chen, Chu (bib0110) 2015; 59
Zhang, Zhang, Yang, Wang, Sun, Li, Cao, Weeda, Zhao, Ren, Guo (bib0190) 2014; 57
Zhang, Mo, Zhou, Chang, Liu (bib0205) 2018; 132
Weeda, Zhang, Zhao, Ndip, Guo, Buck, Fu, Ren (bib0170) 2014; 9
Arnao, HernándezRuiz (bib0010) 2007; 2
Zhu (bib0215) 2016; 167
Velikova, Yordanov, Edreva (bib0150) 2000; 151
Zhu (bib0210) 2003; 6
Liang, Ma, Wan, Liu (bib0115) 2017; 495
Arnao, Hernandez-Ruiz (bib0030) 2018; 121
Jiang, Cui, Feng, Xu, Li, Zheng (bib0095) 2016; 38
Wei, Li, Zhang, Shan, Rengel, Song, Chen (bib0175) 2018; 65
Wang, Sun, Li, Wei, Liang, Ma (bib0160) 2013; 54
Arnao, Hernandez-Ruiz (bib0025) 2015; 59
Liu, Wang, Wang, Sun (bib0120) 2015; 77
Ke, Ye, Wang, Ren, Yin, Deng, Wang (bib0100) 2018; 9
Nanjo, Kobayashi, Yoshiba, Kakubari, Yamaguchi-Shinozaki, Shinozaki (bib0130) 1999; 461
Demmig-Adams, Adams (bib0065) 1996; 198
Xu, Li, Wang, Liu, Lei, Yang, Liu, Ren (bib0180) 2008; 283
Arnao, Hernandez-Ruiz (bib0020) 2014; 19
Teige, Scheikl, Eulgem, Doczi, Ichimura, Shinozaki, Dangl, Hirt (bib0145) 2004; 15
Zhang, Zhang, Zhao, Sun, Cao, Li, Wu, Weeda, Li, Ren, Reiter, Guo (bib0195) 2014; 56
Hu, Fan, Xie, Amombo, Liu, Gitau, Khaldun, Chen, Fu (bib0090) 2016; 100
Wang, Reiter, Chan (bib0165) 2018; 69
Dubbels, Reiter, Klenke, Goebel, Schnakenberg, Ehlers, Schiwara, Schloot (bib0070) 1995; 18
Wei (10.1016/j.scienta.2019.109070_bib0175) 2018; 65
Wang (10.1016/j.scienta.2019.109070_bib0155) 2016; 54
Liang (10.1016/j.scienta.2019.109070_bib0115) 2017; 495
Nanjo (10.1016/j.scienta.2019.109070_bib0130) 1999; 461
Wang (10.1016/j.scienta.2019.109070_bib0160) 2013; 54
Shi (10.1016/j.scienta.2019.109070_bib0135) 2015; 66
Baker (10.1016/j.scienta.2019.109070_bib0040) 1994; 39
Achary (10.1016/j.scienta.2019.109070_bib0005) 2012; 75
Demmig-Adams (10.1016/j.scienta.2019.109070_bib0065) 1996; 198
Yin (10.1016/j.scienta.2019.109070_bib0185) 2013; 54
Byeon (10.1016/j.scienta.2019.109070_bib0050) 2015; 58
Sinha (10.1016/j.scienta.2019.109070_bib0140) 2011; 6
Arnao (10.1016/j.scienta.2019.109070_bib0010) 2007; 2
Hasan (10.1016/j.scienta.2019.109070_bib0085) 2015; 6
Weeda (10.1016/j.scienta.2019.109070_bib0170) 2014; 9
Arnao (10.1016/j.scienta.2019.109070_bib0015) 2009; 46
Liang (10.1016/j.scienta.2019.109070_bib0110) 2015; 59
Zhu (10.1016/j.scienta.2019.109070_bib0210) 2003; 6
Zhu (10.1016/j.scienta.2019.109070_bib0215) 2016; 167
Wang (10.1016/j.scienta.2019.109070_bib0165) 2018; 69
Arnao (10.1016/j.scienta.2019.109070_bib0030) 2018; 121
Teige (10.1016/j.scienta.2019.109070_bib0145) 2004; 15
Chen (10.1016/j.scienta.2019.109070_bib0060) 2017; 108
Zhang (10.1016/j.scienta.2019.109070_bib0200) 2013; 54
Arnon (10.1016/j.scienta.2019.109070_bib0035) 1949; 24
Ke (10.1016/j.scienta.2019.109070_bib0100) 2018; 9
Arnao (10.1016/j.scienta.2019.109070_bib0020) 2014; 19
Zhang (10.1016/j.scienta.2019.109070_bib0205) 2018; 132
Li (10.1016/j.scienta.2019.109070_bib0105) 2017; 64
Arnao (10.1016/j.scienta.2019.109070_bib0025) 2015; 59
Velikova (10.1016/j.scienta.2019.109070_bib0150) 2000; 151
Jiang (10.1016/j.scienta.2019.109070_bib0095) 2016; 38
Hu (10.1016/j.scienta.2019.109070_bib0090) 2016; 100
Ben Rejeb (10.1016/j.scienta.2019.109070_bib0045) 2015; 174
Dubbels (10.1016/j.scienta.2019.109070_bib0070) 1995; 18
Feng (10.1016/j.scienta.2019.109070_bib0075) 2015; 53
Gong (10.1016/j.scienta.2019.109070_bib0080) 2017; 160
Xu (10.1016/j.scienta.2019.109070_bib0180) 2008; 283
Manchester (10.1016/j.scienta.2019.109070_bib0125) 2015; 59
Chen (10.1016/j.scienta.2019.109070_bib0055) 2018; 121
Liu (10.1016/j.scienta.2019.109070_bib0120) 2015; 77
Zhang (10.1016/j.scienta.2019.109070_bib0190) 2014; 57
Zhang (10.1016/j.scienta.2019.109070_bib0195) 2014; 56
References_xml – volume: 54
  start-page: 19
  year: 2016
  end-page: 27
  ident: bib0155
  article-title: Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress
  publication-title: Photosynthetica
– volume: 69
  start-page: 963
  year: 2018
  end-page: 974
  ident: bib0165
  article-title: Phytomelatonin: a universal abiotic stress regulator
  publication-title: J. Exp. Bot.
– volume: 39
  start-page: 7
  year: 1994
  end-page: 12
  ident: bib0040
  article-title: An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 53
  start-page: 201
  year: 2015
  end-page: 206
  ident: bib0075
  article-title: Extracellular ATP affects chlorophyll fluorescence of kidney bean (
  publication-title: Photosynthetica
– volume: 160
  start-page: 396
  year: 2017
  end-page: 409
  ident: bib0080
  article-title: Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in
  publication-title: Physiol. Plant.
– volume: 151
  start-page: 59
  year: 2000
  end-page: 66
  ident: bib0150
  article-title: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines
  publication-title: Plant Sci.
– volume: 54
  start-page: 15
  year: 2013
  end-page: 23
  ident: bib0200
  article-title: Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (
  publication-title: J. Pineal Res.
– volume: 46
  start-page: 58
  year: 2009
  end-page: 63
  ident: bib0015
  article-title: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves
  publication-title: J. Pineal Res.
– volume: 64
  year: 2017
  ident: bib0105
  article-title: Melatonin alleviates low PS I-limited carbon assimilation under elevated CO
  publication-title: J. Pineal Res.
– volume: 2
  start-page: 381
  year: 2007
  end-page: 382
  ident: bib0010
  article-title: Melatonin in plants: more studies are necessary
  publication-title: Plant Signal. Behav.
– volume: 57
  start-page: 269
  year: 2014
  end-page: 279
  ident: bib0190
  article-title: Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA
  publication-title: J. Pineal Res.
– volume: 65
  year: 2018
  ident: bib0175
  article-title: Phytomelatonin receptor PMTR1 mediated signaling regulates stomatal closure in Arabidopsis thaliana
  publication-title: J. Pineal Res.
– volume: 495
  start-page: 286
  year: 2017
  end-page: 291
  ident: bib0115
  article-title: Plant salt-tolerance mechanism: a review
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 108
  start-page: 465
  year: 2017
  end-page: 477
  ident: bib0060
  article-title: The
  publication-title: Free Radic. Biol. Med.
– volume: 6
  start-page: 196
  year: 2011
  end-page: 203
  ident: bib0140
  article-title: Mitogen-activated protein kinase signaling in plants under abiotic stress
  publication-title: Plant Signal. Behav.
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  ident: bib0215
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 100
  start-page: 94
  year: 2016
  end-page: 104
  ident: bib0090
  article-title: Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin
  publication-title: Plant Physiol. Biochem.
– volume: 54
  start-page: 292
  year: 2013
  end-page: 302
  ident: bib0160
  article-title: Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple
  publication-title: J. Pineal Res.
– volume: 59
  start-page: 91
  year: 2015
  end-page: 101
  ident: bib0110
  article-title: Melatonin delays leaf senescence and enhances salt stress tolerance in rice
  publication-title: J. Pineal Res.
– volume: 18
  start-page: 28
  year: 1995
  end-page: 31
  ident: bib0070
  article-title: Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry
  publication-title: J. Pineal Res.
– volume: 54
  start-page: 426
  year: 2013
  end-page: 434
  ident: bib0185
  article-title: Exogenous melatonin improves
  publication-title: J. Pineal Res.
– volume: 77
  start-page: 317
  year: 2015
  end-page: 326
  ident: bib0120
  article-title: Exogenous melatonin improves seedling health index and drought tolerance in tomato
  publication-title: Plant Growth Regul.
– volume: 6
  start-page: 441
  year: 2003
  end-page: 445
  ident: bib0210
  article-title: Regulation of ion homeostasis under salt stress
  publication-title: Curr. Opin. Plant Biol.
– volume: 9
  year: 2014
  ident: bib0170
  article-title: Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems
  publication-title: PLoS One
– volume: 121
  start-page: 1127
  year: 2018
  end-page: 1136
  ident: bib0055
  article-title: Hydrogen peroxide acts downstream of melatonin to induce lateral root formation
  publication-title: Ann. Bot.
– volume: 174
  start-page: 5
  year: 2015
  end-page: 15
  ident: bib0045
  article-title: NADPH oxidase-dependent H
  publication-title: J. Plant Physiol.
– volume: 59
  start-page: 133
  year: 2015
  end-page: 150
  ident: bib0025
  article-title: Functions of melatonin in plants: a review
  publication-title: J. Pineal Res.
– volume: 15
  start-page: 141
  year: 2004
  end-page: 152
  ident: bib0145
  article-title: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis
  publication-title: Mol. Cell
– volume: 56
  start-page: 39
  year: 2014
  end-page: 50
  ident: bib0195
  article-title: The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation
  publication-title: J. Pineal Res.
– volume: 59
  start-page: 403
  year: 2015
  end-page: 419
  ident: bib0125
  article-title: Melatonin: an ancientmolecule that makes oxygen metabolically tolerable
  publication-title: J. Pineal Res.
– volume: 283
  start-page: 26996
  year: 2008
  end-page: 27006
  ident: bib0180
  article-title: Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in
  publication-title: J. Biol. Chem.
– volume: 121
  start-page: 195
  year: 2018
  end-page: 207
  ident: bib0030
  article-title: Melatonin and its relationship to plant hormones
  publication-title: Ann. Bot.
– volume: 132
  start-page: 515
  year: 2018
  end-page: 523
  ident: bib0205
  article-title: Overexpression of
  publication-title: Plant Physiol. Biochem.
– volume: 461
  start-page: 205
  year: 1999
  end-page: 210
  ident: bib0130
  article-title: Antisense suppression of proline degradation improves tolerance to freezing and salinity in
  publication-title: FEBS Lett.
– volume: 66
  start-page: 681
  year: 2015
  end-page: 694
  ident: bib0135
  article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [
  publication-title: J. Exp. Bot.
– volume: 198
  start-page: 460
  year: 1996
  end-page: 470
  ident: bib0065
  article-title: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species
  publication-title: Planta
– volume: 24
  start-page: 1
  year: 1949
  end-page: 15
  ident: bib0035
  article-title: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris
  publication-title: Plant Physiol.
– volume: 9
  start-page: 914
  year: 2018
  ident: bib0100
  article-title: Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism
  publication-title: Front. Plant Sci.
– volume: 19
  start-page: 789
  year: 2014
  end-page: 797
  ident: bib0020
  article-title: Melatonin: plant growth regulator and/or biostimulator during stress?
  publication-title: Trends Plant Sci.
– volume: 75
  start-page: 0
  year: 2012
  end-page: 26
  ident: bib0005
  article-title: Oxidative biomarkers in leaf tissue of barley seedlings in response to aluminum stress
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 38
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0095
  article-title: Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings
  publication-title: Acta Physiol. Plant.
– volume: 58
  start-page: 470
  year: 2015
  end-page: 478
  ident: bib0050
  article-title: Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment
  publication-title: J. Pineal Res.
– volume: 6
  start-page: 601
  year: 2015
  ident: bib0085
  article-title: Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum
  publication-title: Front. Plant Sci.
– volume: 46
  start-page: 58
  year: 2009
  ident: 10.1016/j.scienta.2019.109070_bib0015
  article-title: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves
  publication-title: J. Pineal Res.
  doi: 10.1111/j.1600-079X.2008.00625.x
– volume: 108
  start-page: 465
  year: 2017
  ident: 10.1016/j.scienta.2019.109070_bib0060
  article-title: The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.04.009
– volume: 53
  start-page: 201
  year: 2015
  ident: 10.1016/j.scienta.2019.109070_bib0075
  article-title: Extracellular ATP affects chlorophyll fluorescence of kidney bean (Phaseolus vulgaris) leaves through Ca2+ and H2O2-dependent mechanism
  publication-title: Photosynthetica
  doi: 10.1007/s11099-015-0097-2
– volume: 160
  start-page: 396
  year: 2017
  ident: 10.1016/j.scienta.2019.109070_bib0080
  article-title: Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12581
– volume: 59
  start-page: 403
  year: 2015
  ident: 10.1016/j.scienta.2019.109070_bib0125
  article-title: Melatonin: an ancientmolecule that makes oxygen metabolically tolerable
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12267
– volume: 54
  start-page: 292
  year: 2013
  ident: 10.1016/j.scienta.2019.109070_bib0160
  article-title: Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12017
– volume: 6
  start-page: 441
  year: 2003
  ident: 10.1016/j.scienta.2019.109070_bib0210
  article-title: Regulation of ion homeostasis under salt stress
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/S1369-5266(03)00085-2
– volume: 15
  start-page: 141
  year: 2004
  ident: 10.1016/j.scienta.2019.109070_bib0145
  article-title: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.06.023
– volume: 2
  start-page: 381
  year: 2007
  ident: 10.1016/j.scienta.2019.109070_bib0010
  article-title: Melatonin in plants: more studies are necessary
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.2.5.4260
– volume: 19
  start-page: 789
  year: 2014
  ident: 10.1016/j.scienta.2019.109070_bib0020
  article-title: Melatonin: plant growth regulator and/or biostimulator during stress?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.07.006
– volume: 65
  issue: 2
  year: 2018
  ident: 10.1016/j.scienta.2019.109070_bib0175
  article-title: Phytomelatonin receptor PMTR1 mediated signaling regulates stomatal closure in Arabidopsis thaliana
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12500
– volume: 56
  start-page: 39
  year: 2014
  ident: 10.1016/j.scienta.2019.109070_bib0195
  article-title: The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12095
– volume: 174
  start-page: 5
  year: 2015
  ident: 10.1016/j.scienta.2019.109070_bib0045
  article-title: NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2014.08.022
– volume: 6
  start-page: 601
  year: 2015
  ident: 10.1016/j.scienta.2019.109070_bib0085
  article-title: Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00601
– volume: 75
  start-page: 0
  year: 2012
  ident: 10.1016/j.scienta.2019.109070_bib0005
  article-title: Oxidative biomarkers in leaf tissue of barley seedlings in response to aluminum stress
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 66
  start-page: 681
  year: 2015
  ident: 10.1016/j.scienta.2019.109070_bib0135
  article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru373
– volume: 6
  start-page: 196
  year: 2011
  ident: 10.1016/j.scienta.2019.109070_bib0140
  article-title: Mitogen-activated protein kinase signaling in plants under abiotic stress
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.6.2.14701
– volume: 9
  start-page: 914
  year: 2018
  ident: 10.1016/j.scienta.2019.109070_bib0100
  article-title: Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00914
– volume: 18
  start-page: 28
  year: 1995
  ident: 10.1016/j.scienta.2019.109070_bib0070
  article-title: Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry
  publication-title: J. Pineal Res.
  doi: 10.1111/j.1600-079X.1995.tb00136.x
– volume: 283
  start-page: 26996
  year: 2008
  ident: 10.1016/j.scienta.2019.109070_bib0180
  article-title: Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801392200
– volume: 54
  start-page: 15
  year: 2013
  ident: 10.1016/j.scienta.2019.109070_bib0200
  article-title: Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.)
  publication-title: J. Pineal Res.
  doi: 10.1111/j.1600-079X.2012.01015.x
– volume: 9
  year: 2014
  ident: 10.1016/j.scienta.2019.109070_bib0170
  article-title: Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093462
– volume: 121
  start-page: 195
  year: 2018
  ident: 10.1016/j.scienta.2019.109070_bib0030
  article-title: Melatonin and its relationship to plant hormones
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcx114
– volume: 64
  year: 2017
  ident: 10.1016/j.scienta.2019.109070_bib0105
  article-title: Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat
  publication-title: J. Pineal Res.
– volume: 198
  start-page: 460
  year: 1996
  ident: 10.1016/j.scienta.2019.109070_bib0065
  article-title: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species
  publication-title: Planta
  doi: 10.1007/BF00620064
– volume: 24
  start-page: 1
  year: 1949
  ident: 10.1016/j.scienta.2019.109070_bib0035
  article-title: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris
  publication-title: Plant Physiol.
  doi: 10.1104/pp.24.1.1
– volume: 58
  start-page: 470
  year: 2015
  ident: 10.1016/j.scienta.2019.109070_bib0050
  article-title: Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12232
– volume: 121
  start-page: 1127
  year: 2018
  ident: 10.1016/j.scienta.2019.109070_bib0055
  article-title: Hydrogen peroxide acts downstream of melatonin to induce lateral root formation
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcx207
– volume: 39
  start-page: 7
  year: 1994
  ident: 10.1016/j.scienta.2019.109070_bib0040
  article-title: An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1007/BF00037585
– volume: 132
  start-page: 515
  year: 2018
  ident: 10.1016/j.scienta.2019.109070_bib0205
  article-title: Overexpression of Brassica campestris BcICE1 gene increases abiotic stress tolerance in tobacco
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.09.039
– volume: 57
  start-page: 269
  year: 2014
  ident: 10.1016/j.scienta.2019.109070_bib0190
  article-title: Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.)
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12167
– volume: 167
  start-page: 313
  year: 2016
  ident: 10.1016/j.scienta.2019.109070_bib0215
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 54
  start-page: 19
  year: 2016
  ident: 10.1016/j.scienta.2019.109070_bib0155
  article-title: Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress
  publication-title: Photosynthetica
  doi: 10.1007/s11099-015-0140-3
– volume: 100
  start-page: 94
  year: 2016
  ident: 10.1016/j.scienta.2019.109070_bib0090
  article-title: Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.01.008
– volume: 59
  start-page: 133
  year: 2015
  ident: 10.1016/j.scienta.2019.109070_bib0025
  article-title: Functions of melatonin in plants: a review
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12253
– volume: 77
  start-page: 317
  year: 2015
  ident: 10.1016/j.scienta.2019.109070_bib0120
  article-title: Exogenous melatonin improves seedling health index and drought tolerance in tomato
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-015-0066-6
– volume: 495
  start-page: 286
  year: 2017
  ident: 10.1016/j.scienta.2019.109070_bib0115
  article-title: Plant salt-tolerance mechanism: a review
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.11.043
– volume: 54
  start-page: 426
  year: 2013
  ident: 10.1016/j.scienta.2019.109070_bib0185
  article-title: Exogenous melatonin improves Malus resistance to Marssonina apple blotch
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12038
– volume: 461
  start-page: 205
  year: 1999
  ident: 10.1016/j.scienta.2019.109070_bib0130
  article-title: Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)01451-9
– volume: 151
  start-page: 59
  year: 2000
  ident: 10.1016/j.scienta.2019.109070_bib0150
  article-title: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines
  publication-title: Plant Sci.
  doi: 10.1016/S0168-9452(99)00197-1
– volume: 38
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.scienta.2019.109070_bib0095
  article-title: Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-016-2101-2
– volume: 69
  start-page: 963
  year: 2018
  ident: 10.1016/j.scienta.2019.109070_bib0165
  article-title: Phytomelatonin: a universal abiotic stress regulator
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx473
– volume: 59
  start-page: 91
  year: 2015
  ident: 10.1016/j.scienta.2019.109070_bib0110
  article-title: Melatonin delays leaf senescence and enhances salt stress tolerance in rice
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12243
SSID ssj0001149
Score 2.5875218
Snippet •Melatonin effectively alleviate the damage of salt stress on cucumber seedlings.•The alleviation of melatonin to salt stress in cucumber seedlings is related...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109070
SubjectTerms Cucumber
Hydrogen peroxide
Melatonin
Salt stress
Title Alleviating effects of exogenous melatonin on salt stress in cucumber
URI https://dx.doi.org/10.1016/j.scienta.2019.109070
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68bvPaPPYYSktV7EULvYV9RVpqUmoKnvzt7iQbqyAKXpcdCF82szOZ75tB6IZJ6otAu0QrHRMqdG4-KcUIF64nBBeeqmdGPkyi8ZTezcJZBw1aLQzQKq3vb3x67a3timPRdFbzufMIRT1aZxwBdNMDP0xpDKe8_76leZh4nzWVBEpg91bF4yz6VnQIDC8GjZVcmFn80_305c4ZHaIDGyzitHmeI9TRxTHaT5_XtmGGPkHDdAkCcQ7sZWzJGbjMsX4rm_ar-AXobvDTFZcFfuXLCjf6EGxW5EbWE0FO0XQ0fBqMiR2NQGQQhxVRykviWOZKeNLPGdVMURGq2OM-Ncj7Oo88mbsRM_FPEiRQrTV7DUgmoBBhmAdnaKcoC32OsHmFLBAsCbUyqRGVCdMiikweFnEeBT7vItoCkknbNxzGVyyzliC2yCyOGeCYNTh2Uf_TbNU0zvjLIGnRzr6dgMw4999NL_5veon2fMigQaQeX6Gdar3R1ybMqESvPkc9tJve3o8nHxCK0yI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPrcw9e0zTJ5rHHUFpS-7jYQm8h-4i01KTUFPz57iSbqiAKXpcMhC-7szOZ-b5B6JFyYjNHdg0ppG8QJlN1pAQ1Eta1GEuYJcqZkZOpF83J08JdNFCv5sJAW6X2_ZVPL721XjE1muZmuTSfoahHyozDATU95YdboE7lNlErHI6i6d4hq5CfVsUEYoDBJ5HHXHU07xCavChoK3VhbPFPV9SXa2dwgo51vIjD6pVOUUNmZ-gofNlqzQx5jvrhGjjiCTQwY92fgfMUy_e8UmDFr9DxBv9dcZ7ht2Rd4IoigtUK3_FyKMgFmg_6s15k6OkIBnd8tzCEsALf56lgFrdTSiQVhLnCtxKbKPBtmXoWT7seVSFQ4ARQsFXPKpxUTMFcN3UuUTPLM3mFsPqK1GE0cKVQ2RHhAZXM81Qq5iWJ59hJG5EakJhr6XCYYLGO6x6xVaxxjAHHuMKxjTp7s02lnfGXQVCjHX_bBLHy77-bXv_f9AEdRLPJOB4Pp6MbdGhDQg2cdf8WNYvtTt6pqKNg93pXfQBb4NXT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alleviating+effects+of+exogenous+melatonin+on+salt+stress+in+cucumber&rft.jtitle=Scientia+horticulturae&rft.au=Zhang%2C+Tengguo&rft.au=Shi%2C+Zhongfei&rft.au=Zhang%2C+Xiaohua&rft.au=Zheng%2C+Sheng&rft.date=2020-02-27&rft.pub=Elsevier+B.V&rft.issn=0304-4238&rft.eissn=1879-1018&rft.volume=262&rft_id=info:doi/10.1016%2Fj.scienta.2019.109070&rft.externalDocID=S0304423819309562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4238&client=summon