Alleviating effects of exogenous melatonin on salt stress in cucumber
•Melatonin effectively alleviate the damage of salt stress on cucumber seedlings.•The alleviation of melatonin to salt stress in cucumber seedlings is related to the production of hydrogen peroxide.•MAP kinase pathway may be involved in melatonin-mediated salt tolerance. Melatonin (N-acetyl-5-methox...
Saved in:
Published in | Scientia horticulturae Vol. 262; p. 109070 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
27.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Melatonin effectively alleviate the damage of salt stress on cucumber seedlings.•The alleviation of melatonin to salt stress in cucumber seedlings is related to the production of hydrogen peroxide.•MAP kinase pathway may be involved in melatonin-mediated salt tolerance.
Melatonin (N-acetyl-5-methoxytryptamine) is an important molecule in plants that regulates growth and development and responds to abiotic stresses. In this study, we studied the role of exogenous melatonin in alleviating salt stress in cucumber. The results showed that exogenous melatonin pretreatment could improve cell viability, protect photosynthesis, increase antioxidant enzyme activity, inhibit active oxygen explosion, reduce malondialdehyde (MDA) content and relative conductivity in cucumber Seedlings under salt stress compared with salt stress alone. Gene expression analysis showed that melatonin significantly increased the expression of antioxidant enzyme gene, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes, mitogen-activated protein kinase (MAPK) genes (MAPK3, MAPK4, MAPK6) and salt overly sensitive (SOS) genes (SOS1, SOS2, SOS3) under salt stress. diphenyleneiodonium (DPI) or dimethylthiourea (DMTU) significantly reduced melatonin-induced defense responses, including decreased antioxidant enzyme activity and photosynthesis protection, as well as the expression of stress-related genes. Similar to DPI and DMTU, U0126 (MEK inhibitor) also reduces melatonin-induced defense responses. In conclusion, our study shows that exogenous melatonin treatment can effectively alleviate the damage of salt stress on cucumber seedlings, and the alleviation effect is related to hydrogen peroxide (H2O2). And there may be interactions between melatonin-mediated salt tolerance and the MAP kinase signaling pathway. |
---|---|
AbstractList | •Melatonin effectively alleviate the damage of salt stress on cucumber seedlings.•The alleviation of melatonin to salt stress in cucumber seedlings is related to the production of hydrogen peroxide.•MAP kinase pathway may be involved in melatonin-mediated salt tolerance.
Melatonin (N-acetyl-5-methoxytryptamine) is an important molecule in plants that regulates growth and development and responds to abiotic stresses. In this study, we studied the role of exogenous melatonin in alleviating salt stress in cucumber. The results showed that exogenous melatonin pretreatment could improve cell viability, protect photosynthesis, increase antioxidant enzyme activity, inhibit active oxygen explosion, reduce malondialdehyde (MDA) content and relative conductivity in cucumber Seedlings under salt stress compared with salt stress alone. Gene expression analysis showed that melatonin significantly increased the expression of antioxidant enzyme gene, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes, mitogen-activated protein kinase (MAPK) genes (MAPK3, MAPK4, MAPK6) and salt overly sensitive (SOS) genes (SOS1, SOS2, SOS3) under salt stress. diphenyleneiodonium (DPI) or dimethylthiourea (DMTU) significantly reduced melatonin-induced defense responses, including decreased antioxidant enzyme activity and photosynthesis protection, as well as the expression of stress-related genes. Similar to DPI and DMTU, U0126 (MEK inhibitor) also reduces melatonin-induced defense responses. In conclusion, our study shows that exogenous melatonin treatment can effectively alleviate the damage of salt stress on cucumber seedlings, and the alleviation effect is related to hydrogen peroxide (H2O2). And there may be interactions between melatonin-mediated salt tolerance and the MAP kinase signaling pathway. |
ArticleNumber | 109070 |
Author | Mo, Jiangnan Shi, Zhongfei Zheng, Sheng Zhang, Xiaohua Wang, Juan Zhang, Tengguo |
Author_xml | – sequence: 1 givenname: Tengguo surname: Zhang fullname: Zhang, Tengguo email: zhangtg@nwnu.edu.cn – sequence: 2 givenname: Zhongfei surname: Shi fullname: Shi, Zhongfei – sequence: 3 givenname: Xiaohua surname: Zhang fullname: Zhang, Xiaohua – sequence: 4 givenname: Sheng surname: Zheng fullname: Zheng, Sheng – sequence: 5 givenname: Juan surname: Wang fullname: Wang, Juan – sequence: 6 givenname: Jiangnan surname: Mo fullname: Mo, Jiangnan |
BookMark | eNqFkN1KAzEQhYNUsK0-gpAX2DrZ7C9eSCm1CgVv9Dpks5OSsk0kSYu-vSnbK28KAwPDOYcz34xMrLNIyCODBQNWPe0XQRm0US5yYG26tVDDDZmypm6zpGgmZAociqzIeXNHZiHsAYCxop2S9XIY8GRkNHZHUWtUMVCnKf64HVp3DPSAg4zOGkudpUEOkYboMQSaLuqojocO_T251XII-HDZc_L1uv5cvWXbj837arnNFK_LmPV9qlQr3XdM5botsO2LruxrJvOCI-SoK6Y0VG3D0zTAK560ZZXXDLqy1HxOnsdc5V0IHrVQJqbuzkYvzSAYiDMRsRcXIuJMRIxEkrv85_725iD971Xfy-jD9NrJoB9VCnvjEy_RO3Ml4Q8CjYDG |
CitedBy_id | crossref_primary_10_1016_j_scienta_2023_112720 crossref_primary_10_1016_j_plaphy_2023_108194 crossref_primary_10_1002_biof_1882 crossref_primary_10_1111_ppl_70062 crossref_primary_10_48130_FruRes_2023_0030 crossref_primary_10_3390_plants9070854 crossref_primary_10_3389_fpls_2023_1200898 crossref_primary_10_1016_j_scienta_2021_110145 crossref_primary_10_1007_s00344_024_11257_3 crossref_primary_10_3390_horticulturae9060711 crossref_primary_10_1016_j_plaphy_2024_108639 crossref_primary_10_1111_jpi_12891 crossref_primary_10_1016_j_plaphy_2020_11_006 crossref_primary_10_1016_j_plaphy_2021_07_023 crossref_primary_10_1007_s00344_021_10317_2 crossref_primary_10_3389_fpls_2022_946922 crossref_primary_10_1016_j_plaphy_2023_03_004 crossref_primary_10_1080_13102818_2022_2128875 crossref_primary_10_1186_s12870_024_05506_6 crossref_primary_10_3390_ijms24076134 crossref_primary_10_1016_j_plaphy_2024_109294 crossref_primary_10_1038_s41598_023_47260_z crossref_primary_10_7717_peerj_16838 crossref_primary_10_3389_fpls_2021_779382 crossref_primary_10_3389_fpls_2023_1209999 crossref_primary_10_1016_j_jplph_2022_153640 crossref_primary_10_1071_FP22139 crossref_primary_10_1080_00380768_2024_2405834 crossref_primary_10_1111_ppl_14419 crossref_primary_10_3390_ijms25105092 crossref_primary_10_3390_plants10050886 crossref_primary_10_1007_s00344_024_11567_6 crossref_primary_10_1007_s11738_023_03634_4 crossref_primary_10_3390_antiox9080681 crossref_primary_10_1016_j_scienta_2023_112468 crossref_primary_10_3390_antiox11081610 crossref_primary_10_1016_j_scienta_2024_113836 crossref_primary_10_1007_s00344_021_10513_0 crossref_primary_10_1016_j_plaphy_2022_08_007 crossref_primary_10_3389_fpls_2020_575829 crossref_primary_10_1007_s00299_024_03332_6 crossref_primary_10_1007_s10725_022_00905_x crossref_primary_10_1016_j_plantsci_2021_111093 crossref_primary_10_1016_j_plaphy_2025_109704 crossref_primary_10_7235_HORT_20240038 crossref_primary_10_48130_vegres_0024_0024 crossref_primary_10_1016_j_sajb_2022_10_012 crossref_primary_10_1093_jxb_erac224 crossref_primary_10_1111_ppl_70055 crossref_primary_10_3390_plants12132450 crossref_primary_10_1002_jsfa_12638 crossref_primary_10_3389_fpls_2023_1142753 crossref_primary_10_1016_j_plaphy_2021_11_036 crossref_primary_10_1016_j_scienta_2024_112911 crossref_primary_10_1080_15592324_2020_1737450 crossref_primary_10_3390_ijms23158260 crossref_primary_10_31015_jaefs_2022_2_11 crossref_primary_10_3390_antiox11122414 crossref_primary_10_3390_plants13121672 crossref_primary_10_3389_fpls_2022_890613 crossref_primary_10_1007_s40415_024_01013_y crossref_primary_10_1007_s12298_021_01009_y crossref_primary_10_21273_HORTSCI16083_21 crossref_primary_10_1166_mex_2023_2370 crossref_primary_10_1186_s12870_022_03728_0 crossref_primary_10_3390_horticulturae8111066 crossref_primary_10_1080_15592324_2023_2290336 crossref_primary_10_1111_ppl_13983 crossref_primary_10_3390_antiox11020309 crossref_primary_10_3390_agronomy13020386 crossref_primary_10_1016_j_plaphy_2021_03_058 crossref_primary_10_1016_j_plaphy_2025_109810 crossref_primary_10_1007_s00299_021_02759_5 crossref_primary_10_1016_j_sajb_2023_10_045 crossref_primary_10_1016_j_plaphy_2024_108398 crossref_primary_10_3390_plants14050824 crossref_primary_10_3390_horticulturae9080913 crossref_primary_10_1071_FP21233 crossref_primary_10_1016_j_stress_2022_100071 crossref_primary_10_3390_ijms25052844 crossref_primary_10_3390_cells10071631 crossref_primary_10_1111_ppl_13912 crossref_primary_10_3389_fpls_2022_1061921 crossref_primary_10_1007_s10725_024_01233_y crossref_primary_10_1007_s42729_024_01830_w crossref_primary_10_3389_fpls_2022_998293 crossref_primary_10_53518_mjavl_1237413 crossref_primary_10_3390_ijms23158480 crossref_primary_10_1007_s10265_022_01391_y crossref_primary_10_3390_horticulturae9040514 crossref_primary_10_1186_s12864_025_11368_5 crossref_primary_10_1002_fft2_180 crossref_primary_10_1016_j_scienta_2023_112594 crossref_primary_10_1016_j_sajb_2024_05_034 crossref_primary_10_3390_plants11091147 crossref_primary_10_1111_jfpp_16363 crossref_primary_10_61186_JCT_14_1_17 crossref_primary_10_1016_j_scienta_2023_112508 crossref_primary_10_1007_s10725_023_01011_2 crossref_primary_10_3390_horticulturae7030061 crossref_primary_10_3389_fpls_2022_950392 crossref_primary_10_3390_foods11244097 crossref_primary_10_3390_horticulturae10060627 crossref_primary_10_3390_nano12152667 crossref_primary_10_1016_j_scienta_2023_112665 crossref_primary_10_1016_j_scienta_2022_110962 crossref_primary_10_1007_s00344_022_10805_z crossref_primary_10_1016_j_scienta_2021_110566 crossref_primary_10_1007_s11356_023_25903_y crossref_primary_10_1016_j_chemosphere_2024_141120 crossref_primary_10_3389_fpls_2023_1073434 crossref_primary_10_1016_j_sajb_2023_08_055 crossref_primary_10_3390_su15097426 crossref_primary_10_1007_s40415_025_01068_5 crossref_primary_10_1016_j_sajb_2023_07_014 crossref_primary_10_1016_j_plaphy_2024_109424 crossref_primary_10_3390_agronomy12092098 crossref_primary_10_1016_j_scienta_2021_110392 crossref_primary_10_3390_agronomy11020400 crossref_primary_10_1016_j_scienta_2023_112495 crossref_primary_10_32615_bp_2020_090 crossref_primary_10_21926_obm_genet_2402242 crossref_primary_10_29050_harranziraat_1065707 crossref_primary_10_3389_fpls_2022_1095363 crossref_primary_10_1111_ppl_13262 crossref_primary_10_1111_ppl_14592 crossref_primary_10_3389_fpls_2023_1140803 crossref_primary_10_1016_j_plaphy_2021_05_003 crossref_primary_10_1007_s00344_020_10273_3 |
Cites_doi | 10.1111/j.1600-079X.2008.00625.x 10.1016/j.freeradbiomed.2017.04.009 10.1007/s11099-015-0097-2 10.1111/ppl.12581 10.1111/jpi.12267 10.1111/jpi.12017 10.1016/S1369-5266(03)00085-2 10.1016/j.molcel.2004.06.023 10.4161/psb.2.5.4260 10.1016/j.tplants.2014.07.006 10.1111/jpi.12500 10.1111/jpi.12095 10.1016/j.jplph.2014.08.022 10.3389/fpls.2015.00601 10.1093/jxb/eru373 10.4161/psb.6.2.14701 10.3389/fpls.2018.00914 10.1111/j.1600-079X.1995.tb00136.x 10.1074/jbc.M801392200 10.1111/j.1600-079X.2012.01015.x 10.1371/journal.pone.0093462 10.1093/aob/mcx114 10.1007/BF00620064 10.1104/pp.24.1.1 10.1111/jpi.12232 10.1093/aob/mcx207 10.1007/BF00037585 10.1016/j.plaphy.2018.09.039 10.1111/jpi.12167 10.1016/j.cell.2016.08.029 10.1007/s11099-015-0140-3 10.1016/j.plaphy.2016.01.008 10.1111/jpi.12253 10.1007/s10725-015-0066-6 10.1016/j.bbrc.2017.11.043 10.1111/jpi.12038 10.1016/S0014-5793(99)01451-9 10.1016/S0168-9452(99)00197-1 10.1007/s11738-016-2101-2 10.1093/jxb/erx473 10.1111/jpi.12243 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.scienta.2019.109070 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1879-1018 |
ExternalDocumentID | 10_1016_j_scienta_2019_109070 S0304423819309562 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSZ T5K Y6R ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HVGLF HZ~ R2- RIG SEW SSH WUQ XOL |
ID | FETCH-LOGICAL-c375t-dd1877cfdb1c2f94e9d4b5d71a243e02ef61cf0698398380363fdb562710b55f3 |
IEDL.DBID | .~1 |
ISSN | 0304-4238 |
IngestDate | Tue Jul 01 02:35:42 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Fri Feb 23 02:50:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Melatonin Salt stress Hydrogen peroxide Cucumber |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-dd1877cfdb1c2f94e9d4b5d71a243e02ef61cf0698398380363fdb562710b55f3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_scienta_2019_109070 crossref_primary_10_1016_j_scienta_2019_109070 elsevier_sciencedirect_doi_10_1016_j_scienta_2019_109070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-27 |
PublicationDateYYYYMMDD | 2020-02-27 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | Scientia horticulturae |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yin, Wang, Li, Ke, Li, Liang, Wu, Ma, Li, Zou, Ma (bib0185) 2013; 54 Achary, Patnaik, Panda (bib0005) 2012; 75 Gong, Yan, Wen, Shi (bib0080) 2017; 160 Arnao, Hernández‐Ruiz (bib0015) 2009; 46 Baker, Mock (bib0040) 1994; 39 Li, Brestic, Tan, Zivcak, Zhu, Liu, Song, Reiter, Liu (bib0105) 2017; 64 Shi, Jiang, Ye, Tan, Reiter, Zhang, Liu, Chan (bib0135) 2015; 66 Feng, Jiao, Sun, Jia, Tian (bib0075) 2015; 53 Sinha, Jaggi, Raghuram, Tuteja (bib0140) 2011; 6 Ben Rejeb, Benzarti, Debez, Bailly, Savoure, Abdelly (bib0045) 2015; 174 Zhang, Zhao, Zhang, Weeda, Yang, Yang, Ren, Guo (bib0200) 2013; 54 Manchester, Coto-Montes, Boga, Andersen, Zhou, Galano, Vriend, Tan, Reiter (bib0125) 2015; 59 Arnon (bib0035) 1949; 24 Byeon, Lee, Hwang, Lee, Lee, Back (bib0050) 2015; 58 Chen, Gu, Yu, Huang, Xu, Wang, Shen, Shen (bib0055) 2018; 121 Hasan, Ahammed, Yin, Shi, Xia, Zhou, Yu, Zhou (bib0085) 2015; 6 Chen, Xie, Gu, Zhao, Zhang, Cui, Xu, Wang, Shen (bib0060) 2017; 108 Wang, Liu, Wang, Sun (bib0155) 2016; 54 Liang, Zheng, Li, Wang, Hu, Wang, Wu, Qian, Zhu, Tan, Chen, Chu (bib0110) 2015; 59 Zhang, Zhang, Yang, Wang, Sun, Li, Cao, Weeda, Zhao, Ren, Guo (bib0190) 2014; 57 Zhang, Mo, Zhou, Chang, Liu (bib0205) 2018; 132 Weeda, Zhang, Zhao, Ndip, Guo, Buck, Fu, Ren (bib0170) 2014; 9 Arnao, HernándezRuiz (bib0010) 2007; 2 Zhu (bib0215) 2016; 167 Velikova, Yordanov, Edreva (bib0150) 2000; 151 Zhu (bib0210) 2003; 6 Liang, Ma, Wan, Liu (bib0115) 2017; 495 Arnao, Hernandez-Ruiz (bib0030) 2018; 121 Jiang, Cui, Feng, Xu, Li, Zheng (bib0095) 2016; 38 Wei, Li, Zhang, Shan, Rengel, Song, Chen (bib0175) 2018; 65 Wang, Sun, Li, Wei, Liang, Ma (bib0160) 2013; 54 Arnao, Hernandez-Ruiz (bib0025) 2015; 59 Liu, Wang, Wang, Sun (bib0120) 2015; 77 Ke, Ye, Wang, Ren, Yin, Deng, Wang (bib0100) 2018; 9 Nanjo, Kobayashi, Yoshiba, Kakubari, Yamaguchi-Shinozaki, Shinozaki (bib0130) 1999; 461 Demmig-Adams, Adams (bib0065) 1996; 198 Xu, Li, Wang, Liu, Lei, Yang, Liu, Ren (bib0180) 2008; 283 Arnao, Hernandez-Ruiz (bib0020) 2014; 19 Teige, Scheikl, Eulgem, Doczi, Ichimura, Shinozaki, Dangl, Hirt (bib0145) 2004; 15 Zhang, Zhang, Zhao, Sun, Cao, Li, Wu, Weeda, Li, Ren, Reiter, Guo (bib0195) 2014; 56 Hu, Fan, Xie, Amombo, Liu, Gitau, Khaldun, Chen, Fu (bib0090) 2016; 100 Wang, Reiter, Chan (bib0165) 2018; 69 Dubbels, Reiter, Klenke, Goebel, Schnakenberg, Ehlers, Schiwara, Schloot (bib0070) 1995; 18 Wei (10.1016/j.scienta.2019.109070_bib0175) 2018; 65 Wang (10.1016/j.scienta.2019.109070_bib0155) 2016; 54 Liang (10.1016/j.scienta.2019.109070_bib0115) 2017; 495 Nanjo (10.1016/j.scienta.2019.109070_bib0130) 1999; 461 Wang (10.1016/j.scienta.2019.109070_bib0160) 2013; 54 Shi (10.1016/j.scienta.2019.109070_bib0135) 2015; 66 Baker (10.1016/j.scienta.2019.109070_bib0040) 1994; 39 Achary (10.1016/j.scienta.2019.109070_bib0005) 2012; 75 Demmig-Adams (10.1016/j.scienta.2019.109070_bib0065) 1996; 198 Yin (10.1016/j.scienta.2019.109070_bib0185) 2013; 54 Byeon (10.1016/j.scienta.2019.109070_bib0050) 2015; 58 Sinha (10.1016/j.scienta.2019.109070_bib0140) 2011; 6 Arnao (10.1016/j.scienta.2019.109070_bib0010) 2007; 2 Hasan (10.1016/j.scienta.2019.109070_bib0085) 2015; 6 Weeda (10.1016/j.scienta.2019.109070_bib0170) 2014; 9 Arnao (10.1016/j.scienta.2019.109070_bib0015) 2009; 46 Liang (10.1016/j.scienta.2019.109070_bib0110) 2015; 59 Zhu (10.1016/j.scienta.2019.109070_bib0210) 2003; 6 Zhu (10.1016/j.scienta.2019.109070_bib0215) 2016; 167 Wang (10.1016/j.scienta.2019.109070_bib0165) 2018; 69 Arnao (10.1016/j.scienta.2019.109070_bib0030) 2018; 121 Teige (10.1016/j.scienta.2019.109070_bib0145) 2004; 15 Chen (10.1016/j.scienta.2019.109070_bib0060) 2017; 108 Zhang (10.1016/j.scienta.2019.109070_bib0200) 2013; 54 Arnon (10.1016/j.scienta.2019.109070_bib0035) 1949; 24 Ke (10.1016/j.scienta.2019.109070_bib0100) 2018; 9 Arnao (10.1016/j.scienta.2019.109070_bib0020) 2014; 19 Zhang (10.1016/j.scienta.2019.109070_bib0205) 2018; 132 Li (10.1016/j.scienta.2019.109070_bib0105) 2017; 64 Arnao (10.1016/j.scienta.2019.109070_bib0025) 2015; 59 Velikova (10.1016/j.scienta.2019.109070_bib0150) 2000; 151 Jiang (10.1016/j.scienta.2019.109070_bib0095) 2016; 38 Hu (10.1016/j.scienta.2019.109070_bib0090) 2016; 100 Ben Rejeb (10.1016/j.scienta.2019.109070_bib0045) 2015; 174 Dubbels (10.1016/j.scienta.2019.109070_bib0070) 1995; 18 Feng (10.1016/j.scienta.2019.109070_bib0075) 2015; 53 Gong (10.1016/j.scienta.2019.109070_bib0080) 2017; 160 Xu (10.1016/j.scienta.2019.109070_bib0180) 2008; 283 Manchester (10.1016/j.scienta.2019.109070_bib0125) 2015; 59 Chen (10.1016/j.scienta.2019.109070_bib0055) 2018; 121 Liu (10.1016/j.scienta.2019.109070_bib0120) 2015; 77 Zhang (10.1016/j.scienta.2019.109070_bib0190) 2014; 57 Zhang (10.1016/j.scienta.2019.109070_bib0195) 2014; 56 |
References_xml | – volume: 54 start-page: 19 year: 2016 end-page: 27 ident: bib0155 article-title: Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress publication-title: Photosynthetica – volume: 69 start-page: 963 year: 2018 end-page: 974 ident: bib0165 article-title: Phytomelatonin: a universal abiotic stress regulator publication-title: J. Exp. Bot. – volume: 39 start-page: 7 year: 1994 end-page: 12 ident: bib0040 article-title: An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue publication-title: Plant Cell Tissue Organ Cult. – volume: 53 start-page: 201 year: 2015 end-page: 206 ident: bib0075 article-title: Extracellular ATP affects chlorophyll fluorescence of kidney bean ( publication-title: Photosynthetica – volume: 160 start-page: 396 year: 2017 end-page: 409 ident: bib0080 article-title: Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in publication-title: Physiol. Plant. – volume: 151 start-page: 59 year: 2000 end-page: 66 ident: bib0150 article-title: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines publication-title: Plant Sci. – volume: 54 start-page: 15 year: 2013 end-page: 23 ident: bib0200 article-title: Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber ( publication-title: J. Pineal Res. – volume: 46 start-page: 58 year: 2009 end-page: 63 ident: bib0015 article-title: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves publication-title: J. Pineal Res. – volume: 64 year: 2017 ident: bib0105 article-title: Melatonin alleviates low PS I-limited carbon assimilation under elevated CO publication-title: J. Pineal Res. – volume: 2 start-page: 381 year: 2007 end-page: 382 ident: bib0010 article-title: Melatonin in plants: more studies are necessary publication-title: Plant Signal. Behav. – volume: 57 start-page: 269 year: 2014 end-page: 279 ident: bib0190 article-title: Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA publication-title: J. Pineal Res. – volume: 65 year: 2018 ident: bib0175 article-title: Phytomelatonin receptor PMTR1 mediated signaling regulates stomatal closure in Arabidopsis thaliana publication-title: J. Pineal Res. – volume: 495 start-page: 286 year: 2017 end-page: 291 ident: bib0115 article-title: Plant salt-tolerance mechanism: a review publication-title: Biochem. Biophys. Res. Commun. – volume: 108 start-page: 465 year: 2017 end-page: 477 ident: bib0060 article-title: The publication-title: Free Radic. Biol. Med. – volume: 6 start-page: 196 year: 2011 end-page: 203 ident: bib0140 article-title: Mitogen-activated protein kinase signaling in plants under abiotic stress publication-title: Plant Signal. Behav. – volume: 167 start-page: 313 year: 2016 end-page: 324 ident: bib0215 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 100 start-page: 94 year: 2016 end-page: 104 ident: bib0090 article-title: Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin publication-title: Plant Physiol. Biochem. – volume: 54 start-page: 292 year: 2013 end-page: 302 ident: bib0160 article-title: Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple publication-title: J. Pineal Res. – volume: 59 start-page: 91 year: 2015 end-page: 101 ident: bib0110 article-title: Melatonin delays leaf senescence and enhances salt stress tolerance in rice publication-title: J. Pineal Res. – volume: 18 start-page: 28 year: 1995 end-page: 31 ident: bib0070 article-title: Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry publication-title: J. Pineal Res. – volume: 54 start-page: 426 year: 2013 end-page: 434 ident: bib0185 article-title: Exogenous melatonin improves publication-title: J. Pineal Res. – volume: 77 start-page: 317 year: 2015 end-page: 326 ident: bib0120 article-title: Exogenous melatonin improves seedling health index and drought tolerance in tomato publication-title: Plant Growth Regul. – volume: 6 start-page: 441 year: 2003 end-page: 445 ident: bib0210 article-title: Regulation of ion homeostasis under salt stress publication-title: Curr. Opin. Plant Biol. – volume: 9 year: 2014 ident: bib0170 article-title: Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems publication-title: PLoS One – volume: 121 start-page: 1127 year: 2018 end-page: 1136 ident: bib0055 article-title: Hydrogen peroxide acts downstream of melatonin to induce lateral root formation publication-title: Ann. Bot. – volume: 174 start-page: 5 year: 2015 end-page: 15 ident: bib0045 article-title: NADPH oxidase-dependent H publication-title: J. Plant Physiol. – volume: 59 start-page: 133 year: 2015 end-page: 150 ident: bib0025 article-title: Functions of melatonin in plants: a review publication-title: J. Pineal Res. – volume: 15 start-page: 141 year: 2004 end-page: 152 ident: bib0145 article-title: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis publication-title: Mol. Cell – volume: 56 start-page: 39 year: 2014 end-page: 50 ident: bib0195 article-title: The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation publication-title: J. Pineal Res. – volume: 59 start-page: 403 year: 2015 end-page: 419 ident: bib0125 article-title: Melatonin: an ancientmolecule that makes oxygen metabolically tolerable publication-title: J. Pineal Res. – volume: 283 start-page: 26996 year: 2008 end-page: 27006 ident: bib0180 article-title: Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in publication-title: J. Biol. Chem. – volume: 121 start-page: 195 year: 2018 end-page: 207 ident: bib0030 article-title: Melatonin and its relationship to plant hormones publication-title: Ann. Bot. – volume: 132 start-page: 515 year: 2018 end-page: 523 ident: bib0205 article-title: Overexpression of publication-title: Plant Physiol. Biochem. – volume: 461 start-page: 205 year: 1999 end-page: 210 ident: bib0130 article-title: Antisense suppression of proline degradation improves tolerance to freezing and salinity in publication-title: FEBS Lett. – volume: 66 start-page: 681 year: 2015 end-page: 694 ident: bib0135 article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [ publication-title: J. Exp. Bot. – volume: 198 start-page: 460 year: 1996 end-page: 470 ident: bib0065 article-title: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species publication-title: Planta – volume: 24 start-page: 1 year: 1949 end-page: 15 ident: bib0035 article-title: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris publication-title: Plant Physiol. – volume: 9 start-page: 914 year: 2018 ident: bib0100 article-title: Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism publication-title: Front. Plant Sci. – volume: 19 start-page: 789 year: 2014 end-page: 797 ident: bib0020 article-title: Melatonin: plant growth regulator and/or biostimulator during stress? publication-title: Trends Plant Sci. – volume: 75 start-page: 0 year: 2012 end-page: 26 ident: bib0005 article-title: Oxidative biomarkers in leaf tissue of barley seedlings in response to aluminum stress publication-title: Ecotoxicol. Environ. Saf. – volume: 38 start-page: 1 year: 2016 end-page: 9 ident: bib0095 article-title: Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings publication-title: Acta Physiol. Plant. – volume: 58 start-page: 470 year: 2015 end-page: 478 ident: bib0050 article-title: Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment publication-title: J. Pineal Res. – volume: 6 start-page: 601 year: 2015 ident: bib0085 article-title: Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum publication-title: Front. Plant Sci. – volume: 46 start-page: 58 year: 2009 ident: 10.1016/j.scienta.2019.109070_bib0015 article-title: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves publication-title: J. Pineal Res. doi: 10.1111/j.1600-079X.2008.00625.x – volume: 108 start-page: 465 year: 2017 ident: 10.1016/j.scienta.2019.109070_bib0060 article-title: The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.04.009 – volume: 53 start-page: 201 year: 2015 ident: 10.1016/j.scienta.2019.109070_bib0075 article-title: Extracellular ATP affects chlorophyll fluorescence of kidney bean (Phaseolus vulgaris) leaves through Ca2+ and H2O2-dependent mechanism publication-title: Photosynthetica doi: 10.1007/s11099-015-0097-2 – volume: 160 start-page: 396 year: 2017 ident: 10.1016/j.scienta.2019.109070_bib0080 article-title: Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum publication-title: Physiol. Plant. doi: 10.1111/ppl.12581 – volume: 59 start-page: 403 year: 2015 ident: 10.1016/j.scienta.2019.109070_bib0125 article-title: Melatonin: an ancientmolecule that makes oxygen metabolically tolerable publication-title: J. Pineal Res. doi: 10.1111/jpi.12267 – volume: 54 start-page: 292 year: 2013 ident: 10.1016/j.scienta.2019.109070_bib0160 article-title: Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple publication-title: J. Pineal Res. doi: 10.1111/jpi.12017 – volume: 6 start-page: 441 year: 2003 ident: 10.1016/j.scienta.2019.109070_bib0210 article-title: Regulation of ion homeostasis under salt stress publication-title: Curr. Opin. Plant Biol. doi: 10.1016/S1369-5266(03)00085-2 – volume: 15 start-page: 141 year: 2004 ident: 10.1016/j.scienta.2019.109070_bib0145 article-title: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.06.023 – volume: 2 start-page: 381 year: 2007 ident: 10.1016/j.scienta.2019.109070_bib0010 article-title: Melatonin in plants: more studies are necessary publication-title: Plant Signal. Behav. doi: 10.4161/psb.2.5.4260 – volume: 19 start-page: 789 year: 2014 ident: 10.1016/j.scienta.2019.109070_bib0020 article-title: Melatonin: plant growth regulator and/or biostimulator during stress? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.07.006 – volume: 65 issue: 2 year: 2018 ident: 10.1016/j.scienta.2019.109070_bib0175 article-title: Phytomelatonin receptor PMTR1 mediated signaling regulates stomatal closure in Arabidopsis thaliana publication-title: J. Pineal Res. doi: 10.1111/jpi.12500 – volume: 56 start-page: 39 year: 2014 ident: 10.1016/j.scienta.2019.109070_bib0195 article-title: The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation publication-title: J. Pineal Res. doi: 10.1111/jpi.12095 – volume: 174 start-page: 5 year: 2015 ident: 10.1016/j.scienta.2019.109070_bib0045 article-title: NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2014.08.022 – volume: 6 start-page: 601 year: 2015 ident: 10.1016/j.scienta.2019.109070_bib0085 article-title: Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00601 – volume: 75 start-page: 0 year: 2012 ident: 10.1016/j.scienta.2019.109070_bib0005 article-title: Oxidative biomarkers in leaf tissue of barley seedlings in response to aluminum stress publication-title: Ecotoxicol. Environ. Saf. – volume: 66 start-page: 681 year: 2015 ident: 10.1016/j.scienta.2019.109070_bib0135 article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru373 – volume: 6 start-page: 196 year: 2011 ident: 10.1016/j.scienta.2019.109070_bib0140 article-title: Mitogen-activated protein kinase signaling in plants under abiotic stress publication-title: Plant Signal. Behav. doi: 10.4161/psb.6.2.14701 – volume: 9 start-page: 914 year: 2018 ident: 10.1016/j.scienta.2019.109070_bib0100 article-title: Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00914 – volume: 18 start-page: 28 year: 1995 ident: 10.1016/j.scienta.2019.109070_bib0070 article-title: Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry publication-title: J. Pineal Res. doi: 10.1111/j.1600-079X.1995.tb00136.x – volume: 283 start-page: 26996 year: 2008 ident: 10.1016/j.scienta.2019.109070_bib0180 article-title: Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801392200 – volume: 54 start-page: 15 year: 2013 ident: 10.1016/j.scienta.2019.109070_bib0200 article-title: Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.) publication-title: J. Pineal Res. doi: 10.1111/j.1600-079X.2012.01015.x – volume: 9 year: 2014 ident: 10.1016/j.scienta.2019.109070_bib0170 article-title: Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems publication-title: PLoS One doi: 10.1371/journal.pone.0093462 – volume: 121 start-page: 195 year: 2018 ident: 10.1016/j.scienta.2019.109070_bib0030 article-title: Melatonin and its relationship to plant hormones publication-title: Ann. Bot. doi: 10.1093/aob/mcx114 – volume: 64 year: 2017 ident: 10.1016/j.scienta.2019.109070_bib0105 article-title: Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat publication-title: J. Pineal Res. – volume: 198 start-page: 460 year: 1996 ident: 10.1016/j.scienta.2019.109070_bib0065 article-title: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species publication-title: Planta doi: 10.1007/BF00620064 – volume: 24 start-page: 1 year: 1949 ident: 10.1016/j.scienta.2019.109070_bib0035 article-title: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris publication-title: Plant Physiol. doi: 10.1104/pp.24.1.1 – volume: 58 start-page: 470 year: 2015 ident: 10.1016/j.scienta.2019.109070_bib0050 article-title: Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment publication-title: J. Pineal Res. doi: 10.1111/jpi.12232 – volume: 121 start-page: 1127 year: 2018 ident: 10.1016/j.scienta.2019.109070_bib0055 article-title: Hydrogen peroxide acts downstream of melatonin to induce lateral root formation publication-title: Ann. Bot. doi: 10.1093/aob/mcx207 – volume: 39 start-page: 7 year: 1994 ident: 10.1016/j.scienta.2019.109070_bib0040 article-title: An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/BF00037585 – volume: 132 start-page: 515 year: 2018 ident: 10.1016/j.scienta.2019.109070_bib0205 article-title: Overexpression of Brassica campestris BcICE1 gene increases abiotic stress tolerance in tobacco publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.09.039 – volume: 57 start-page: 269 year: 2014 ident: 10.1016/j.scienta.2019.109070_bib0190 article-title: Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.) publication-title: J. Pineal Res. doi: 10.1111/jpi.12167 – volume: 167 start-page: 313 year: 2016 ident: 10.1016/j.scienta.2019.109070_bib0215 article-title: Abiotic stress signaling and responses in plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 54 start-page: 19 year: 2016 ident: 10.1016/j.scienta.2019.109070_bib0155 article-title: Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress publication-title: Photosynthetica doi: 10.1007/s11099-015-0140-3 – volume: 100 start-page: 94 year: 2016 ident: 10.1016/j.scienta.2019.109070_bib0090 article-title: Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.01.008 – volume: 59 start-page: 133 year: 2015 ident: 10.1016/j.scienta.2019.109070_bib0025 article-title: Functions of melatonin in plants: a review publication-title: J. Pineal Res. doi: 10.1111/jpi.12253 – volume: 77 start-page: 317 year: 2015 ident: 10.1016/j.scienta.2019.109070_bib0120 article-title: Exogenous melatonin improves seedling health index and drought tolerance in tomato publication-title: Plant Growth Regul. doi: 10.1007/s10725-015-0066-6 – volume: 495 start-page: 286 year: 2017 ident: 10.1016/j.scienta.2019.109070_bib0115 article-title: Plant salt-tolerance mechanism: a review publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.11.043 – volume: 54 start-page: 426 year: 2013 ident: 10.1016/j.scienta.2019.109070_bib0185 article-title: Exogenous melatonin improves Malus resistance to Marssonina apple blotch publication-title: J. Pineal Res. doi: 10.1111/jpi.12038 – volume: 461 start-page: 205 year: 1999 ident: 10.1016/j.scienta.2019.109070_bib0130 article-title: Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)01451-9 – volume: 151 start-page: 59 year: 2000 ident: 10.1016/j.scienta.2019.109070_bib0150 article-title: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines publication-title: Plant Sci. doi: 10.1016/S0168-9452(99)00197-1 – volume: 38 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.scienta.2019.109070_bib0095 article-title: Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-016-2101-2 – volume: 69 start-page: 963 year: 2018 ident: 10.1016/j.scienta.2019.109070_bib0165 article-title: Phytomelatonin: a universal abiotic stress regulator publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx473 – volume: 59 start-page: 91 year: 2015 ident: 10.1016/j.scienta.2019.109070_bib0110 article-title: Melatonin delays leaf senescence and enhances salt stress tolerance in rice publication-title: J. Pineal Res. doi: 10.1111/jpi.12243 |
SSID | ssj0001149 |
Score | 2.5875218 |
Snippet | •Melatonin effectively alleviate the damage of salt stress on cucumber seedlings.•The alleviation of melatonin to salt stress in cucumber seedlings is related... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109070 |
SubjectTerms | Cucumber Hydrogen peroxide Melatonin Salt stress |
Title | Alleviating effects of exogenous melatonin on salt stress in cucumber |
URI | https://dx.doi.org/10.1016/j.scienta.2019.109070 |
Volume | 262 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68bvPaPPYYSktV7EULvYV9RVpqUmoKnvzt7iQbqyAKXpcdCF82szOZ75tB6IZJ6otAu0QrHRMqdG4-KcUIF64nBBeeqmdGPkyi8ZTezcJZBw1aLQzQKq3vb3x67a3timPRdFbzufMIRT1aZxwBdNMDP0xpDKe8_76leZh4nzWVBEpg91bF4yz6VnQIDC8GjZVcmFn80_305c4ZHaIDGyzitHmeI9TRxTHaT5_XtmGGPkHDdAkCcQ7sZWzJGbjMsX4rm_ar-AXobvDTFZcFfuXLCjf6EGxW5EbWE0FO0XQ0fBqMiR2NQGQQhxVRykviWOZKeNLPGdVMURGq2OM-Ncj7Oo88mbsRM_FPEiRQrTV7DUgmoBBhmAdnaKcoC32OsHmFLBAsCbUyqRGVCdMiikweFnEeBT7vItoCkknbNxzGVyyzliC2yCyOGeCYNTh2Uf_TbNU0zvjLIGnRzr6dgMw4999NL_5veon2fMigQaQeX6Gdar3R1ybMqESvPkc9tJve3o8nHxCK0yI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPrcw9e0zTJ5rHHUFpS-7jYQm8h-4i01KTUFPz57iSbqiAKXpcMhC-7szOZ-b5B6JFyYjNHdg0ppG8QJlN1pAQ1Eta1GEuYJcqZkZOpF83J08JdNFCv5sJAW6X2_ZVPL721XjE1muZmuTSfoahHyozDATU95YdboE7lNlErHI6i6d4hq5CfVsUEYoDBJ5HHXHU07xCavChoK3VhbPFPV9SXa2dwgo51vIjD6pVOUUNmZ-gofNlqzQx5jvrhGjjiCTQwY92fgfMUy_e8UmDFr9DxBv9dcZ7ht2Rd4IoigtUK3_FyKMgFmg_6s15k6OkIBnd8tzCEsALf56lgFrdTSiQVhLnCtxKbKPBtmXoWT7seVSFQ4ARQsFXPKpxUTMFcN3UuUTPLM3mFsPqK1GE0cKVQ2RHhAZXM81Qq5iWJ59hJG5EakJhr6XCYYLGO6x6xVaxxjAHHuMKxjTp7s02lnfGXQVCjHX_bBLHy77-bXv_f9AEdRLPJOB4Pp6MbdGhDQg2cdf8WNYvtTt6pqKNg93pXfQBb4NXT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alleviating+effects+of+exogenous+melatonin+on+salt+stress+in+cucumber&rft.jtitle=Scientia+horticulturae&rft.au=Zhang%2C+Tengguo&rft.au=Shi%2C+Zhongfei&rft.au=Zhang%2C+Xiaohua&rft.au=Zheng%2C+Sheng&rft.date=2020-02-27&rft.pub=Elsevier+B.V&rft.issn=0304-4238&rft.eissn=1879-1018&rft.volume=262&rft_id=info:doi/10.1016%2Fj.scienta.2019.109070&rft.externalDocID=S0304423819309562 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4238&client=summon |